Review of

Preventive and Social Medicine
(Including Biostatistics)
(Thoroughly revised and updated edition including latest exam pattern questions)

Seventh Edition

Vivek Jain
MBBS (Maulana Azad Medical College), Delhi
MD Community Medicine (PSM) (Lady Hardinge Medical College), Delhi
Ex Senior Resident UCMS & GTBH, VMMC & SJH, Delhi
Ex Faculty GFIMSR, Faridabad, Haryana
Ex Consultant UN Office on Drugs & Crime, South Asia

The Health Sciences Publisher
New Delhi | London | Philadelphia | Panama

https://kat.cr/user/Blink99/
Dear Students,

Let me first thank you for your overwhelming support to the 6th edition of the book, making it the best-seller book on the subject in India. It again reiterates my belief that good content by a subject-speciality author is always appreciated by students. It now gives me immense pleasure to share with you the NEW (Seventh) edition of the book.

Key features of Sixth edition retained in Seventh edition
- Theory given at start of each chapter (Theory divided chapter-, topic-, sub-topic wise – Small/one-liner points in each topic/Important previous MCQs marked as 6)
- Key REVISION Points given on side of each topic for MUST-KNOW MCQs facts
- New NBE based pattern has been adopted chapter-wise (Focus on wider coverage, concept development, one-liner approach, value-based MCQs, applied aspect MCQs, image based MCQs, updated golden points)

In the 7th edition of the book following NEW ADDITIONS have been done to make a student stay ahead in this competitive era with changing pattern of Examinations:
- Additional PICTURE MCQs with Answers (According to Recent Examinations)
- Recent most solved MCQs papers
 - ALL Recent Questions 2013, 2014
- Recent/New topics and changing concepts in PSM
 - New National Immunisation Schedule 2015
 - New Health Programmes: RBSK, NSSK, JSSK, RKSK, PMJDY, PMSSY, NUHM
 - New Strategies (RMNCH+A, BeMONC, CeMONC, End-TB, AMMRS)
 - Newer/Emerging Diseases (H7N9, Ebola, MERS-CoV)
 - New Changes in RTI/STI Treatment 2015 (STD color kits, Suraksha clinic)
 - New Malaria Treatment Guidelines 2013
 - New PPTCT Guidelines 2015 (Triple ARV Prophylaxis)
 - New Rabies Prophylaxis Guidelines 2015 (Essen, Thai Red Cross Regimen)
 - New Protein Quality Assessment Guidelines 2015 (DIAAS)
 - New AN visits, PN visits Guidelines
 - Changes in Epidemiology of Various Diseases
 - Changes in National Health Programmes (NRHM, MDMP, JSSK, HNBC, ICDS)
 - New Clinical Trial Guidelines (Phase 0)
 - New NACP Guidelines (HIV district classification, LAC, LAC PLUS, ART PLUS)
 - Twelfth Five Year Plan 2012-17
 - New Establishments (NIDM, NDRF)
- New Annexure: HLEG on UHC (Recent Examinations based)
- An Updated compilation of Public Health Statistics of India
- Rural Health Statistics India 2014
‘Understanding PSM is difficult, owing to the vastness of the subject, but enjoyable, if you come across a good teacher and a useful book!’

A student

While preparing for PG entrance examination, I myself realised that most of the PSM MCQs, related text and even the referenced answers given in books were invariably unable to satisfy me as a student. Most of the times, there were questions from ‘topics not given in standard textbooks’ (for example, nested case control study, case series report, statistical errors, probability, odds and likelihood ratios, health legislations, water washed diseases, golden rice, COPRA, Punnett square, Dixon’s Q-test, Evidence based medicine, etc.—all together are just the tip of an iceberg of such MCQs). Every year there were ‘new unheard questions from unexplored fields’, overlapping choices of MCQs from other fields of medicine accompanied with futile search for ‘recent most data of Public Health Statistics’, etc. This all made me realise that PSM is a vast and varied subject to conceptualise and memorise. Elaborate books also confused me regarding the relative importance of each topic in the subject. I also realised that students face maximum difficulty in understanding the concepts of ‘Biostatistics’ and in obtaining precise, concise and useful data from ‘National Health Programmes of India’.

Also, PG entrance examinations have a sizeable chunk of direct MCQs from PSM subject (Just 1 subject out of 19 total subjects), ranging from 10 to 14% of total (20-25% in CMS-UPSC). Moreover, PSM helps in solving several allied questions (partly or totally) of Paediatrics, Obstetrics, Pharmacology, Medicine, Microbiology, Ophthalmology, etc.

So, there is no denying the fact that ‘PSM is of paramount importance’ to successfully tackle any PG Entrance Examination. Thus, I have written this book keeping a student’s, a teacher’s and an examiner’s perspective in mind.

Each chapter has been divided into topics and sub-topics, Theory and MCQs have been arranged section-wise for more comprehensive understanding of topics. In Theory, Important previous years MCQs have been highlighted (as*) and MUST-KNOW facts have been given separately. Book includes PG Entrance Examination MCQs of AIIMS (1991–2014) and AIPGMEE (1991–2012 + ‘Recent MCQs’) with referenced, authenticated, full explanatory answers. Solved explanatory MCQs from DPG, PGI, JIPMER PG Entrance Examinations (2000–2011) have been added to help students grasp subject better. Over 2500 solved MCQs from UPSC CMS and Several State Medical PG Entrance Examinations (Rajasthan, MP, Andhra Pradesh, Tamil Nadu, Maharashtra, Bihar, DNB, JIPMER, Kolkata, Karnataka PGMEE) have been added for wider coverage. Recent most changes in National Health Programmes with updates in Communicable and Noncommunicable diseases provided for competitive edge.

Many answers have been followed by a section on ‘Also Remember’—A compilation of various important noteworthy points based on previous questions from several fields. Golden Points (Five sets) have been included for a quick revision just before the examination. Several Annexures (Incubation period and modes of transmission of diseases, important days of public health, instruments of importance in public health, important health legislations and programmes in India, Vectors, NHP 2002 and NPP 2000, proposed BMW guidelines and public health related statistics of India) have been included towards the end of the book to give the student an edge over others.

Please remember there is no substitute to theory books, but hopefully you will find all relevant theory in this user-friendly book.

Despite every possible effort been undertaken to ensure no technical or typographical errors in the book, such are bound to be present in any book. If you come across another such error or if you have any comment, suggestions, queries or views, you are most welcome to e-mail to me for a prompt response. All contributions will be duly acknowledged. Do share your experiences while reading this book and the subject.

Hope you have a successful career ahead.

Wish you Success, not just in PSM but in Life!

Dr Vivek Jain
MBBS MD (Community Medicine)
Email: docvivekjain@gmail.com
docvivekjain2@gmail.com
Visit website: www.docvivekjain.hpage.com
Join me on Facebook: type ‘Dr Vivek Jain’ in search box
For updates: Like ‘Dr Vivek Jain’ page on Facebook

New Delhi 2015–16

https://kat.cr/user/Blink99/
I am sincerely thankful to Late Mr RD Jain, my maternal grandfather and my wife Dr Rashmi Naudiyal for being a constant source of inspiration for completion of this book. Without support of Dr Rashmi and Baby Mischka, this book would not have seen light of the day. Without the blessing of my Parents, Parents-in-law and God, this endeavour would not have been successful.

Firstly I thank Padmashree Dr Jagdish Prasad, DGHS for organising a grand launch of first edition of the book at New Delhi.

I am grateful to Dr Saudan Singh, former DG (Medical Education), Government of Uttar Pradesh, Director Professor and Head, Department of Community Medicine, Vardhman Mahavir Medical College (VMMC), New Delhi for being a source of support, guidance and motivation for myself.

I am thankful to Dr SK Pradhan, former Director Professor, Department of Community Medicine, VMMC, New Delhi for providing me with academic opportunities to help me understand the finer nuances of the subject throughout my PGship and SRship.

I also appreciate the support and encouragement by Dr DK Raut, former Director Professor, VMMC & SJH, Dr AT Kanan, Director Professor and Head, Department of Community Medicine, UCMS, Dr GK Ingle, Director Professor and Head, Department of Community Medicine, MAMC, Dr Vibha, former Professor and Head, Department of Community Medicine, LHMC and respected Faculty of Department of Community Medicine of these colleges respectively. Dr Rajesh Kumar, Faculty, MAMC has always inspired me to excel academically.

I am sincerely thankful to Dr P Sai Kumar, MPH (UK), for motivating me to write this book, and for his unparallel support as my mentor. I am ever thankful to Dr Surabhi, Dr Shagun, Dr Isha and Dr Nidhi, former undergraduates and other students of LHMC and VMMC, for helping me develop my teaching capabilities.

Mr Rajesh Sharma, Director, PG-DIAMS and Dr Deepak Marwah, MD (Medicine) have been quite instrumental in helping me realise my potential as an academician, and I am immensely pleased to share this book with them and thank them for their wholehearted support. Words of thanks to Dr Sethi and Dr Bhatia for helping me gain entry into the competitive world of academics.

I am highly grateful to Shri Jitendar P Vij, Group Chairman, M/s Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India for his wholehearted support in publication of this book. I thank Ms Chetna Malhotra Vohra (Associate Director), Ms Saima Rashid (Project Manager) and their Team at Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, India for work on the current edition.

Acknowledgement is also due to Mr Anurag, M/s Medical Book Store, MAMC and LHMC for his suggestions.

I also take this opportunity to thank the following students/doctors for sharing their invaluable constructive criticisms for the improvement of the book:

- Dr Aarav Kumar
- Dr Abhishek Prasad Dash, Bhubaneswar, Odisha
- Dr Afeefa Hanif, MES Medical College, Kerala
- Dr Ajeet Singh, Patna Medical College
- Dr Akanksha Jain, MVMs Dr Vasantrao Pawar Medical College
- Dr Amit Kumar Gupta, DNB Family Medicine, Maharaja Agrasen Hospital, Delhi
- Dr Amit Kumar Yadav, PTJNM Medical College, Raipur
- Dr Amit Polara, Civil Hospital, Surat
- Dr Ananta Narayan Panda
- Dr Animesh Agrawal
- Dr Ankkit Madan
- Dr Ankkit Thukral, SGRRIHMS, Dehradun
- Dr Anubhav Srivastava, SNMC, Agra
- Dr Ankush Koul, Darbhanga Medical College, Bihar
- Dr Anupriya Thadani, Era’s Medical College and Hospital, Lucknow
- Dr Arpan Ray, Birbhum, West Bengal
- Dr Ashutosh Sahu
- Dr Ashwini Gupta, Darbhanga Medical College and Hospital
A special vote of thanks to Dr Praveen K, Calicut Medical College, who took out his valuable time to mark out spelling errors in such a voluminous book.

Last but definitely not the least, no words can describe the role of all medical students, with whom I ever have had interacted, in helping me give this book, its final shape.

From the Publisher’s Desk
We request all the readers to provide us their valuable suggestions/errors (if any) at: jaypeemcqproduction@gmail.com
so as to help us in further improvement of this book in the subsequent edition.
Contents

SECTION 1 : ANNEXURES

Annexure 1: Incubation Period of Diseases 3
Annexure 2: Important Days of Public Health Importance 5
Annexure 3: Instruments of Importance in Public Health 6
Annexure 4: Mode(s) of Transmission of Diseases 7
Annexure 5: Some Important Health Legislations Passed in India 8
Annexure 6: Some Important Health Programmes of India 9
Annexure 7: Vectors and Diseases Transmitted 10
Annexure 8: New Tuberculosis Diagnosis (RNTCP) Guidelines in India (w.e.f. 01 April, 2009 onwards) 11
Annexure 10: National Health Policy (NHP) 2002 13
Annexure 11: Millennium Development Goals (MDGs) 14
Annexure 12: New Malaria Treatment Guidelines in India (2013 onwards) 15
Annexure 14: Golden Points (Sets 1–5) 18
Annexure 15: Current Public Health Related Statistics of India 31
Annexure 16: Newer Concepts in Preventive and Social Medicine 34
Annexure 17: Honors in Health and Medicine 40

SECTION 2 : TOPIC-WISE THEORY MCQs AND EXPLANATIONS

Chapter 1: History of Medicine
Theory 45
Multiple Choice Questions 50
Explanations 53

Chapter 2: Concepts of Health and Disease
Theory 57
Multiple Choice Questions 66
Explanations 77

Chapter 3: Epidemiology and Vaccines
Theory 91
Multiple Choice Questions 125
Explanations 156

Chapter 4: Screening of Disease
Theory 217
Multiple Choice Questions 223
Explanations 230

Chapter 5: Communicable and Non-communicable Diseases
Theory 245
Multiple Choice Questions 306
Explanations 344
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Theory</th>
<th>Multiple Choice Questions</th>
<th>Explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>National Health Programmes, Policies and Legislations in India</td>
<td>405</td>
<td>443</td>
<td>460</td>
</tr>
<tr>
<td>7</td>
<td>Demography, Family Planning and Contraception</td>
<td>493</td>
<td>519</td>
<td>533</td>
</tr>
<tr>
<td>8</td>
<td>Preventive Obstetrics, Paediatrics and Geriatrics</td>
<td>558</td>
<td>575</td>
<td>587</td>
</tr>
<tr>
<td>9</td>
<td>Nutrition and Health</td>
<td>608</td>
<td>626</td>
<td>643</td>
</tr>
<tr>
<td>10</td>
<td>Social Sciences and Health</td>
<td>668</td>
<td>676</td>
<td>681</td>
</tr>
<tr>
<td>11</td>
<td>Environment and Health</td>
<td>693</td>
<td>712</td>
<td>729</td>
</tr>
<tr>
<td>12</td>
<td>Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health</td>
<td>755</td>
<td>769</td>
<td>780</td>
</tr>
<tr>
<td>13</td>
<td>Health Education and Communication</td>
<td>798</td>
<td>804</td>
<td>807</td>
</tr>
<tr>
<td>14</td>
<td>Health Care in India, Health Planning and Management</td>
<td>813</td>
<td>822</td>
<td>831</td>
</tr>
<tr>
<td>15</td>
<td>International Health</td>
<td>842</td>
<td>846</td>
<td>849</td>
</tr>
<tr>
<td>16</td>
<td>Biostatistics</td>
<td>855</td>
<td>874</td>
<td>890</td>
</tr>
</tbody>
</table>

SECTION 3 : IMAGE BASED QUESTIONS

Image Based Questions 939
1. Incubation Period of Diseases
2. Important Days of Public Health Importance
3. Instruments of Importance in Public Health
4. Mode(s) of Transmission of Diseases
5. Some Important Health Legislations Passed in India
6. Some Important Health Programmes of India
7. Vectors and Diseases Transmitted
8. New Tuberculosis Diagnosis (RNTCP) Guidelines in India (w.e.f. 01 April, 2009 onwards)
10. National Health Policy (NHP) 2002
11. Millennium Development Goals (MDGs)
12. New Malaria Treatment Guidelines in India (2013 onwards)
14. Golden Points (Sets 1–5)
15. Current Public Health Related Statistics of India*
16. Newer Concepts in Preventive and Social Medicine
17. Honors in Health and Medicine
Incubation Period of Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causative organism</th>
<th>Incubation Period (IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken pox</td>
<td>Human (alpha) herpes virus 3</td>
<td>14 – 16 days</td>
</tr>
<tr>
<td>Measles (Rubeonella)</td>
<td>RNA paramyxovirus</td>
<td>10 – 14 days</td>
</tr>
<tr>
<td>Rubella (German Measles)</td>
<td>RNA Togavirus</td>
<td>14 – 21 days</td>
</tr>
<tr>
<td>Mumps</td>
<td>RNA Myxovirus</td>
<td>14 – 21 days</td>
</tr>
<tr>
<td>Influenza</td>
<td>Orthomyxovirus</td>
<td>18 – 72 hours</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Corynebacterium diptheriae</td>
<td>2 – 6 days</td>
</tr>
<tr>
<td>Pertussis (Whooping cough)</td>
<td>Bordetella pertussis</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Meningococcal meningitis</td>
<td>Neisseria meningitis</td>
<td>3 – 4 days</td>
</tr>
<tr>
<td>SARS</td>
<td>Corona virus</td>
<td>3 – 5 days</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
<td>Weeks – years</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Poliovirus</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Enterovirus 72 (Picornavirus)</td>
<td>15 – 45 days</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Hepadna virus</td>
<td>45 – 180 days</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Hepacivirus</td>
<td>30 – 120 days</td>
</tr>
<tr>
<td>Cholera</td>
<td>Vibrio cholerae</td>
<td>1 – 2 days</td>
</tr>
<tr>
<td>Typhoid fever</td>
<td>Salmonella typhi</td>
<td>10 – 14 days</td>
</tr>
<tr>
<td>Staphylococcal food poisoning</td>
<td>Staphylococcus aureus</td>
<td>1 – 6 hours</td>
</tr>
<tr>
<td>Ascariasis</td>
<td>Ascaris lumbricoides</td>
<td>2 months</td>
</tr>
<tr>
<td>Ancylostomiasis (Hookworm)</td>
<td>A. duodenale</td>
<td>5 weeks – 9 months</td>
</tr>
<tr>
<td>Malaria</td>
<td>Plasmodium vivax</td>
<td>8 – 17 days</td>
</tr>
<tr>
<td></td>
<td>Plasmodium falciparum</td>
<td>9 – 14 days</td>
</tr>
<tr>
<td></td>
<td>Plasmodium malariae</td>
<td>18 – 40 days</td>
</tr>
<tr>
<td></td>
<td>Plasmodium ovale</td>
<td>16 – 18 days</td>
</tr>
<tr>
<td>Lymphatic filariasis</td>
<td>Wuchereria bancrofti</td>
<td>8 – 16 months</td>
</tr>
<tr>
<td>Rabies</td>
<td>Lyssavirus type 1 (Rhabdovirus)</td>
<td>3 – 8 weeks</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Flavivirus fibricus</td>
<td>2 – 6 days</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Group B arbovirus (Flavivirus)</td>
<td>5 – 15 days</td>
</tr>
<tr>
<td>KFD</td>
<td>Arbovirus (Flavivirus)</td>
<td>3 – 8 days</td>
</tr>
<tr>
<td>Chikungunya fever</td>
<td>Chikungunya virus (Arbovirus A)</td>
<td>4 – 7 days</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Leptospira interrogans</td>
<td>4 – 20 days</td>
</tr>
<tr>
<td>Bubonic plague</td>
<td>Yersinia pestis</td>
<td>2 – 7 days</td>
</tr>
<tr>
<td>Pneumonic plague</td>
<td>Yersinia pestis</td>
<td>1 – 3 days</td>
</tr>
<tr>
<td>Septicemic plague</td>
<td>Yersinia pestis</td>
<td>2 – 7 days</td>
</tr>
<tr>
<td>Disease</td>
<td>Pathogen</td>
<td>Incubation Period</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Scrub typhus</td>
<td>Rickettsia tsutsugamushi</td>
<td>10 – 12 days</td>
</tr>
<tr>
<td>Q fever</td>
<td>Coxiella burnetti</td>
<td>2 – 3 weeks</td>
</tr>
<tr>
<td>Taeniasis (Tapeworms)</td>
<td>T. solium, T. saginata</td>
<td>8 – 14 weeks</td>
</tr>
<tr>
<td>Leishmaniasis (Kala azar)</td>
<td>L. donovani</td>
<td>1 – 4 months</td>
</tr>
<tr>
<td>Trachoma</td>
<td>Chlamydia trachomatis</td>
<td>5 – 12 days</td>
</tr>
<tr>
<td>Tetanus</td>
<td>Clostridium tetani</td>
<td>6 – 10 days</td>
</tr>
<tr>
<td>Yaws</td>
<td>Treponema pertenue</td>
<td>3 – 5 weeks</td>
</tr>
<tr>
<td>HIV/ AIDS</td>
<td>HIV/ HTLV – III/ LAV</td>
<td>Months – 10 years</td>
</tr>
<tr>
<td>Swine Flu</td>
<td>H3N2 Type A Influenza</td>
<td>1–4 days</td>
</tr>
<tr>
<td>Crimean Congo Fever</td>
<td>Nairovirus (Bunyavirus)</td>
<td>1–9 days</td>
</tr>
<tr>
<td>H7N9 Influenza</td>
<td>H7N9 Type A Influenza</td>
<td>1–10 days (3.3 days)</td>
</tr>
<tr>
<td>MERS</td>
<td>Betacoronavirus</td>
<td>12 days</td>
</tr>
<tr>
<td>Ebola disease</td>
<td>Ebolavirus</td>
<td>2- 21 days</td>
</tr>
<tr>
<td>Anthrax</td>
<td>Bacillus anthracis</td>
<td>1-7 days</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Brucella melitensis</td>
<td>5-60 days</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Important Days of Public Health Importance

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>30th January</td>
<td>Anti-Leprosy Day</td>
</tr>
<tr>
<td>2nd Wednesday of March</td>
<td>No Smoking Day</td>
</tr>
<tr>
<td>8th March</td>
<td>International Women’s Day</td>
</tr>
<tr>
<td>15th March</td>
<td>World Disabled Day</td>
</tr>
<tr>
<td>24th March</td>
<td>Anti-TB Day</td>
</tr>
<tr>
<td>7th April</td>
<td>World Health Day</td>
</tr>
<tr>
<td>25th April</td>
<td>World Malaria Day</td>
</tr>
<tr>
<td>8th May</td>
<td>World Red Cross Day</td>
</tr>
<tr>
<td>31st May</td>
<td>No Tobacco Day</td>
</tr>
<tr>
<td>5th June</td>
<td>World Environment Day</td>
</tr>
<tr>
<td>14th June</td>
<td>World Blood Donor Day</td>
</tr>
<tr>
<td>26th June</td>
<td>International Day Against Drug Abuse and Illicit Trafficking</td>
</tr>
<tr>
<td>1st July</td>
<td>Doctors Day</td>
</tr>
<tr>
<td>11th July</td>
<td>World Population Day</td>
</tr>
<tr>
<td>28th July</td>
<td>World Hepatitis Day</td>
</tr>
<tr>
<td>8th September</td>
<td>World Literacy Day</td>
</tr>
<tr>
<td>28th September</td>
<td>World Rabies Day</td>
</tr>
<tr>
<td>1st October</td>
<td>International Day for Older Persons</td>
</tr>
<tr>
<td>1st October</td>
<td>National Voluntary Blood Donation Day</td>
</tr>
<tr>
<td>9th October</td>
<td>World Disaster Reduction Day</td>
</tr>
<tr>
<td>10th October</td>
<td>World Sight Day</td>
</tr>
<tr>
<td>24th October</td>
<td>UN Day</td>
</tr>
<tr>
<td>10th November</td>
<td>Universal Immunization Day</td>
</tr>
<tr>
<td>25th November</td>
<td>International Day for Elimination of Violence against Women</td>
</tr>
<tr>
<td>1st December</td>
<td>World AIDS Day</td>
</tr>
<tr>
<td>3rd December</td>
<td>International Day of Disabled Persons</td>
</tr>
<tr>
<td>10th December</td>
<td>Human Rights Day</td>
</tr>
<tr>
<td>Last Week of April</td>
<td>World Immunization Week</td>
</tr>
<tr>
<td>1–7th May</td>
<td>Anti–Malaria Week</td>
</tr>
<tr>
<td>1–30th June</td>
<td>Anti–Malaria Month</td>
</tr>
<tr>
<td>1–8th August</td>
<td>World Breast Feeding Week</td>
</tr>
<tr>
<td>25th August–8th September</td>
<td>Eye Donation Fortnight</td>
</tr>
<tr>
<td>15–21st November</td>
<td>Newborn Care Week</td>
</tr>
</tbody>
</table>
Instruments of Importance in Public Health

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ice Lined Refrigerator (ILR)</td>
<td>Cold chain temperature maintenance</td>
</tr>
<tr>
<td>Dial Thermometer</td>
<td>Cold chain temperature monitoring</td>
</tr>
<tr>
<td>Horrock’s Apparatus</td>
<td>Chlorine demand estimation in water</td>
</tr>
<tr>
<td>Chlorinator, Chloronome</td>
<td>Mixing/regulating the dose of chlorine in water</td>
</tr>
<tr>
<td>Chloroscope</td>
<td>Measuring level of residual chlorine in drinking water</td>
</tr>
<tr>
<td>Winchester Quart bottle</td>
<td>Assess physical and chemical quality of drinking water</td>
</tr>
<tr>
<td>Kata Thermometer</td>
<td>Assess cooling power of air and air velocity (Latter Currently)</td>
</tr>
<tr>
<td>Anemometer</td>
<td>Assess air/wind velocity</td>
</tr>
<tr>
<td>Hygrometer and Sling Psychrometer</td>
<td>Assess air humidity (moisture content of air)</td>
</tr>
<tr>
<td>Assman Psychrometer</td>
<td>Assess air humidity (moisture content of air)</td>
</tr>
<tr>
<td>Mercurial Barometer</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>Anaeroid Barometer</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>Wind Vane</td>
<td>Assess air/wind direction</td>
</tr>
<tr>
<td>Salter’s scale</td>
<td>Field Instrument for Low Birth Weight (LBW)</td>
</tr>
<tr>
<td>Infantometer</td>
<td>Length of infants</td>
</tr>
<tr>
<td>Stadiometer</td>
<td>Height of adults</td>
</tr>
<tr>
<td>Shakir’s Tape</td>
<td>Mid-Arm Circumference (MAC)</td>
</tr>
<tr>
<td>Sound Level Meter</td>
<td>Measures intensity of sound</td>
</tr>
<tr>
<td>Band Frequency Analyzer</td>
<td>Characteristic of sound (pitch)</td>
</tr>
<tr>
<td>Audiometer</td>
<td>Hearing ability assessment</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Mode(s) of Transmission of Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Mode(s) of transmission</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken Pox</td>
<td>Droplet infection, droplet nuclei. Face to face transmission</td>
<td></td>
</tr>
<tr>
<td>Measles</td>
<td>Droplet infection, droplet nuclei, through conjunctiva 4 days before rash to 5 days later</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>Droplet infection, vertical 1 week before rash to 1 week later</td>
<td></td>
</tr>
<tr>
<td>Mumps</td>
<td>Droplet infection, direct contact</td>
<td></td>
</tr>
<tr>
<td>Influenza</td>
<td>Droplet infection, droplet nuclei</td>
<td></td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Droplet infection, direct contact, fomite borne 95% transmission from carriers</td>
<td></td>
</tr>
<tr>
<td>Whooping Cough</td>
<td>Droplet infection, direct contact, fomite</td>
<td></td>
</tr>
<tr>
<td>Meningococcal</td>
<td>Droplet infection, carriers most important source of infection</td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>Droplet infection, droplet nuclei. Not Fomite borne</td>
<td></td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Faeco-oral, droplet infection</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Faeco-oral, parenteral, sexual</td>
<td></td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Perinatal, parenteral, sexual, horizontal</td>
<td></td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Perinatal, parenteral, sexual</td>
<td></td>
</tr>
<tr>
<td>Hepatitis D</td>
<td>Perinatal, parenteral, sexual</td>
<td>Super-infection/co-infection to HBV</td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>Feco-oral</td>
<td></td>
</tr>
<tr>
<td>Cholera</td>
<td>Feco-oral, contaminated foods/drinks, direct contact</td>
<td></td>
</tr>
<tr>
<td>Typhoid</td>
<td>Feco-oral, urine-oral</td>
<td></td>
</tr>
<tr>
<td>Amoebiasis</td>
<td>Feco-oral</td>
<td></td>
</tr>
<tr>
<td>Ascariasis</td>
<td>Feco-oral</td>
<td></td>
</tr>
<tr>
<td>Ancylostomiasias</td>
<td>Direct penetration(skin), oral</td>
<td>Transmission may be perennial</td>
</tr>
<tr>
<td>Dracunculiasis</td>
<td>Consumption of water containing cyclops</td>
<td>Water based disease</td>
</tr>
<tr>
<td>Dengue</td>
<td>Aedes bite</td>
<td>Water breeding disease</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Urine, feces, tissues of rats</td>
<td>Direct skin contact</td>
</tr>
<tr>
<td>Nipah virus</td>
<td>Consumption of bats-eaten fruits</td>
<td>Person-to-person in India</td>
</tr>
<tr>
<td>Ebola virus</td>
<td>Body fluids (blood, semen, urine, feces, vomit, tears, sweat, saliva)</td>
<td>–</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Some Important Health Legislations Passed in India

- The Quarantine Act, 1870
- The Vaccination Act, 1880
- The Epidemic Disease Act, 1897
- The Child Marriage Restraint (SARDA) Act, 1929
- The Employees State Insurance (ESI) Act, 1948
- The Factories Act, 1948
- The Prevention of Food Adulteration (PFA) Act, 1954
- The Hindu Marriage Act, 1955
- The Immoral Traffic (Prevention) Act, 1956
- The Indian Medical Council (Prof. Conduct and Ethics) Act 1956
- The Dowry Prohibition Act, 1961
- The Maternity Benefit Act, 1961
- The Insecticides Act, 1968
- The Registration of Births and Deaths Act, 1969
- The Medical Termination of Pregnancy (MTP) Act, 1971
- The Narcotic Drugs and Psychotropic Substances Act, 1985
- The Consumer Protection Act (COPRA), 1986
- The Environmental Protection Act (EPA), 1986
- The Mental Health Act, 1987
- The Infant Milk Substitutes, Feeding Bottles and Infant Food (Regulation of production, supply and distribution) Act, 1992
- The Protection of Human Rights Act, 1993
- The Pre-conception and Pre-natal Diagnostic Techniques (Prohibition of Sex Selection) [PNDT] Act, 1994
- The Transplantation of Human Organs Act, 1994
- The Persons with Disabilities (Equal opportunities, Protection of Rights, Full Participation) Act, 1995
- The Biomedical Waste (Management and Handling) Rules, 1998
- The Tobacco Control Act, 2003
- The Information Technology Act, 2000
- The Disaster Management Act, 2005
- The National Rural Employment Guarantee Act (NREGA), 2005
- The Protection of Women from Domestic Violence Act, 2005
- The Right to Information (RTI) Act, 2005
- Prohibition of Child Marriage Act, 2006
- The Food Standards and Safety Act, 2006
- The Protection of Children from Sexual Offences (POCSO) Act, 2012
- The Mental Health Care Bill, 2013
- The Sexual Harassment of Women at Work Place (Prevention, Prohibition and Redressal) Act, 2013
<table>
<thead>
<tr>
<th>Programme</th>
<th>Start Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Family Planning Programme</td>
<td>1951</td>
</tr>
<tr>
<td>National Malaria Control Programme (NMCP)</td>
<td>1953</td>
</tr>
<tr>
<td>Lymphatic Filariasis Control Programme</td>
<td>1955</td>
</tr>
<tr>
<td>National Leprosy Control Programme</td>
<td>1955</td>
</tr>
<tr>
<td>National Malaria Eradication Programme (NMEP)</td>
<td>1958</td>
</tr>
<tr>
<td>National Tuberculosis Programme (NTP)</td>
<td>1962</td>
</tr>
<tr>
<td>National Goitre Control Programme (NGCP)</td>
<td>1962</td>
</tr>
<tr>
<td>National Trachoma Control Programme</td>
<td>1963</td>
</tr>
<tr>
<td>Urban Malaria Scheme (UMS)</td>
<td>1971</td>
</tr>
<tr>
<td>Integrated Child Development Services (ICDS)</td>
<td>1975</td>
</tr>
<tr>
<td>National Cancer Control Programme</td>
<td>1975–76</td>
</tr>
<tr>
<td>National Programme for Control of Blindness (NPCB)</td>
<td>1976</td>
</tr>
<tr>
<td>Kala Azar Control Programme</td>
<td>1977</td>
</tr>
<tr>
<td>Modified Plan of Operation (MPO)</td>
<td>1977</td>
</tr>
<tr>
<td>National Mental Health Programme</td>
<td>1982</td>
</tr>
<tr>
<td>National Leprosy Eradication Programme (NLEP)</td>
<td>1983</td>
</tr>
<tr>
<td>National Guinea worm Eradication Programme</td>
<td>1983–84</td>
</tr>
<tr>
<td>National AIDS Control Programme (NACP)</td>
<td>1987</td>
</tr>
<tr>
<td>Baby Friendly Hospital Initiative (BFHI)</td>
<td>1991</td>
</tr>
<tr>
<td>Revised National Tuberculosis Control Programme (RNTCP)</td>
<td>1992</td>
</tr>
<tr>
<td>Child Survival and Safe Motherhood (CSSM)</td>
<td>1992</td>
</tr>
<tr>
<td>National AIDS Control Programme I (NACP I)</td>
<td>1992–97</td>
</tr>
<tr>
<td>National Iodine Deficiency Disorders Control Programme (NIDDCP)</td>
<td>1992</td>
</tr>
<tr>
<td>Yaws Eradication Programme</td>
<td>1996–97</td>
</tr>
<tr>
<td>Revised Lymphatic Filariasis Control Programme</td>
<td>1996–97</td>
</tr>
<tr>
<td>Enhanced Malaria Control Project (EMCP)</td>
<td>1997</td>
</tr>
<tr>
<td>Reproductive and Child Health Programme I</td>
<td>1997</td>
</tr>
<tr>
<td>Modified Leprosy Elimination Campaigns (MLEC)</td>
<td>1998–2004</td>
</tr>
<tr>
<td>National Anti Malaria Programme (NAMP)</td>
<td>1999</td>
</tr>
<tr>
<td>National Oral Health Project</td>
<td>1999</td>
</tr>
<tr>
<td>National AIDS Control Programme II (NACP II)</td>
<td>1999–2004</td>
</tr>
<tr>
<td>National Vector Borne Disease Control Programme (NVBDCP)</td>
<td>2003–04</td>
</tr>
<tr>
<td>Integrated Disease Surveillance Project (IDSP)</td>
<td>2004–09</td>
</tr>
<tr>
<td>Reproductive and Child Health Programme II</td>
<td>2004–09</td>
</tr>
<tr>
<td>National Rural Health Mission (NRHM)</td>
<td>2005–12</td>
</tr>
<tr>
<td>Pradhan Mantri Swasthya Suraksha Yojana (PMSSY)</td>
<td>2006</td>
</tr>
<tr>
<td>National AIDS Control Programme III (NACP III)</td>
<td>2006–11</td>
</tr>
<tr>
<td>National Tobacco Control Programme (NTCP)</td>
<td>2007–08</td>
</tr>
<tr>
<td>National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCDCS)</td>
<td>2008</td>
</tr>
<tr>
<td>National Program for Health Care of the Elderly (NPHCE)</td>
<td>2011</td>
</tr>
<tr>
<td>Pradhan Mantri Jan Dhan Yojana (PMJDY)</td>
<td>2014</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Vectors and Diseases Transmitted

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease(s) transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housefly (Musa domestica)</td>
<td>Diarrhoeal and dysentrical diseases, Poliomyelitis, Yaws, Anthrax, Trachoma</td>
</tr>
<tr>
<td>Sandfly (Phlebotamus argentipes)</td>
<td>Kala azar (Visceral Leishmaniasis), Oriental sore (Cutaneous Leishmaniasis), Sandfly fever</td>
</tr>
<tr>
<td>Tse-Tse fly (Glossina palpalis)</td>
<td>Sleeping sickness of Africa (African Trypanosomiasis)</td>
</tr>
<tr>
<td>Reduviid bug (Triatominae)</td>
<td>Chagas Disease (Sleeping sickness of America- American Trypanosomiasis)</td>
</tr>
<tr>
<td>Black fly (Simulium)</td>
<td>Onchocerciasis (River Blindness)</td>
</tr>
<tr>
<td>Soft tick</td>
<td>Relapsing fever, Q fever, KFD (outside India)</td>
</tr>
<tr>
<td>Hard tick</td>
<td>Tularemia, Babesiosis, KFD (India), Tick paralysis, Tick encephalitis, Tick hemorrhagic fever, Indian Tick Typhus, RMSF</td>
</tr>
<tr>
<td>Louse</td>
<td>Epidemic typhus, Trench fever, Relapsing fever</td>
</tr>
<tr>
<td>Mite</td>
<td>Scrub typhus, Rickettsial pox</td>
</tr>
<tr>
<td>Flea</td>
<td>Plague, Murine typhus</td>
</tr>
<tr>
<td>Anopheles mosquito</td>
<td>Malaria, Filaria (outside India)</td>
</tr>
<tr>
<td>Culex mosquito</td>
<td>Bancroftian Filariasis, Japanese Encephalitis, West Nile fever, Viral arthritis</td>
</tr>
<tr>
<td>Aedes mosquito</td>
<td>Yellow fever, Dengue, DHF, Chikungunya, Rift Valley fever, Filariaisis (Outside India)</td>
</tr>
<tr>
<td>Mansonoides mosquito</td>
<td>Malayan (Brugian) filariasis, Chikungunya</td>
</tr>
</tbody>
</table>
• Tuberculosis Suspect: Any person with cough 2 weeks or more
• Number of specimen(s) required for diagnosis of smear positive pulmonary tuberculosis: Two
 – Spot sputum specimen (Day 1)
 – Morning sputum specimen (Day 2)
• Diagnosis of Tuberculosis:
 – None sputum positive: Doubtful
 – One sputum positive: Sputum positive pulmonary tuberculosis
 – Two sputum positive: Sputum positive pulmonary tuberculosis
• Management of clients:
 – None sputum positive: Give antibiotics for 10 – 14 days
 - Cough relieved: Non- tuberculous person
 - Cough persists: Repeat two sputum smear examinations
 1. None sputum positive: X-ray chest
 i. Findings suggestive of TB: Sputum negative tuberculosis; Start ATT
 ii. No findings suggestive of TB: Non- tuberculosis person
 2. One sputum positive: Sputum positive pulmonary tuberculosis; Start ATT
 3. Two sputum positive: Sputum positive pulmonary tuberculosis; Start ATT
 – One sputum positive: Start ATT
 – Two sputum positive: Start ATT
Objectives of National Population Policy 2000

- **Immediate objectives:** To meet unmet need of contraception; to strengthen health infrastructure; to strengthen health personnel and to promote integrated service delivery for basic RCH care

- **Mid-term objective:** To bring the total fertility rate (TFR) to Replacement Level; i.e. TFR to 2.1

- **Long-term objective:** To stabilize population by 2045

National Socio-demographic Goals of NPP 2000 (achieve by 2010)

- Address the unmet needs for basic reproductive and child health services, supplies and infrastructure

- Make school education up to age 14 free and compulsory, and reduce drop outs at primary and secondary school levels to below 20 percent for both boys and girls

- Reduce infant mortality rate to below 30 per 1000 live births

- Reduce maternal mortality ratio to below 100 per 100,000 live births

- Achieve universal (100%) immunization of children against all vaccine preventable diseases

- Promote delayed marriage for girls, not earlier than age 18 and preferably after 20 years of age

- Achieve 80 percent institutional deliveries and 100 percent deliveries by trained persons

- Achieve universal access to information/counseling, and services for fertility regulation and contraception with a wide basket of choices

- Achieve 100 percent registration of births, deaths, marriage and pregnancy

- Contain the spread of Acquired Immunodeficiency Syndrome (AIDS), and promote greater integration between the management of reproductive tract infections (RTI) and sexually transmitted infections (STI) and the National AIDS Control Organisation

- Prevent and control communicable diseases

- Integrate Indian Systems of Medicine (ISM) in the provision of reproductive and child health services, and in reaching out to households

- Promote vigorously the small family norm to achieve replacement levels of TFR

- Bring about convergence in implementation of related social sector programs so that family welfare becomes a people centred programme
Goals for 2005
- Eradicate Polio and Yaws
- Eliminate Leprosy
- Establish integrated system of Surveillance, National Health Accounts and Health Statistics
- Increase state sector health spending from 5.5% to 7% of budget

Goals for 2007
- Achieve zero level of growth of HIV/AIDS

Goals for 2010
- Eliminate Kala Azar
- Reduce mortality by 50% due to TB, Malaria, Vector borne diseases and Water borne diseases
- Reduce prevalence of blindness to 0.5%
- Reduce IMR to 30/1000 and MMR to 100/Lac
- Increase utilization of public health facilities from <20% to >75%
- Increase health expenditure as % of GDP from 0.9% to 2.0%
- Increase share of central grants to constitute >25% of total health spending
- Further increase state sector health spending to 8% of budget

Goals for 2015
- Eliminate Lymphatic Filariasis
Millennium Development Goals (MDGs)

- Baseline Year for MDGs: 1990
- Deadline year for MDGs: 2015
- 8 MDGs:
 - Goal 1: Eradicate extreme poverty and hunger
 - Goal 2: Universalize primary education
 - Goal 3: Gender equality and women empowerment
 - Goal 4: Reduce child mortality
 - Goal 5: Improve maternal health
 - Goal 6: Combat HIV/AIDS, malaria and other disease (Tuberculosis)
 - Goal 7: Ensure environmental sustainability
 - Goal 8: Develop global partnerships for development
- 3 out of 8 goals, 8 out of 18 targets required to achieve them and 18 out of 48 indicators of progress are ‘directly health related’
 - Goal 4, 5 and 6 are ‘directly health related’
 - Goal 2 and 3 ‘do not pertain to health’
I. VIVAX MALARIA
- Chloroquine X 3 days (10 mg per kg Day 1; 10 mg per kg Day 2; 5 mg per kg Day 3) +
- Primaquine X 14 days (0.25 mg per kg)

II. FALCIPARUM MALARIA
- In Other States (Other than North-Eastern states):
 - Artemisinin based Combination therapy (ACT-SP)
 - Artesunate X 3 days (4 mg per kg) +
 - Sulfadoxine X Day 1 (25 mg per kg) +
 - Pyrimethamine X Day 1 (1.25 mg per kg)
 - Primaquine X Day 2 (0.75 mg per kg)
- In North-Eastern states:
 - Artemether based Combination therapy (ACT-AL)
 - Artemether X 3 days (80 mg BD) +
 - Lumefantrine X 3 days (480 mg BD)
 - Primaquine X Day 2 (0.75 mg per kg)

PLEASE NOTE:
- Colour coding of age-wise blister packs for P. falciparum treatment:

<table>
<thead>
<tr>
<th>Age</th>
<th>Colour code for blister pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 year</td>
<td>Pink</td>
</tr>
<tr>
<td>1-4 years</td>
<td>Yellow</td>
</tr>
<tr>
<td>5-8 years</td>
<td>Green</td>
</tr>
<tr>
<td>9-14 years</td>
<td>Red</td>
</tr>
<tr>
<td>15+ years</td>
<td>White</td>
</tr>
</tbody>
</table>

- Treatment of Uncomplicated P. falciparum in Pregnancy:
 - 1st trimester: Quinine X 7 days (10 mg per kg TDS)
 - 2nd/3rd trimester: ACT-AL in NE states/ ACT-SP in Other states

III. MIXED INFECTIONS (P. VIVAX + P. FALCIPARUM)
- In Other States (Other than North-Eastern states):
 - ACT-SP X 3 days
 - Primaquine X 14 days (0.75 mg per kg)
- In North-Eastern states:
 - ACT-AL X 3 days
 - Primaquine X 14 days (0.75 mg per kg)

IV. PLASMODIUM MALARIAE
- Treat as P. falciparum

V. PLASMODIUM OVALE
- Treat as P. vivax

VI. MIXED INFECTIONS
- Treat as P. falciparum
- Primaquine X 14 days
VII. SEVERE & COMPLICATED MALARIA

- **Initial parenteral treatment X 24-48 hours:**
 - Quinine, OR
 - Artemether, OR
 - Artesunate, OR
 - Arteether
- **Oral treatment after 48 hours:**
 - After Parenteral Quinine:
 - Quinine + Doxycycline X 7 days, OR
 - Quinine + Clindamycin X 7 days (Pregnancy & Children <8 years age)
 - After Parenteral Artimisin derivates:
 - In Other states: ACT-SP X 3 days + Primaquine (Day 2)
 - In NE states: ACT-AL X 3 days + Primaquine (Day 2)

VIII. CHEMOPROPHYLAXIS

- Short-term (≤ 6 weeks): Doxycycline OD (Start 1 day before travel; Continue for 4 weeks after return)
- Long-term (> 6 weeks): Mefloquine weekly (Start 2 weeks before travel; Continue for 4 weeks after entering endemic area)
Dear students, PLEASE NOTE: These guidelines are ‘draft proposed guidelines’ in Gazette of India. They have NOT YET been implemented in India.

Draft BMW Management Guidelines 2011 are NOT valid for:
- Radioactive waste
- Hazardous chemicals
- Municipal solid waste
- Leas acid batteries
- Hazardous waste

Schedule I: Categories of BMW

<table>
<thead>
<tr>
<th>BMW category</th>
<th>Type of waste</th>
<th>Disposal steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>Human anatomical waste</td>
<td>Incineration</td>
</tr>
<tr>
<td>Category 2</td>
<td>Animal waste</td>
<td>Incineration</td>
</tr>
</tbody>
</table>
| Category 3 | Microbiological and Biotechnology waste | 1. Chemical treatment/ Autoclaving/ Microwaving
 | 2. Mutilation/ Shredding
 | 3. Landfill/ Recyclers |
| Category 4 | Wasted sharps | 1. Chemical treatment/ Destruction by needle or tip cutters/ Autoclaving/ Microwaving
 | 2. Mutilation/ Shredding
 | 3. Landfill/ Concrete sharps pit |
| Category 5 | Discarded medicines and cytotoxic drugs | Landfill/ Incineration |
| Category 6 | Soiled waste | Incineration |
| Category 7 | Infectious solid waste | 1. Chemical treatment/ Autoclaving/Microwaving
 | 2. Mutilation/ Shredding
 | 3. Recyclers |
| Category 8 | Chemical waste | 1. Chemical treatment
 | 2. Disposal in drains |

Schedule II: Types of Containers and Disposal

<table>
<thead>
<tr>
<th>Color coding</th>
<th>Waste categories</th>
<th>Treatment options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>1, 2, 5, 6</td>
<td>Incineration</td>
</tr>
</tbody>
</table>
| Red | 3, 4, 7 | 1. Chemical treatment/ Destruction (needle/ tip cutters)/ Autoclaving/ Microwaving
 | 2. Mutilation/ Shredding
 | 3. Landfill/ Recyclers/ Concrete sharps pit |
| Blue | 8 | 1. Chemical treatment
 | 2. Disposal in drains |
| Black | Municipal waste | Municipal dump sites |
PSM: GOLDEN POINTS 1

<p>| Father of Medicine/First True Epidemiologist | Hippocrates |
| Father of Public Health | Cholera |
| First Country to Socialise Medicine completely | Russia |
| Health as a “State of complete physical, social and mental wellbeing” was defined by | WHO |
| HDI(Human Development Index) comprises | Knowledge (Literacy and Mean years of schooling), Income and Longevity (Life Expectancy at Birth) |
| Life Expectancy is a | Mortality Indicator (Positive Health Indicator) |
| “Epidemiological Triad” comprises of | Agent, Host and Environment |
| Extermination of organism is | Eradication |
| Action taken prior to onset of disease is | Primary Prevention |
| Early Diagnosis and Treatment are | Secondary Prevention |
| Ivory Towers of Disease | Large Hospitals |
| ICD-10 Classification is for | Diseases |
| Prevalence is a | Proportion (Total=New + Old Cases) |
| Total no. of deaths/Total no. of cases is | Case Fatality Rate |
| Observed Deaths/Expected Deaths is | Standardized Mortality Ratio (SMR) |
| Prevalence/Duration is | Incidence |
| Both exposure and outcome have occurred before study starts in | Case Control Study |
| Cohort Study is | Forward Looking/Prospective Study |
| Matching | Removes confounding, Ensures Comparability |
| Relative Risk is | Incidence among Exposed/ Incidence among non-exposed |
| Framingham Heart Study is a | Cohort Study |
| Heart of a Control Trial is | Randomization |
| Occurrence of a Disease Clearly in excess of normal expectancy | Epidemic |
| Disease imported in a country where it doesn’t occur | Exotic |
| Iatrogenic Disease is | Physician-induced |
| First case to come to notice of investigator | Index Case |
| Pseudo-Carriers are | Carriers of avirulent Organisms |
| Malaria parasite in Mosquito is | Cyclo-propagative Transmission |
| Gap between Primary case and Secondary Case is | Serial Interval |
| Yellow Fever/BCG/Measles are | Live Vaccines/ Lyophilised vaccines |
| First Vaccine to be discovered | Smallpox Vaccine (Edward Jenner) |
| Risk of Cold Chain failure is greatest at | Sub-centre and Village level |
| Quarantine is for | Healthy Contacts |
| Most effective sterilizing agent | Autoclaving (Steam under pressure) |
| Beaching Powder contains | 33% available chlorine |</p>
<table>
<thead>
<tr>
<th>Advantage gained by screening</th>
<th>Lead Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity identifies</td>
<td>True Positives</td>
</tr>
<tr>
<td>Usefulness of a screening test is given by</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Small Pox was declared Eradicated on</td>
<td>8 May, 1980</td>
</tr>
<tr>
<td>Rash in Chickenpox is</td>
<td>Pleomorphic and Dew-drop like</td>
</tr>
<tr>
<td>Koplik Spots are diagnostic of</td>
<td>Measles (upper 2nd molar)</td>
</tr>
<tr>
<td>Incubation Period for Measles is</td>
<td>10-14 days</td>
</tr>
<tr>
<td>Strain for Measles Vaccine is</td>
<td>Edmonston Zagreb</td>
</tr>
<tr>
<td>Strain for Rubella Vaccine</td>
<td>RA 27/3</td>
</tr>
<tr>
<td>Highly Pathogenic Avian Influenza (Bird Flu) is by</td>
<td>Type A (H5N1 strain) virus</td>
</tr>
<tr>
<td>Hundred Day Cough is</td>
<td>Pertussis (Whooping Cough)</td>
</tr>
<tr>
<td>DOC for Chemoprophylaxis of Meningococcal Meningitis</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>Positive Schick Test indicates</td>
<td>Susceptible to Diphtheria</td>
</tr>
<tr>
<td>Inability to drink is a sign of</td>
<td>Very Severe Disease</td>
</tr>
<tr>
<td>SARS is caused by</td>
<td>Corona Virus</td>
</tr>
<tr>
<td>Overall Prevalence of TB infection</td>
<td>30 - 40 %</td>
</tr>
<tr>
<td>Sputum Smear +ve at or after 5 months ATT</td>
<td>Failure</td>
</tr>
<tr>
<td>Only Bacteriostatic drug in Primary ATT Drugs</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>Category II treatment (RNTCP) duration is</td>
<td>8 Months (3m IP + 5m CP)</td>
</tr>
<tr>
<td>WHO has recommended ‘DANISH 1331’ strain for</td>
<td>BCG Vaccine</td>
</tr>
<tr>
<td>Failure in RNTCP</td>
<td>Sputum +ve at/after 5 months treatment</td>
</tr>
<tr>
<td>Case finding Tool of choice in RNTCP is</td>
<td>Sputum Smear (ZN Staining)</td>
</tr>
<tr>
<td>DOTS is</td>
<td>Directly Observed Treatment, Short Course Chemotherapy</td>
</tr>
<tr>
<td>Relapse/Defaulter/Failure in RNTCP is classified as</td>
<td>Category II (8 Months treatment)</td>
</tr>
<tr>
<td>For every 1 clinical case of Poliomyelitis, there are</td>
<td>1000 subclinical Cases</td>
</tr>
<tr>
<td>Polio stool samples are transported in</td>
<td>Reverse Cold Chain (+ 2° to + 8° C)</td>
</tr>
<tr>
<td>HBeAg is Marker of</td>
<td>Infectivity/Viral Replication</td>
</tr>
<tr>
<td>ORS Solution should be used within</td>
<td>24 Hours</td>
</tr>
<tr>
<td>Enteric Fever includes</td>
<td>Typhoid and Para-typhoid Fevers</td>
</tr>
<tr>
<td>Chandler's Index for Hookworms is</td>
<td>Av. No. of Eggs/gm of stool</td>
</tr>
<tr>
<td>MC arboviral disease is</td>
<td>Dengue</td>
</tr>
<tr>
<td>Presumptive Treatment in Malaria</td>
<td>Chloroquine</td>
</tr>
<tr>
<td>Only communicable disease of man that is always fatal</td>
<td>Rabies</td>
</tr>
<tr>
<td>Main Vector for Yellow Fever is</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>Pigs in Japanese Encephalitis are</td>
<td>Amplifier Hosts</td>
</tr>
<tr>
<td>KFD is transmitted in India by</td>
<td>Haemaphysalis (Hard tick)</td>
</tr>
<tr>
<td>Main reservoir of Plague in India</td>
<td>Tatera indica (Wild Rodent)</td>
</tr>
<tr>
<td>Scrub typhus is caused by</td>
<td>Rickettsia tsutsugamushi</td>
</tr>
<tr>
<td>Sandfly transmits</td>
<td>Leishmaniasis (Kala Azar)</td>
</tr>
<tr>
<td>Elimination Level for leprosy</td>
<td><1/10,000</td>
</tr>
<tr>
<td>MDT for PBL is given for</td>
<td>6 months</td>
</tr>
<tr>
<td>Yaws is caused by</td>
<td>Treponema pertenue</td>
</tr>
<tr>
<td>Slims’ Disease is</td>
<td>AIDS</td>
</tr>
<tr>
<td>Rule of Halves is seen in</td>
<td>Hypertension</td>
</tr>
</tbody>
</table>
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Golden Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC cause of heart disease in 5-30 yr old is</td>
</tr>
<tr>
<td>WHO Criteria for diagnosis of RF/RHD are based on</td>
</tr>
<tr>
<td>MC Cancer in India is</td>
</tr>
<tr>
<td>Pap Smear should be done</td>
</tr>
<tr>
<td>BMI is</td>
</tr>
<tr>
<td>Waist Hip Ratio indicates Obesity in Women when</td>
</tr>
<tr>
<td>WHO Blindness is</td>
</tr>
<tr>
<td>MCC of Blindness</td>
</tr>
<tr>
<td>Modified Plan Operation (1977) was based on</td>
</tr>
<tr>
<td>In Malaria program, MPW does Active Surveillance every</td>
</tr>
<tr>
<td>NHP 2002 envisages Kala Azar Elimination by</td>
</tr>
<tr>
<td>Elimination Level of Leprosy</td>
</tr>
<tr>
<td>Under RNTCP, Case finding is</td>
</tr>
<tr>
<td>Prevalence of Blindness in India</td>
</tr>
<tr>
<td>Under RCH Program, Kit A, B are kept at</td>
</tr>
<tr>
<td>India was certified free of dracunculiasis on</td>
</tr>
<tr>
<td>Annual growth rate for India</td>
</tr>
<tr>
<td>Sex ratio</td>
</tr>
<tr>
<td>Completed family Size represents</td>
</tr>
<tr>
<td>2 child norm means</td>
</tr>
<tr>
<td>No. of Eligible Couples in India</td>
</tr>
<tr>
<td>Conventional Contraceptives</td>
</tr>
<tr>
<td>Progestasert (3rd gen IUD) releases</td>
</tr>
<tr>
<td>MC complaint of IUD insertion is</td>
</tr>
<tr>
<td>Only Non-steroidal OCP</td>
</tr>
<tr>
<td>MTP Act, 1971 was passed in</td>
</tr>
<tr>
<td>For sterilization, age of Husband should be</td>
</tr>
<tr>
<td>Contraceptive Efficacy/failure is measured by</td>
</tr>
<tr>
<td>3 most important MCH problems</td>
</tr>
<tr>
<td>MC disorder to be screened in neonates</td>
</tr>
<tr>
<td>Low Birth Weight is</td>
</tr>
<tr>
<td>Most sensitive indicator of growth among children</td>
</tr>
<tr>
<td>World's greatest Public Health Tool is</td>
</tr>
<tr>
<td>Denominator for MMR</td>
</tr>
<tr>
<td>MCC of MMR is</td>
</tr>
<tr>
<td>Juveniles is age</td>
</tr>
<tr>
<td>Alcohol yields energy of</td>
</tr>
<tr>
<td>Protein requirement</td>
</tr>
<tr>
<td>Most Important Essential fatty Acid is</td>
</tr>
<tr>
<td>Richest Source of Vitamin-A/D is</td>
</tr>
<tr>
<td>First Clinical Sign of Xerophthalmia</td>
</tr>
<tr>
<td>Tocopherols are</td>
</tr>
<tr>
<td>Amino acid converted in body to Niacin</td>
</tr>
<tr>
<td>Richest Source of Vitamin-C</td>
</tr>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Adult Pregnant females are Anemic if</td>
</tr>
<tr>
<td>Optimum Level of Fluorine intake</td>
</tr>
<tr>
<td>Soyabean contains</td>
</tr>
<tr>
<td>Best among food proteins</td>
</tr>
<tr>
<td>An Indian Reference Man weighs</td>
</tr>
<tr>
<td>Best indicator of Protein Quality</td>
</tr>
<tr>
<td>First Indicator of PEM</td>
</tr>
<tr>
<td>Two-in-One salt contains</td>
</tr>
<tr>
<td>Toxin in Lathyism</td>
</tr>
<tr>
<td>Phosphatase Test is done for</td>
</tr>
<tr>
<td>Acculturation is</td>
</tr>
<tr>
<td>IQ</td>
</tr>
<tr>
<td>Disinfecting Action of chlorine is due to</td>
</tr>
<tr>
<td>Residual Level of Chlorine in Water</td>
</tr>
<tr>
<td>Temporary Hardness of Water is due to</td>
</tr>
<tr>
<td>Anemometer measures</td>
</tr>
<tr>
<td>Most satisfactory method of Refuse disposal</td>
</tr>
<tr>
<td>Water Seal in Sanitary latrine is</td>
</tr>
<tr>
<td>Best approach for arthropod control</td>
</tr>
<tr>
<td>Tiger Mosquito</td>
</tr>
<tr>
<td>Paris green is a</td>
</tr>
<tr>
<td>Pyrethrum is a</td>
</tr>
<tr>
<td>Yellow bag is used for disposal of BMW</td>
</tr>
<tr>
<td>Plumbism is</td>
</tr>
<tr>
<td>MC Occupational Cancer</td>
</tr>
<tr>
<td>Preplacement Examination is a part of</td>
</tr>
<tr>
<td>Indian Factories Act, 1948 recommends per capita space</td>
</tr>
<tr>
<td>Sickness Benefit under ESI Act,1948</td>
</tr>
<tr>
<td>Census takes place every</td>
</tr>
<tr>
<td>1,3,6,7,8, 9,11 Median is</td>
</tr>
<tr>
<td>Normal Distribution Curve is</td>
</tr>
<tr>
<td>To test significance of Difference between two proportions</td>
</tr>
<tr>
<td>Focus group Discussion should have</td>
</tr>
<tr>
<td>NHP 2002 says, Eliminate Lymphatic Filariasis by</td>
</tr>
<tr>
<td>Bhore committee was established in</td>
</tr>
<tr>
<td>MPW was given by</td>
</tr>
<tr>
<td>1 PHC is for a population of</td>
</tr>
<tr>
<td>International Conference at Alma-Ata (1978) gave concept of</td>
</tr>
<tr>
<td>MDGs have to be achieved by</td>
</tr>
<tr>
<td>MPW is located at</td>
</tr>
<tr>
<td>Greatest risk of Cold Chain failure is at</td>
</tr>
<tr>
<td>World Health Day</td>
</tr>
<tr>
<td>‘O’ in GOBI Campaign (UNICEF) stands for</td>
</tr>
<tr>
<td>Diseases under International Health Regulations</td>
</tr>
</tbody>
</table>
Golden Points

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father of Medicine/First True Epidemiologist</td>
<td>Hippocrates</td>
</tr>
<tr>
<td>Search for cases in epidemic is done till</td>
<td>Twice the Incubation period since last case</td>
</tr>
<tr>
<td>Point source epidemic</td>
<td>Sharp rise/fall, all cases in 1 Incubation period</td>
</tr>
<tr>
<td>Disease imported to a country for first time</td>
<td>Exotic Disease</td>
</tr>
<tr>
<td>Phase I clinical trial of drugs done on</td>
<td>Healthy volunteers</td>
</tr>
<tr>
<td>MMR is a</td>
<td>Ratio</td>
</tr>
<tr>
<td>Case fatality rate</td>
<td>Killing power of a disease</td>
</tr>
<tr>
<td>Marc Koska developed</td>
<td>Disposable K1-syringe (auto-disabled)</td>
</tr>
<tr>
<td>Measles vaccine stored at +2° to +8° C</td>
<td></td>
</tr>
<tr>
<td>Rubella</td>
<td>Live vaccine and C/I in pregnancy</td>
</tr>
<tr>
<td>Period of infectivity of measles</td>
<td>4 days before to 5 days after rash appearance</td>
</tr>
<tr>
<td>Yellow fever Vaccine (17 D)</td>
<td>Live Vaccine</td>
</tr>
<tr>
<td>Lyophilized (freeze dried) Vaccines</td>
<td>BCG, Yellow Fever, Measles, MMR</td>
</tr>
<tr>
<td>Cold Chain Temperature</td>
<td>+2° to +8° C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>True positives (and Specificity: True Negatives)</td>
</tr>
<tr>
<td>PPV is directly proportional to Prevalence</td>
<td></td>
</tr>
<tr>
<td>Dysphagia, dysarthria and diplopia seen in</td>
<td>Clostridium botulinum food poisoning</td>
</tr>
<tr>
<td>Leishmaniasis (Kala Azar) is transmitted by</td>
<td>Sand Fly (Phlebotomus)</td>
</tr>
<tr>
<td>DOC for Kala Azar (Black sickness) in Indian program</td>
<td>Sodium Stibio-gluconate (Antimonials)</td>
</tr>
<tr>
<td>DOC for Lympho granuloma venerum</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Malaria exhibits</td>
<td>Cyclo-propogative transmission</td>
</tr>
<tr>
<td>Vector of urban malaria</td>
<td>Anopheles stephensi</td>
</tr>
<tr>
<td>Vector of KFD in India</td>
<td>Hemophysalsis (Hard Tick)</td>
</tr>
<tr>
<td>Japanese Encephalitis, Pigs are</td>
<td>Amplifier Hosts</td>
</tr>
<tr>
<td>Tourniquet test (dengue) is +ve</td>
<td>>20 petechial spots/ sq. inch in cubital fossa</td>
</tr>
<tr>
<td>Reservoir in Chikungunya fever</td>
<td>Primates (monkeys)</td>
</tr>
<tr>
<td>Reservoir of Polio</td>
<td>Man (only)</td>
</tr>
<tr>
<td>HEV transmission</td>
<td>Feco-oral route</td>
</tr>
<tr>
<td>Hydatid disease cysts in</td>
<td>Postero-superior lobe of liver</td>
</tr>
<tr>
<td>Typhoid diagnosed in 1st week by</td>
<td>Blood Culture</td>
</tr>
<tr>
<td>Yersinia pseudotuberculosis resembles</td>
<td>Typhoid/Appendicitis (in humans)</td>
</tr>
<tr>
<td>8th Day Disease</td>
<td>Tetanus neonatorum</td>
</tr>
<tr>
<td>DOC Cholera (Pregnancy)</td>
<td>Furazolidone</td>
</tr>
<tr>
<td>Diagnosis in RNTCP</td>
<td>2 sputum smear examination (ZN Staining)</td>
</tr>
<tr>
<td>RNTCP Objectives</td>
<td>>85% cure rate and >70% case detection rate</td>
</tr>
<tr>
<td>Treatment duration of MBL</td>
<td>12 months (Surveillance 5 years)</td>
</tr>
<tr>
<td>Elimination Level of Neonatal tetanus</td>
<td><0.1 per 1,000</td>
</tr>
<tr>
<td>IP of yellow fever</td>
<td>2–6 days</td>
</tr>
<tr>
<td>Validity of YF vaccination Certificate</td>
<td>10 days - 10 years</td>
</tr>
<tr>
<td>HIV MTCT</td>
<td>30 %</td>
</tr>
<tr>
<td>HIV MTCT due to breast feeding</td>
<td>12-16 %</td>
</tr>
<tr>
<td>HIV MTCT Prevention with Nevirapine</td>
<td>50%</td>
</tr>
<tr>
<td>Nevirapine in MTCT given to child</td>
<td>Within 72 hours</td>
</tr>
<tr>
<td>Zidovudine is C/I with antiretroviral drug</td>
<td>Stavudine</td>
</tr>
<tr>
<td>Topic</td>
<td>Details</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Best marker of HIV progression</td>
<td>CD4 : CD8 ratio</td>
</tr>
<tr>
<td>MC Opportunistic Infection in HIV</td>
<td>Pneumocystis carinii Pneumonia (TB–India)</td>
</tr>
<tr>
<td>Blood screening before transfusion</td>
<td>HIV / HBV / HCV / Malaria / Syphilis</td>
</tr>
<tr>
<td>Epidemic typhus main mammalian reservoir</td>
<td>Human beings</td>
</tr>
<tr>
<td>Soft Tick is vector of Q fever, Relapsing Fever, KFD (not India)</td>
<td></td>
</tr>
<tr>
<td>Avian Influenza DOC</td>
<td>Oseltamivir 150 mg BD × 5 days</td>
</tr>
<tr>
<td>Last outbreak of Plague</td>
<td>Dangud, Uttarakashi (2004)</td>
</tr>
<tr>
<td>Indicator of operational efficiency in Malaria</td>
<td>ABER (Annual Blood Examination Rate)</td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>Weight (kg)/ Height (metre²)</td>
</tr>
<tr>
<td>Highest Growth Rate in India (Census 2001)</td>
<td>Nagaland (64%: 1991-2001) (D & N Havelli in 2001-11)</td>
</tr>
<tr>
<td>India is in Demographic cycle</td>
<td>Stage 3 (Declining BR and declining DR)</td>
</tr>
<tr>
<td>Highest Life Expectancy India</td>
<td>Japan (M: 79y; F: 86y)</td>
</tr>
<tr>
<td>Life expectancy India</td>
<td>M: 64 years and F: 67 years</td>
</tr>
<tr>
<td>NPP 2000, Bring ‘TFR to replacement level’ by</td>
<td>2010</td>
</tr>
<tr>
<td>% Geriatric population in India</td>
<td>8.1 %</td>
</tr>
<tr>
<td>Infant Mortality rate</td>
<td>No. of infant deaths per 1000 Live births</td>
</tr>
<tr>
<td>IMR of Japan</td>
<td>3 per 1000 LB (MMR: 7 per 1,00,000 LB)</td>
</tr>
<tr>
<td>Normal respiratory rate in a newborn</td>
<td>40–60 breaths per minute</td>
</tr>
<tr>
<td>Pearl Index (Failure rate per HWY)</td>
<td>Contraceptive Efficacy</td>
</tr>
<tr>
<td>Failure rate of condoms</td>
<td>2–14 per HWY</td>
</tr>
<tr>
<td>WHO Oligospermia</td>
<td>Sperm Count <20 million/HPF</td>
</tr>
<tr>
<td>World Health Day</td>
<td>07 April</td>
</tr>
<tr>
<td>National Maternity Benefit Scheme</td>
<td>500/- per birth to poor women (first 2 births)</td>
</tr>
<tr>
<td>Short stature in High Risk Pregnancy</td>
<td>< 140 cms</td>
</tr>
<tr>
<td>Mental retardation if</td>
<td>IQ Level < 70</td>
</tr>
<tr>
<td>Golden Rice is rich in</td>
<td>ß-carotene (and Iron)</td>
</tr>
<tr>
<td>Milk is poor in</td>
<td>Vitamin C and Iron</td>
</tr>
<tr>
<td>Pulse with highest protein content</td>
<td>Soyabean (43%)</td>
</tr>
<tr>
<td>Reference protein</td>
<td>Egg (NPU 96)</td>
</tr>
<tr>
<td>Toxin in Lathyrism</td>
<td>BOAA</td>
</tr>
<tr>
<td>Pellagra</td>
<td>Niacin deficiency</td>
</tr>
<tr>
<td>No plant source for vitamins</td>
<td>B12 and D</td>
</tr>
<tr>
<td>Tests of pasteurization</td>
<td>Phosphatase test (MC), Coliform Count, Std plate count</td>
</tr>
<tr>
<td>Horrocks Apparatus (Starch Iodide indicator)</td>
<td>Chlorine demand estimation</td>
</tr>
<tr>
<td>Level of residual level of chloride in water</td>
<td>0.5 ppm (mg/litre) for contact period 1hr</td>
</tr>
<tr>
<td>Maximum tolerable level of nitrates in water</td>
<td>50 mg/litre</td>
</tr>
<tr>
<td>Anopheles larvae rest</td>
<td>Parallel to under surface water</td>
</tr>
<tr>
<td>Aedes larvae breed in</td>
<td>Artificial collection of water</td>
</tr>
<tr>
<td>Kata thermometer measures</td>
<td>Cooling power of air</td>
</tr>
<tr>
<td>Maximum allowable sweat rate</td>
<td>4.5 litres per 4 hours</td>
</tr>
<tr>
<td>Vit-D resistant rickets inheritance</td>
<td>Sex-linked dominant</td>
</tr>
<tr>
<td>Burtonian Line (Blue Line on Gums)</td>
<td>Lead poisoning (Plumbism)</td>
</tr>
<tr>
<td>Group addressed and lecture on specific topic</td>
<td>Symposium</td>
</tr>
<tr>
<td>The Factory Act and ESI Act were passed in</td>
<td>1948</td>
</tr>
<tr>
<td>Recommended per capita space in Factory Act</td>
<td>500 Cubic feet</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Golden Points</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of PHCs in India</td>
<td>24,049</td>
</tr>
<tr>
<td>Bhore committee (1946) recommended</td>
<td>‘3 Million Plan’ and ‘Social Physicians’</td>
</tr>
<tr>
<td>‘Multi-purpose Workers’ introduced by</td>
<td>Kartar Singh Committee</td>
</tr>
<tr>
<td>‘Inventory’ (of materials) means</td>
<td>Stock on hand at anytime</td>
</tr>
<tr>
<td>Scatter/Dot Diagram represents</td>
<td>Correlation</td>
</tr>
<tr>
<td>Histogram is</td>
<td>Continuous quantitative data presentation</td>
</tr>
<tr>
<td>Mean (μ) + 2 SD (s)</td>
<td>95% of total values</td>
</tr>
<tr>
<td>Use of Cluster Random Sampling</td>
<td>Evaluation of Immunization Coverage</td>
</tr>
<tr>
<td>Chi-square Test</td>
<td>Sig. of association b/w 2 qualitative characteristics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PSM: GOLDEN POINTS 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total osmolarity of WHO Reduced Osmolarity ORS</td>
<td>245 mmol/L</td>
</tr>
<tr>
<td>Routine surveillance is supplemented by</td>
<td>Sentinel surveillance</td>
</tr>
<tr>
<td>Traditional lifestyles for CHD prevention.</td>
<td>Primordial level</td>
</tr>
<tr>
<td>Softening of water is recommended above hardness</td>
<td>>150 mg/litre</td>
</tr>
<tr>
<td>Degrees of freedom for 3x6 table (Chi-square) is</td>
<td>10</td>
</tr>
<tr>
<td>Word ‘Random’ means</td>
<td>Equal and known chance</td>
</tr>
<tr>
<td>DOTS Plus refers to</td>
<td>MDR TB treatment (Cat IV)</td>
</tr>
<tr>
<td>Low birth weight incidence in India is</td>
<td>28%</td>
</tr>
<tr>
<td>One Urban-PHC is for population</td>
<td>50,000</td>
</tr>
<tr>
<td>A group of health experts discuss a health topic & audience</td>
<td>Panel discussion</td>
</tr>
<tr>
<td>Ambulatory patients in triage</td>
<td>Cat III (GREEN)</td>
</tr>
<tr>
<td>Mite transmits rickettsial diseases</td>
<td>Scrub typhus, R. pox</td>
</tr>
<tr>
<td>Drug of choice for scabies</td>
<td>5% Permethrin</td>
</tr>
<tr>
<td>Statistical test to compare means between 2 groups</td>
<td>Unpaired students t-test</td>
</tr>
<tr>
<td>Exposure period required for Anthracosis</td>
<td>12 years</td>
</tr>
<tr>
<td>1 PHC in tribal area for a population of</td>
<td>20,000</td>
</tr>
<tr>
<td>Dose of ORS for a child with weight 12 kg</td>
<td>900 ml</td>
</tr>
<tr>
<td>ICD-10 classification is revised every</td>
<td>10 years</td>
</tr>
<tr>
<td>Main disinfection in chlorination of water is by</td>
<td>Hypochlorous acid</td>
</tr>
<tr>
<td>3 divisions of Planning Commission</td>
<td>General secretariat, Technical divisions, Program advisors</td>
</tr>
<tr>
<td>ROME scheme recommended by</td>
<td>Srivastava committee</td>
</tr>
<tr>
<td>O-fever is caused by</td>
<td>Coxiella burnetti</td>
</tr>
<tr>
<td>O-fever is transmitted by</td>
<td>Inhalation of infected dust</td>
</tr>
<tr>
<td>Midday meal programme provides</td>
<td>1/3 calories and 1/2 proteins</td>
</tr>
<tr>
<td>Unmet need for Family planning in India is highest for</td>
<td>Adolescents</td>
</tr>
<tr>
<td>Number of holes per sq. inch in mosquito net</td>
<td>150</td>
</tr>
<tr>
<td>MCC of neonatal mortality in India</td>
<td>LBW and prematurity</td>
</tr>
<tr>
<td>MC side effect of Depot contraceptives</td>
<td>Irregular menstrual bleeding</td>
</tr>
<tr>
<td>Mortality is included in</td>
<td>NRR (Net reproduction rate)</td>
</tr>
<tr>
<td>MDG Goal 4 is to Reduce child mortality by</td>
<td>Two-thirds by 2015</td>
</tr>
<tr>
<td>Health worker in Malaria control must visit all houses every</td>
<td>Fortnight</td>
</tr>
<tr>
<td>Carcinoma protected by OCPs</td>
<td>Ovarian carcinoma</td>
</tr>
<tr>
<td>Topic</td>
<td>Information</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Community Development Block population</td>
<td>100,000</td>
</tr>
<tr>
<td>Exclusive breast feeding till</td>
<td>6 months age</td>
</tr>
<tr>
<td>Older name of Janani Suraksha Yojana</td>
<td>National Maternity Benefit Scheme</td>
</tr>
<tr>
<td>Order in Nalgonda technique for defluoridation</td>
<td>Lime + Alum</td>
</tr>
<tr>
<td>Numerator of Pearl Index</td>
<td>No. of accidental gestations</td>
</tr>
<tr>
<td>Richest source of Vitamin D</td>
<td>Halibut liver oil</td>
</tr>
<tr>
<td>Average incubation period for HIV</td>
<td>10 years</td>
</tr>
<tr>
<td>Incubation period for Measles</td>
<td>10 days</td>
</tr>
<tr>
<td>First outbreak of Hepatitis E in Delhi</td>
<td>1955</td>
</tr>
<tr>
<td>Rich source of Vitamin D</td>
<td>Halibut liver oil</td>
</tr>
<tr>
<td>True positive indicate</td>
<td>Sensitivity</td>
</tr>
<tr>
<td>Best method to prevent Nosocomial infection</td>
<td>Hand washing</td>
</tr>
<tr>
<td>Hardy Weinberg law failure in</td>
<td>Mutations, Linkage disequilibrium</td>
</tr>
<tr>
<td>Hepatitis B vaccine is a type of</td>
<td>Killed vaccine</td>
</tr>
<tr>
<td>Prophylactic treatment of Rheumatic heart disease</td>
<td>Benzathaine penicillin</td>
</tr>
<tr>
<td>Vector of Yellow fever</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>1994 epidemic in India was.</td>
<td>Plague</td>
</tr>
<tr>
<td>DOC for Crimean Congo Fever</td>
<td>Ribavirin</td>
</tr>
<tr>
<td>Effectiveness of MCH services is given by</td>
<td>IMR</td>
</tr>
<tr>
<td>Kit B is kept at.</td>
<td>Subcentres</td>
</tr>
<tr>
<td>Richest source of Iron among nuts.</td>
<td>Pistachio</td>
</tr>
<tr>
<td>Vaccine strain for Swine flu vaccine in India</td>
<td>A7/California/2009</td>
</tr>
<tr>
<td>Web of causation proposed by</td>
<td>McMohan and Pugh</td>
</tr>
<tr>
<td>Father of Modern Toxicology</td>
<td>Mathieu Orfila</td>
</tr>
<tr>
<td>Condom failure occurs due to</td>
<td>Incorrect use</td>
</tr>
<tr>
<td>BMI of Normal Asian Men</td>
<td>18.5-22.99</td>
</tr>
<tr>
<td>Infective stage of Plasmodium to man</td>
<td>Sporozoite</td>
</tr>
<tr>
<td>Spot map was used for study of</td>
<td>Cholera</td>
</tr>
<tr>
<td>Normal IQ is</td>
<td>90-109</td>
</tr>
<tr>
<td>Koplik spots are seen in</td>
<td>Measles</td>
</tr>
<tr>
<td>Acrodemaatitis enteropathica is due to deficiency of</td>
<td>Zinc</td>
</tr>
<tr>
<td>HIV mainly affects cell type</td>
<td>Helper T-cells (CD4)</td>
</tr>
<tr>
<td>ESI Act came in year</td>
<td>1948</td>
</tr>
<tr>
<td>Amplifier host of Japanese encephalitis</td>
<td>Pigs</td>
</tr>
<tr>
<td>Sodium ion content in ORS</td>
<td>75 mmol/ L</td>
</tr>
<tr>
<td>Hydatid cyst is seen MC in</td>
<td>Liver</td>
</tr>
<tr>
<td>Main aim of Vision 2020</td>
<td>Eliminate avoidable blindness</td>
</tr>
<tr>
<td>Shelf life of CuT 380 A</td>
<td>10 years</td>
</tr>
<tr>
<td>Recommended frequency of school health examination</td>
<td>Once every 6 months</td>
</tr>
<tr>
<td>Human DNA consist of</td>
<td>3 billion base pairs</td>
</tr>
<tr>
<td>Doors + windows area in a school class</td>
<td>> 25% of floor area</td>
</tr>
<tr>
<td>Normal IQ level</td>
<td>90–109 IQ points</td>
</tr>
<tr>
<td>Highest case fatality rate</td>
<td>Rabies</td>
</tr>
<tr>
<td>Advice to couple with both HIV+</td>
<td>Use condoms</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- In ORS, Na+ absorption is due to Glucose
- Ideal contraceptive for newly married couple Combined OCPs
- Legal cutoff age for employment in India 14 years
- Pellagra occurs due to Vitamin B3 deficiency
- Father of Modern Anatomy Andreas Vesalius
- Bias due to different hospital admission rates Berksonian bias
- Random in Random sampling means Equal and known chance
- Diagnosis of Severe Pneumonia in PHC is based on Chest indrawing
- Longest path in Network analysis (PERT) Critical path
- GATHER approach is used in Contraceptive counseling
- Denominator of incidence 1000 total population at risk
- Measure of killing power of a disease Case fatality rate
- IQ formula Mental age/ Chronological age X 100
- Marc Koska discovered K1 auto-disable syringes
- Combined OCPs increase risk of carcinoma of Breasts
- Juvenile definition in Juvenile Justice Act 1986 Boy < 16, Girl < 18 years
- Plasmodium discovered by Laveran
- Life cycle of Plasmodium Ronald Ross
- Human genome has 22,000 – 23,000 genes
- Disability limitation is a type of Tertiary level of prevention
- Father of Obstetric Ultrasound Ian Donald
- Hardy Weinberg law is associated with Population genetics
- Pyridoxine is Vitamin B6
- Vaccine given at 9 months age is Measles vaccine
- Sufficiency of Pasteurisation is tested by Phosphatase test
- MDR TB is Resistance to INH and Rifampicin
- Quarantine period for Yellow fever 6 days
- Ocular disease not seen in India Onchocerciasis
- Most frequently occurring value in a data distribution Mode
- Strength of association in Case control study Odds ratio
- 1 female health worker is for total population 5000
- Census Stop of India 1st March 2011
- Phase I clinical trial Health volunteers
- MC cancer of females in India Cervico-uterine cancer
- Growth rate proportional to functions’ current value Exponential growth
- Sex ratio of India (Census 2011) 940
- Denominator of GFR Women in reproductive age group (15–49 years)
- Most abundant Ig in breast milk IgA
- Most important step after disaster Chlorination of water
- Area around airports kept free of Aedes 400 m
- Human anatomical waste goes in Bag Yellow
- Category 9 biomedical waste is Incineration ash
- Burtonian Line is seen in Lead poisoning
- Rural Health Scheme was recommended by Srivastava Committee
- MCC cancer death among males in India Lung cancer
GOLDEN POINTS 4

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC type of Vibrio cholerae in India</td>
<td>Hybrid form</td>
</tr>
<tr>
<td>Wasted sharps biomedical waste category</td>
<td>Four</td>
</tr>
<tr>
<td>SSPE is seen in</td>
<td>Measles</td>
</tr>
<tr>
<td>Weight of a newborn triples in</td>
<td>1 year</td>
</tr>
<tr>
<td>TT doses for a primigravida</td>
<td>2 doses</td>
</tr>
<tr>
<td>OPV vaccine doses in immunization programme</td>
<td>5</td>
</tr>
<tr>
<td>In Polio sensory loss</td>
<td>Absent</td>
</tr>
<tr>
<td>Father of Modern Microbiology</td>
<td>Louis Pasteur</td>
</tr>
<tr>
<td>Least priority color in triage</td>
<td>Black</td>
</tr>
<tr>
<td>In DOTS, diagnosis based on</td>
<td>Sputum smears</td>
</tr>
<tr>
<td>Maximium tolerant sound level to human ears.</td>
<td>85 dB</td>
</tr>
</tbody>
</table>

India is passing through stage of Demographic cycle III (Late expanding) stage

Normal level of IQ is 90–109 IQ points

Recommended air changes/ hour in a living room 2–3

First priority in Stroke Control Program Control hypertension

Isolation in Tuberculosis Not beneficial

Hospice is for Old & terminally ill patients

Standard deviation is a measure of Dispersion

Most virulent Plasmodium species Plasmodium falciparum

IP of Influenza is 18–72 hours

Stage of Plasmodium responsible for relapses Merozoites

Pneumoconioses causing Mesothelioma Asbestosis

Maize-eaters are prone to Pellagra

Intestinal perforation in typhoid occurs in Early III week

Extremely low birth weight is <1000 grams

Congenital rubella syndrome triad is Cataract, Deafness, PDA

Minimum number of Beds at CHC 30 beds

A subcentre in backward area is for 3000 population

Best dengue diagnosis in first week NS1 antigen

Population covered by PHC in tribal areas 20,000

Mosquito transmitting Dengue hemorrhagic fever Aedes aegypti

Low vision is <6/18 in better eye

Colour coding for dead persons in triage Black colour

Functional unit of implementation in NMHP District

Intradermal schedule for Rabies vaccine 8-0-4-0-1-1 (Thai Cross Regimen 2-2-2-0-2)

Breatheau index is used for Aedes aegypti

Highest content of Vitamin D is in Vitamin D

In a Normal distribution, central tendency Mean = Median = Mode

Amount of cereals in Mid-day meal program 100 grams

Community development bock equals 100 Villages (100,000 population)

Cyclopropagative transmission is shown by Plasmodium (malaria)

Virus used to prepare Rabies vaccine Fixed virus

Babesiosis is transmitted via Ticks
<table>
<thead>
<tr>
<th>Golden Points</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Review of Preventive and Social Medicine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Q-fever is caused by</th>
<th>Coxiella burnetti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusive breast feeding is recommended upto</td>
<td>6 months age</td>
</tr>
<tr>
<td>Cause of Fulminant hepatitis in pregnancy</td>
<td>Hepatitis E</td>
</tr>
<tr>
<td>Couple with wife 15-49 years is</td>
<td>Eligible couple</td>
</tr>
<tr>
<td>To achieve NRR = 1, CPR must be raised above</td>
<td>60%</td>
</tr>
<tr>
<td>Uppermost curve in ICDS growth chart is</td>
<td>50th percentile for boys</td>
</tr>
<tr>
<td>Learned behaviour which is socially acquired</td>
<td>Culture</td>
</tr>
<tr>
<td>Watching with attention, authority, suspicion is</td>
<td>Surveillance</td>
</tr>
<tr>
<td>Ability to identify true negatives in screening</td>
<td>Specificity</td>
</tr>
<tr>
<td>Amino acid deficient in wheat</td>
<td>Lysine</td>
</tr>
<tr>
<td>Highest content of saturated fatty acids is in</td>
<td>Coconut oil</td>
</tr>
<tr>
<td>Cholesterol with high-risk of CHD</td>
<td>LDL cholesterol</td>
</tr>
<tr>
<td>Minimum duration of PEP for HIV</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Food poisoning in less than 6 hours of food</td>
<td>Staphylococcal FP</td>
</tr>
<tr>
<td>Health promotion is prevention level</td>
<td>Primary level</td>
</tr>
<tr>
<td>First referral level is</td>
<td>Secondary level of care</td>
</tr>
<tr>
<td>Lepromin test is strongly positive in</td>
<td>Tuberculoid leprosy</td>
</tr>
<tr>
<td>Vector of Scrub typhus</td>
<td>Trombiculid mite</td>
</tr>
<tr>
<td>MC carcinoma in World</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>Clostridium perfringens cause pollution</td>
<td>Water pollution</td>
</tr>
<tr>
<td>Milk reduces absorption of</td>
<td>Iron</td>
</tr>
<tr>
<td>DDT mechanism of action</td>
<td>Contact poison</td>
</tr>
<tr>
<td>Most essential fatty acid is</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>Single drug treatment of trachoma</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Phase IV clinical trial is done</td>
<td>After marketing drug</td>
</tr>
<tr>
<td>Chandler's index is</td>
<td>Hookworm eggs/ gm stool</td>
</tr>
<tr>
<td>A child draws triangle by age</td>
<td>5 years</td>
</tr>
<tr>
<td>Acrodermatitis enteropathica is due to</td>
<td>Zinc deficiency</td>
</tr>
<tr>
<td>Methionine is limiting amino acid is</td>
<td>Pulses</td>
</tr>
<tr>
<td>BFHI was launched in</td>
<td>1991</td>
</tr>
<tr>
<td>IQ level in Severe mental retardation</td>
<td>21–34</td>
</tr>
<tr>
<td>Best treatment for diarrhoea</td>
<td>ORS</td>
</tr>
<tr>
<td>Leptospirosis is transmitted by</td>
<td>Infected rat's urine</td>
</tr>
<tr>
<td>Validity of YF vaccine</td>
<td>10 days – 10 years</td>
</tr>
<tr>
<td>Sharp waste is disposed in</td>
<td>White bag</td>
</tr>
<tr>
<td>Duffy negative antigen gives protection against</td>
<td>Plasmodium vivax</td>
</tr>
<tr>
<td>DOC for Filariasis</td>
<td>DEC</td>
</tr>
<tr>
<td>ASHA is located at</td>
<td>Village level</td>
</tr>
<tr>
<td>Female MPW is for</td>
<td>5000 population</td>
</tr>
<tr>
<td>CSSM Program was started in</td>
<td>1992</td>
</tr>
<tr>
<td>Toxoids are prepared from</td>
<td>Exotoxins</td>
</tr>
<tr>
<td>In Indian laws, Child age is</td>
<td>0–18 years</td>
</tr>
<tr>
<td>PQLI lies between</td>
<td>0–100</td>
</tr>
<tr>
<td>Strain of Varicella vaccine</td>
<td>OKA strain</td>
</tr>
<tr>
<td>Golden Points 5</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Prevalence of suicides in India</td>
<td>36 per 1 Lac population</td>
</tr>
<tr>
<td>MDG related to water supply</td>
<td>20 litres/ day < 1km radius</td>
</tr>
<tr>
<td>Number of vaccine vials in Day carrier box</td>
<td>6–8 vials</td>
</tr>
<tr>
<td>Number of vaccine vials in Vaccine carrier</td>
<td>16–20 vials</td>
</tr>
<tr>
<td>Gender developmental index is</td>
<td>Corrected development index as per gender inequalities</td>
</tr>
<tr>
<td>Darwinism fails to explain</td>
<td>Presence of vestigial organs</td>
</tr>
<tr>
<td>Cooling curve of body follows</td>
<td>Sigmoid shape</td>
</tr>
<tr>
<td>Drug resistance in retreatment of TB</td>
<td>13–17%</td>
</tr>
<tr>
<td>Fluorosis is not seen in</td>
<td>Free flowing surface waters</td>
</tr>
<tr>
<td>Number of scabies mites per person body</td>
<td>10–15</td>
</tr>
<tr>
<td>Biosafety cabinets are disinfected by</td>
<td>40% Formaldehyde</td>
</tr>
<tr>
<td>Jai Vigyan Mission is for control of</td>
<td>Rheumatic fever/ RHD</td>
</tr>
<tr>
<td>Ujjwala scheme is related to</td>
<td>Child trafficking</td>
</tr>
<tr>
<td>Preterm birth takes place before</td>
<td>37 weeks POG</td>
</tr>
<tr>
<td>Denominator of Stillbirth rate</td>
<td>Live births + Still births (>1000 gms)</td>
</tr>
<tr>
<td>Halts disease in incipient stage & prevent complications</td>
<td>Secondary level of prevention</td>
</tr>
<tr>
<td>RDA of proteins for adult Indian male</td>
<td>0.83 gm/ kg/ day</td>
</tr>
<tr>
<td>MC blood group in Indian population</td>
<td>Blood group 'O'</td>
</tr>
<tr>
<td>Chandler's Index major public health problem if</td>
<td>More than 300</td>
</tr>
<tr>
<td>Chandler's Index is</td>
<td>No. of hookworm eggs per gram stool</td>
</tr>
<tr>
<td>ICDS covered under Ministry</td>
<td>Women and Child Development</td>
</tr>
<tr>
<td>Anganwadi worker covered under Ministry</td>
<td>Women and Child Development</td>
</tr>
<tr>
<td>Integrated Child protection Scheme covered under Ministry</td>
<td>Women and Child Development</td>
</tr>
<tr>
<td>Integrated Child Development Services (ICDS) launched in</td>
<td>1975</td>
</tr>
<tr>
<td>National Rural Health Mission (ICDS) launched in</td>
<td>2005</td>
</tr>
<tr>
<td>National Mental Health Program (NMHP) launched in</td>
<td>1982</td>
</tr>
<tr>
<td>National Mental Health Act passed in year</td>
<td>1987</td>
</tr>
<tr>
<td>Baby Friendly Hospital Initiative (BFHI) launched in</td>
<td>1991</td>
</tr>
<tr>
<td>Child Survival Safe Motherhood (CSSM) launched in</td>
<td>1992</td>
</tr>
<tr>
<td>First Disability Census in India</td>
<td>1881</td>
</tr>
<tr>
<td>State with highest Solar radiation received</td>
<td>Rajasthan</td>
</tr>
<tr>
<td>Not a bridging population in HIV transmission</td>
<td>Male homosexuals</td>
</tr>
<tr>
<td>The Great Demographic Divide in India</td>
<td>1921</td>
</tr>
<tr>
<td>First Distinguished Epidemiologist</td>
<td>Sydneyham</td>
</tr>
<tr>
<td>Louis Pasteur (1822-1895) died in</td>
<td>France</td>
</tr>
<tr>
<td>Edward Jenner died in</td>
<td>1823</td>
</tr>
<tr>
<td>White death is</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>White plague is</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>White leprosy is</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Halibut liver oil rich in</td>
<td>Vitamin A, D</td>
</tr>
<tr>
<td>Combined OCPs contain</td>
<td>Ethinyl estradiol + Norgestrel</td>
</tr>
</tbody>
</table>
Golden Points

<table>
<thead>
<tr>
<th>Topic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerable sound level for Factory workers</td>
<td>90 decibels</td>
</tr>
<tr>
<td>Severe mental retardation is IQ</td>
<td>21–34 IQ points</td>
</tr>
<tr>
<td>Single drug treatment for Trachoma control</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>A child is able to draw triangle by the age of</td>
<td>5 years</td>
</tr>
<tr>
<td>Best time to do Breast Self-examination screening</td>
<td>One week after menstruation</td>
</tr>
<tr>
<td>One ASHA worker is for</td>
<td>1000 population</td>
</tr>
<tr>
<td>One Female Health Worker is for</td>
<td>5000 population</td>
</tr>
<tr>
<td>MC Indirect cause of Maternal mortality</td>
<td>Anemia</td>
</tr>
<tr>
<td>Total population covered by CHC is</td>
<td>80,000 -120,000</td>
</tr>
<tr>
<td>Pre-exposure i/m schedule of Rabies vaccine</td>
<td>Day 0, 7, 28</td>
</tr>
<tr>
<td>Post-exposure i/d schedule of rabies vaccine</td>
<td>8-0-4-0-1-1</td>
</tr>
<tr>
<td>Xerophthalmia is public health problem if</td>
<td>Bitot spots >0.5%</td>
</tr>
<tr>
<td>Activation of Yellow fever vaccine after</td>
<td>10 days</td>
</tr>
<tr>
<td>Degrees of freedom in Chi-square test</td>
<td>(c-1) (r-1)</td>
</tr>
<tr>
<td>Psychotherapy is level of prevention</td>
<td>Secondary</td>
</tr>
<tr>
<td>Tracking of BP (Hypertension)</td>
<td>Hypotensive remain hypotensive</td>
</tr>
<tr>
<td>Pink colour in IMNCI</td>
<td>Immediate referral</td>
</tr>
<tr>
<td>Green colour in IMNCI</td>
<td>Home based management</td>
</tr>
<tr>
<td>Father of Public health Cholera</td>
<td></td>
</tr>
<tr>
<td>Child age under ICDS covered</td>
<td>Upto 6 years age</td>
</tr>
<tr>
<td>Iodine dose in pregnancy</td>
<td>250 mcg per day</td>
</tr>
<tr>
<td>Mild degree of malnutrition is</td>
<td>3.0–3.5 gm/dl</td>
</tr>
<tr>
<td>First priority in Stroke control program</td>
<td>Control arterial hypertension</td>
</tr>
<tr>
<td>Relapse in Malaria is due to</td>
<td>Merozoites</td>
</tr>
<tr>
<td>World polulation affected with trachoma</td>
<td>500 million</td>
</tr>
<tr>
<td>Functional unit if Implementation of NMHP</td>
<td>District</td>
</tr>
<tr>
<td>1 Community development block comprise</td>
<td>100 villages (100,000 population)</td>
</tr>
<tr>
<td>1955 Hepatitis outbreak in Delhi</td>
<td>Hepatitis E</td>
</tr>
<tr>
<td>ICD-10 is a</td>
<td>Multiaxial system</td>
</tr>
<tr>
<td>Global burden of child mortality</td>
<td>6.6 millions</td>
</tr>
<tr>
<td>Settle plate culture method is used for</td>
<td>Air quality in hospital wards/OTs</td>
</tr>
<tr>
<td>District border cluster strategy is supported by</td>
<td>UNICEF</td>
</tr>
<tr>
<td>Eye donation fortnight</td>
<td>25th August – 6th September</td>
</tr>
<tr>
<td>‘Anonymous group’ is a support group for</td>
<td>Alcoholics</td>
</tr>
</tbody>
</table>
ANNEXURE
Current Public Health Related Statistics of India*

I. SOCIOECONOMIC INDICATORS

- HDI: (2014)
 - Rank 1: Norway 0.944 – High Development
 - Rank 135: India 0.586 – Medium Development
 - Rank 187: Niger 0.337 – Low Development
- Multidimensional Poverty Index (MPI): 0.283
 - Incidence of poverty: 53.7%
 - Population living below poverty line (BPL): 22%
 - India has 1/3 of total poor in the world
- HPI: 31.6% (Rank 58)
- GDP per capita: $ 1500
- Income per capita: ₹ 74,920/- per annum
- Population with improved source of drinking water:
 - Urban: 95.3%
 - Rural: 88.5%
- Population with improved sanitation facilities:
 - Urban: 91.2%
 - Rural: 40.6%

II. DEMOGRAPHY & FERTILITY INDICATORS

- Crude birth rate (CBR): 21.4 per 1000 mid year population
- Crude death rate (CDR): 7.0 per 1000 mid year population
- School participation (primary level):
 - Male: 85%
 - Female: 81%
- Median age at first marriage:
 - Females: 17.2 years
 - Males: 23.4 years
- TFR: 2.4
 - Rural: 2.7
 - Urban: 1.9 (Replacement level achieved in urban areas)
- Median interval between births in India: 31 months
- Contraceptive Prevalence Rate: 44.6% (Effective CPR 40.4%)
 - Sterilization: 27% (Most common)
 - IUDs: 6%
 - Unmet need for Contraception: 12%
- Primary Immunization Coverage: 49%

III. MCH INDICATORS

- IMR: (SRS 2014)
 - India: 40 per 1000 Live Births (54 in MP / Assam; 9 in Goa)
Review of Preventive and Social Medicine

- **MMR:** (2012)
 - India: 178/Lac LB (SRS 2012) [Assam: 328; Kerala: 66]
- **U5MR:** (UNICEF 2012)
 - India: 53/1000 LB
 - UK/USA/Japan/Singapore: <10
 - World: 46
- **NNMR:** (WHO 2012)
 - India: 29/1000 LB
 - UK/USA/Singapore: <5
- **PNMR:** (SRS 2010)
 - India: 32/1000 LB
- **Still birth rate (SBR):** (SRS 2010)
 - India: 7/1000 Total births
- **3 visits in antenatal period:** 51%
- **TT coverage in pregnancy (2 doses):** 76%
- **Delivery in a medical facility:** 41%
- **Delivery assisted by a health professional:** 49%
- **Exclusive breast feeding < 6 months age:** 46% (WHO recommendation: 6 months)
- **Average duration of breast feeding:** 25 months (WHO recommendation: 24 months minimum)
- **Infants with LBW (<2500 gms BW):** 28%
- **Children’s Nutritional Status:**
 - Underweight: 40%
 - Stunting: 45%
 - Wasting: 23%
- **Anemia:**
 - Women: 55%
 - Men: 13%
 - Children 6–59 months: 70%
- **AIDS awareness:**
 - Men: 84%
 - Women: 61%
- **Domestic Violence ever experienced by women:** 35%

IV. DISEASES

- **Human Avian Influenza H5N1:**
 - Global: 641 cases & 380 deaths in 16 countries (WHO 2013)
 - Zero confirmed cases in India
- **Human Avian Influenza H7N9:**
 - Global: 301 cases China (WHO 2014)
 - Zero confirmed cases in India
- **SARS:**
 - Global: 8422 cases with 916 deaths in 30 countries (WHO 2003)
 - Zero confirmed cases in India
- **Malaria (2011):**
 - 1.31 m cases (50.3% *P. falciparum* most common) with 463 deaths
 - API: 1.10
- **Leprosy (NLEP, 2014):**
 - Prevalence rate: 0.68/10000 (Elimination achieved on Dec 2005)
 - ANCDR: 9.98/100,000
Current Public Health Related Statistics of India

- **Tuberculosis (RNTCP 2008):**
 - One-fifth of global cases
 - 53 New Smear positive cases per Lac population
 - SS+ve: Incidence – 185 per 100,000 and Prevalence – 286 per 100,000)
 - 100 % DOTS coverage in India achieved in March 2006

<table>
<thead>
<tr>
<th>Infection of TB</th>
<th>Disease TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>1–2 %</td>
</tr>
<tr>
<td>Prevalence</td>
<td>30–40 %</td>
</tr>
</tbody>
</table>

- **HIV/AIDS (NACO; 2012):**
 - General adult population HIV+ prevalence: 0.27 %
 - No. of HIV+: 2.5 million (2004)
 - Male: Female = 3:2
 - Sentinel sites: 1122
 - No. of AIDS cases: 1,24,995 (85.5% sexual transmission)
 - MC age group 30–49 years
 - Maximum AIDS cases: Tamil Nadu (43%)

- **Poliomyelitis (NPSP; December 2014):** [India declared 'POLIO-FREE' on 27 March 2014 by WHO]
 - No. of Polio cases: ZERO
 - No. of Vaccine derived Polio virus (VDPV) cases: 02 (both P2)
 - No. of AFP cases: 46,171
 - AFP rate: 12.08
 - Non-polio AFP rate: 10.92

V. CENSUS OF INDIA 2011

- **Total population:** 1210 million population as on 00.00 hrs 1st March 2001
- **Sex ratio:** 940 females per 1000 males
 - **Child-sex ratio:** 914 girls per 1000 boys (0-6 yrs age)
- **Dependency ratio:** 54 per 100 (0.54)
- **Density of population:** 382 persons per square km
- **Literacy Level (aged 7 yrs and older):** 74%
 - Males 82%
 - Females 65%
- **Growth rate:**
 - Decadal Growth Rate: 17.64%
 - Annual Growth Rate: 1.64%

(*Compiled by Dr Vivek Jain from multiple sources*)
CHAPTER 2. CONCEPTS OF HEALTH AND DISEASE

Triangle of Epidemiology

- **Definition:** Communicable disease model useful in showing interaction/interdependence of following factors in investigation of diseases/epidemics,
- **Agent:**
 - Infectious disease agents: Bacteria, viruses, fungi, parasites, moulds
 - Noncommunicable diseases agents: Dietary chemicals, tobacco smoke, solvents, radiation, heat, nutritional deficiencies
- **Host:** Offers level of immunity, genetic makeup, state of health, fitness
- **Environment:** Internal environment, external environment
- **Time:** Incubation period, duration of illness, threshold of epidemic
- **Primary mission of epidemiology:** Breaking one of the legs of triangle

Advanced Model of Triangle of Epidemiology

- **Definition:** Inclusion of all facets of a communicable disease model making it useful with regards to today's diseases/disorders/defects/injuries/deaths
 - Also takes into account behaviour, lifestyle factors, environmental causes, ecologic elements, physical factors and chronic diseases
- **Causative factors**
- **Groups and populations and their characteristics**
- **Environment behaviour, culture, physiological characteristics, ecological elements**
- **Time**

Disability Rates

- **Quality adjusted life years (QALYs):**
 - QALY is a measure of both quality and quantity of life lived
 - QALY is years of life lived in perfect health
 - QALY is used in assessing the value of money of a medical intervention
- **Disability free life expectancy (DFLE: Active life expectancy):** Average number of years an individual is expected to live free of disability (provided current pattern of mortality and disability continue to apply)
- **Disability adjusted life years (DALYs):**
 - DALY is measure of overall disease burden
 - DALY is expressed as number of years lost due to ill-health, disability or early death
 - DALY = YLL (Years of lost life) + YLD (Years lost to disability)
 - One DALY = One year of healthy life lost
 - **Standards of Life expectancy used:** Japan life expectancy statistics

Health Promotion

- **Ottawa Charter for Health Promotion:**
 - **Five key action areas in Health Promotion:**
 - Public health policy
 - Supportive Environment for Health
 - Strengthen Community action for health
- Personal skills development
- Reorientation of health services
- **Basic strategies for Health promotion:**
 - Advocate
 - Enable
 - Mediate
- Health Promotion Logo:
 - Circle with 3 wings
 - Incorporates five key action areas in health promotion
 - Incorporates 3 basic health promotion strategies
- **Jakarta Declaration of Health Promotion:**
 - Vision and focus on Health Promotion in 21st Century
 - **Focus areas:**
 - Determinants of health
 - New challenges in 21st century
 - Fundamental conditions/resources for health: Peace, shelter, education, social security, social relations, food, income, women-empowerment, stable ecosystem, sustainable resource use, social justice, respect for human rights, poverty.

CHAPTER 3. EPIDEMIOLOGY AND VACCINES

Diluents in Vaccination
- Only use diluents provided with vaccine by supplier/manufacturer
- Store diluents at +2 to +8°C in ILR
- If stored outside, cool diluents for 24 hours at +2 to +8°C before reconstitution; otherwise it may lead to thermal shock
- Store diluents with vaccines in Vaccine carriers
- Do not allow diluents to come in contact with ice pack

CHAPTER 5. COMMUNICABLE AND NON-COMMUNICABLE DISEASES

H1N1 Influenza Pandemic
- **New Nomenclature:** Influenza A (H1N1) pdm09
- **Problem Statement in India [2011]:** 603 cases; 75 deaths (CFR 12.5%)
- **Case definitions:**
 - **Suspected case:** Acute febrile respiratory illness (>38°C)
 - Within 7 days of contact
 - Within 7 days of travel to area having cases or
 - Residence in such an area
 - **Probable case:** Acute febrile respiratory illness
 - **Positive for Influenza A**
 - Individual with compatible illness
 - **Confirmed case:** Acute febrile respiratory illness with Laboratory confirmed Influenza (H1N1) 2009 virus at WHO-approved laboratory by one of the following tests
 - Real time PCR
 - Viral culture
 - 4-fold rise in Influenza A (H1N1) neutralizing antibodies
- **Chemoprophylaxis:** Oseltamivir is the Drug of choice (given for 10 days post exposure)
 - **Age <3 months:** Not given unless critical
 - **3-5 months:** 20 mg OD
 - **6-11 months:** 25 mg OD
 - **Weight <15 kg:** 30 mg OD
 - **Weight 15-23 kg:** 45 mg OD
Review of Preventive and Social Medicine

- Weight 24–40 kg: 60 mg OD
- Weight >40 kg: 75 mg OD

Diphtheria
- Problem statement in India [2011]: 4,286 cases; 112 deaths (CFR: 2.6%)

Pertussis
- Problem statement in India [2011]: 39,091 cases

Meningococcal meningitis
- Problem statement in India [2011]: 6,629 cases; 464 deaths

Acute Respiratory Tract Infections (ARIs)
- Problem statement in India [2011]:
 - 26.3 million cases ARI; 2,492 deaths
 - 7.5 lacs cases Pneumonia; 2,770 deaths

Tuberculosis
- Problem statement in India [2011]:
 - Incidence: 185 per 1 lac population (Incidence HIV+ TB: 9.2 per 1 lac population)
 - Prevalence: 256 per 1 lac population
 - Mortality: 26 per 1 lac population
 - Case detection rate: 100%
 - New case Smear-positive rate: 53 per 1 lac population
 - New case Smear-negative rate: 28 per 1 lac population
- Case definition of Tuberculosis:
 - A patient diagnosed with one sputum specimen positive OR culture positive OR rapid diagnostic test (RNTCP) positive
 - Clinical diagnosis of TB, and initiated on Antitubercular drugs
- Tuberculosis and Diabetes:
 - Diabetes is a known risk factor for TB
 - Diabetes account for 14.8% of all TB, and 20.8% of Smear positive TB
 - Diabetics with TB have high risk of deaths due to TB and relapses of TB post-treatment

Polioyelitis
- Problem statement in India:
 - Last case WPV1 on 13th January 2011 (Howrah, West Bengal)
 - There is interruption of WPV circulation in India
- Vaccine derived polio virus (VDPV):
 - Diagnosis: Real time Reverse transcription-PCR nucleic acid amplification
 - Types of VDPV:
 - cVDPV: Person-to-person transmission in community
 - iVDPV: Isolates from immunodeficient persons
 - aVDPV: Ambiguous from health person or sewage isolates
 - Key risk factors for cVDPV emergence:
 - Development of immunity gaps (due to low OPV coverage)
 - Prior elimination of WPV types
 - Low routine immunization coverage with trivalent OPV
 - Insensitive AFP surveillance
Acute Diarrhoeal Diseases

- **Problem statement in India [2011]:** 10.6 million cases; 10 deaths (CFR 0.43%)

Cholera

- **Problem statement in India [2011]:** 2,341 cases; 1,293 deaths

Typhoid

- **Problem statement in India [2011]:** 1.06 million cases; 346 deaths

Dengue

- **Problem statement in India [2011]:** 18,059 cases; 119 deaths (CFR 0.65%)
 - India is Category A country with Hyperendemicity with all 4 serotypes, Major public health problem, Leading cause of death/hospitalization among children
- **High-risk patients for Dengue:**
 - Infants, elderly
 - Obesity
 - Pregnancy
 - Peptic ulcer disease
 - Menstruating females
 - Hemolytic disorders (G6PD, Thalassemias)
 - Congenital heart disease
 - Chronic disease
 - Steroids/NSAIDs treatment
- **Laboratory tests for Dengue:**
 - Virus isolation within six days: Serum, plasma, autopsy tissue
 - Viral nucleic acid detection (RT-PCR assay)
 - Immunological response and Serological tests:
 - Hemeagglutination inhibition
 - Complement fixation
 - Neutralization test
 - IgM-capture MAC-ELISA
 - Indirect IgG-ELISA
 - IgM/IgG ratio
 - Viral antigen (EM and NS1) detection
 - Rapid diagnostic tests
 - Hematological parameters
- **WHO classification and Grading of Dengue fevers:**
 - DHF Grade I: Dengue fever PLUS Hemorrhagic manifestations PLUS Positive tourniquet test
 - DHF Grade II: Grade I PLUS Spontaneous bleeding
 - DHF Grade III: Grade II PLUS Circulatory failure
 - DHF Grade IV: Grade III PLUS Profound shock
 - DHF Grades III, IV are Dengue shock syndrome (DSS)
- **Management of Dengue:**
 - DHF Grade I, II: Oral rehydration, Antipyretics
 - DHF Grade III, IV: Colloidal solution, Fresh whole blood transfusion
- **Indications for Red cell transfusion:**
 - Loss of overt blood (>10% blood volume)
 - Refractory shock
Review of Preventive and Social Medicine

- **Indications for Platelets transfusion:**
 - Prophylactic transfusion at count <10,000/cu.mm.
 - Prolonged shock with coagulopathy
- **Criteria for discharge of patients:**
 - Absence of fever >24 hours
 - Return of appetite
 - Visible clinical improvement
 - Good urine output
 - Minimum 2-3 days after recovery from shock
 - No respiratory distress form pleural effusion/ascites
 - Platelet count >50,000/cu.mm.

Malaria
- **Problem statement in India [2011]:**
 - Cases: 1.31 millions
 - Deaths: 463
 - *Plasmodium falciparum* cases: 0.65 millions (Pf 50.3%)
 - API: 1.10

Japanese Encephalitis
- **Problem statement in India [2011]:** 7,838 cases; 1,137 deaths (14 states endemic)

Kala Azar
- **Problem statement in India [2011]:** 33,133 cases; 80 deaths

Tetanus
- **Problem statement in India [2011]:** 2,843 cases; 170 deaths

Neonatal Tetanus
- **Problem statement in India [2011]:** 734 cases; 14 deaths

Leprosy
- **Problem statement in India [2011]:**
 - Prevalence of Leprosy: 0.68 per 10,000 population
 - ANCDR: 1 per 10,000 population
 - Multibacillary cases: 49.9% of total cases
 - Cure rates: 90% (MBL) to 95% (PBL)

CHAPTER 6. NATIONAL HEALTH PROGRAMMES, POLICIES, LEGISLATIONS IN INDIA

Revised National TB Control Program (RNTCP)
- **DOTS Implementation and Surveillance in India [2011]:**
 - New/relapse cases: 125 per 100,000 population per year
 - New sputum smear positives: 53 per 100,000 population per year
 - DOTS case detection rate: 79%
 - DOTS treatment success rate: 88%
 - Sputum smear positive among new cases: 70%
 - Extrpulmonary cases among new cases: 19%
Universal Immunization Program (UIP)

- **Introduction of Hepatitis B vaccine:**
 - 3 doses at 6, 10, 14 weeks POG
 - Additional dose at birth in Institutional deliveries
- **Introduction of Japanese Encephalitis vaccine:**
 - Single dose at 16-24 months age
 - Live strain used: SA 14-14-2
- **Introduction of measles second opportunity:**
 - Second dose through routine immunization 16-24 months age

CHAPTER 8. PREVENTIVE OBSTETRICS, PEDIATRICS & GERIATRICS

Maternal Mortality Rate (MMR)

- Maternal mortality ratio: 212 per 100,000 live births
- Maternal mortality rate: 16.3
- Lifetime risk: 0.6%
- MC age group affected: 20-24 years

CHAPTER 10. SOCIAL SCIENCES AND HEALTH

- Per capita GNI, India [2010]: US$ 1,340
- Life expectancy at birth: 65 years

CHAPTER 11. ENVIRONMENT AND HEALTH

Household Purification of Water

- **Ultraviolet Radiation:**
 - Exposure of 120 mm thick water film to 254 nm wavelength UV rays
 - Water should be free from turbidity
 - Advantages: Short duration, no taste, no odour, harmless
 - Disadvantages: No residual effect, no rapid test for assessment, expensive apparatus

- **Multistage Reverse Osmosis Purification of Water:**
 - Reduces total dissolved solids, hardness, heavy metals, disease causing agents

Acceptable Radioactivity in Drinking Water

- Gross alpha activity: 0.5 Bq/L
- Gross beta activity: 1.0 Bq/L

[Reference: Multiple Sources; Compiled by Dr Vivek Jain from Government of India/ WHO/ Books/ Other documents]
<table>
<thead>
<tr>
<th>Honor(s)</th>
<th>Scientist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father of Antisepsis/ Modern surgery*</td>
<td>Joseph Lister</td>
</tr>
<tr>
<td>Father of Bacteriology*</td>
<td>Robert Koch</td>
</tr>
<tr>
<td>Father of Biochemistry</td>
<td>Carl Alexander Neuberg</td>
</tr>
<tr>
<td>Father of Biology/ Zoology</td>
<td>Aristotle</td>
</tr>
<tr>
<td>Father of Computed Tomography (CT)</td>
<td>Godfrey Hounsfield</td>
</tr>
<tr>
<td>Father of Endocrinology</td>
<td>Thomas Addison</td>
</tr>
<tr>
<td>Father of Epidemiology/ Modern Epidemiology, Greatest doctor</td>
<td>John Snow</td>
</tr>
<tr>
<td>Father of Evidence based Medicine</td>
<td>DL Sackett</td>
</tr>
<tr>
<td>Father of Genetics</td>
<td>Gregor Mendel</td>
</tr>
<tr>
<td>Father of Gynecology</td>
<td>J Marion Sims</td>
</tr>
<tr>
<td>Father of Histology</td>
<td>Marie-Francois Xavier Bichat</td>
</tr>
<tr>
<td>Father of Homeopathy</td>
<td>Samuel Hahneman</td>
</tr>
<tr>
<td>Father of Indian Medicine</td>
<td>Charaka</td>
</tr>
<tr>
<td>Father of Indian Pharmacology</td>
<td>Ram Nath Chopra</td>
</tr>
<tr>
<td>Father of Indian Surgery/ Plastic & Cosmetic surgery</td>
<td>Sushruta</td>
</tr>
<tr>
<td>Father of Interventional Radiology</td>
<td>Charles T Dotter</td>
</tr>
<tr>
<td>Father of Medical Ultrasound</td>
<td>John J Wild</td>
</tr>
<tr>
<td>Father of Medicine/ Modern medicine, First True Epidemiologist</td>
<td>Hippocrates</td>
</tr>
<tr>
<td>Father of Microbiology</td>
<td>Louis Pasteur</td>
</tr>
<tr>
<td>Father of Modern medicine</td>
<td>William Osler</td>
</tr>
<tr>
<td>Father of Modern/ Microscopic/ Cellular pathology</td>
<td>Rudolf Virchow</td>
</tr>
<tr>
<td>Father of Modern anatomy</td>
<td>Andreas Vesalius</td>
</tr>
<tr>
<td>Father of Modern laparoscopy</td>
<td>Camran Nezhat</td>
</tr>
<tr>
<td>Father of Modern microbiology</td>
<td>Louis Pasteur</td>
</tr>
<tr>
<td>Father of Modern pharmacology</td>
<td>Oswald Schmiedeberg</td>
</tr>
<tr>
<td>Father of Modern toxicology</td>
<td>Matheiu Orfila</td>
</tr>
<tr>
<td>Father of Nutrition</td>
<td>Antoine Lavoisier</td>
</tr>
<tr>
<td>Father of Obstetric ultrasound</td>
<td>Ian Donald</td>
</tr>
<tr>
<td>Father of Pediatrics</td>
<td>Abraham Jocobi</td>
</tr>
<tr>
<td>Father of Physiology</td>
<td>Claude Bernard</td>
</tr>
<tr>
<td>Father of Psychoanalysis</td>
<td>Sigmund Freud</td>
</tr>
<tr>
<td>Father of Public health</td>
<td>Cholera</td>
</tr>
<tr>
<td>Father of Radiology/ Diagnostic radiology/ X-rays</td>
<td>WC Roentgen</td>
</tr>
<tr>
<td>Father of Sociology*</td>
<td>Karl Marx</td>
</tr>
<tr>
<td>Father of Surgery/ Modern surgery</td>
<td>Ambroise Pare</td>
</tr>
<tr>
<td>Father of Veterinary medicine</td>
<td>Renetus Vegatius</td>
</tr>
<tr>
<td>Hindu God of Medicine</td>
<td>Dhanvantari</td>
</tr>
</tbody>
</table>

(*Multiple scientists have been given these honours)
Definition of UHC

- Ensuring equitable access for all Indian citizens to affordable, accountable, appropriate health services of assured quality as well as public health services addressing the wider determinants of health, with the government being the guarantor and enabler

Five Levels of Health Care

- Level 1: Villages, Community level in Urban areas
- Level 2: Sub Health Centers (SHCs)
- Level 3: Primary Health Centers (PHCs)
- Level 4: Community Health Centres (CHCs)
- Level 5: District Hospitals, Medical Colleges, Other tertiary care institutions

Urban Health Care System

<table>
<thead>
<tr>
<th>Urban Family Welfare Centres (UFWC)</th>
<th>Urban Health Posts (UHP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I: 1 per 10000–25000 population</td>
<td>Type A: 1 per <5000</td>
</tr>
<tr>
<td>Type II: 1 per 25000–50000 population</td>
<td>Type B: 1 per 5000–10000</td>
</tr>
<tr>
<td>Type III: 1 per >50000 population</td>
<td>Type C: 1 per 10000–20000</td>
</tr>
</tbody>
</table>

Other Recommendations

- 3-year Bachelor of Rural Health Care (BRHC) degree program (cadre of rural health care practitioners for recruitment and placement at SHCs)
- National Health and Medical Facilities Accreditation Unit (NHMFAU): Regulatory and accreditation body on management and institutional reforms
- Setting District Health Knowledge Institute: DHKI for districts with population > 500,000

Key Targets of HLEG on UHC

<table>
<thead>
<tr>
<th>Parameter/ Norm</th>
<th>Target</th>
<th>Current situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beds per 1000 population</td>
<td>2 beds per 1000 population by 2022</td>
<td>0.9 per 1000 population</td>
</tr>
<tr>
<td>ASHA* per 1000 population</td>
<td>2 per 1000 population</td>
<td>1 per 1000 population</td>
</tr>
<tr>
<td>Nurse/ Midwives per 1 doctor</td>
<td>3 per 1 doctor by 2025</td>
<td>1.5 per 1 doctor</td>
</tr>
<tr>
<td>Doctor per 1000 population</td>
<td>1 per 1000 by 2027</td>
<td>0.5 per 1000 population</td>
</tr>
<tr>
<td>Health personnel per 10000 population</td>
<td>23 per 10,000 population</td>
<td>12.9 per 10,000 population</td>
</tr>
<tr>
<td>Staff at Sub Health Centre</td>
<td>2 ANM, 1 MHW + 1 BRHC</td>
<td>2 ANM, 1 MHW</td>
</tr>
<tr>
<td>Staff at PHC</td>
<td>Existing staff + 1 AYUSH doctor, 1 Dentist, 1 More allopathic doctor, 1 MHW</td>
<td>15 Total staff (including 1 allopathic doctor)</td>
</tr>
<tr>
<td>Staff at CHC</td>
<td>Existing staff + Total 19 nurses, 1 Head nurse, 1 Physiotherapist, 1 MHW</td>
<td>30–31 Total staff</td>
</tr>
<tr>
<td>Government spending on Health care</td>
<td>2.5% of GDP by 2017 3% of GDP by 2022</td>
<td>1.2% of GDP</td>
</tr>
<tr>
<td>Public health expenditure on health care</td>
<td>7.0% of GDP by 2017 8.6% by 2022</td>
<td>4.1% of GDP</td>
</tr>
</tbody>
</table>

(* ASHA = Community Health Worker; # Doctors + Nurses + Midwives; BHRC Bachelor of Rural Health care; MHW Male Health Worker)
HEALTHCARE DELIVERY ARCHITECTURE: ILLUSTRATIVE STRUCTURE OF NORMS

Level 6
Medical college

Level 5
SDH/District hospital
1/10,000 population

Level 4
Community health centre (CHC)
80,000-12,000 population

- Nurses (18), PHN, ANM, HW-Male, doctors-allopathy, Ayush, dental (8), specialists (6)
- pharmacist (3), lab.tech.(3), radiographer
- Health programme/HMS/Accounts manager accounts asst, DEO

Level 3
Primary health centre (PHC)
20000-30000 population

- Nurses (5), LHV, ANM, health wonder (male), Pharmacists (2), lab. technicians (2), doctors-allopathy (3), Ayush(1)
- dental (1 on weekly rotation), Accounts assistant, DEO

Level 2
Sub-health centre (SHC) 3000-5000 Population

Rural health care practitioner, ANMs(2) and health worker-male

Level 1
Villages and low income urban populations

Community health workers (1 per 500 rural, per 1000 urban population)
1. History of Medicine
2. Concepts of Health and Disease
3. Epidemiology and Vaccines
4. Screening of Disease
5. Communicable and Non-communicable Diseases
6. National Health Programmes, Policies and Legislations in India
7. Demography, Family Planning and Contraception
8. Preventive Obstetrics, Paediatrics and Geriatrics
9. Nutrition and Health
10. Social Sciences and Health
11. Environment and Health
12. Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health
13. Health Education and Communication
14. Health Care in India, Health Planning and Management
15. International Health
16. Biostatistics
CHAPTER 1

History of Medicine

PRIMITIVE MEDICINE

Homeopathy System of Medicine

- **Principles of Homeopathy system of medicine:**
 - **First principle** – ‘similia similibus curenter’
 : Homeopathy is system of pharma-co-dynamics based on treatment of disease by use of small amounts of a drug that, in healthy persons, produces symptoms similar to those of the disease being treated (known as ‘Human drug pathogenicity study’)
 - **Second principle**: Single medicine at the time of treatment
 - **Third principle**: Minimum dose to be used
- **Founding Father of Homeopathy**: Samuel Hahnemann (Germany)

Ayurveda System of Medicine

- **Ayurveda means the ‘science of life’**
- **Tridosha theory of disease**: Disease occurs when there is disequilibrium in three doshas (humors), namely, Vata (wind), Pitta (gall) and Kapha (mucus)

Siddha System of Medicine

- **Siddha means ‘achievement’**
- Is practiced in Tamil speaking parts in India and abroad
- Based on notion that medical treatment has to take into account the patient’s environment, age, sex, race, physiological constitution, etc.

Unani System of Medicine

- Originated from Greece
- ‘Based on the humoral theory’: Blood, phlegm, yellow bile and black bile
- Patient’s character: Sanguine, phlegmatic, choleric and melancholic

Profounders of Theories in Public Health

- **Germ theory of disease**: Louis Pasteur
- **Multi-factorial causation of disease**: Pattenkoffer
- **Spontaneous generation theory**: Aristotle

Discoveries, Inventions and Developments

- **First vaccine developed**: Smallpox (Edward Jenner)
- **Term ‘Vaccination’**: Edward Jenner
- **Term ‘Vaccine’**: Louis Pasteur
- Vaccines- Anthrax, Rabies: Louis Pasteur
- First Polio Vaccine: Jonas Salk
- Penicillin (First antibiotic): Alexander Fleming
- Growth Chart: David Morley
- Homeopathy: Samuel Hahnemann
- Blood group types: Karl Landsteiner
- Citrus fruits in prevention of Scurvy: James Lind
- Transmission of Yellow fever: Walter Reed
- Life cycle of Plasmodium: Ronald Ross

https://kat.cr/user/Blink99/
Authors of Important Books in Public Health

- The Canon of Medicine: Avicenna
- The Book on Healing: Avicenna
- Antiseptic Principle of the Practice of Surgery: Joseph Lister
- Air, Water and Places: Hippocrates
- Ayurvedic Text Nidana: Madhav
- Charaka Samhita: Charaka
- Susruta Samhita: Susruta

Important Contributors in Public Health

Hippocrates

- Also known as: Father of Medicine, First True Epidemiologist
- First physician to reject superstitions, legends and beliefs that credited supernatural or divine forces with causing illness
- Hippocratic school held that all illness was the result of an imbalance in the body of the four humors, blood, black bile, yellow bile and phlegm
- First to describe clubbing

Sushruta

- Wrote ‘Sushruta Samhita’
- Is also known as ‘Father of Plastic Surgery and Cosmetic Surgery’
- Is regarded as ‘Father of Indian Surgery’

SCIENTIFIC MEDICINE

John Snow

- John Snow, an English epidemiologist, studied Cholera (1848-54) and established the role of drinking water in its spread (Causative agent was identified much later)
- John Snow is also known as
 - Father of Epidemiology/Modern Epidemiology
 - Greatest doctor
- John Snow studied and calculated dosages for use of ether and chloroform as surgical anesthesia

History of Cholera

- John Snow (1813-1858): Found the link between cholera and contaminated drinking water (1854 using Spot maps)
- William Budd concluded that spread of typhoid was by drinking water
- Robert Koch microscopically identified V. cholerae as bacillus causing the disease (1885)
- Father of Public Health: Cholera (Father of PH is a disease, not a person)

Some Important Honours

- Father of (Modern) Medicine: Hippocrates
- Father of Indian Medicine: Charaka
- Hindu God of Medicine: Dhanvantari
- Father of (Modern) Surgery: Ambroise Pare
- Father of Indian Surgery: Susruta
- Father of Epidemiology/Modern Epidemiology: John Snow
- Father of Bacteriology: Louis Pasteur
- Father of Biology: Aristotle

https://kat.cr/user/Blink99/
• Father of Genetics: Gregor Mendel
• Father of (Modern) Anatomy: Vesalius
• Father of Physiology: Claude Bernard
• Father of Psychoanalysis: Sigmund Freud
• Father of Homeopathy: Samuel Hahneman

Edward Jenner
• Discovered Small Pox vaccine in 1796
• Small pox vaccine was the 'First Vaccine' to be discovered
• Small Pox is the 'First and Only' disease to be eradicated
• Term 'Vaccination' was coined by Edward Jenner

Louis Pasteur
• Gave the 'Germ theory of disease'
• Coined term 'Vaccine'
• Developed 'Vaccines for Rabies and Chicken Cholera'
• Techniques of 'Sterilization' and 'Pasteurization'

MODERN MEDICINE

AYUSH
• ISM&H (Indigenous Systems of Medicine and Homeopathy) have been now re-designated as 'AYUSH system' of medicine
 - Ayurveda
 - Yoga and Naturopathy
 - Unani
 - Siddha
 - Homeopathy
• Mainstreaming of AYUSH is a key component of National Rural Health Mission (NRHM) 2005-12

REVOLUTION IN MEDICINE

Types of Medicine
• State Medicine: Provision of free medical services to the people at government expense
• Socialized Medicine: Provision of medical service and professional education by the State (as in state medicine), but the programme is operated and regulated by professional groups rather than by government
 - Prevents competition between practitioners and clients
 - Provision of medical services supported by state government
 - Ensures social equity that is universally operated by professional health services
• Social medicine: Study of the social, economical, environmental, cultural, psychological and genetic factors, which have a bearing on health

First CountryHonours
• First country to socialize medicine completely: Russia
• First country to introduce compulsory sickness insurance: Germany
• First country to start family planning programme: India
• First country to start blindness control programme: India
• First country to establish finger printing bureau: India (Calcutta, 1897)
Isolation & Quarantine

- **Isolation**’ is the separation for the period of communicability, of infected persons from others in such places/conditions as to prevent/limit transmission to those susceptible
 - It applies to persons who are known to be ill with a contagious disease
- ‘Quarantine’ (meaning “40 Days”) is the restriction of activities of apparently healthy persons who have been exposed to a case of communicable disease during its period of communicability
 - It applies to those who have been exposed to a contagious disease but who may or may not become ill
 - Quarantine was first applied for plague
 - Quarantine period for Yellow fever: 6 days (maximum IP)
 - Quarantine currently has been ‘replaced with active surveillance’

<table>
<thead>
<tr>
<th>Isolation</th>
<th>Quarantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation of</td>
<td>Cases</td>
</tr>
<tr>
<td>Done for</td>
<td>Cases themselves</td>
</tr>
<tr>
<td>Level of Prevention</td>
<td>Secondary (Treatment)</td>
</tr>
<tr>
<td>Duration</td>
<td>Till recovery (period of communicability)</td>
</tr>
</tbody>
</table>

Smallpox Eradication

- Last case of smallpox in world: 26th October 1977 (Somalia)
- WHO declared global eradication of smallpox: 8th May 1980
- Last indigenous case of smallpox in India: 17th May 1975 (Bihar)
- Last known case of smallpox in India: 24th May 1975 (Importation from Bangladesh)
- India declared smallpox free: April 1977

Few Important Diseases in Public Health

- Father of Public Health: Cholera
- Barometer of Social Welfare: Tuberculosis
- Slms’ Disease: HIV/AIDS
- Black Sickness: Kala Azar (Leishmaniasis)
- Black Death: Plague
- Cerebrospinal fever: Meningococcal meningitis
- Break-bone fever: Dengue
- Monkey fever/disease: KFD (Kyasanur Forest Disease)
- 5-day fever: Trench fever
- 8th day disease: Tetanus neonatorum
- 100-day cough: Pertussis (Whooping cough)
- Koch’s Phenomenon: Tuberculosis
- Hansen’s disease: Leprosy
- Rubela: Measles
- Rubella: German measles
- Rubula: Mumps

WHO declared global eradication of smallpox: 8th May 1980

8th day disease: Tetanus neonatorum

Koch’s Phenomenon: Tuberculosis

Quarantine period for Yellow fever: 6 days (maximum IP)

https://kat.cr/user/Blink99/
Institutes of Public Health Importance in India

<table>
<thead>
<tr>
<th>Institute</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Drug Research Institute (CDRI)²</td>
<td>Lucknow</td>
</tr>
<tr>
<td>Central Leprosy Training & Research Institute (CLTRI)</td>
<td>Chengalpattu</td>
</tr>
<tr>
<td>Central Research Institute</td>
<td>Kasauli</td>
</tr>
<tr>
<td>Haffkine Institute</td>
<td>Mumbai</td>
</tr>
<tr>
<td>LRS Institute of T.B & allied Diseases</td>
<td>New Delhi</td>
</tr>
<tr>
<td>National Tuberculosis Institute (NTI)²</td>
<td>Bangalore</td>
</tr>
<tr>
<td>National Environmental Engineering Research Institute (NEERI)²</td>
<td>Nagpur</td>
</tr>
<tr>
<td>National AIDS Control Organisation (NACO)</td>
<td>New Delhi</td>
</tr>
<tr>
<td>National Institute of Communicable Disease (NICD)</td>
<td>New Delhi</td>
</tr>
<tr>
<td>National Institute of Virology (NIV)</td>
<td>Pune</td>
</tr>
<tr>
<td>National Institute of Nutrition (NIN)</td>
<td>Hyderabad</td>
</tr>
<tr>
<td>National JALMA Institute for Leprosy</td>
<td>Agra</td>
</tr>
<tr>
<td>Tuberculosis Research Institute (TRC)</td>
<td>Chennai</td>
</tr>
<tr>
<td>National Institute of Occupational Health (NIOH)²</td>
<td>Ahmedabad</td>
</tr>
<tr>
<td>National Institute Mental Health and Neurosciences (NIMHANS)</td>
<td>Bangalore</td>
</tr>
</tbody>
</table>
MULTIPLE CHOICE QUESTIONS

Review of Preventive and Social Medicine

PRIMITIVE MEDICINE

1. **Samuel Hahneman is referred to as Founding Father of:**
 - (a) Ayurveda
 - (b) Allopathy
 - (c) Homeopathy
 - (d) Yoga

2. **Match the following authors and their books:**
 - A. Sushruta, I-Airs, Water and Places
 - B. Avicenna, II-Sushruta Samhita
 - C. Hippocrates, III-Canon of Medicine
 - (a) A-III, B-I, C-II
 - (b) A-III, B-II, C-I
 - (c) A-II, B-I, C-III
 - (d) A-II, B-III, C-I

3. **Who is known as ‘First True Epidemiologist’ in history of medicine?**
 - (a) John Snow
 - (b) Hippocrates
 - (c) James Lind
 - (d) Joseph Lister

4. **Match the following:**
 - A. Sushruta, I-Hindu God of Medicine
 - B. Dhanvantari, II-Father of Public Health
 - C. Hippocrates, III-Father of Medicine
 - D. Cholera, IV-Father of Indian Surgery
 - (a) A-III, B-I, C-II
 - (b) A-IV, B-I, C-II, D-I
 - (c) A-IV, B-I, C-III, D-II
 - (d) A-I, B-IV, C-II, D-III

5. **Sushruta Samhita was translated by:**
 - (a) Galen
 - (b) Celsus
 - (c) Harnel
 - (d) Charak
 - (e) Hessler

6. **Father of Indian Surgery is:**
 - (a) Dhanvantari
 - (b) Charaka
 - (c) Susruta
 - (d) Atreya

SCIENTIFIC MEDICINE

7. **Cradle of civilization is:**
 - (a) Mesopotamia
 - (b) Haddapa
 - (c) Mohenjodaro
 - (d) Sindhu ghati

8. **Match the following:**
 - A. Pattenkoffer, I-Spontaneous Generation Theory
 - B. Louis Pasteur, II-Germ Theory of Disease
 - C. Aristotle, III-Multifactorial Causation of Disease
 - (a) A-III, B-I, C-II
 - (b) A-III, B-II, C-I
 - (c) A-II, B-I, C-III
 - (d) A-II, B-III, C-I

9. **Match the following Pioneers of Preventive Medicine and their achievements:**
 - B. James Lind, II-Vaccination against Smallpox
 - C. Walter Reed, III-Prevention of Scurvy
 - (a) A-III, B-I, C-II
 - (b) A-III, B-II, C-I
 - (c) A-II, B-I, C-III
 - (d) A-II, B-III, C-I

10. **Which of the following is known as “Father of Public Health”?**
 - (a) Tuberculosis
 - (b) Cholera
 - (c) John Snow
 - (d) Louis Pasteur

11. **Smallpox vaccine was introduced by:**
 - (a) Paul Ehrlich
 - (b) Robert Koch
 - (c) Louis Pasteur
 - (d) Edward Jenner

12. **Malarial parasite was discovered by:**
 - (a) Robert Koch
 - (b) Louis Pasteur
 - (c) Charles Alphonse Laveran
 - (d) Ronald Ross

https://kat.cr/user/Blink99/
13. Smallpox vaccine was invented by:
(a) Louis Pasteur
(b) Edward Jenner
(c) Paul Eugene
(d) John Snow

14. James Lind is related to the discovery of:
(a) Prevention of scurvy
(b) Cause of scurvy
(c) Pathogenesis of scurvy
(d) All

15. Theory of web of causation was given by:
(a) McMohan and Pugh
(b) Pettenkoffer
(c) John snow
(d) Louis Pasteur

Review Questions

16. Who discovered the transmission of malaria by Anopheles mosquitoes?
(a) Ronald Ross
(b) Laveran
(c) Muller
(d) Pampana

17. Smallpox vaccine was invented by:
(a) Edward Jenner
(b) Ronald Ross
(c) Luis Pasteur
(d) Cross over study

MODERN MEDICINE

18. Elimination of following diseases in India is on the anvil except:
(a) Yaws
(b) Leprosy
(c) Malaria
(d) Kala Azar

19. Yoga is considered a part of Modern medicine. It will be a part of:
(a) Physiotherapy
(b) Preventive medicine
(c) Therapeutic medicine
(d) Caloric upsurper

20. The lawyer who designed the Public Health Act 1848 was:
(a) John Snow
(b) Edwin Chadwick

21. James Lind is known for:
(a) Germ theory of disease
(b) Multifactorial causation of disease
(c) Prevention of scurvy by citrus fruits
(d) Web of causation

22. Edward Jenner died in:
(a) 1749
(b) 1775
(c) 1823
(d) 1920

REVOLUTION IN MEDICINE

23. Socialized medicine is:
(a) Health care at people’s expense
(b) Charitable care at government expense
(c) Free medical care at government expense, regulated by professional groups
(d) Integration of social medicine with health care

24. All of the following are true about Socialized medicine except:
(a) Ensures social equity - universal coverage
(b) Reduces competition among practitioners
(c) Use state funds for free medicine
(d) Increase utilization of health facilities

25. ‘Secret of national health lies in the homes of people’ statement by:
(a) Indira Gandhi
(b) Abraham Lincoln
(c) Joseph Bhore
(d) Florence Nightingale

26. First bacterium discovered as cause of a disease was:
(a) TB bacillus
(b) Leprosy bacillus
(c) Anthrax bacillus
(d) Plague bacillus

MISCELLANEOUS

27. Quarantine was first applied for:
(a) HIV/AIDS
(b) Tuberculosis
(c) Leprosy
(d) Plague
28. Match the following: [AIIMS May 2001]
A. Edward Jenner, I- Rabies and Anthrax
B. Louis Pasteur, II- Small pox
C. Albert Calmette and Camille Guérin, III- Poliomyelitis
D. Pierre Lépine, IV- Tuberculosis
(a) A-II, B-I, C-IV, D-III
(b) A-II, B-III, C-IV, D-I
(c) A-IV, B-I, C-III, D-II
(d) A-I, B-IV, C-II, D-III

29. WHO declared that smallpox has been eradicated in:
(a) May 1978 [AIPGME 1991]
(b) September 1984
(c) May 1980
(d) July 1987

30. Which of the following diseases is known as “Barometer of Social Welfare”? [AIIMS May 1995]
(a) Tuberculosis
(b) Cholera
(c) Leprosy
(d) Malaria

31. Breast Feeding Week is celebrated on: [Recent Question 2012, 2013, 2014]
(a) 1st week of March
(b) 1st week of July
(c) 1st week of August
(d) 1st December

32. Black death is: [Recent Question 2013]
(a) Plague
(b) Dengue
(c) Tuberculosis
(d) Cholera

33. World Health Day is celebrated on: [DNB June 2011]
(a) 1st December
(b) 31st May

34. Who is regarded as Father of Public Health? [DNB June 2011]
(a) Louis Pasteur
(b) Cholera
(c) John snow
(d) Robert Koch

35. 3 day disease is: [Bihar 2004]
(a) Rubella
(b) Rubeola
(c) Roseola infantum
(d) Measles

36. Origin of SPM dates back to: [TN 2005]
(a) 17th Century
(b) 18th Century
(c) 19th Century
(d) 20th Century

37. Socialization of medicine means: [RJ 2007]
(a) Study of man as a social being in his total environment
(b) Provision of medical services and professional education by the state but operated and regulated by the government
(c) Provision of medical services and professional education by the state but operated and regulated by professional groups rather than by the government
(d) Study of man as a social being in his whole life

38. Benefit of socialization of medicine are all except: [RJ 2007]
(a) It eliminate competition among physicians in search of clients
(b) It ensures social equity and universal coverage
(c) Medical care becomes free for the patients, which is supported by the state
(d) Patients can get good quality of treatment without cost
EXPLANATIONS

PRIMITIVE MEDICINE

1. Ans. (c) Homeopathy [Ref. Park 21/e p2, Park 22/e p2]
 - Founding Father of Homeopathy: Samuel Hahnemann (Germany)

Also Remember

HOMEOPATHY:
- Principle of Homeopathy system of medicine:
 - First principle ‘similia similibus curenter’: In healthy persons, produces symptoms similar to those of the disease being treated (known as ‘Human drug pathogenicity study’).
 - Second principle: Single medicine at the time of treatment
 - Third principle: Minimum dose to be used
- ISM and H (Indigenous Systems of Medicine and Homeopathy) have been now re-designated as ‘AYUSH system’ of medicine
 - Ayurveda
 - Yoga and Naturopathy
 - Unani
 - Siddha
 - Homeopathy

2. Ans. (d) A-II, B-III, C-I [Ref. Park 21/e p2-4, Park 22/e p2-4]
 - Authors of important books in Public Health:
 - The Canon of Medicine: Avicenna
 - The Book on Healing: Avicenna
 - Antiseptic Principle of the Practice of Surgery: Joseph Lister
 - Air, Water and Places: Hippocrates
 - Ayurvedic Text Nidana: Madhav
 - Charaka Samhita: Charaka
 - Susruta Samhita: Susruta

3. Ans. (b) Hippocrates [Ref. K. Park 21/e p3, Park 22/e p3]
 - Hippocrates:
 - Also known as: Father of Medicine, First True Epidemiologist

Also Remember
- James Lind gave the concept that Citrus fruits can prevent/cure Scurvy (Later found to be due to deficiency of Vitamin-C/Ascorbic Acid)
- Joseph Lister is also known as ‘Father of Anti-sepsis’

4. Ans. (c) A-IV, B-I, C-III, D-II [Ref. Park 21/e p2, 3, Park 22/e p2, 3]
 See Annexure 17

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

Also Remember

- Sushruta:
 - Wrote ‘Sushruta Samhita’
 - Is also known as ‘Father of Plastic Surgery and Cosmetic Surgery’
 - Father of Surgery: Ambroise Pare
- Hippocrates:
 - Is also known as ‘First true epidemiologist’

5. Ans. (e) Hessler [Ref. Internet]
6. Ans. (c) Susruta [Ref. K. Park 22/e p2]

Review Questions

7. Ans. (a) Mesopotamia [Ref. Park 21/e p3, Park 22/e p3]

Scientific Medicine

8. Ans. (b) A-III, B-II, C-I [Ref. Park 21/e p5, 32, Park 22/e p5, 31-32]
 - Founder of theories in Public Health:
 - Germ theory of disease: Louis Pasteur
 - Multi-factorial causation of disease: Pattenkoffer
 - Spontaneous generation theory: Aristotle

Also Remember

- Order of appearance/acceptance of theories in Public Health: Spontaneous Generation Theory, Germ Theory of Disease, Multifactorial Causation of Disease

9. Ans. (d) A-II, B-III, C-I [Ref. Park 21/e p6, Park 22/e p6]
10. Ans. (b) Cholera [Ref. Park 21/e p5, Park 22/e p5]
 - Father of Public Health is cholera disease, not a person
 - Edward Jenner discovered Smallpox vaccine in 1796
 - Smallpox vaccine was the ‘First Vaccine’ to be discovered
 - Smallpox is the ‘First and Only’ disease to be eradicated
 - Term ‘Vaccination’ was coined by Edward Jenner

Also Remember

- Paul Ehrlich coined terms ‘Chemotherapy’ and ‘Auto-immunity’ and giving ‘Magic Bullet for Syphilis- Salvarsan’

12. Ans. (c) Charles Alphonse Laveran [Ref. Physiology of Medicine 1901-21 by J Lindsten, 1/e p261]
13. Ans. (b) Edward Jenner [Ref. K. Park 22/e p5]
15. Ans. (a) McMohan and Pugh [Ref. K. Park 22/e p32]

Review Questions

16. Ans. (a) Ronald Ross [Ref. Park 21/e p6, Park 22/e p6]
17. Ans. (a) Edward Jenner [Ref. Park 21/e p6, Park 22/e p6]
MODERN MEDICINE

18. Ans. (c) **Malaria** [Ref. Park 21/e p232, 279, 290, 315, Park 22/e p233, 278, 289, 314]
 - **Malaria:** Total cases in India annually were 1.31 million (2011)
 - **Yaws:**
 - Causative agent is *Treponema pertenue*
 - ‘Yaws has been declared Eliminated from India in September 2006’
 - **Leprosy:**
 - ‘Leprosy Elimination was achieved in India by 31st December 2005’
 - Elimination level for Leprosy is ‘<1/10,000’
 - **Kala Azar:**
 - Total cases in India annually were 33,133 (2011)
 - The National Health Policy (2002) had set the goal for ‘Elimination of Kala-Azar by year 2010’

Also Remember

- India has eliminated 3 diseases till date:
 1. Guinea Worm/ Dracunculiasis (Feb 2000)
 2. Leprosy (Dec 2005)
 3. Yaws (Sep 2006)

19. Ans. (b) Preventive medicine [Logical reasoning]
20. Ans. (b) Edwin Chadwick [Ref. K. Park 22/e p5]
21. Ans. (c) Prevention of scurvy by citrus fruits [Ref. K. Park 22/e p6]
22. Ans. (c) 1823 [Ref. K. Park 22/e p6]

REVOLUTION IN MEDICINE

23. Ans. (c) **Free medical care at government expense, regulated by professional groups** [Ref. Park 21/e p9, Park 22/e p9]
 - **State Medicine:** Provision of free medical services to the people at government expense
 - **Socialized Medicine:** Provision of medical service and professional education by the State (as in state medicine), but the programme is operated and regulated by professional groups rather than by government
 - Prevents competition between practitioners and clients
 - Provision of medical services supported by state government
 - Ensures social equity that is universally operated by professional health services
 - **Social Medicine:** Study of the social, economical, environmental, cultural, psychological and genetic factors, which have a bearing on health

Also Remember

- First country to socialize medicine completely: Russia

24. Ans. (d) **Increase utilization of health facilities** [Ref. Park 22/e p9]
 - Socialized medicine cannot ensure increased utilization of health services alone; it requires ‘Community participation (Health by the people)’ also

25. Ans. (d) Florence Nightingale [Ref. Recent Advances in Public Health by JL Burn, 1/e p203]
26. Ans. (c) Anthrax bacillus [Ref. Living in a Microbial World by Bruce V Hopkin, 1/e p126]

MISCELLANEOUS

27. Ans. (d) Plague [Ref. Park 22/e p106]
28. Ans. (a) A-II, B-I, C-IV, D-III [Ref. K. Park 19/e p6; 20/e p5 and Internet, Park 21/e p6, 176, Park 22/e p6, 178]
Also remember

- **Louis Pasteur:**
 - Gave the ‘Germ theory of disease’
 - Coined term ‘Vaccine’
 - Developed ‘vaccines for Rabies and Chicken pox’
 - Techniques of ‘Sterilization’ and ‘Pasteurization’

29. Ans. (c) May 1980 [Ref. 21/e p132, Park 22/e p135]
 • WHO declared global eradication of smallpox: 8th May 1980

Also remember

- Eradication is defined as ‘termination of transmission of infection completely by extermination of the infectious agent’
 - Globally only one disease (Smallpox) has been eradicated till date
- Few important dates in Public Health:
 - 7th April 1948: Constitution of WHO came into force
 - 8th May 1980: WHO declared eradication of Smallpox

30. Ans. (a) Tuberculosis [Ref. Park 21/e p168, Park 22/e p172]

Review Questions

31. Ans. (c) 1st week of August [Ref. Disaster Nursing and Emergency Preparedness by TG Veenema, 3/e p2]
 • Theme for WBFW 2014: Breast feeding - A winning goal for life!
32. Ans. (a) Plague [Ref. Bubonic Plague: Black Death by S. Person, 1/e p1]
33. Ans. (c) 7th April [Ref. K. Park 22/e p859]
34. Ans. (b) Cholera [Ref. Park 22/e p5]
35. Ans. (a) Rubella [Ref. 21/e p140, Park 22/e p142]
36. Ans. (b) 18th Century [Ref. Park 21/e p5, Park 22/e p5]
37. Ans. (c) Provision of medical services and professional education by the state but operated and regulated by professional groups rather than by the government [Ref. Park 21/e p9, Park 22/e p9]
38. Ans. (d) Patients can get good quality of treatment without cost [Ref. Park 21/e p9, Park 22/e p9]
HEALTH AND WELL-BEING

WHO Definition of Health

- WHO [1948] definition of Health: Health is a state of complete physical, mental and social well being, and not merely an absence of disease or infirmity; [recently amplified to include –] and an ability to lead a socially and economically productive life
 - Is an ‘idealistic goal rather than a realistic proposition’
 - It does not regard health as a dynamic concept (but as a state)

Standard of Living

- Standard of Living: Refers to the usual scale of our expenditure, goods we consume and services we enjoy
- Standard of living [WHO] includes:
 - Income and Occupation
 - Standards of housing, sanitation and nutrition
 - Level of provision of health, educational, recreational and other services
- Standard of living depends on ‘Per capita GNP’

HDI & PQLI

Human Development Index (HDI)

- HDI values range: 0 to + 1
 - HDI India is 0.554 (Rank 136 out of 186 countries) [2012]
- Human poverty index [HPI] is complementary to HDI

Estimation of HDI by New Method (2010 onwards)

- Goalposts for HDI:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Country</th>
<th>Maximum value</th>
<th>Minimum value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life expectancy</td>
<td>Japan</td>
<td>83.4</td>
<td>20.0</td>
</tr>
<tr>
<td>Mean years of schooling</td>
<td>Czech Republic</td>
<td>13.1</td>
<td>0</td>
</tr>
<tr>
<td>Expected years of schooling</td>
<td>Capped at</td>
<td>18.0</td>
<td>0</td>
</tr>
<tr>
<td>Combined education index</td>
<td>New Zealand</td>
<td>0.978</td>
<td>0</td>
</tr>
<tr>
<td>Per capita income (PPP $)</td>
<td>Qatar</td>
<td>107,721</td>
<td>100</td>
</tr>
</tbody>
</table>

- Calculation of each dimension index:

 \[
 \text{Index} = \frac{\text{Actual value} - \text{Minimum value}}{\text{Maximum value} - \text{Minimum value}}
 \]

- HDI is Geometric mean of 3 dimension indices:

 \[
 \text{HDI} = \left(\text{I}_{\text{Life}}^{1/3} \times \text{I}_{\text{Education}}^{1/3} \times \text{I}_{\text{Income}}^{1/3} \right)
 \]
Review of Preventive and Social Medicine

Human Development Index [HDI] Vs Physical Quality of Life Index [PQLI]

<table>
<thead>
<tr>
<th>Components</th>
<th>HDI</th>
<th>PQLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Longevity – Life expectancy at birth (LEb/ LE0)</td>
<td>1. Life expectancy at 1 year age (LE1)</td>
<td></td>
</tr>
<tr>
<td>2. Income (Real GDP per capita in PPP US$)</td>
<td>2. Infant mortality rate (IMR)</td>
<td></td>
</tr>
<tr>
<td>3. Knowledge (Mean years of schooling – Gross enrolment ratio & Literacy rate)</td>
<td>3. Literacy rate</td>
<td></td>
</tr>
</tbody>
</table>

Range: 0 to +1
Value of India: 0.554

Human Poverty Index (HPI)
- HPI measures: Deprivation in basic dimensions of human development
- HPI is complimentary to: Human Development Index (HDI)
- (Components of HPI – I (Used for developing countries):\(^a\)
 - Probability at birth of not surviving to age 40
 - Adult Illiteracy Rate
 - Un-weighted average of two indicators:
 - % population not using an improved water source
 - % children underweight-for-age
- Components of HPI – II (Used for developed countries):
 - Probability at birth of not surviving to age 60
 - % adults (aged 16-65 years) lacking functional literacy skills
 - % people living below poverty line (BPL)
 - Rate of long term unemployment (12 months or more)

INDICATORS OF HEALTH

Mortality and Morbidity Indicators

<table>
<thead>
<tr>
<th>Mortality indicators</th>
<th>Morbidity indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Death Rate</td>
<td>Incidence & Prevalence</td>
</tr>
<tr>
<td>Expectation of Life(^o)</td>
<td>Notification Rates</td>
</tr>
<tr>
<td>Infant Mortality Rate</td>
<td>Attendance Rates at hospitals, etc</td>
</tr>
<tr>
<td>Child Mortality Rate</td>
<td>Admission, readmission and discharge rates</td>
</tr>
<tr>
<td>Under-5 proportionate mortality rate</td>
<td>Duration of hospital stay</td>
</tr>
<tr>
<td>Maternal Mortality Rate</td>
<td>Spells of sickness</td>
</tr>
<tr>
<td>Proportional Mortality Rate</td>
<td></td>
</tr>
<tr>
<td>Disease-specific Mortality Rate</td>
<td></td>
</tr>
</tbody>
</table>

- Life Expectancy is a ‘Positive mortality indicator’\(^o\)

Sullivan’s Index
- Sullivan’s Index = Life Expectancy MINUS Duration of disability (bed disability and inability to perform major activities)\(^o\) – Is known as ‘Disability free life expectancy (DFLE)\(^o\)’

Disability Adjusted Life Years [DALYs]
- Is BEST measure of burden of disease in a defined population and the effectiveness of interventions\(^o\)
- It expresses years lost to premature death and years lived with disability (adjusted for its’ severity)
- DALYs can measure ‘both mortality and disability together’
- DALY = YLL (Years of lost life) + YLD (Years lost to disability)
- One DALY = One year of healthy life lost
- Standards of Life expectancy used: Japan life expectancy statistics.
Quality Adjusted Life Years (QALYs)

- QALY is a measure of both quality and quantity of life lived
- QALY is years of life lived in perfect health
- QALY is used in assessing the value of money of a medical intervention

Years of Potential Life Lost (YPLL)

- Definition: YPLL is based on Years of life lost through premature death
- Importance:
 - YPLL occurs before the age to which a dying person could have expected to survive
 - YPLL is a type of mortality indicator

Socio-economic Indicators [Mnemonic: He FLAGGED]

- Housing
- Family size
- Literacy rate
- Availability per capita calorie
- GNP per capita
- Growth rate
- Unemployment level
- Dependency ratio

Case Fatality Rate (CFR)

- CFR represents ‘killing power of a disease’
- It is ‘closely related to virulence of organism’
- CFR = Total no. of deaths due to a disease/ Total no. of cases due to a disease \times 100
- CFR is a Proportion: Always expressed in percentage
- CFR is the ‘complement of Survival Rate’, thus CFR = 1 – Survival Rate
- CFR of few important diseases:

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Case fatality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies</td>
<td>100%</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>80%</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>30 – 35% (median 35%)</td>
</tr>
<tr>
<td>Chicken pox</td>
<td>< 1%</td>
</tr>
</tbody>
</table>

- Limitations of CFR:
 - Time interval is not specified
 - Usefulness is limited for chronic diseases (CFR typically used in acute infections)
 - CFR for the same disease may vary in different epidemics due to changes in agent, host and environmental factors

Iceberg Phenomenon of Disease

- Iceberg Phenomenon of disease: Disease in a community may be compared to an iceberg
 - Floating tip: What physician sees in community (Clinical cases)
 - Vast submerged portion: Hidden mass of disease (Latent, inapparent, pre-symptomatic and undiagnosed cases and carriers)
 - Line of demarcation (water surface): Is between apparent and inapparent infections
Review of Preventive and Social Medicine

- ‘Epidemiologist is concerned with Hidden portion of iceberg’ whereas Clinician is concerned with Tip of iceberg
- ‘Screening is done for Hidden portion of iceberg’ whereas diagnosis is done for tip of iceberg
- Iceberg phenomenon of disease is not shown by:
 - Rabies
 - Tetanus
 - Measles
 - Rubella

Prepathogenesis Phase of Disease
- Is period before onset of disease in man (man at risk)
- Epidemiological triad: Interaction between agent, host and environment
- Primary level of prevention is possible

Pathogenesis Phase of Disease
- Begins with: ‘Entry of organism’ in susceptible host
- Multiplication of organism, disease initiation and progression
- Final outcome may be recovery, disability or death
- Host may become a clinical case, subclinical case or carrier
- Secondary and tertiary levels of prevention are possible
- Screening of disease may improve prognosis and increase survival

CONTROL OF DISEASE

Surveillance
- Surveillance: Is the ongoing systematic collection and analysis of data and the provision of information which leads to action being taken to prevent and control a disease, usually one of an infectious nature
- Surveillance is of many types:
 1. Passive Surveillance: Data is itself reported to the health system
 - Example: A patient with fever coming on his own to the PHC, CHC, Dispensary, Private Practitioner, Hospital
 - Most of the national health programmes in India rely on Passive Surveillance for morbidity and mortality data collection

Line of demarcation (water surface): Is between apparent and inapparent infections

Epidemiological triad: Interaction between agent, host and environment

Figure: The iceberg of disease
2. **Active Surveillance**: Health system seeks out ‘actively’ the collection of data, i.e., goes out to community to collect data
 - Example: Health worker goes house to house every fortnight to detect fever cases, collect blood slides (under malaria component of National Vector Borne Disease Control Program)
 - *Active Surveillance in National Health Programmes of India*: Is seen in NVBDCP (Health worker goes house to house every fortnight to detect fever cases, collect blood slides and provide presumptive treatment under malaria component) and National Leprosy Elimination Programme (Modified Leprosy Elimination Campaigns)
3. **Sentinel Surveillance**: Monitoring of rate of occurrence of specific conditions to assess the stability or change in health levels of a population, It is also the study of disease rates in a specific population to estimate trends in larger population
 - Example: Use of health practitioners to monitor trends of a health event in a population
 - Helps in ‘identifying missing cases’ and ‘supplementing notified cases’
 - Sentinel Surveillance is done in National AIDS Control Program wherein STD Clinics, ANC Clinics are sentinel sites to monitor trends

Monitoring Versus Surveillance

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance and analysis of routine measurements aimed at detecting changes in environment or health status of a population</td>
<td>Continuous scrutiny of the factors that determine the occurrence and distribution of disease and other conditions of ill-health</td>
</tr>
<tr>
<td>One Time linear activity</td>
<td>Continuous Cycle</td>
</tr>
<tr>
<td>No feedback present</td>
<td>Feedback present</td>
</tr>
<tr>
<td>No inbuilt action component present</td>
<td>Inbuilt action component present</td>
</tr>
<tr>
<td>Stops once disease is eliminated/eradicated</td>
<td>Continues even after disease is eliminated/eradicated</td>
</tr>
<tr>
<td>Smaller concept</td>
<td>Broader concept</td>
</tr>
</tbody>
</table>

Disease Control

- Disease control primarily refers to ‘Primary and Secondary Levels’ of prevention
- **Sequence of Disease Control**:
 - Disease Control
 - Disease Elimination
 - Disease Eradication

Concepts of Control of Disease

- **Disease control**: Is reducing the transmission of disease agent to such a low level that it ceases to be a public health problem
 - *It aims at reducing*:
 - Incidence of the disease
 - Duration of the disease
 - Effects of infection
 - Financial burden to the community
- **Disease elimination**: Is complete interruption of transmission of disease in a defined geographical area, but the causative organism may be persisting in environment
 - Disease elimination is a ‘geographical term’, i.e. can be used only for a country or a region
 - *India has eliminated 3 diseases till date*:
 - Guineaworm (Dracunculiasis): February 2000
 - Leprosy: December 2005 (Elimination criterion: <1/10,000)
 - Yaws: Sep 2006

https://kat.cr/user/Blink99/
Disease eradication: Is complete ‘extermination’ of organism
- Is ‘tearing out by roots’ of a disease
- Exhibits ‘All or none phenomenon’
- Disease eradication is a ‘global term’, i.e. can be used only for whole planet
 - World has eradicated ONLY 1 disease till date: Small pox (declared eradicated on 8 May, 1980)
- 3 next target diseases for eradication, globally: Polio, Measles, Guineaworm

PREVENTION OF DISEASE

Levels of Prevention

<table>
<thead>
<tr>
<th>Level</th>
<th>Phase of disease</th>
<th>Objective</th>
<th>Interventions</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primordial</td>
<td>Underlying conditions lead to causation</td>
<td>Minimize hazards to health</td>
<td>Inhibit emergence of risk conditions</td>
<td>Total population or selected groups</td>
</tr>
<tr>
<td>Primary</td>
<td>Specific causal factors</td>
<td>Reduce incidence</td>
<td>Personal and community efforts</td>
<td>Total population, selected groups, individuals</td>
</tr>
<tr>
<td>Secondary</td>
<td>Early stages of disease</td>
<td>Shorten duration, Reduce prevalence</td>
<td>Early detection and prompt intervention</td>
<td>Individuals with established disease</td>
</tr>
<tr>
<td>Tertiary</td>
<td>Late stages of disease</td>
<td>Reduce no./ impact of complications</td>
<td>Lessen impact of long-term disease/disability, minimize suffering</td>
<td>Patients</td>
</tr>
</tbody>
</table>

Primordial Level of Prevention

- It is the prevention of the emergence or development of risk factors in countries or population groups in which they have not yet appeared
- Modes of Intervention:
 - Individual Education
 - Mass Education
- It signifies ‘intervention in the Pre-pathogenesis Phase of a disease/health problem’

Primary Level of Prevention

- It is the action taken prior to onset of disease, which removes the possibility that a disease will ever occur
- Modes of Intervention:
 - Health Promotion: Is targeted at strengthening the host through a variety of approaches/ interventions,
 - Example: Health Education, Environmental modifications, Nutritional interventions, Lifestyle and behavioural changes
 - Specific Protection: Is targeting the prevention of disease through a specific intervention
 - Example: Contraception, Vaccines
- Primary level of prevention is applied when ‘risk factors are present but disease has not yet taken place’
- It signifies ‘intervention in the Pre-pathogenesis Phase of a disease/health problem’
Secondary Level of Prevention

- It halts the progress of disease at its incipient stage and prevents complications.
- Modes of Intervention:
 - Early Diagnosis: Detection of disturbances while biochemical, functional and morphological changes are still reversible or prior to occurrence of manifest signs and symptoms
 - Example: Sputum smear exam for AFB, P/S for MP
 - Treatment: Shortens period of communicability, reduces mortality and prevents occurrence of further cases (secondary cases) or any long term disability
 - Example: DOTS, MDT
- Secondary level of prevention is applied when disease has possibly set in: It attempts to arrest the disease process, seek unrecognized disease and treat it before irreversibility and reverse communicability of infectious diseases.
- National Health Programmes by Govt. of India mostly operate at Secondary level of prevention.
- Secondary prevention is an imperfect tool in control of transmission of disease: It is more expensive and less effective than primary prevention.
- It is an important level of prevention for diseases like Tuberculosis, Leprosy and STDs.

Tertiary Level of Prevention

- Is applied when disease has advanced beyond early stages: It aims to reduce or limit impairments and disabilities, minimize suffering caused by existing departures from good health.
- Modes of Intervention:
 - Disability Limitation: It ‘prevents the transition of disease from impairment to handicap’
 - Example: Physiotherapy in Poliomyelitis
 - Rehabilitation: Training and retraining of an individual to the highest possible level of functional ability; it can be medical, vocational, social or psychological
 - Example: Crutches in Poliomyelitis
- Tertiary level of prevention signifies ‘intervention in late pathogenesis phase’

Examples of Levels of Prevention:

- A patient with fever and cough >3 weeks comes to DOTS Clinic for ‘Sputum for AFB’: Early diagnosis mode of intervention, Secondary Level of Prevention (as disease has possibly set in and sputum for AFB is used to confirm it as a case of tuberculosis).
- A patient with Sputum +ve for AFB was categorized as Category I under RNTCP and started with Intensive Phase drugs: Treatment mode of intervention, Secondary Level of prevention (as disease has been diagnosed and now treatment has been started).
- A patient with fever and chills comes to Malaria Clinic for ‘Peripheral Smear for MP’: Early diagnosis mode of intervention, Secondary Level of prevention (as disease has possibly set in and peripheral smear for malarial parasite is used to confirm it as a case of Malaria).
- A patient with fever and chills comes to Malaria Clinic and was given Presumptive Treatment/Radical Treatment: Treatment mode of intervention, Secondary Level of prevention (as disease has possibly set in and now treatment has been started).
- A person sleeps inside a bednet: Specific Protection mode of intervention, Primary Level of prevention (risk factors, i.e., mosquitoes are already present, disease has not yet taken place).
- A child coming to Immunisation clinic for OPV Vaccine: Specific Protection mode of intervention, Primary Level of prevention (risk factors, i.e., polio infection already present, disease has not yet taken place).
A Urine strip for sugar detection was employed to screen diabetics in a community: Early diagnosis mode of intervention, Secondary Level of prevention (screening is meant for early diagnosis of a disease)

A village community was given health education to prevent spread of malaria: Health Promotion mode of intervention, Primary Level of prevention (to enable/strengthen the host)

A 20 yr old male takes chemoprophylaxis during an epidemic of Meningococcal meningitis: Specific Protection mode of intervention, Primary Level of prevention (risk factors, i.e, epidemic of meningococcal meningitis is already present; disease has not yet taken place in that male)

A class of 5 yr old children is discouraged from adopting harmful lifestyles, smoking, etc.: Primordial Level of prevention (intervention before emergence of risk factors)

A child afflicted with poliomyelitis is given crutches to walk: Rehabilitation mode of intervention

Disease-Impairment-Disability-Handicap

- Disease: Any abnormal condition of an organism that impairs function
- Impairment: Any loss or abnormality of psychological, physiological or anatomical structure or function
- Disability: (Because of impairment,) any restriction or inability to perform an activity in a range considered normal for a human being
- Handicap: A disadvantage for a given individual, resulting from an impairment/disability, that limits/prevents fulfillment of a role considered normal (depending on age, sex, social, cultural factors) for that individual

For Example,

<table>
<thead>
<tr>
<th>Event</th>
<th>Classification</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident</td>
<td>Disease</td>
<td>Impairs function of a person</td>
</tr>
<tr>
<td>Loss of foot</td>
<td>Impairment</td>
<td>Loss of anatomical structure in the form of foot</td>
</tr>
<tr>
<td>Cannot Walk</td>
<td>Disability</td>
<td>Walking is a normal routine daily activity of a human being</td>
</tr>
<tr>
<td>Unemployed</td>
<td>Handicap</td>
<td>Loses out his job because he cannot walk, so cannot fulfill his role in the society, i.e, earning for his family members</td>
</tr>
</tbody>
</table>

ICD – 10

International Classification of Diseases, 10th revision/edition [ICD-10]®

- ICD-10 is an abbreviation for the International Statistical Classification of Disease and Related Health Problems (10th revision)
 - Uniform classification for morbidity and mortality data in world
 - International standard diagnostic classification for all general epidemiological and many health management purposes
 - ICD is revised every 10 years
- ICD-10 came in 1993: It covers disease, illnesses and injuries
- ICD-10 is arranged in 22 chapters® (ICD-10-CM has 21 chapters)
- ICD-10 is arranged in 3 volumes®:
 - Volume 1: Classifications, lists, nomenclature and definitions
 - Volume 2: Instruction Manual
 - Volume 3: Alphabetical index
- Codes U 00 – U 49: New diseases of uncertain etiology
- Codes U 50 – U 99: Used in research
MISCELLANEOUS

Time Distribution of Disease

- Short term fluctuations
- Long term fluctuations
- Periodic fluctuations

Short Term Fluctuations (Epidemic)

- Definitions:
 - Occurrence of no. of cases of a disease ‘clearly in excess of normal expectancy’ [NE]\(^0\)
 - Normal expectancy is derived by looking at average of no. of cases of the disease in previous 3-5 years in that geographical area
 - If NE = zero, ‘even one case is considered epidemic’
 - Statistically speaking, epidemic is when no. of cases ‘exceed twice the standard deviation’
 - No. of cases > Mean + 2SD\(^0\)
 - Occurrence of a new disease in a population (as NE = Zero)
 - Reoccurrence of an eliminated/eradicated disease in a population (as NE = Zero)

- Types of epidemics:
 - Common-source epidemics:
 - Single exposure or ‘Point source’ epidemics
 - Continuous or multiple exposure epidemics
 - Propagated epidemics:
 - Person-to-person
 - Arthropod vector
 - Animal reservoir
 - Slow (modern) epidemics

Also Refer to Chapter 3

Periodic Fluctuations

- Seasonal trends: Is seasonal variation/fluctuation in occurrence of a disease:
 - Is due to vector variation, environmental factors and change in herd immunity\(^0\)
 - Examples:
 - Measles (early spring)
 - Upper respiratory infections (winters)
 - Gastrointestinal infections (summers)

- Cyclical trends: Is occurrence of a disease in cycles spread over short periods of time, which may be days, weeks, months or years:
 - Examples\(^0\):
 - Measles (every 2-3 years)
 - Rubella (every 6-9 years)
 - Influenza pandemics (every 10-15 years)

Long Term Fluctuations [Secular Trends]

- Implies changes in occurrence of a disease (progressive increase or decrease) over a long period of time, generally several years or decades\(^0\)
 - Is the consistent tendency to change in a particular direction or a definite movement in one direction\(^0\)

- Examples:
 - Communicable diseases (Poliomyelitis, Diphtheria, Pertussis) are reducing in India in past few decades
 - Non-communicable diseases (Diabetes, Hypertension, Obesity) are increasing in India in past few decades.
MULTIPLE CHOICE QUESTIONS

HEALTH AND WELL-BEING

1. Definition of health given by WHO includes which of the following dimensions: [PGI Dec 01]
 (a) Social
 (b) Physical
 (c) Mental
 (d) Emotional
 (e) Economic

2. Standard of Living (WHO) includes all except: [AIPGME 2006]
 (a) Income
 (b) Sanitation and nutrition
 (c) Level of provision of health
 (d) Human rights

3. Living standard of people is best assessed by: [DPG 2011]
 (a) Infant mortality rate
 (b) Maternal mortality
 (c) Physical quality of life index
 (d) Death rate

4. Human living standards can be compared in different countries by: [Recent Question 2013]
 (a) HDI
 (b) PQLI
 (c) HPI
 (d) DALY

PQLI AND HDI

5. Human Development Index (HDI) does not include: [AIPGME 1999]
 (a) Mean years of schooling
 (b) Life expectancy at age 1
 (c) Real GDP per capita
 (d) Adult literacy rate

6. All of the following indicators are included in Physical Quality of Life Index (PQLI) except: [AIPGME 2000, 06, 07]
 (a) Infant mortality rate
 (b) Life expectancy at age one
 (c) Literacy rate
 (d) Per capita income

7. The Physical Quality of the Life Index considers
 (a) Expectancy of life at birth
 (b) Expectancy of life at age one
 (c) Infant mortality rate
 (d) Literacy rate
 Of these components:
 (a) I alone is correct
 (b) I, III and IV are correct

8. Minimum and Maximum Values established for calculation of Life Expectancy index in HDI are: [AIPGME 2007]
 (a) 0 years and 65 years
 (b) 0 years and 85 years
 (c) 25 years and 85 years
 (d) 0 years and 100 years

9. Human Development Index (HDI) values range between: [AIIMS Jan 2003]
 (a) ~1 to +1
 (b) 0 to 1
 (c) 0 to 3
 (d) 1 to 3

10. PQLI stands for: [Karnataka 2004]
 (a) Physical quality of life index
 (b) Physical quantity of life index
 (c) Physiological quality of life index
 (d) Psychological quality of life index

11. All of the following are determinants for the essential components to calculate Physical Quality of Index (PQLI) except: [Karnataka 2006, 2008]
 (a) Infant mortality rate
 (b) Life expectancy at age one year
 (c) Basic literacy rate in population
 (d) Life expectancy at birth

12. Human Development index includes: [Karnataka 2007]
 (a) Infant mortality rate
 (b) Life expectancy at birth
 (c) Net reproduction rate
 (d) No. of years of disability

13. PQLI included are: [PGI June 08]
 (a) Literacy
 (b) Infant mortality
 (c) Income
 (d) Life expectancy at birth

14. HDI includes: [PGI Dec 07, June 04]
 (a) Infant mortality rate
 (b) Life expectancy at birth
 (c) Life expectancy at 1 yr
 (d) Adult literacy rate
 (e) GDP

15. PQLI includes: [PGI June 01]
 (a) MMR
 (b) IMR
 (c) Life expectancy at birth
 (d) Life expectancy at 1 yr. age
 (e) Literacy
23. P.Q.L.I. is: [DNB 2002] [DNB 2005]
(a) IMR, life expectancy, literacy
(b) MMR, Life expectancy, literacy
(c) MMR, IMR, Life expectancy
(d) IMR, Life expectancy at 1 year of age, SE status

24. Human development index includes all of the following except? [DNB 2003] [AP 2008] [Kolkata 2004]
(a) Adult literacy rate
(b) Life expectancy at birth
(c) Income
(d) Infant Mortality Rate

25. PQLI includes all of the following except: [Bihar 2003]
(a) IMR
(b) MMR
(c) Literacy
(d) Life expectancy at age one

26. “Physical quality of life index” include all Except: [UP 2004] [AP 1996, 2005]
(a) Infant mortality
(b) Life expectancy at age one
(c) Literacy
(d) GDP per capita

27. Human Developmental index comprise of: [MH 2007]
(a) Education occupation and income
(b) Education employment, food and health
(c) Infant mortality rare, longevity, literacy
(d) Longevity, income and literacy

28. Human development index includes all except: [MH 2002] [MP 2005] [JIPMER 2001]
(a) GDP
(b) Sex ratio
(c) Knowledge
(d) Longevity

29. HDI includes: [AI 2000] [MH 2006]
(a) Infant mortality, Life expectancy and Literacy
(b) Maternal mortality, Life expectancy and Literacy
(c) Disability rate, Pregnancy rate and GNP
(d) Longevity, Knowledge and Income

INDICATORS OF HEALTH

30. Which of the following is a Mortality Indicator? [AIIMS May 1993]
(a) Life Expectancy
(b) Notification Rate
(c) DALY
(d) Bed turn-over ratio

31. Modified Kuppuswami scale include all criteria for socioeconomic status except: [AIPGME 2007]
(a) Income per capita
(b) Education of head of family
(c) Occupation of head
(d) Income of Head

32. Expectation of life, free of disability is known as: [AIPGME 2006]
(a) Park’s index
(b) Smith’s index
(c) Sullivan’s index
(d) Life index

33. Which is the best index for burden of disease? [AIIMS June 1197]
(a) Case fatality rate
(b) Disability adjusted life years
(c) Dependency ratio
(d) Morbidity data
34. Which of the following is a measure of the burden of disease in a defined population and effectiveness of interventions? \[\text{AIIMS Nov 2001}\]
 (a) Park’s index
 (b) Disability adjusted life year
 (c) Bed disability days
 (d) Activities of daily living index

35. Which one of the following is NOT a socio-economic indicator? \[\text{AIIMS Dec 1997}\]
 (a) Literacy rate
 (b) Family size
 (c) Housing
 (d) Life expectancy at birth

36. Most universally accepted indicator of health status of whole population and their socio-economic conditions among the following is: \[\text{AIIMS Nov 2001}\]
 (a) MMR
 (b) IMR
 (c) Life expectancy
 (d) Disease notification rates

37. Sullivan index indicates: \[\text{AIIMS Dec 1994}\]
 (a) Life free of disability
 (b) Hookworm eggs/gm of stool
 (c) Standard of living
 (d) Pregnancy rate per HWY

38. Virulence of a disease is indicated by: \[\text{AIPGME 01}\]
 (a) Proportional mortality rate
 (b) Specific mortality rate
 (c) Case fatality rate
 (d) Amount of GDP spent on control of disease

39. All the following indicators are used to measure disability rates in a community except: \[\text{DPG 2011}\]
 (a) Sullivan’s Index
 (b) Human Poverty Index
 (c) Health Adjusted Life Expectancy
 (d) Disability Adjusted Life Year

40. Which of the following is true about DALYs? \[\text{AIPGME 2012}\]
 (a) Life is adjusted for disease
 (b) Premature death is adjusted for disability \[\text{Recent Question 2012}\]
 (c) Life expectancy free of disability
 (d) Years lost to premature death and years lived with disability adjusted for severity of disability

41. Burden of disease is given by \[\text{Recent Question 2013}\]
 (a) Incidence
 (b) Crude death rate
 (c) Cause specific death rate
 (d) Proportional mortality rate

42. In a village with population of 5000, 50 people have a disease and 10 of them died. What is case fatality rate? \[\text{Recent Question 2013}\][\text{DNB December 2009}\]
 (a) 1%

43. Best indicator of availability, utilization & effectiveness of health services \[\text{Recent Question 2012}\]
 (a) IMR
 (b) MMR
 (c) Hospital bed occupancy rate
 (d) DALY

44. One DALY signifies \[\text{DNB December 2010}\]
 (a) 1 year of disease free life
 (b) 1 lost year of healthy life
 (c) 1 month of bedridden life
 (d) None of these

45. DALE has been replaced by \[\text{Recent Question 2012}\]
 (a) DALY
 (b) QALY
 (c) HALE
 (d) DFLE

46. 50 people are suffering from cholera in a population of 5000. Out of 50, suffering from cholera, 10 died. But the total deaths are 50. What is the death rate? \[\text{Recent Question 2012}\]
 (a) 1 per 1000
 (b) 5 per 1000
 (c) 10 per 1000
 (d) 20 per 100

47. Communicability of disease is assessed by \[\text{DNB December 2011}\]
 (a) Secondary attack rate
 (b) Generation time
 (c) Serial interval
 (d) Incubation period

48. Sullivan index is \[\text{DNB 2008}\]
 (a) Measures disability
 (b) Measures life years adjusted with disability
 (c) Measures life expectancy adjusted without disability or free of disability
 (d) Measures life expectancy

49. For optimum utilization of health services in a hospital, bed turnover interval should always be \[\text{JIPMER 2014}\]
 (a) Slightly positive
 (b) Largely positive
 (c) Slightly negative
 (d) Largely negative

Review Questions

50. Health indicators are used for: \[\text{Bihar 2005}\]
 (a) Health status of community
 (b) Requirement of health needs
 (c) Assess rate of infection
 (d) To meet basic needs
51. The expectation of life free of disability is known as:
 (a) Sullivan’s index [UP 2005]
 (b) DALE (disability – adjusted life expectancy)
 (c) DALY (Disability – adjusted life year)
 (d) PQLI

52. DALY is:
 (a) Disease – Adjusted Life year
 (b) Disability Adjusted Life year
 (c) Disease Associated Life year
 (d) Disability Associated Life year

53. Which of the following is best to compare the vital statistics of countries? [MH 2007]
 (a) Crude death and birth rates
 (b) Age standardized death rate
 (c) Age specific death rate
 (d) Proportional mortality rate

54. Most important health status indicator of a country: [MH 2007]
 (a) Life expectancy at birth
 (b) Maternal mortality rate
 (c) Total fertility rate
 (d) Infant mortality rate

55. Disability Adjusted life year (DALY) Expresses the: [RI 2006]
 (a) Extent of disability in the population
 (b) Expectation of life free of disability
 (c) Years of life lost to premature death
 (d) Lost year of life due to premature death and disability

56. ‘Silent epidemic’ of the century is:
 (a) Coronary artery disease [AIPGME 02]
 (b) Chronic liver disease
 (c) Chronic obstructive lung disease
 (d) Alzheimer’s disease

57. Which one of the following does not represent the submerged portion of the iceberg?
 (a) Diagnosed cases under treatment [AIIMS Jan 1999]
 (b) Undiagnosed cases
 (c) Pre-symptomatic cases
 (d) Carriers sub clinical cases

58. In “Tip of Iceberg Phenomenon”, submerged portion does not consist of [AIIMS Feb 1997]
 (a) Latent period
 (b) Carriers
 (c) Undiagnosed cases
 (d) Healthy population

59. Which of the following is NOT true regarding pathogenesis of a disease? [AIPGME 2012]
 (a) Screening is of no use in changing course of disease
 (b) Tertiary prevention is possible
 (c) Entry of organism occurs
 (d) Includes subclinical cases

60. Web of causation of disease, which statement is most appropriate? [Recent Question 2013]
 (a) Mostly applicable for common diseases
 (b) Requires complete understanding of all factors associated with causation of disease
 (c) Epidemiological ratio
 (d) Helps to suggest ways to interrupt the risk of transmission

61. Transition from increased prevalence of infectious pandemic diseases to manmade disease is known as
 (a) Paradoxical transition [AIIMS November 2012]
 (b) Reversal of transition
 (c) Epidemiological transition
 (d) Demographic transition

62. BEINGS Model of disease causation does not include
 (a) Spiritual factors [NUPGET 2013]
 (b) Social factors
 (c) Religious factors
 (d) Social factors

63. Secular trend is best demonstrated by
 (a) Line diagram [DNB December 2010]
 (b) Bar graph
 (c) Stem-leaf plot
 (d) Box and whisker plots

Review questions

64. Epidemiological triad are all Except: [UP 2000]
 (a) Host [Recent Questions 2014]
 (b) Environmental factors
 (c) Agent
 (d) Investigator

65. When a child ‘lost’ his hands and unable to do routine works called as: [UP 2005]
 (a) Handicap
 (b) Disability
 (c) Impairment
 (d) Battered baby syndrome

66. Natural history of disease is best studied by:
 (a) Cross sectional study [Kolkata 2004]
 (b) RCT
 (c) Case-control study
 (d) Cohort study

67. The period preliminary to the onset of disease in man, when the disease agent has not yet entered man but the factors favouring its interaction with human host exist in the environment is known as:
 (a) Incubation period [MP 2006]
 (b) Pre-pathogenesis period
 (c) Pathogenesis period
 (d) Pre-symptomatic period
Control of Disease

68. Epidemiological triad contains all except:
- Agent
- Manpower
- Host
- Environment

69. Measures involved in sentinel surveillance include all of the following except:
- Identifying missing cases in notification of diseases
- Identifying new cases of infection
- Identifying old and new cases
- Identifying cases free of disability

70. Consider the following statements:

<table>
<thead>
<tr>
<th>The term ‘disease control’ describes ongoing operations aimed at reducing the...</th>
<th>[AIPGME 2001, AIIMS Nov 1999]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Incidence of disease</td>
<td>[AIPGME 2002]</td>
</tr>
<tr>
<td>2. Financial burden to the community</td>
<td></td>
</tr>
<tr>
<td>3. Effects of infection including both physical and psychological complications</td>
<td></td>
</tr>
<tr>
<td>4. Duration of disease and its transmission of these statements,</td>
<td>[AIIMS November 2014]</td>
</tr>
</tbody>
</table>

- (a) 1, 2 and 3 are correct
- (b) 1, 3 and 4 are correct
- (c) 1, 2 and 4 are correct
- (d) 1, 2, 3 and 4 are correct

71. All of the following statements about eradication programme are true except:

<table>
<thead>
<tr>
<th>There is complete interruption of disease transmission in the entire area of the community</th>
<th>[AIPGME 1995]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eradication programme is over once the disease has been certified as having been eradicated</td>
<td></td>
</tr>
<tr>
<td>Case finding is of secondary importance</td>
<td></td>
</tr>
<tr>
<td>The objective is to eliminate the disease to the extent that no new case occurs in the future</td>
<td></td>
</tr>
</tbody>
</table>

72. Continuous scrutiny of factors that determine the occurrence and distribution of disease and other condition of ill health is the definition of:
- Monitoring
- Surveillance
- Disease control
- System analysis

73. Decrease in the incidence of a disease to a level where it ceases to be a public health problem is:
- Control
- Elimination
- Eradication
- Surveillance

74. Disease eliminated from India is/are:
- Smallpox
- Guinea worm disease
- Yaws
- Measles
- Polio

75. Candidates (s) for global eradication by WHO:
- Malaria
- Dracunculosis
- Polio
- Measles
- Chicken pox

76. Disease eradicated from world:
- Smallpox
- Guinea worm
- Poliomyelitis
- Diphtheria
- Measles

77. Causative agent is present but there is no transmission is known as:
- Elimination
- Control
- Eradication
- Holoendemic

78. Disease elimination is helped by [Recent Question 2013]
- Herd immunity
- Isolation
- Quarantine
- None

79. Measures involved in sentinel surveillance include all except:
- Identifying missing cases in notification of disease
- Identifying new cases of infection
- Identifying old and new cases of infection
- Identifying cases free of disability

80. Zero incidence is [Recent Question 2013]
- Elimination of disease
- Eradication of disease
- Elimination of infection
- Eradication of infection

81. Analysis of routine measurements is aimed at detecting changes in environment [Recent Question 2012]
- Monitoring
- Surveillance
- Isolation
- Evaluation

82. All of the following are eradicable diseases except
- Tuberculosis
- Guinea worm
- Poliomyelitis
- Measles
83. Missing cases are detected by
(a) Active surveillance
(b) Passive surveillance
(c) Sentinel surveillance
(d) Monitoring

[DNB December 2011]

84. Sentinel surveillance is for
(a) Border districts
(b) For malaria surveillance
(c) Effective sanitary surveillance
(d) Supplementary to routine notification

[Recent Question 2012]

85. Disease control implies all except
(a) Effects of infection including its complications
(b) Financial burden to community
(c) Duration of disease and risk of transmission
(d) Virulence

[AIIMS November 2014]

Review questions

86. To eradicate measles the percentage of population to be vaccinated is at least_____%:
(a) 70
(b) 80
(c) 85
(d) 95

[DNB 2006]

87. Leprosy is considered a public health problem if the prevalence of leprosy is more than:
(a) 1 per 10,000
(b) 2 per 10,000
(c) 5 per 10,000
(d) 10 per 10,000

[Bihar 2004]

88. Disease elimination means:
(a) Cure of the disease
(b) Preventing the transmission totally
(c) Eradication of the vector
(d) Complete termination of infective organism

[AP 2000]

89. Regarding disease elimination true is:
(a) Prevention of chain of transmission
(b) Extermination of disease agent
(c) There is no disease anywhere on planet
(d) Reducing the disease to such a level so that it will not be a major public health problem

[MP 2001]

90. What happens in disease elimination:
(a) Incidence is reduced by 10%
(b) Prevalence is reduced by 10%
(c) Global eradication of disease agent
(d) Interruption of disease transmission from large geographical areas

[MP 2006]

91. Disease elimination refers to:
(a) Extinction of disease agent
(b) Termination of all disease
(c) Global removal of disease agent
(d) Regional removal of disease agent

[MP 2007]

92. In India which disease is near to elimination:
(a) Tetanus
(b) Rabies
(c) Polio
(d) Mumps

[RJ 2003]

93. All of the following represent Specific protection mode of Disease prevention Except:
(a) Chemoprophylaxis for meningococcal meningitis
(b) Personal hygiene and Environmental sanitation
(c) Usage of condoms
(d) Iodisation of salt

[AIPGME 2000]

94. Secondary level of prevention include all of the following except:
(a) Health screening for Diabetes Mellitus
(b) Case finding for Falciparum Malaria
(c) Contact tracing for STIs
(d) Reconstructive Surgery in Leprosy

[AIIMS Jan 2000]

95. In a population to prevent coronary artery disease changing harmful lifestyles by education is referred to as:
(a) High risk strategy
(b) Primary prevention
(c) Secondary prevention
(d) Tertiary prevention

[AIIMS May 2001]

96. In an area with fluoride rich water, the defluoridation of water is which level of prevention?
(a) Primary
(b) Secondary
(c) Tertiary
(d) Primordial

[AIIMS May 1994]

97. Which of the following is an example of Disability limitation in poliomyelitis?
(a) Reducing occurrence of polio by immunization
(b) Arranging for schooling of child suffering from PRPP
(c) Resting affected limbs in neutral position
(d) Providing calipers for walking

[AIIMS May 07 and May 2006]

98. Which of the following is primordial prevention?
(a) Action taken prior to the onset of disease
(b) Prevention of emergence of development of risk factors
(c) Action taken to remove the possibility that a disease will ever occur
(d) Action that halts the progress of a disease

[AIIMS May 1994]

99. ‘Disability Limitation’ is mode of intervention for:
(a) Primordial Prevention
(b) Primary Prevention
(c) Secondary Prevention
(d) Tertiary Prevention

[AIIMS May 2008]

[Recent Question 2013]
100. Which of the following is the most logical sequence? [AIIMS Nov 2006] [Recent Question 2013]
(a) Impairment-Disease-Disability-Handicap
(b) Disease-Impairment-Disability-Handicap
(c) Disease-Impairment-Handicap-Disability
(d) Disease-Handicap-Impairment-Disability

101. Pap smear test for detection of carcinoma of cervix is which level of prevention? [Karnataka 2007] [Recent Questions 2014]
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary

102. A person who has lost his foot in an accident and is not able to walk is an example of: [Karnataka 2007]
(a) Disease
(b) Disability
(c) Impairment
(d) Handicap

103. Primary prevention of obesity: [DPG 1998]
(a) Low fiber diet
(b) High fiber diet
(c) High cholesterol diet
(d) High intake of protein

104. Primordial prevention in coronary heart disease: [PGI Dec 1997]
(a) Exercise in high risk area
(b) BP monitoring
(c) Salt restriction
(d) Statins
(e) TMT

105. Primary prevention of dental caries includes: [PGI June 03]
(a) Fluridation
(b) Dental health education
(c) Mass screening
(d) Dental filling, teeth extraction

106. Primary prevention of dental carries are: [PGI Dec 03]
(a) Dental screening
(b) Health education
(c) Defluoridation of water
(d) Dental filling
(e) Tooth extraction

107. Which of the following is primordial prevention for NCD (non communicable disease): [PGI June 05]
(a) Salt restriction in high NCD area
(b) Smoking cessation in high NCE area
(c) Preservation of traditional diet in low NCD area
(d) Early diagnosis and treatment
(e) Exercise in high NCD area

108. Primary prevention: [PGI June 05]
(a) Marriage counseling
(b) Early diagnosis and treatment
(c) Pap smear
(d) Self breast examination
(e) Immunization

109. Vitamin A prophylaxis to a child is: [AIIMS May 2010]
(a) Health promotion
(b) Specific protection
(c) Primordial prevention
(d) Secondary prevention

110. Screening of the diseases is which type of prevention? [Recent Question 2013]
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary

111. Which of the following is not a primary prevention strategy? [DNB December 2011]
(a) Breast self examination
(b) Control of tobacco
(c) Radiation protection
(d) Cancer education

112. CAD primordial prevention is by [Recent Question 2013]
(a) Lifestyle change
(b) Coronary bypass
(c) Treatment of CAD
(d) None

113. Quarantine period for yellow fever in India is? [Recent Question 2012]
(a) 6 days
(b) 1 week
(c) 10 days
(d) 2 weeks

114. Prevention of emergence of risk factor is [DNB 2007]
(a) Primordial prevention
(b) Primary prevention
(c) Secondary prevention
(d) Tertiary prevention

115. Immunization is [Recent Question 2013, 2014]
(a) Primary prevention
(b) Secondary prevention
(c) Tertiary prevention
(d) Disability limitation

116. Iodized salt in iodine deficiency control programme is [Recent Question 2012]
(a) Primary prevention
(b) Secondary prevention
(c) Tertiary prevention
(d) Primordial prevention

117. Target group in Secondary prevention [Recent Question 2012]
(a) Healthy individuals
(b) Patients
(c) Animals
(d) Children

118. School health checkup comes under level of prevention [Recent Question 2012]
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary
119. Desks provided with table top to prevent neck problems is an example of
 (a) Primordial prevention
 (b) Primary prevention
 (c) Specific protection
 (d) Disability limitation

120. Childhood obesity prevention is a type of
 (a) Primordial prevention
 (b) Primary prevention
 (c) Secondary prevention
 (d) Tertiary prevention

121. Monitoring of blood pressure which type of prevention
 (a) Primordial
 (b) Primary
 (c) Secondary
 (d) Tertiary

122. All of the following comes under primary prevention except:
 (a) Pap smear
 (b) Helments
 (c) Contraception
 (d) Vaccines

123. Desk provided with table top to prevent neck problems is an example of
 (a) Primordial prevention
 (b) Primary protection
 (c) Specific protection
 (d) Disability limitation

124. Patient is on psychotherapy, what is the level of prevention?
 (a) Primordial
 (b) Primary
 (c) Secondary
 (d) Tertiary

125. Which one of the following is primary prevention:
 (a) Active treatment
 (b) Vaccination
 (c) Screening
 (d) Rehabilitation

126. Prevention of emergence of risk factor is:
 (a) Primordial prevention
 (b) Primary prevention
 (c) Secondary prevention
 (d) Tertiary prevention

127. Iodine salt supplementation is:
 (a) Specific protection
 (b) Primordial prevention
 (c) Decrease the deformity
 (d) Secondary prevention

128. All are health promotion strategies Except:
 (a) Insecticides spray
 (b) Potable safe water supply
 (c) Life style modification
 (d) Chemoprophylaxis

129. One of the following is an example for Tertiary prevention:
 (a) Vaccination
 (b) Immediate diagnosis and treatment
 (c) Rehabilitation
 (d) Health education

130. Which one of the following is NOT a water born disease?
 (a) Giardiasis
 (b) Amoebiasis
 (c) Strongylidosis
 (d) Taeniasis

131. Action which halts the progress of a disease at its incipient stage and prevents complications:
 (a) Primary prevention
 (b) Primordial prevention
 (c) Secondary prevention
 (d) Tertiary prevention

132. The following does not determine specific protection:
 (a) Pap smear for early detection of carcinoma cervix in community
 (b) Wearing of goggles by welders
 (c) Wearing of seat belts by car drivers
 (d) Vitamin A for children prophylaxis

133. Which is not included in primary prevention:
 (a) Health education
 (b) Life-style modification
 (c) Immunization
 (d) Nutritional supplementation

134. Health promotion includes all except:
 (a) Specific protection
 (b) Health education
 (c) Food fortification
 (d) Environment modification

135. Primary prevention among following is:
 (a) Disability limitation
 (b) Early diagnosis
 (c) Treatment
 (d) Immunization

136. Which of the following is a primary prevention in polio:
 (a) Good sanitary measures
 (b) Rehabilitation
 (c) Provision of 3 doses of OPV in early infancy
 (d) Collection of stool sample for diagnosis
137. When you immunize a child for measles what type of prevention are you doing:
(a) Primordial prevention
(b) Health promotion
(c) Specific protection
(d) Secondary Prevention

138. First in sequence:
(a) Impairment
(b) Disease
(c) Disability
(d) Rehabilitation

139. All are primary levels of prevention except:
(a) Health promotion
(b) Specific protection
(c) Early diagnosis and treatment
(d) Immunization

140. Not allowing the emergence or development of the risk factor itself is which level of prevention?
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary

141. Level of prevention that includes Specific protection:
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary

142. Chemoprophylaxis is prevention type:
(a) Primary
(b) Secondary
(c) Tertiary
(d) Quarternary

143. Chemoprophylaxis of Malaria is prevention:
(a) Primordial
(b) Primary
(c) Secondary
(d) Tertiary

144. ICD-10 stands for:
(a) International Classification of Drugs, 10th revision
(b) International Classification of Disabilities, 10th revision
(c) International Classification of Diseases, 10th revision
(d) International Classification of Disasters, 10th revision

145. ICD-10 true is
(a) Revised every 5 years
(b) Consists of 10 chapters
(c) Arranged in 3 volumes
(d) Was produced by UNICEF

146. ICD-10 has how many chapters?
(a) 5
(b) 12
(c) 21
(d) 32

147. Vital ICD is reviewed once in every:
(a) 2 years
(b) 5 years
(c) 8 years
(d) 10 years.

148. In ICD-10 Classification of diseases how many major chapters are there:
(a) 15
(b) 17
(c) 21
(d) 18

149. Regarding International classification of disease untrue is:
(a) Revised every 10 years
(b) 10th revision has 15 major chapters
(c) Is base for use in other health fields
(d) Coding system in 10th revision is alphanumerical

Review Questions

147. Vital ICD is reviewed once in every:
(a) 2 years
(b) 5 years
(c) 8 years
(d) 10 years.

148. In ICD-10 Classification of diseases how many major chapters are there:
(a) 15
(b) 17
(c) 21
(d) 18

149. Regarding International classification of disease untrue is:
(a) Revised every 10 years
(b) 10th revision has 15 major chapters
(c) Is base for use in other health fields
(d) Coding system in 10th revision is alphanumerical

ICD – 10

144. ICD-10 stands for:
(a) International Classification of Drugs, 10th revision
(b) International Classification of Disabilities, 10th revision
(c) International Classification of Diseases, 10th revision
(d) International Classification of Disasters, 10th revision

150. Iceberg phenomenon differentiates:
(a) Apparent and Inapparent
(b) Symptomatic and Asymptomatic
(c) Cases and Carriers
(d) Diagnosed and Undiagnosed

151. Maximum power of destruction of a disease is measured by:
(a) Survival rate
(b) Case fatality rate
(c) Specific death rate
(d) Proportional mortality rate

152. Seasonal trend is due to:
(a) Vector variation
(b) Environmental factors
(c) Change in herd immunity
(d) All of the above

153. Intraspecies competition is the competition among:
(a) Species
(b) Individuals of a population
(c) Individuals of a community
(d) Populations and their regulatory factors

154. All of the statements about quarantine are true except:
(a) It is synonymous with isolation
(b) Absolute quarantine is restriction during the incubation period
(c) Exclusion of children from schools is an example of modified quarantine
(d) Quarantine should not be longer than the longest incubation period

MISCELLANEOUS

150. Iceberg phenomenon differentiates:
(a) Apparent and Inapparent
(b) Symptomatic and Asymptomatic
(c) Cases and Carriers
(d) Diagnosed and Undiagnosed

151. Maximum power of destruction of a disease is measured by:
(a) Survival rate
(b) Case fatality rate
(c) Specific death rate
(d) Proportional mortality rate

152. Seasonal trend is due to:
(a) Vector variation
(b) Environmental factors
(c) Change in herd immunity
(d) All of the above

153. Intraspecies competition is the competition among:
(a) Species
(b) Individuals of a population
(c) Individuals of a community
(d) Populations and their regulatory factors

154. All of the statements about quarantine are true except:
(a) It is synonymous with isolation
(b) Absolute quarantine is restriction during the incubation period
(c) Exclusion of children from schools is an example of modified quarantine
(d) Quarantine should not be longer than the longest incubation period
155. According to a joint study “Healthcare In India: The Road Ahead” done by CII and Mekinsey and company in 2002, India’s existing bed population ratio is:
(a) 2:1000 [AIIMS Nov 05]
(b) 1.5:1000
(c) 9:1000
(d) 2.5:1000

156. Which of the following is characteristic of a single exposure common vehicle outbreak? [AIIMS May 05]
(a) Frequent secondary cases
(b) Severity increases with increasing age
(c) Explosive
(d) Cases occur continuously beyond the longest incubation period

157. Which of the following is not targeted in Millennium Development Goals (MDGs)? [AIIMS Nov 2001]
(a) Eradicating extreme poverty
(b) Fostering global partnership for development
(c) Reducing child mortality
(d) Improving health care delivery

158. Global eradication of small pox was done on: [AIIMS Jan 1998]
(a) 26th Oct 1977
(b) 8th May 1980
(c) 17th March 1980
(d) 17th April 1977

159. Direct standardisation is used to compare mortality data of two countries. This is done because of difference in:
(a) Causes of deaths [AIPGME 2011]
(b) Numerators
(c) Denominators
(d) Age distribution

160. Not under Millennium development goals:
(a) Reduction of cardiovascular health hazards [DNB June 2011]
(b) Eradication of extreme poverty
(c) Global partnership for development
(d) Sustainability of the environment

161. True about point source epidemic is [DNB June 2011]
(a) Occurs in more than 1 incubation period
(b) Occurs in one incubation period
(c) The exposure is continuous
(d) Epidemic curve falls very slowly

162. Bhopal gas tragedy is an example of [DNB 2008]
(a) Point source epidemic
(b) Continuous epidemic
(c) Propagated epidemic
(d) Slow epidemic

163. Which of the following is a MDG?
(a) Reduce by 2/3rd the under five mortality by year 1990-2015 [AIIMS November 2012]
(b) Halve the prevalence of HIV-AIDS by 2015
(c) Reduce maternal mortality by 50%
(d) Combat PEM & Diarrhoea

164. Millennium development goals aim to reduce MMR by [DNB June 2011]
(a) 3/4
(b) 2/3
(c) 1/4
(d) 1/2

165. Long term fluctuation is seen with [DNB December 2011]
(a) cyclic trends
(b) epidemics
(c) secular trends
(d) seasonal trends

166. True about continuous common source epidemics [Recent Question 2012]
(a) High secondary attack rate
(b) Duration more than one incubation period
(c) Rapid rise and fall of epidemic curve
(d) Brief and simultaneous exposure

167. Cyclic trend is [DNB December 2011]
(a) Variations in herd immunity
(b) Environmental
(c) Nutritional
(d) Short term

168. An epidemic of Hepatitis A is an example of [AP 2014]
(a) Common source, single exposure epidemic
(b) Common source, continuous exposure epidemic
(c) Propagated epidemic
(d) Slow epidemic

Review Questions

169. Surveillance is: [DNB 2001]
(a) Scrutiny of factors
(b) Treatment of contacts
(c) Prevention of disease
(d) Chemoprophylaxis of disease

170. True morbidity is measured by: [UP 2000]
(a) Active surveillance
(b) Passive surveillance
(c) Sentinel surveillance
(d) Continuous surveillance

171. Tip of iceberg phenomenon is mostly appropriately represented by: [Kolkata 2002]
(a) Malaria (b) Measles
(c) PEM (d) Rabies

172. Quarantine is isolation of healthy individual:
(a) For longest incubation period of disease [MP 2000]
(b) For shortest incubation period of disease
(c) For twice the incubation period of disease
(d) For period of generation time

https://kat.cr/user/Blink99/
173. Part I of the ‘death certificate’ deals with:

(a) Immediate cause, and the direct underlying cause which started the whole trend of events leading to death
(b) Any significant associated diseases that contributed to the death but did not directly lead to it
(c) Approximate interval between onset and cause of death
(d) The mode of death

174. Limit for registration of birth is:

(a) 7 days
(b) 14 days
(c) 21 days
(d) Any of the above

175. In India death has to be registered with in:

(a) 3 days
(b) 7 days
(c) 14 days
(d) 21 days

176. The duration of quarantine is:

(a) Longest incubation period
(b) Shortest incubation period
(c) Infective period
(d) None of the above

177. Carriers are not found in:

(a) Typhoid
(b) Diphtheria
(c) Whooping cough
(d) Hepatitis B
HEALTH AND WELL-BEING

1. Ans. (a) Social; (b) Physical; (c) Mental; (e) Economic [Ref. Park 21/e p13, Park 22/e p13]
 - WHO [1948] definition of Health: Health is a state of complete physical, mental and social well being, and not merely an absence of disease or infirmity; [recently amplified to include –) and an ability to lead a socially and economically productive life.
 - Is an ‘idealistic goal rather than a realistic proposition’
 - It does not regard health as a dynamic concept (but as a state)

2. Ans. (d) Human rights [Ref. Park 21/e p15, 16, Park 22/e p15, 16]
 - Standard of Living: Refers to the usual scale of our expenditure, goods we consume and services we enjoy
 - Standard of living [WHO] includes:
 - Income and Occupation
 - Standards of housing, sanitation and nutrition
 - Level of provision of health, educational, recreational and other services

Also Remember

- Standard of living depends on ‘Per capita GNP’

3. Ans. (c) Physical quality of life index [Ref. K. Park 21/e p16-17, Park 22/e p16]

4. Ans. (a) HDI [Ref. K. Park 22/e p16]

PQLI AND HDI

5. Ans. (b) Life expectancy at age 1 [Ref. Park 21/e p16, Park 22/e p16]

Also Remember

- Human poverty index [HPI] is complementary to HDI
- Human development index [HDI] Vs Physical quality index [PQLI]:

<table>
<thead>
<tr>
<th>Indicator components</th>
<th>HDI</th>
<th>PQLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Longevity – life expectancy at birth (LE/, LEO)</td>
<td>1. Life expectancy at 1 year age (LE,)</td>
<td></td>
</tr>
<tr>
<td>2. Income (Real GDP per capita in PPP US$)</td>
<td>2. Infant mortality rate (IMR)</td>
<td></td>
</tr>
<tr>
<td>3. Knowledge (Mean years of schooling – Gross enrolment ratio and Literacy rate)</td>
<td>3. Literacy rate</td>
<td></td>
</tr>
<tr>
<td>Range Value of India</td>
<td>0 to +1</td>
<td>0 to 100</td>
</tr>
<tr>
<td></td>
<td>0.554</td>
<td>65</td>
</tr>
</tbody>
</table>

Also Remember

- Human Poverty Index (HPI):
 - *HPI measures*: Deprivation in basic dimensions of human development
 - HPI is complimentary to Human Development Index (HDI)

<table>
<thead>
<tr>
<th>Components of HPI – I: (Used for developing countries)</th>
<th>Components of HPI – II: (Used for developed countries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability at birth of not surviving to age 40</td>
<td>Probability at birth of not surviving to age 60</td>
</tr>
<tr>
<td>Adult Illiteracy Rate</td>
<td>% adults (aged 16-65 years) lacking functional literacy skills</td>
</tr>
<tr>
<td>Un-weighted average of two indicators:</td>
<td>% people living below poverty line (BPL)</td>
</tr>
<tr>
<td>1. % population not using an improved water source</td>
<td>Rate of long term employment (12 months or more)</td>
</tr>
<tr>
<td>2. % children underweight-for-age</td>
<td></td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
6. Ans. (d) Per capita income [Ref. Park 21/e p16, Park 22/e p16]

7. Ans. (d) II, III and IV are correct [Ref. Park 21/e p16, Park 22/e p16]

8. Ans. (c) 25 years and 85 years [Ref. Park 21/e p17][Now 20 and 83.4 years]

9. Ans. (b) 0 to 1 [Ref. Park 21/e p16, Park 22/e p16]

Also Remember

- Few important ranges in Public Health:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range (Lies between)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient [r]</td>
<td>–1 to +1 ((-1 < r < +1))</td>
</tr>
<tr>
<td>Coefficient of determination ([r^2])</td>
<td>0 to +1 ((0 < r^2 < +1))</td>
</tr>
<tr>
<td>Physical quality of life index [PQLI]</td>
<td>0 to +100 ((0 < \text{PQLI} < +100))</td>
</tr>
<tr>
<td>Human development index [HDI]</td>
<td>0 to +1 ((0 < \text{HDI} < +1))</td>
</tr>
<tr>
<td>Probability</td>
<td>0 to +1 ((0 < \text{Probability} < 100%))</td>
</tr>
<tr>
<td>Sensitivity [screening test]</td>
<td>0% < Sensitivity < 100%</td>
</tr>
<tr>
<td>Specificity [screening test]</td>
<td>0% < Specificity < 100%</td>
</tr>
<tr>
<td>PPV (screening test)</td>
<td>0% < PPV < 100%</td>
</tr>
<tr>
<td>NPV (screening test)</td>
<td>0% < NPV < 100%</td>
</tr>
</tbody>
</table>

10. Ans. (a) Physical quality of life index [Ref. Park 21/e p16, Park 22/e p16]

11. Ans. (d) Life expectancy at birth [Ref. Park 21/e p16, Park 22/e p16]

12. Ans. (b) Life expectancy at birth [Ref. Park 21/e p16, Park 22/e p16]

13. Ans. (a) Literacy; (b) infant mortality [Ref. Park 21/e p16, Park 22/e p16]

14. Ans. (b) Life expectancy at birth; (d) Adult literacy rate; (e) GDP [Ref. Park 21/e p16, Park 22/e p16]

15. Ans. (b) IMR; (d) Life expectancy at 1 yr. age; (e) Literacy [Ref. Park 21/e p16, Park 22/e p16]

16. Ans. (b) Life expectancy at 1 year age [Ref. Park 22/e p16]

17. Ans. (c) Occupation [Ref. K Park 20/e p15]

18. Ans. NONE [NOW its 20 – 83.4 years] [Ref. K. Park 22/e p16]

19. Ans. (b) 0.545 [CURRENT value: 0.554] [Ref. K. Park 22/e p16]

20. Ans. (d) Income [Ref. K. Park 21/e p16]

21. Ans. (c) Gross enrolment of secondary education is considered and not primary education

[Ref. HDI Report 2005, United Nations]

- HDI = Education1/3 X Income1/3 X Longevity1/3
 Where, Education = 2/3 Adult literacy rate + 1/3 Gross enrolment ratio
 (Gross enrolment ratio considers Primary, Secondary and Tertiary levels of education)
 [PLEASE NOTE: 2011 onwards New methodology for Education Index calculation in HDI by formula: Education Index = (EYSI + MYSI)/2]

22. Ans. (c) 0 and 100 [Ref. Park 22/e p16]

Review Questions

23. Ans. (a) IMR, life expectancy, literacy [Ref. Park 21/e p16, Park 22/e p16]

24. Ans. (d) Infant Mortality Rate [Ref. Park 21/e p16, Park 22/e p16]

25. Ans. (b) MMR [Ref. Park 21/e p16, Park 22/e p16]

26. Ans. (d) GDP per capita [Ref. Park 21/e p16, Park 22/e p16]

27. Ans. (d) Longevity, income and literacy [Ref. Park 21/e p16, Park 22/e p16]
28. Ans. (b) Sex ratio [Ref. Park 21/e p16, Park 22/e p16]
29. Ans. (d) Longevity, Knowledge and Income [Ref. Park 21/e p16, Park 22/e p16]

INDICATORS OF HEALTH

30. Ans. (a) Life Expectancy [Ref. Park 21/e p24, 25, Park 22/e p22, 23]
 - Life Expectancy is a ‘Positive mortality indicator’

Also Remember
- DALY is a type of disability rate
- Bed turn-over ratio is a type of health care utilization rate

31. Ans. (d) Income of Head [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p17, Park 22/e p640, 39]
 - Modified Kuppuswami scale is a ‘Scale of Socio-economic Status of Urban families’. It comprises of 3 components:
 - Education Status of head of family
 - Occupation Status of head of family
 - Income per capita per month

32. Ans. (c) Sullivan’s index [Ref. Park 21/e p25, Park 22/e p23]
 - Sullivan’s Index = Life Expectancy MINUS Duration of disability (bed disability and inability to perform major activities)
 - It is one of the most advanced indicators currently available

33. Ans. (b) Disability adjusted life years [Ref. Park 21/e p26, Park 22/e p24]
 - Disability adjusted life years [DALYs]: Is a measure of the burden of disease in a defined population and the effectiveness of interventions; It expresses years lost to premature death and years lived with disability adjusted for its’ severity

Also Remember
- DALYs can measure ‘both mortality and disability together’
- Case fatality rate measures ‘virulence of an organism’ or ‘killing power of a disease’
- Dependency ratio measures the ‘need for society to provide for its’ younger and older groups’
- Morbidity data measures ‘any departure from health’

34. Ans. (b) Disability adjusted life year [Ref. Park 21/e p26, Park 22/e p24]
35. Ans. (d) Life expectancy at birth [Ref. K. Park 19/e p25; 20/e p26, Park 21/e p25,26, Park 22/e p23, 24]
 - Socio-economic indicators: [Mnemonic: He FLAGGED]
 - Housing
 - Literacy rate
 - Per capita GNP
 - Level of unEmployment
 - Family size
 - Availability per capitacalorie
 - Growth rate
 - Dependency ratio

36. Ans. (b) IMR [Ref. Park 21/e p25, Park 22/e p23]
 - Infant Mortality Rate [IMR]: Is one of the most universally accepted indicators of health status not only of infants, but also of the whole population and the socio-economic conditions under which they live
 - IMR is a sensitive indicator of availability, utilization and effectiveness of health care, particularly perinatal care
 - Infant Mortality Rate [IMR]:
 - Infant Mortality Rate [IMR] is a rate
 - Is the second best indicator of socio-economic development of a country: Ultimate solution for lowering IMR lies in socio-economic development [Best indicator is U5MR]
 - Is most important indicator of health status of a community, level of living and effectiveness of MCH services in general
 - IMR is among ‘the best predictors of state failure’
Also Remember

- **Disability adjusted life expectancy (DALE):** DALE brings more information than infant mortality rate (IMR) when comparing the overall health status of different populations. But, DALE is quite difficult to compute and to precisely understand. For countries with limited resources that require an easily calculated measure of population health, IMR may remain a suitable choice.
- **UNICEF considers U5MR or CMR as ‘single best indicator of socio-economic development and well-being’ (even better than IMR)

37. **Ans. (a) Life free of disability** [Ref. Park 21/e p25, Park 22/e p23]

 - The simplest index of health which incorporates morbidity as well as mortality is Sullivan’s Index of Disability-Free Life Expectancy (DFLE)

Also Remember

- **Chandler’s Index:** Hookworm eggs/gm of stool
- **Standard of living (WHO):** Income and occupation, standards of housing, sanitation and nutrition, level of provision of health, educational, recreational and other services
- **Pregnancy rate per HWY:** Pearl Index (Failure rate of Contraceptives)

38. **Ans. (c) Case fatality rate** [Ref. Park 21/e p54, Park 22/e p55]

CASE FATALITY RATE (CFR):

- CFR represents ‘killing power of a disease’
 - It is ‘closely related to virulence of organism’

\[\text{CFR} = \frac{\text{Total no. of deaths due to a disease}}{\text{Total no. of cases due to a disease}} \times 100 \]

- **CFR is a Proportion:** Always expressed in percentage
- **CFR is the ‘complement of Survival Rate’, thus CFR = 1 – Survival Rate**
- **Limitations of CFR:**
 - Time interval is not specified
 - Usefulness is limited for chronic diseases [CFR typically used in acute infections]
 - CFR for the same disease may vary in different epidemics

39. **Ans. (b) Human Poverty Index** [Ref. K. Park 21/e p17-18, 25-26, Park 22/e p23, 24]

40. **Ans. (d) Years lost to premature death and years lived with disability adjusted for severity of disability** [Ref. K. Park 21/e p26, Park 22/e p24]

41. **Ans. (d) Proportional mortality rate** [Ref. K. Park 22/e p23]

42. **Ans. (d) 20%** [Ref. K. Park 22/e p23]

43. **Ans. (a) IMR** [Ref. K. Park 22/e p23]

44. **Ans. (b) 1 lost year of healthy life** [Ref. K. Park 22/e p24]

45. **(c) HALE** [Ref. K. Park 22/e p24]

46. **Ans. (c) 10 per 1000** [Ref. K. Park 22/e p22-23]

47. **Ans. (a) Secondary attack rate** [Ref. K. Park 22/e p96]

48. **Ans. (c) Measures life expectancy adjusted without disability or free of disability** [Ref. K. Park 22/e p24]

49. **Ans. (a) Slightly positive** [Ref. Financial and Business Management for the Doctor of Nursing Practice, KT Waxman, 1/e p61]

- Bed turn over interval: Amount of time beds at hospital are unoccupied until next patients’ admission following a patients’ discharge
 - Negative values: Indicate over 100% occupancy, scarcity of beds, over-utilization of services
 - Positive values: Indicate vacant beds, underutilization of services due to defective admission process or poor quality medical care
 - Slight positive values: Indicate optimum utilization of services
Concepts of Health and Disease

Review Question

50. Ans. (a) Health status of community [Ref. Park 21/e p24, Park 22/e p22]
51. Ans. (a) Sullivan’s index [Ref. Park 21/e p25, Park 22/e p23]
52. Ans. (b) Disability Adjusted Life year [Ref. 21/e p26, Park 22/e p24]
53. Ans. (b) Age standardized death rate [Ref. Park 21/e p55, Park 22/e p56]
54. Ans. (d) Infant mortality rate [Ref. Park 21/e p25, Park 22/e p23]
55. Ans. (d) Lost year of life due to premature death and disability [Ref. Park 21/e p26, Park 22/e p24]

NATURAL HISTORY OF DISEASE

56. Ans. (d) Alzheimer’s disease [Ref. Park 21/e p42, Park 22/e p42]
 • ‘Silent epidemic’ of the century: Alzheimer’s disease

Also Remember

- Modern epidemic: Coronary heart disease
- Most important discovery of 20th century: ORS

57. Ans. (a) Diagnosed cases under treatment [Ref. Park 21/e p37, Park 22/e p37]
 • Iceberg Phenomenon of disease: Disease in a community may be compared to an iceberg
 - Floating tip is what physician sees in community, i.e., clinical cases
 - Vast submerged portion of iceberg represents hidden mass of disease i.e., latent, inapparent, pre-symptomatic and undiagnosed cases and carriers in community
 - Line of demarcation (water surface): Is between apparent and inapparent infections
 - Water surrounding iceberg: Healthy population

Also Remember

- ‘Epidemiologist is concerned with Hidden portion of iceberg’ whereas Clinician is concerned with Tip of iceberg
- ‘Screening is done for Hidden portion of Iceberg’ whereas diagnosis is done for tip of iceberg
- Iceberg phenomenon of disease is not shown by:
 - Rabies
 - Tetanus
 - Measles
 - Rubella

58. Ans. (d) Healthy population [Ref. Park 21/e p37, Park 22/e p37]
Refer to answer 54

59. Ans. (a) Screening is of no use in changing course of disease [Ref. Park 22/e p33, 34]
PREPATHOGENESIS PHASE OF DISEASE
- Is period before onset of disease in man (man at risk)
- Epidemiological triad: Interaction between agent, host and environment
- Primary level of prevention is possible
PATHOGENESIS PHASE OF DISEASE
- Begins with ‘Entry of organism’ in susceptible host
- Multiplication of organism, disease initiation and progression
- Final outcome may be recovery, disability or death
- Host may become a clinical case, subclinical case or carrier
- Secondary and tertiary levels of prevention are possible
- Screening of disease may improve prognosis and increase survival

60. Ans. (d) Helps to suggest ways to interrupt the risk of transmission [Ref. K. Park 22/e p32]
Review of Preventive and Social Medicine

61. Ans. (c) Epidemiological transition [Ref. Health and Lifestyle Change, Volume 9, p8]

62. Ans. (c) Religious factors [Ref. Community/Public Health Nursing Practice by Maurer & Smith, 5/e p167]

63. Ans. (a) Line diagram [Ref. K. Park 22/e p788]

Review Questions

64. Ans. (d) Investigator [Ref. Park 21/e p34, Park 22/e p34]

65. Ans. (b) Disability [Ref. Park 21/e p41, Park 22/e p41]

66. Ans. (d) Cohort study [Ref. Park 21/e p66, Park 22/e p67]

67. Ans. (b) Pre-pathogenesis period [Ref. Park 21/e p34, Park 22/e p34]

68. Ans. (d) Cohort study [Ref. Park 21/e p66, Park 22/e p67]

CONTROL OF DISEASE

69. Ans. (d) Identifying cases free of disability [Ref. Park 21/e p38, Park 22/e p38]

- Surveillance: Is the ongoing systematic collection and analysis of data and the provision of information which leads to action being taken to prevent and control a disease, usually one of an infectious nature.
- Surveillance is of many types:
 - Passive Surveillance: Data is itself reported to the health system; For e.g., A patient with fever coming on his own to the PHC, CHC, Dispensary, Private Practitioner, Hospital
 - Active Surveillance: Health system seeks out ‘actively’ the collection of data, i.e., goes out to community to collect data; For e.g., Stool sample collection from home in Polio Program.
 - Sentinel Surveillance: Monitoring of rate of occurrence of specific conditions to assess the stability or change in health levels of a population, It is also the study of disease rates in a specific cohort, geographic area, population subgroup, etc. to estimate trends in larger population; For e.g., Use of health practitioners to monitor trends of a health event in a population

1. Sentinel Surveillance helps in ‘identifying missing cases’ and ‘supplementing notified cases’

Also Remember

- Most of the national health programmes in India rely on Passive Surveillance for morbidity and mortality data collection.
- Active Surveillance: Is seen in NVBDCP (Health worker goes house to house every fortnight to detect fever cases, collect blood slides and provide presumptive treatment under malaria component) and National Leprosy Elimination Programme (Modified Leprosy Elimination Campaigns)
- Sentinel Surveillance is done in National AIDS Control Programme wherein STD Clinics, ANC Clinics have been identified as sentinel sites to monitor trends of HIV/AIDS in the country

70. Ans. (d) 1, 2, 3 and 4 are correct [Ref. Park 21/e p37, Park 22/e p37]

- Disease control primarily refers to ‘Primary and Secondary Levels’ of prevention
- Sequence of Disease Control:
 - Disease Control
 - Disease Elimination
 - Disease Eradication

Also Remember

- Concepts of control of disease:
 - Disease control: Is reducing the transmission of disease agent to such a low level that it ceases to be a public health problem; it aims at reducing,
 1. Incidence of the disease
 2. Duration of the disease
 3. Effects of infection
 4. Financial burden to the community
Concepts of Health and Disease

- **Disease elimination**: Is complete interruption of transmission of disease in a defined geographical area, but the causative organism may be persisting somewhere
 1. Disease elimination is a ‘geographical term’, i.e. can be used only for a country or a region
 2. India has eliminated 3 diseases till date:
 - i. Guineaworm (Dracunculiasis): February 2000
 - ii. Leprosy: December 2005 (Elimination criterion: <1/10,000)
 - iii. Yaws: Sep 2006
 3. Next diseases likely to be eliminated from India: Poliomyelitis, Kala azar, Neonatal tetanus, Lymphatic filariasis

- **Disease eradication**: Is complete ‘extermination’ of organism
 1. Is ‘tearing out by roots’ of a disease
 2. Exhibits ‘All or none phenomenon’
 3. Disease eradication is a ‘global term’, i.e. can be used only for whole planet
 4. World has eradicated ONLY 1 disease till date: Small pox (declared eradicated on 8 May, 1980)
 5. 3 next target diseases for eradication, globally:
 - i. Poliomyelitis
 - ii. Measles
 - iii. Guinea worm

71. Ans. **(c) Case finding is of secondary importance** [Ref. Park 21/e p38, Park 22/e p38]

 - **Disease eradication**:
 - In eradication, there is complete interruption of disease transmission in the entire area of the community
 - Eradication programme is over once the disease has been certified as having been eradicated
 - Case finding is of primary importance
 - Objective of eradication: Is to eliminate the disease to the extent that no new case occurs in the future

72. Ans. **(b) Surveillance** [Ref. Park 21/e p38, Park 22/e p38]

 - **Also Remember** [Ref. Park 21/e p38, Park 22/e p38]
 - **Diseases under International Surveillance [WHO]**:
 - Louse borne typhus fever
 - Relapsing fever
 - Poliomyelitis
 - Malaria
 - Human Influenza
 - Rabies
 - Salmonellosis
 - **Monitoring versus surveillance**:

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance and analysis of routine measurements aimed at detecting changes in environment or health status of a population</td>
<td>Continuous scrutiny of the factors that determine the occurrence and distribution of disease and other conditions of ill-health</td>
</tr>
<tr>
<td>One Time linear activity</td>
<td>Continuous Cycle</td>
</tr>
<tr>
<td>No feedback present</td>
<td>Feedback present</td>
</tr>
<tr>
<td>No inbuilt action component present</td>
<td>Inbuilt action component present</td>
</tr>
<tr>
<td>Stops once disease is eliminated/eradicated</td>
<td>Continues even after disease is eliminated/eradicated</td>
</tr>
<tr>
<td>Smaller concept</td>
<td>Broader concept</td>
</tr>
</tbody>
</table>

73. Ans. **(a) Control** [Ref. Park 21/e p37, Park 22/e p37]

74. Ans. **(a) Small pox (b) Guineaworm; (c) Yaws** [Ref. Park 21/e p132, Park 22/e p135]

75. Ans. **(b) Dracunculiasis; (c) Polio; (d) Measles** [Ref. Park 21/e p38, Park 22/e p38]

76. Ans. **(a) Small pox** [Ref. Park 21/e p132, Park 22/e p135]

77. Ans. **(a) Elimination** [Ref. Park 21/e p38, Park 22/e p38]

78. Ans. **(a) Herd immunity** [Ref. K. Park 22/e p37]
Review of Preventive and Social Medicine

79. Ans. (d) Identifying cases free of disability [Ref. K. Park 22/e p38]
80. Ans. (a) Elimination of disease [Ref. K. Park 22/e p37]
81. Ans. (a) Monitoring [Ref. K. Park 22/e p38]
82. Ans. (a) Tuberculosis [Ref. K. Park 22/e p38]
83. Ans. (c) Sentinel surveillance [Ref. K. Park 22/e p38]
84. Ans. (d) Supplementary to routine notification [Ref. K. Park 22/e p38]
85. Ans. (d) Virulence [Ref. K. Park 22/e p37]

Review Question

86. Ans. (d) 95 [Ref. 21/e p139, Park 22/e p141]
87. Ans. (a) 1 per 10,000 [Ref. 21/e p388, Park 22/e p391]
88. Ans. (b) Preventing the transmission totally [Ref. Park 21/e p38, Park 22/e p38]
89. Ans. (a) Prevention of chain of transmission [Ref. Park 21/e p38, Park 22/e p38]
90. Ans. (d) Interruption of disease transmission from large geographical areas [Ref. Park 21/e p38, Park 22/e p38]
91. Ans. (d) Regional removal of disease agent [Ref. Park 21/e p38, Park 22/e p38]
92. Ans. (c) Polio; (a) Tetanus [Ref. Park 21/e p38, 184, Park 22/e p38, 185]

PREVENTION OF DISEASE

93. Ans. (b) Personal hygiene and Environmental sanitation [Ref. Park 21/e p40, Park 22/e p40]
 • Specific protection mode of disease prevention: Is a Primary level of disease prevention (applied when risk factors are present in environment but disease has not yet taken place). Risk factors are already present but disease is prevented from occurring by using a specific modality. E.g., Chemoprophylaxis to prevent meningococcal meningitis, Usage of condoms to prevent pregnancy / STIs, Iodisation of salt to prevent Iodine Deficiency Disorders.
 • Personal hygiene and Environmental sanitation is Health Promotion mode of intervention, also a type of Primary level of prevention
94. Ans. (d) Reconstructive Surgery in Leprosy [Ref. Park 22/e p39-41]
 • Health screening for Diabetes Mellitus, Case finding for Falciparum malaria and Contact tracing for STIs represent Secondary level of prevention: as disease has possibly set in and we want to diagnose early and provide treatment
 • Reconstructive Surgery in Leprosy: Disease (leprosy) with possible deformities have already taken place and we are now aiming to rehabilitate the patient through reconstructive surgery; thus it is a form of Tertiary level of prevention
95. Ans. (b) Primary prevention [Ref. Park 21/e p39, 40, Park 22/e p39-40]

LEVELS OF PREVENTION:

 • Primordial Level of Prevention: Is primary prevention (see below) in purest sense
 - It is the prevention of the emergence or development of risk factors in countries or population groups in which they have not yet appeared
 - Modes of Intervention:
 1. Individual Education
 2. Mass Education
 - Primordial Level is Best level of prevention for Non-communicable diseases
 • Primary Level of Prevention:
 - It is the action taken prior to onset of disease, which removes the possibility that a disease will ever occur
 - Modes of Intervention:
 1. Health Promotion: Is targeted at strengthening the host through a variety of approaches/ interventions, e.g. Health Education, Environmental modifications, Nutritional interventions, Lifestyle and behavioural changes
2. Specific Protection: Is targeting the prevention of disease through a specific intervention
 - Primary level of prevention is applied when ‘risk factors are present but disease has not yet taken place’
 - It signifies ‘intervention in the Pre-pathogenesis Phase of a disease/ health problem’

• Secondary Level of Prevention:
 - It halts the progress of disease at its’ incipient stage and prevents complications
 - Modes of Intervention:
 1. Early Diagnosis: Detection of disturbances while biochemical, functional and morphological changes are still reversible or prior to occurrence of manifest signs and symptoms
 2. Treatment: Shortens period of communicability, reduces mortality and prevents occurrence of further cases (secondary cases) or any long term disability
 - Secondary level of prevention is applied when disease has possibly set in: It attempts to arrest the disease process, seek unrecognized disease and treat it before irreversibility and reverse communicability of infectious diseases
 - National Health Programmes by Govt. of India mostly operate at Secondary level of prevention
 - Secondary prevention is an imperfect tool in control of transmission of disease: It is more expensive and less effective than primary prevention
 - It is an important level of prevention for diseases like Tuberculosis, Leprosy and STDs

• Tertiary Level of Prevention:
 - Is applied when disease has advanced beyond early stages: It aims to reduce or limit impairments and disabilities, minimize suffering caused by existing departures from good health
 - Modes of Intervention:
 1. Disability Limitation: It ‘prevents the transition of disease from impairment to handicap’
 2. Rehabilitation: Training and retraining of an individual to the highest possible level of functional ability; It can be medical, vocational, social or psychological
 - Tertiary level of prevention signifies ‘intervention in late pathogenesis phase’

Also Remember

• All Vaccines (including Anti-rabies vaccine): Specific Protection mode of intervention, Primary Level of prevention
• Screening is predominantly Secondary Level of Prevention with some component of Primary Prevention also

96. Ans. (a) Primary [Ref. Park 21/e p39, 40, Park 22/e p39-40]
 In the given question, risk factor (fluoride rich water) is already present in the environment and step is taken (defluoridation of water) to prevent occurrence of disease (Fluorosis): Thus it is an example of Primary level of prevention (Mode of Intervention: Specific Protection)

97. Ans. (c) Resting affected limbs in neutral position [Ref. Essential Pediatrics O.P. Ghai, /e p212, Park 21/e p40, 41, Park 22/e p40-41]
 • Resting limbs in neutral position helps prevent overstretching of paralysed muscles, thereby limits further disability ‘Disability Limitation’ relates to all levels of prevention whereas ‘rehabilitation’ refers to taking individual to highest level of functional ability

Also Remember

• Reducing occurrence of polio by immunization: Primary Level of Prevention (Specific Protection)
• Arranging for schooling of child suffering from PRPP: Tertiary Level of Prevention (Vocational rehabilitation)
• Providing calipers for walking: Tertiary Level of Prevention (Medical Rehabilitation)

98. Ans. (b) Prevention of emergence of development of risk factors [Ref. Park 21/e p39, Park 22/e p39]

Also Remember

• Action taken prior to the onset of disease: Primary Prevention
• Action taken to remove the possibility that a disease will ever occur: Primary Prevention
• Action which halts the progress of a disease: Secondary Prevention

99. Ans. (d) Tertiary Prevention [Ref. Park 21/e p33, 40, Park 22/e p33, 40]
Concepts of Health and Disease

Levels of prevention

<table>
<thead>
<tr>
<th>Primary Level</th>
<th>Modes of intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Level</td>
<td>Health Promotion and Specific Protection</td>
</tr>
<tr>
<td>Tertiary Level</td>
<td>Early Diagnosis and Treatment</td>
</tr>
<tr>
<td></td>
<td>Disability Limitation and Rehabilitation</td>
</tr>
</tbody>
</table>

Modes of intervention

- Primary Level
- Secondary Level
- Tertiary Level

100. Ans. (b) Disease-Impairment-Disability-Handicap

According to WHO definitions,
- **Disease**: Any abnormal condition of an organism that impairs function
- **Impairment**: Any loss or abnormality of psychological, physiological or anatomical structure or function
- **Disability**: (Because of impairment,) any restriction or inability to perform an activity in a range considered normal for a human being
- **Handicap**: A disadvantage for a given individual, resulting from an impairment/disability, that limits/prevents fulfillment of a role considered normal (depending on age, sex, social, cultural factors) for that individual.

Also Remember

- **Continuum of disease-handicap**:
 - Disease: Intrinsic pathology
 - Impairment: Anatomical and functional abnormality
 - Disability: Activity restriction
 - Handicap: Psychosocial disadvantage

101. Ans. (c) Secondary
102. Ans. (b) Disability
103. Ans. (b) High fiber diet
104. Ans. (c) Salt restriction
105. Ans. (a) Fluoridation; (b) Dental health education
106. Ans. (b) Health education
107. Ans. (a) Salt restriction in high risk area; (c) Preservation of traditional diet in low NCD area
108. Ans. (a) Marriage counselling; (e) Immunisation
109. Ans. (b) Specific protection
110. Ans. (c) Secondary
111. (a) Breast self examination
112. Ans. (d) None
113. Ans. (a) 6 days
114. Ans. (a) Primordial prevention
115. Ans. (a) Primary prevention
116. Ans. (a) Primary prevention
117. Ans. (b) Patients
118. Ans. (c) Secondary
119. Ans. (b) Primary prevention
120. Ans. (a) Primordial prevention
121. Ans. (c) Secondary
122. Ans. (a) Pap smear
123. Ans. (c) Specific protection [Ref. K. Park 22/e p39-40]
124. Ans. (c) Secondary [Ref. K. Park 22/e p39-40]

Review Questions

125. Ans. (b) Vaccination [Ref. Park 21/e p39, Park 22/e p39]
126. Ans. (a) Primordial prevention [Ref. Park 21/e p39, Park 22/e p39]
127. Ans. (a) Specific protection [Ref. Park 21/e p39, 40, Park 22/e p40]
128. Ans. (d) Chemoprophylaxis [Ref. Park 21/e p40, Park 22/e p40]
129. Ans. (c) Rehabilitation [Ref. Park 21/e p39-42, Park 22/e p39-42]
130. Ans. (c) Strongyloides [Ref. Park 21/e p657, Park 22/e p659]
131. Ans. (c) Secondary prevention [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
133. Ans. (b) Life-style modification [Ref. Park 21/e p39-41, Park 22/e p39-41]
134. Ans. (a) Specific protection [Ref. Park 21/e p40, Park 22/e p40]
135. Ans. (d) Immunization [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
136. Ans. (c) Provision of 3 doses of OPV in early infancy [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
137. Ans. (c) Specific protection [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
138. Ans. (b) Disease [Ref. Park 21/e p41, Park 22/e p41]
139. Ans. (c) Early diagnosis and treatment [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
140. Ans. (a) Primordial [Ref. Park 21/e p39, Park 22/e p39]
141. Ans. (b) Primary [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
142. Ans. (a) Primary [Ref. Park 21/e p39, 40, Park 22/e p39, 40]
143. Ans. (b) Primary [Ref. Park 21/e p39, 40, Park 22/e p39, 40]

ICD – 10

144. Ans. (c) International Classification of Diseases, 10th revision [Ref. Park 21/e p46, 47, Park 22/e p46, 47]
 Refer to Theory

Also Remember

- ICF Classification (WHO): International Classification of Functioning, Disability and Health

145. Ans. (c) Arranged in 3 volumes [Ref. K. Park 22/e p47]
146. Ans. (c) 21 [Ref. K. Park 22/e p47]

Review Questions

147. Ans. (d) 10 years [Ref. Park 21/e p46, Park 22/e p46]
148. Ans. (c) 21 [Ref Internet Who report, ICD version 2006, Park 21/e p46, Park 22/e p46]
149. Ans. (b) 10th revision has 15 major chapters [Ref. Park 21/e p46, 47, Park 22/e p46, 47]

MISCELLANEOUS

150. Ans. (a) Apparent and Inapparent [Ref. Park 21/e p37, Park 22/e p37]

https://kat.cr/user/Blink99/
Also Remember

- Iceberg Phenomenon of disease is also sometimes known as ‘Biological spectrum of a disease’
- CLINICIAN’S FALLACY: The iceberg phenomenon thwarts attempts to assess the burden of disease and the need for services, as well as the selection of representative cases for study; this leads to what has been called the ‘clinician’s fallacy’ in which an inaccurate view of the nature and causes of a disease results from studying the minority of cases of the disease that are seen in clinical treatment

151. Ans. (b) Case fatality rate [Ref. Park 21/e p54, Park 22/e p55]

152. Ans. (d) All of the above [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p305, Park 21/e p61, Park 22/e p62]
- Periodic fluctuations:
 - Seasonal trends:
 1. Is seasonal variation/ fluctuation in occurrence of a disease
 2. Is due to vector variation, environmental factors and change in herd immunity
 3. Examples:
 i. Measles (early spring)
 ii. Upper respiratory infections (winters)
 iii. Gastrointestinal infections (summers)
 - Cyclical trends:
 1. Is occurrence of a disease in cycles spread over short periods of time, which may be days, weeks, months or years
 2. Examples:
 i. Measles (every 2-3 years)
 ii. Rubella (every 6-9 years)
 iii. Influenza pandemics (every 10-15 years)

153. Ans. (b) Individuals of a population [Ref. Internet]
- Intraspecies/Intraspecific competition: Competition between individuals of a same species
- Interspecies/Interspecific competition: Competition between individuals of two different species.

154. Ans. (a) It is synonymous with isolation [Ref. A Dictionary of Public Health, J. Kishore; p435, Park 21/e p111, Park 22/e p112]

Also Remember

- Isolation versus quarantine:

<table>
<thead>
<tr>
<th>Separation of Done for</th>
<th>Isolation</th>
<th>Quarantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of Prevention</td>
<td>Cases</td>
<td>Healthy contacts of cases</td>
</tr>
<tr>
<td>Duration</td>
<td>Cases themselves</td>
<td>Other persons around</td>
</tr>
<tr>
<td></td>
<td>Secondary (Treatment)</td>
<td>Primary (Specific Protection)</td>
</tr>
<tr>
<td></td>
<td>Till recovery</td>
<td>Till maximum incubation period</td>
</tr>
<tr>
<td></td>
<td>(period of communicability)</td>
<td>(6 days for Yellow Fever, IP=2-6 days)</td>
</tr>
</tbody>
</table>

155. Ans. (c) 9:1000 [Ref. Internet]

156. Ans. (c) Explosive [Ref. Park 21/e p61, Park 22/e p62]
- Single exposure common vehicle outbreak: Also known as ‘Point Source Epidemic’, where exposure to disease agent is brief and essentially simultaneous
 - Epidemic Curve rises and falls rapidly, with no secondary waves
 - Explosive: Clustering of cases within a narrow interval of time
 - All cases develop within one incubation period of disease
157. Ans. (d) Improving health care delivery [Ref. Park 21/e p27, 831-32, Park 22/e p25, 835-836]

Millennium Development Goals (MDGs - TO BE ACHIEVED BY 2015):

- Millennium Development Goals (MDGs) is a set of 8 Goals adopted by 189 countries at UN Millennium Summit in September 2000
- Baseline year was taken as 1990: ‘All MDGs have to be achieved by 2015’
- 3 of 8 goals (Goal 4, 5, 6), 8 of 18 targets and 18 of 48 indicators are ‘directly’ health related
 - Goal 1: Eradicate extreme poverty and hunger
 - Goal 2: Achieve universal primary education
 - Goal 3: Promote gender equality and empower women
 - Goal 4: Reduce child mortality (Reduce by two-thirds the under-five mortality rate)
 - Goal 5: Improve maternal health (Reduce by three-quarters the maternal mortality ratio)
 - Goal 6: Combat HIV/AIDS, malaria and other diseases
 - Goal 7: Ensure environmental sustainability
 - Goal 8: Develop a global partnership for development

Also Remember

158. Ans. (b) 8th May 1980 [Ref. Park 21/e p132, Park 22/e p135]

- Last indigenous case of Smallpox in India: 17th May 1975
- Last [importation] case of Smallpox in India: 24th May 1975
- India declared Smallpox-free: April 1977
- Last case of Smallpox globally: 26th October 1977 (Somalia)
- Actual last case of Smallpox [Laboratory accident]: 1978
- Global eradication of Smallpox: 8th May 1980

159. Ans. (d) Age distribution [Ref. K. Park 21/e p55, Park 22/e p56]

160. Ans. (a) Reduction of cardiovascular health hazards [Ref. K. Park 22/e p26]

161. Ans. (b) Occurs in one incubation period [Ref. K. Park 22/e p62]

162. Ans. (a) Point source epidemic [Ref. K. Park 22/e p62]

163. Ans. (a) Reduce by 2/3rd the under five mortality by year 1990-2015 [Ref. K. Park 22/e p26]

164. Ans. (a) 3/4 [Ref. K. Park 22/e p26]

165. Ans. (c) secular trends [Ref. K. Park 22/e p62]

166. Ans. (b) Duration more than one incubation period [Ref. K. Park 22/e p62]

167. Ans. (a) Variations in herd immunity [Ref. K. Park 22/e p62]

168. Ans. (c) Propagated epidemic [Ref. Park 22/e p62]
Review Questions

169. Ans. (a) Scrutiny of factors [Ref. Park 21/e p38, Park 22/e p38]
170. Ans. (c) Sentinel surveillance [Ref. Park 21/e p38, Park 22/e p38]
171. Ans. (c) PEM [Ref. Park 21/e p37, Park 22/e p37]
172. Ans. (a) For longest incubation period of disease [Ref. Park 21/e p111, Park 22/e p112]
173. Ans. (a) Immediate cause, and the direct underlying cause which started the whole trend of events leading to death [Ref. Park 21/e p52, 53, Park 22/e p53, 54]
174. Ans. (c) 21 days [Ref. Park 21/e p779, Park 22/e p783]
175. Ans. (d) 21 days [Ref. Internet, Park 21/e p779, Park 22/e p783]
176. Ans. (a) Longest incubation period [Ref. Park 21/e p111, Park 22/e p112]
177. Ans. (c) Whooping cough [Ref. Park 21/e p153, Park 22/e p155]
Definition And Epidemiological Methods

Types of Epidemiological Studies

- Types of epidemiological studies:

<table>
<thead>
<tr>
<th>Type of epidemiological study</th>
<th>Unit of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Observational studies(^a)</td>
<td></td>
</tr>
<tr>
<td>a. Descriptive studies (Hypothesis formulation(^b))</td>
<td></td>
</tr>
<tr>
<td>b. Analytical studies (Hypothesis testing(^c))</td>
<td></td>
</tr>
<tr>
<td>i. Cohort study</td>
<td>Individual</td>
</tr>
<tr>
<td>ii. Case control study</td>
<td>Individual</td>
</tr>
<tr>
<td>iii. Cross sectional study</td>
<td>Individual</td>
</tr>
<tr>
<td>iv. Ecological study</td>
<td>Population(^d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Experimental studies (Hypothesis confirmation(^d))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Randomized controlled trial</td>
<td>Patients(^d)</td>
</tr>
<tr>
<td>b. Field trial</td>
<td>Healthy people</td>
</tr>
<tr>
<td>c. Community trial</td>
<td>Community</td>
</tr>
<tr>
<td>d. Clinical trial</td>
<td>Patients</td>
</tr>
</tbody>
</table>

- Synonyms of names of epidemiological studies\(^d\):

<table>
<thead>
<tr>
<th>Type of epidemiological study</th>
<th>Unit of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Prospective study</td>
</tr>
<tr>
<td></td>
<td>Forward looking study</td>
</tr>
<tr>
<td></td>
<td>Cause to effect study</td>
</tr>
<tr>
<td></td>
<td>Risk factor to disease study</td>
</tr>
<tr>
<td></td>
<td>Exposure to outcome study</td>
</tr>
<tr>
<td></td>
<td>Follow-up study</td>
</tr>
<tr>
<td></td>
<td>Incidence study</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Prevalence study</td>
</tr>
<tr>
<td></td>
<td>SNAPSHaOT of population study</td>
</tr>
<tr>
<td>Case control study</td>
<td>Retrospective study</td>
</tr>
<tr>
<td></td>
<td>Backward looking study</td>
</tr>
<tr>
<td></td>
<td>Effect to cause study</td>
</tr>
<tr>
<td></td>
<td>Disease to risk factor study</td>
</tr>
<tr>
<td></td>
<td>Outcome to exposure study</td>
</tr>
<tr>
<td></td>
<td>TROHOC study</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Correlational study</td>
</tr>
</tbody>
</table>

Evidence Based Medicine/ Practice

- Is considered 'Gold standard for clinical practice\(^e\)'
- Aims to apply best available evidence gained from scientific method to clinical decision making
- Highest importance is given to strongest epidemiological studies:
 - Most important: Meta-analyses, Systematic reviews, Blinded trials
 - Least importance: Opinions and conventional wisdom of researchers and experts
- Statistical parameters used:
 - Likelihood ratios
 - Receiver operator characteristic curve

Evidence Based Medicine/ Practice

Is considered 'Gold standard for clinical practice'
Evidence-Pyramid in Research [From top to bottom]⁰

- Meta-analysis (Highest clinical relevance: GOLD STANDARD⁰)
- Systematic review
- Cohort study
- Case control study
- Case series
- Case report⁰
- Ideas, Editorials, Opinions⁰
- Animal research
- In-vitro (test-tube) research (Lowest clinical relevance⁰)

MEASUREMENTS IN EPIDEMIOLOGY

Tools of Measurement In Epidemiology

- **Rate:** Numerator (a) is a part of denominator (b) and multiplier is 1000 or 10,000 or 100,000 or so on...
- **Ratio:** Numerator (a) is not a part of denominator (b) and BOTH numerator and denominator are unrelated
- **Proportion:** Numerator (a) is a part of denominator (b) and multiplier is 100

 Proportion is always expressed in percentage (%)

Examples of Tools of Measurement in Epidemiology

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Numerator (N) & Denominator (D)</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant mortality rate (IMR)</td>
<td>No. of infant deaths X 1000 No. of Live births</td>
<td>N is a part of D; multiplier NOT 100</td>
<td>Rate</td>
</tr>
<tr>
<td>Maternal mortality rate (MMR)</td>
<td>No. of maternal deaths X 10000 No. of Live births</td>
<td>N is NOT a part of D; both unrelated</td>
<td>Ratio</td>
</tr>
<tr>
<td>Sex ratio (SR)</td>
<td>No. of females X 1000 No. of males</td>
<td>N is NOT a part of D; both unrelated</td>
<td>Ratio</td>
</tr>
<tr>
<td>Incidence²</td>
<td>No. of new case X 1000 Total population at risk</td>
<td>N is a part of D; multiplier NOT 100</td>
<td>Rate</td>
</tr>
<tr>
<td>Prevalence²</td>
<td>No. of new + old cases X 100 Total population</td>
<td>N is a part of D; multiplier 100</td>
<td>Proportion</td>
</tr>
<tr>
<td>Case fatality rate² (CFR)</td>
<td>No. of deaths X 100 No. of cases</td>
<td>N is a part of D; multiplier 100</td>
<td>Proportion</td>
</tr>
<tr>
<td>Relative risk (RR²)</td>
<td>Incidence among exposed Incidence among non-exposed</td>
<td>N is NOT a part of D; both unrelated</td>
<td>Ratio</td>
</tr>
</tbody>
</table>

Indicators of Health

- **Mortality indicators⁰:**
 - Crude death rate (CDR)
 - Life expectancy (LE⁰)
 - Infant mortality rate (IMR)
 - Child mortality rate (CMR)
 - Under 5 proportional mortality rate (U5MR)
 - Maternal mortality rate (MMR)
 - Disease specific mortality
 - Proportional mortality rate

https://kat.cr/user/Blink99/
• Morbidity indicators:
 - Incidence and prevalence
 - Notification rates
 - Attendance rates at OPD, health centres
 - Admission, re-admission and discharge rates
 - Duration of stay in hospital
 - Spells of sickness or absence from work/school
• Disability rates:

<table>
<thead>
<tr>
<th>Event type indicators</th>
<th>Person type indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of days of restricted activity</td>
<td>Limitation of mobility:</td>
</tr>
<tr>
<td>Bed disability days</td>
<td>Confined to bed/ house</td>
</tr>
<tr>
<td>Work-loss days</td>
<td>Special aid in getting around</td>
</tr>
</tbody>
</table>

• Nutritional status indicators:
 - Anthropometric measurements of preschool children
 - Heights of children at school entry
 - Prevalence of Low birth weight
• Health care delivery indicators:
 - Doctor – population ratio
 - Doctor – nurse ratio
 - Population – bed ratio
 - Population per health centre
 - Population per traditional birth attendant
• Utilization rates:
 - Proportion of infants fully immunized against 6 EPI diseases
 - Proportion of pregnant women who receive antenatal care
 - Percentage of population using various methods of family planning
 - Bed-occupancy rate
 - Bed turn over ratio
• Indicators of social and mental health: Suicide/ homicide/ acts of violence/ traffic accidents/ alcohol or tobacco use rates
• Environmental indicators: Air or water pollution indicators, Proportion of population having access to safe water supply and sanitation
• Socio-economic indicators: Per capita GNP, Level of unemployment, Dependency ratio, Literacy rates
• Health policy indicators: Proportion of GNP spent on health services, Proportion of GNP spent on health related activities
• Indicators for quality of life: Physical quality of life index (PQLI)
• Other indicators: Social indicators, HFA indicators, MDGs indicators

INTERNATIONAL DEATH CERTIFICATE (IDC)

WHO Recommended Death Certificate (For International Use: IDC)

• Consist of four lines:
 - Line Ia: Disease or condition directly leading to death
 - Line Ib: Antecedent/ underlying cause
 - Line Ic: MAIN ANTECEDENT/ UNDERLYING CAUSE
 - Line II: Other significant conditions contributing to death BUT not related to disease/ condition causing it
• Example of a death certificate:
 - Line Ia: Renal failure
 - Line Ib: Diabetic nephropathy
Mortality Measurements

Crude Death Rate (CDR) & Crude Birth Rate (CBR)

- **Crude birth rate (CBR):** Annual number of live births per 1000 mid-year population
 \[
 CBR = \frac{\text{No. of births in an area in a year}}{\text{Total Mid-year population}^2} \times 1000
 \]

- **Crude death rate (CDR):** Annual number of deaths per 1000 mid-year population
 \[
 CDR = \frac{\text{No. of deaths in an area in a year}}{\text{Total Mid-year population}^2} \times 1000
 \]

Findings of SRS Bulletin: [September 2013]
- Crude Birth Rate (CBR): 21.6 per 1000 mid-year population
- Crude Death Rate (CDR): 7.0 per 1000 mid-year population

Specific Death Rate (SDR)

- May be cause/disease-specific or group specific (age-specific, sex-specific, age-sex specific)
- Help identify particular ‘at risk’ group(s) for preventive action
- Permit comparison between different causes within same population
 \[
 SDR = \frac{\text{No. of deaths from a specific cause in a year}}{\text{Mid-year population}}
 \]

Proportional Mortality Rate (PMR)

- PMR is number of deaths due to a particular cause (or in a specific age group) per 100 (or 1000) total deaths
- **Advantages of PMR:**
 - Is ‘simplest measure of estimating the burden of a disease’ in the community
 - Is a useful health status indicator: Indicates magnitude of preventable mortality
- **Disadvantages of PMR:**
 - Is of limited value in making comparisons between population groups or different time periods
 - Does not indicate the risk of members of population contracting or dying from the disease

Case Fatality Rate (CFR)

- CFR represents ‘killing power of a disease’
 - It is ‘closely related to virulence of organism’
- **CFR is a Proportion:** Always expressed in percentage
- **CFR is the ‘complement of Survival Rate’**
 - CFR = 1 – Survival Rate
- **Limitations of CFR:**
 - Time interval is not specified
 - Usefulness of CFR is limited for chronic diseases
 \[
 CFR = \frac{\text{Total no. of deaths due to a disease}}{\text{Total no. of cases due to a disease}} \times 100
 \]
Survival Rate (SR)

- **Survival rate:** Is the proportion of survivors in a group (e.g. of patients), studied and followed over a period of time (e.g. over a period of 5 years)
- Is used to ‘describe prognosis’ in certain disease conditions
- Quite useful in cancer studies
- Can be used as a ‘yardstick for the assessment of standards of therapy’
- Survival period is usually reckoned from date of diagnosis or start of treatment

\[
SR = \frac{\text{Total no. of patients alive after 5 years}}{\text{Total no. of patients diagnosed/treated}} \times 100
\]

Standardization of Death Rates

- **Adjusted or standardized rates:**
 - While comparison of death rates of two populations, ‘crude death rate is not the right yardstick’, as age-compositions are different
 - Age-adjustment or age-standardization removes confounding effect of different age structures
 - Standardization may be direct or indirect
 - Standardization is carried out beginning by using a ‘Standard Population’
- **Standard population:** Is a population where numbers in each age and sex group are known
 - Two frequently used standard populations are:
 - Segi world population
 - European standard population
 - Choice of standard population is arbitrary
 - Available standard populations may be used
 - Standard population may also be created using 2 populations
 - National population need not always be taken as Standard population
 - Is commonly used in occupational studies: Comparison of mortality in an industry and general population
 - Can be used for occurrence of disease (rather than death)

Types of Standardized Death Rates

- **Direct standardization:**
 - **Method:**
 - Age-specific rates of the population (whose crude death rate is to be standardized) is applied on a standard population
 - Total expected deaths calculated
 - Total expected deaths divided by total standard population to yield standardized death rate
 - **Feasibility:**
 - Availability of age-specific death rates (ASDR)
 - Availability of population in each age group
- **Indirect standardization:** **Standardized mortality ratio (SMR):** Is simplest and most useful form
 - **Method:** Calculate expected deaths, assuming that study group experiences the death rates of a standard population
 - **Feasibility:** Permits adjustment where age-specific rates are not available or are unstable because of small numbers
 - **Examples of indirect Standardization:**
 - **Standardized mortality ratio (SMR):**
 \[
 SMR = \frac{\text{Observed deaths}}{\text{Expected deaths}} \times 100
 \]
 - Life Table Analysis
 - Survival Analysis

NATIONAL POPULATION
Need not always be taken as Standard population

DIRECT STANDARDIZATION
Feasibility:
Availability of age-specific death rates (ASDR)
Review of Preventive and Social Medicine

- Regression Analysis
- Multivariate Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>Direct Standardization</th>
<th>Indirect Standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of deaths in each age group</td>
<td>Use actual ASDRs* on the standard age structure</td>
<td>Use standard ASDRs* on the actual age structures</td>
</tr>
<tr>
<td>Population in each age group</td>
<td>Both are available</td>
<td>Both are unavailable</td>
</tr>
</tbody>
</table>

(ASDR* = Age Specific Death Rates)

MORBIDITY MEASUREMENTS

Incidence

- **Incidence**: Is defined as the ‘no. of new cases’ occurring in a defined population during a specified period of time.
- **For a given period,**
 \[
 \text{Incidence} = \frac{\text{No. of new cases of a disease in a year}}{\text{Total population at risk}} \times 1000
 \]
 - **Incidence is a RATE**, expressed per 1000
- **Special types of incidence rates**:
 - **Attack rate**: Incidence rate used when population is exposed for a small interval of time, e.g. epidemic
 - **Secondary Attack Rate (SAR)**: Is no. of exposed persons developing the disease within range of incubation period, following exposure to the primary case
- **Incidence is the best measure of disease frequency in etiological studies**
 - **Incidence can be determined from**: Cohort study

Prevalence

- **Prevalence**: Is total current (Old + New) cases in a given population over a point or period of time.
- **Types of prevalence**:
 - a point of time (**Point Prevalence**)
 - a period of time (**Period Prevalence**)
 \[
 \text{Prevalence} = \frac{\text{No. of total (new + old) cases of a disease in a year}}{\text{Total population}} \times 100
 \]
 - **PREVALENCE IS A PROPORTION** (Prevalence IS NOT A RATIO): Numerator is a part of denominator, and is always expressed in percentage
- **Prevalence can be determined from**: Cross Sectional Study
- **Relationship between Incidence and Prevalence**: **Given the assumption** that population is stable AND incidence & duration are unchanging,
 \[
 \text{Prevalence} = \text{Incidence} \times \text{Mean duration of the disease} \quad P = I \times d
 \]
 - Prevalence describes balance between incidence, mortality and recovery
 - Incidence reflects causal factors
 - Duration reflects the prognostic factors

DESCRIPTIVE EPIDEMIOLOGY

Time Distribution of Disease

Please Refer to Chapter 2
Types of Epidemics

• **Single exposure or ‘Point source’ epidemics:**
 - ‘Sharp rise and sharp fall’ in no. of cases
 - ‘Clustering of cases’ in a narrow interval of time
 - All ‘cases develop within one incubation period’ of the disease
 - Examples: Food poisoning, Measles, Chicken pox, Cholera, BHOPAL GAS TRAGEDY

• **‘Common source’, continuous or repeated exposure epidemics:**
 - ‘Sharp rise’ in no. of cases
 - Fall in no. of cases is interrupted by ‘Secondary waves/peaks’
 - Examples: Contaminated well in a village, nationally distributed brand vaccine or food, prostitute in a gonorrhoea outbreak, LEGIONNAIRE’S DISEASE outbreak in Philadelphia (1976)

• **Propagated epidemics:**
 - ‘Gradual rise and gradual fall’ over a long time (Tail off)
 - Results from ‘person-to-person transmission’
 - Speed of spread depends upon herd immunity, secondary attack rate, opportunities for contact
 - Examples: HIV, tuberculosis

Endemic

• **Endemic:** Constant presence of a disease or infectious agent in a defined geographical area
 - Is the ‘usual or expected frequency’ of a disease in a population

• **Types of Endemic:**
 - **Hyper-endemic:** Constant presence of a disease or infectious agent at high incidence/prevalence AND affects all age groups equally
 - **Holo-endemic:** A high level of infection beginning early in life AND affecting most of the children population

Pandemic

• **Pandemic:** An epidemic usually affecting a large proportion of the population, occurring over a large geographical area such as part of a nation, nation, continent or world (Country-to-country spread)

Sporadic

• **Sporadic:** Cases which are ‘scattered about’
 - Cases are widely separated in space and time
 - Show little or no connection with each other
 - There is no recognizable source of infection

ANALYTICAL EPIDEMIOLOGY

Exposure & Outcome in Analytical Studies

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Remarks</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective cohort study</td>
<td>Occurred</td>
<td>Followed-up</td>
<td>Start with exposure</td>
</tr>
<tr>
<td>Retrospective cohort study</td>
<td>Occurred</td>
<td>Occurred</td>
<td>Start with exposure</td>
</tr>
</tbody>
</table>

Contd...
Review of Preventive and Social Medicine

Contd...

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Occurred</th>
<th>Occurred; further assessed in future</th>
<th>Start with exposure</th>
<th>Forward looking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case control study</td>
<td>Occurred</td>
<td>Occurred</td>
<td>Start with outcome</td>
<td>Backward looking</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Occurred</td>
<td>Occurred</td>
<td>Both exposure and outcome assessed at a point of time</td>
<td>Neither forward looking nor backward looking</td>
</tr>
</tbody>
</table>

- *In a Prospective cohort study, Outcome has not yet occurred when the study has begun:* Only exposure has occurred; we look for development of same disease in both exposed and non-exposed groups
- *In a Retrospective cohort study, both exposure as well as outcome have occurred when the study has begun:* First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups
- *In a Combined prospective-retrospective cohort study, both exposure as well as outcome have occurred when the study has begun:* First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups; later cohort is followed prospectively into future for outcome
- *In a Case control study, both exposure as well as outcome have occurred when the study has begun:* First we take outcome into consideration, and then go back in time taking exposure into consideration; then compare exposure in both diseased (cases) and non-diseased (controls)
- *In a nested case control study, only exposure has occurred when the study begins; when the disease develops in a population, then 2 groups of cases (diseased) and controls (non-diseased) are formed and their exposure status is compared*
- *In a case-series study, both exposure as well as outcome have occurred when the study has begun:* First we take outcome into consideration, and then go back in time taking exposure into consideration; there is NO COMPARISON with non-diseased (controls)
- *In a prevalence survey (cross-sectional study), exposure as well as outcome may co-exist at the time of study (there is no longitudinal direction)*

Cohort Study

- Is a type of analytical (observational) study used for 'hypothesis testing'
- *Is known by several synonyms*:
 - Prospective study
 - Forward looking study
 - Cause to effect study
 - Exposure to outcome study
 - Risk factor to disease study
 - Incidence study
 - Follow up study
- *Types of cohort studies*:
 - Prospective cohort study:
 - Known as ‘Current cohort study’ or ‘Concurrent cohort study’
 - Outcome has not yet occurred when the study has begun: Only exposure has occurred; we look for development of same disease in both exposed and non-exposed groups
 - Examples:
 1. Framingham heart study
 2. Doll & Hills prospective study on smoking and lung cancer
 - Retrospective cohort study:
 - Known as ‘Historical cohort study’ or ‘Non-concurrent cohort study’
 - Combines advantages of both Cohort study and Case control study
- Both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups
- Sample size required is same as that of prospective cohort study
- Examples:
 1. Effect of fetal monitoring on neonatal deaths
 2. PVC exposure and angiosarcoma of liver
- **Combined prospective-retrospective cohort study**: Known as ‘Mixed cohort study’
- Combines designs of both prospective cohort study and retrospective cohort study
- Both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups; later cohort is followed prospectively into future for outcome
- Examples: Court-Brown & Doll study on effects of radiation therapy

Strength of Association in Cohort Study

- Strength of association in a cohort study is evaluated by Q:
 - Relative risk (RR)
 - Attributable risk (AR)
 - Population attributable risk (PAR)
- **Relative risk (RR)** = Incidence among exposed / Incidence among non-exposed 9
 - Interpretation of RR 9: Incidence of lung disease among exposed IS SO MANY TIMES HIGHER as compared to that among non-exposed
- **Attributable risk (AR)** = (Incidence among exposed – Incidence among non-exposed) / Incidence among exposed $\times 100$
 - Interpretation of AR q: So much disease can be attributed to exposure
- **Population attributable risk (PAR)** = (Incidence among total – Incidence among non-exposed) / Incidence among total $\times 100$
 - Interpretation of PAR q: If risk factor is modified or eliminated, there will be so much annual reduction in incidence of disease in the given population

Interpretation of Relative Risk (RR)

<table>
<thead>
<tr>
<th>RR</th>
<th>Interpretation 2</th>
<th>Example</th>
</tr>
</thead>
</table>
| $RR > 1$ | $I_{exp} > I_{nonexp}$
(So many times chances/incidence of disease development is more among exposed as compared to non-exposed (Positive Association)) | Smoking, Lung Cancer |
| $RR = 1$ | $I_{exp} = I_{nonexp}$
(Chances/incidence of disease development is same among exposed as compared to non-exposed (No Association)) | Smoking, HIV/AIDS |
| $RR < 1$ | $I_{exp} < I_{nonexp}$
(Chances/incidence of disease development is less among exposed as compared to non-exposed (Negative Association)) | Vitamin-A intake, Epithelial cancers |
Framingham Heart Study

- *Is a classical example of cohort study*
 - Initiated in 1948 by US Public Health Service at Framingham, a town in Massachusetts, USA
- *Aim*: To study the relationship of risk factors (serum cholesterol, blood pressure, weight, smoking) to the subsequent development of cardiovascular diseases
 - *Age group*: 30 – 62 years
 - *Sample size*: 5127 (4469 - 69% of the sample actually underwent first examination)
- *Method*: Multiple exposure were studied, as well as complex interactions among the exposures using multivariate techniques
 - *Follow-up*:
 - Study population was examined every 2 years for 20 years
 - Daily surveillance of hospitalizations at only hospital at Framingham
- *Findings of study*:
 - Increasing risk of CHD with increasing age & more seen in males
 - Hypertensive have a greater risk of CHD
 - Elevated blood cholesterol level is associated with CHD
 - Tobacco smoking and habitual use of alcohol increase risk of CHD
 - Increased physical activity decrease CHD development
 - Increase in body weight is associated predisposes to CHD
 - Diabetes mellitus increases risk of CHD

Cohort Studies Versus Case Control Studies

<table>
<thead>
<tr>
<th></th>
<th>Cohort Studies</th>
<th>Case Control Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before start</td>
<td>Only exposure has occurred</td>
<td>Both exposure as well as outcome have occurred</td>
</tr>
<tr>
<td>Synonyms</td>
<td>Prospective study</td>
<td>Retrospective study</td>
</tr>
<tr>
<td></td>
<td>Forward looking study</td>
<td>Backward looking study</td>
</tr>
<tr>
<td></td>
<td>Cause to effect study</td>
<td>Effect to cause study</td>
</tr>
<tr>
<td></td>
<td>Exposure to outcome study</td>
<td>Outcome to exposure study</td>
</tr>
<tr>
<td></td>
<td>Risk factor to disease study</td>
<td>Disease to risk factor study</td>
</tr>
<tr>
<td></td>
<td>Incidence study</td>
<td>TROHOC study</td>
</tr>
<tr>
<td></td>
<td>Follow up study</td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td>Provides Incidence, Relative risk</td>
<td>Easy to carry out</td>
</tr>
<tr>
<td></td>
<td>Allows study of several etiological factors</td>
<td>Rapid & Inexpensive</td>
</tr>
<tr>
<td></td>
<td>simultaneously</td>
<td>No risk to subjects</td>
</tr>
<tr>
<td></td>
<td>No Recall bias</td>
<td>Minimal ethical problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No loss to follow up/Attrition</td>
</tr>
<tr>
<td></td>
<td></td>
<td>‘Particularly suitable to investigate rare diseases’</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Ethical problems</td>
<td>Selection of an appropriate control group may be</td>
</tr>
<tr>
<td></td>
<td>Loss to follow up (attrition)</td>
<td>difficult</td>
</tr>
<tr>
<td></td>
<td>Time consuming</td>
<td>Cannot measure incidence: can only estimate Odds</td>
</tr>
<tr>
<td></td>
<td>Expensive</td>
<td>ratio Recall bias</td>
</tr>
<tr>
<td></td>
<td>Not suitable to investigate rare diseases</td>
<td></td>
</tr>
<tr>
<td>Strength of association</td>
<td>Relative risk</td>
<td>Odds ratio</td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PAR</td>
<td></td>
</tr>
</tbody>
</table>

Controls in a Case Control Study

- In a case control study, selection of controls is a prerequisite
- If the study group is small, choose up to 4 controls per case (In larger studies with equal cost to collect cases and controls 1 : 1 is sufficient)
- Cases are diseased individuals, Controls are those free from the disease under study
- Controls must be similar to cases, as much as possible except for the absence of disease under study

https://kat.cr/user/Blink99/
• Sources of controls:
 - Hospital controls: are often a ‘source of selection bias’
 - Neighbourhood controls: provide similar socio-economic and living conditions
 - Relatives: Sibling controls are unsuitable in genetic studies
 - General population: by choosing a random sample
 - Best friends controls

Strength of Association in a Case Control Study

• Strength of association in a case control study: Case Control Study cannot provide with incidences, so Relative Risk cannot be calculated; so in a Case Control Study, we calculate ‘an estimate of Relative Risk’, known as ‘Odds Ratio’ (CROSS PRODUCT RATIO)
• CORRECT TABLE CONSTRUCTION in a case control study: Table will have disease at the top (row) and history of exposure/ risk factor on the left (column)
• Odds Ratio In a 2×2 table for a case control study:

<table>
<thead>
<tr>
<th></th>
<th>Disease Present (cases)</th>
<th>Disease Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure present</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Exposure absent</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Odds Ratio (Cross Product Ratio) = $\frac{ad}{bc}$

Relative Risk (RR) Versus Odds Ratio (OR)

<table>
<thead>
<tr>
<th></th>
<th>Relative risk (RR)</th>
<th>Odds Ratio (OR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Risk ratio</td>
<td>Cross product ratio</td>
</tr>
<tr>
<td>Utility</td>
<td>Estimates strength of association in a cohort study</td>
<td>Estimates strength of association in a case control study</td>
</tr>
<tr>
<td>Measure of strength of association</td>
<td>More accurate estimate</td>
<td>Less accurate (only an estimate of RR)</td>
</tr>
<tr>
<td>Calculation</td>
<td>Exposed/ Inexposed</td>
<td>$\frac{ad}{bc}$</td>
</tr>
</tbody>
</table>

Cross Sectional Study

• Is based on the single examination of a cross-section of a population ‘at one point of time’, results of sample are then projected to whole population
• Is simplest form of observational epidemiological study
• Advantages:
 - Provides ‘Prevalence of the disease’ under study
 - Gives ‘Snapshot of a population’
 - More useful for chronic diseases
• Disadvantages:
 - Tells about distribution of a disease, ‘rather than its etiology’
 - Cannot establish causality as ‘does not establish time sequence’
 - Provides little information about natural history of disease or incidence

Ecological Study (Correlational Study)

• Type of analytical (observational) epidemiological study which provide the ‘least satisfactory type of evidence on causality’
• Is the least preferable observational/ analytical study design
• Units of study: Population
• Done in a small time frame: Inexpensive; use data that is already available
• Advantage: Data can be used from populations with different characteristics
• Disadvantages:
- Potential problem: Socio-economic confounding
- Ecological fallacy: Is an error of interpretation of statistical data in an ecological study, whereby characteristics are ascribed to a group of individuals which they may not possess as individuals

Utilities of Epidemiological Studies

- Preference of epidemiological studies for establishing causality:
 - 1st preference: Meta-analysis
 - 2nd preference: Randomised controlled trials (RCTs)
 - 3rd preference: Retrospective (Non-concurrent/ Historical) cohort study
 - 4th preference: Prospective cohort study (Concurrent cohort study)
 - 5th preference: Case control study
 - 6th preference: Cross-sectional study
 - 7th preference: Ecological study

- Useful Parameter(s) obtained by epidemiological studies:

<table>
<thead>
<tr>
<th>Epidemiological studies</th>
<th>Useful parameter(s) obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Incidence, Relative risk, Attributable risk (AR), Population AR</td>
</tr>
<tr>
<td>Case control study</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Group characteristics</td>
</tr>
</tbody>
</table>

- Abilities of epidemiological studies to prove causation:

<table>
<thead>
<tr>
<th>Type of study</th>
<th>Ability to prove causation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomised controlled trial</td>
<td>Strong</td>
</tr>
<tr>
<td>Cohort study</td>
<td>Moderate</td>
</tr>
<tr>
<td>Case control study</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Weak</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Weak</td>
</tr>
</tbody>
</table>

- Applications of various study designs:

<table>
<thead>
<tr>
<th>Application</th>
<th>Utility of study</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cohort</td>
</tr>
<tr>
<td>Investigation of rare disease</td>
<td>–</td>
</tr>
<tr>
<td>Investigation of rare cause</td>
<td>+++</td>
</tr>
<tr>
<td>Testing multiple effects</td>
<td>+++</td>
</tr>
<tr>
<td>Study of multiple exposure</td>
<td>+++</td>
</tr>
<tr>
<td>Measurement of time relationship</td>
<td>+++</td>
</tr>
<tr>
<td>Direct incidence measurement</td>
<td>+++</td>
</tr>
<tr>
<td>Investigation of long latent periods</td>
<td>+</td>
</tr>
</tbody>
</table>

Potential Errors in Epidemiological Studies

- Random errors: SAMPLING ERRORS
 - Is ‘divergence due to chance alone’ of an observation on a sample from true population value, leading to ‘lack of precision’ in measurement
 - Random error ‘cannot be completely eliminated’
 - Random errors can be reduced by: careful measurement of exposure and outcome, thus making individual measurements precise
 - Best way of reducing sampling errors (increasing precision): Increase the sample size in the study
• **Systematic errors:** BIASES
 - Occur whenever there is a tendency to produce results that differ in systematic manner from the true values
 - Bias is any ‘systematic error’ in an epidemiological study, occurring during data collection, compilation, analysis and interpretation

Bias

• **Bias:** Is any ‘systematic error’ in an epidemiological study, occurring during data collection, compilation, analysis and interpretation

• **Predominantly biases are of 3 types:**
 - **Subject bias:** Error introduced by study subjects. Examples:
 - Hawthorne effect
 - Recall bias
 - **Investigator bias:** Error introduced by investigator
 - Selection bias
 - **Analyzer bias:** Error introduced by analyzer

Some Important Types of Biases in Epidemiological Studies

• **Apprehension bias:** Certain levels (pulse, blood pressure) may alter systematically from their usual levels when the subject is apprehensive
• **Attention bias (Hawthorne effect):** Study subjects may systematically alter their behaviour when they know they are being observed
• **Berkesonian bias (Admission rate bias):** Bias due to hospital cases and controls being systematically different from each other
• **Interviewer bias:** Interviewer devotes more time of interview with cases as compared to controls
• **Lead time bias (Zero time shift bias):** Bias of over-estimation of survival time, due to backward shift in starting point, as by screening procedures
• **Memory/Recall bias:** Cases are more likely to remember exposure more correctly than controls
• **Neymann Bias (Prevalence-incidence bias):** Bias due to missing of fatal cases, mild/silent cases and cases of short duration of episodes from the study
• **Selection bias (Susceptibility bias):** Groups to be compared are differentially susceptible to the outcome of interest, even before the experimental maneuver is performed

Minimization of Biases in Epidemiological Studies

• **Blinding:**

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>Minimizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single blinding</td>
<td>Study subjects are not aware of the treatment they are receiving</td>
<td>Subject bias</td>
</tr>
<tr>
<td>Double blinding</td>
<td>Study subjects as well as investigator are not aware of the treatment study subjects are receiving</td>
<td>Subject bias + Investigator bias</td>
</tr>
<tr>
<td>Triple blinding</td>
<td>Study subjects, investigator as well as analyzer are not aware of the treatment study subjects are receiving</td>
<td>Subject bias + Investigator bias + Analyzer bias</td>
</tr>
</tbody>
</table>

Confounding

• **Confounding:** Any factor associated with both exposure and outcome, and has an independent effect in causation of outcome is a confounder
 - It is found unequally distributed between the study and control groups
 - Is associated with both exposure and outcome
 - Has an independent effect in causation of outcome (thus is a risk factor itself)
Methods Used to Control Confounding

<table>
<thead>
<tr>
<th>Method</th>
<th>Utility to control confounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomization</td>
<td>Most ideal method</td>
</tr>
<tr>
<td>Restriction</td>
<td>Limiting study to people who have particular characteristics</td>
</tr>
<tr>
<td>Matching</td>
<td>Mostly useful in case control studies</td>
</tr>
<tr>
<td>Stratification</td>
<td>Useful for larger studies</td>
</tr>
<tr>
<td>Statistical modeling</td>
<td>When many confounding variables exist simultaneously</td>
</tr>
</tbody>
</table>

Matching

- **Matching**: Process of selecting controls in a such a way that they are similar to cases (with regard to certain pertinent selected variables which may influence the outcome of disease, thereby distorting the results)
 - **Matching eliminates confounding**: Matching distributes known confounding factors equally in two groups
- **Types of matching**:
 - **Caliper matching**: Process of matching comparison group subjects to study group subjects within a specified distance for a continuous variable (matching age to within 2 years)
 - **Frequency matching**: Frequency distributions of matched variable(s) are similar in study and comparison groups
 - **Category matching**: Process of matching study and control group subjects in broad classes (e.g. occupational groups)
 - **Individual matching**: Relies on identifying individual subjects for comparison, each resembling a study subject for matched variable(s)
 - **Pair matching**: Individual matching in which study & comparison subjects are paired

Randomization is Superior to BOTH Matching and Blinding

<table>
<thead>
<tr>
<th>Blinding</th>
<th>Matching</th>
<th>Randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removes Bias</td>
<td>Known confounding</td>
<td>Selection bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Known confounding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unknown confounding</td>
</tr>
</tbody>
</table>

- **Types**
 - Single blinding
 - Double blinding
 - Triple blinding
 - Caliper matching
 - Frequency matching
 - Category matching
 - Individual matching
 - Pair matching

Nested Case Control Study

- Is a hybrid design where ‘a case control study is nested in a cohort study’
- Is predominantly a type of Cohort study (due to forward direction)
- Usefulness limited for studies involving ‘rare diseases AND whose diagnostic tests are very expensive’
- **Study design**:
 - A population is identified and baseline data is obtained from interviews, blood or urine tests, etc.
 - Population is then followed up for a period of time (Cohort study) for development for the disease under study
 - A Case control study is then carried out:
 - Cases: people who developed the disease
 - Controls: Sample from those who did not develop the disease
 - Samples/ history collected at baseline are then examined
Randomised Controlled Trials (RCTs)

- **Unit of study in RCT:** Patient
- **RCT** is of two types:
 - Concurrent parallel design: Comparisons are made between 2 groups:
 - Experimental group: Is exposed to specific medication or intervention
 - Reference group: Is not exposed to specific medication or intervention
 - Crossover design: Comparisons are made between 2 groups:
 - Experimental group: Is exposed to specific medication or intervention
 - Reference group: Is not exposed to specific medication or intervention
 - Then the groups are crossed-over (exposed group now becomes non-exposed and vice-versa)
 - Cross-over design RCT helps removing ethical concerns
- **Intention to treat trial:** Implies that the results of a RCT are unaffected by attrition (loss to follow up) or change over of study subjects from one group to another

Randomisation in RCT

- **Randomisation** in Randomized Controlled trial (RCT) is a statistical procedure by which participants are allocated into either of two groups, viz., 'Experimental Group' (in which intervention is given) and 'Reference Group' (in which intervention is not given)
- **Randomisation is best done by 'Random number tables'**
- The essential purposes of randomization in a randomized controlled trial:
 - Participants have 'Equal and Known Chance' of falling into either 'Experimental Group' or 'Reference Group'
 - To eliminate Selection Bias
 - To ensure comparability among two groups
 - To have 'similar prognostic factors' among two groups
- **Randomisation is known as 'Heart of a trial'**
- Randomization 'removes both confounding and bias'
 - Randomisation IS SUPERIOR to Matching: Randomization ensures 'both known and unknown' confounding factors are distributed equally among the two groups, thereby nullifying their effect on result (whereas matching is useful for only known confounding factors)

Pre-post Clinical Trial

- **Does not have a true control group:** Patient act as his or her own control
- **Each patient has a pre-test score followed by a post-test:** Difference in scores reflect change attributed to intervention
- **Use:** Is often used in assessing whether knowledge, attitudes or pre-existing risk behaviors change when a subject is assigned to an intervention
- **Limitations:**
Review of Preventive and Social Medicine

- Difficult to assess if change is due to developmental intercourse
- Difficult to assess if change is due to regression to mean
- Not useful in studies involving mortality as post-test won’t be available
- More difficult to interpret than the comparable parallel clinical trial
- Cannot be randomized

Pre-Clinical & Clinical Trials

<table>
<thead>
<tr>
<th>Phase</th>
<th>Unit of study</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRECLINICAL PHASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab experiments</td>
<td>Animals<sup>∞</sup></td>
<td>Pretesting</td>
</tr>
<tr>
<td>CLINICAL PHASES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 0</td>
<td>Healthy human volunteers</td>
<td>Micro-dosing<sup>∞</sup></td>
</tr>
<tr>
<td>Phase I</td>
<td>Healthy human volunteers<sup>√</sup></td>
<td>Safety and non-toxicity profile<sup>∞</sup></td>
</tr>
<tr>
<td>Phase II</td>
<td>Patients</td>
<td>Effectiveness</td>
</tr>
<tr>
<td>Phase III</td>
<td>Patients</td>
<td>Comparison with existing drugs<sup>∞</sup></td>
</tr>
<tr>
<td>Phase IV</td>
<td>Patients</td>
<td>Long term side effects<sup>∞</sup></td>
</tr>
</tbody>
</table>

- Phase III is a RCT: Comparison of a new drug with an existing old drug[∞]
- New drug is launched in market after: Phase III
- Longest phase of a trial: Phase IV
- Post-marketing surveillance: Phase IV[∞]
- Maximum tolerated dose (MTD) of a drug: Phase I[∞]

ASSOCIATION AND CAUSATION

Hill’s (Surgeon General’s) Criteria of Causal Association[∞]

- Temporal association: Implies ‘cause precedes effect’ or ‘effect follows cause’
 - Considers both ‘order of appearance’ as well as ‘length of interval between exposure and disease’
 - Is ‘most important criterion’ of causal association[∞]
 - Is ‘best established by a cohort study’ (Especially Concurrent cohort study)[∞]
- Strength of association:
 - Relative risk (cohort study)
 - Odds ratio (case control study)
- Specificity of association: Implies that disease under study is caused only by risk factor under study
 - Is ‘most difficult criterion to establish’[∞]
 - Is ‘weakest criterion’ of causal association
- Consistency of association[∞]: Implies that results are replicable in different settings and by different methods
- Biological plausibility: Implies existence of biological credibility of association (anatomically, physiologically explainable/ justifiable)
- Coherence of association: Implies that the causal association must be coherent (supported by) with relevant facts/related studies
- Dose-response relationship[∞]: Implies that increase in dose of cause increases incidence/ prevalence of effect
- Cessation of exposure; Reversibility: Implies that removal of possible cause reduces the risk of disease
- Study design: Implies that if study design is based on a strong study design
EPIDEMIOLOGY OF INFECTIOUS DISEASES

Definitions
- **Infectivity:** Number infected / Number exposed
- **Pathogenicity:** Number of diseased / Number infected
- **Virulence:** Number of serious condition & mortality / Number diseased
- **Case fatality:** Number of deaths / Number of cases
- **Communicability:** Ability of a disease to spread from infective to susceptible hosts

Zoonoses
- **Zoonoses:** An infection or infectious disease transmissible under natural conditions from vertebrate animals to man
- **Classification of Zoonoses based on direction of transmission:**
 - **Anthropozoonoses:** Infections transmitted from animals (zoo) to man (anthro)
 - Examples: Rabies, Plague, Anthrax, Hydatid disease, Trichinosis
 - **Zoonarthropodoses:** Infections transmitted from man (anthro) to animals (zoo)
 - Example: Human TB in cattle
 - **Amphixenosis:** Infections transmitted in either direction between animals and man
 - Example: Trypanosoma cruzi, Schistosoma japonicum
- **Classification of Zoonoses based upon life cycle of infecting organism:**
 - **Direct zoonoses:** Transmitted from infected to susceptible vertebrate host by direct contact / fomite/ vector. Examples: Rabies, Brucellosis, Trichinosis
 - **Cyclo-zoonoses:** Involve more than one vertebrate species. Examples: Taeniasis, Echinococcosis
 - **Meta-zoonoses:** Transmitted biologically by invertebrate vectors. Examples: Plague, Schistosomiasis, Arboviral infections
 - **Sapro-zoonoses:** Involves non-animal developmental site or reservoir.
 - Examples: Mycoses, Larva migrans
- **Related terminology:**
 - **Reverse Zoonoses:** Is synonymous with Zoonarthropodoses
 - **Epizootic:** Outbreak (epidemic) of a disease in animal population. Examples: Anthrax, Brucellosis, Influenza, Rabies, Rift Valley Fever, Q-fever, Japanese encephalitis, Equine encephalitis
 - **Enzootic:** Epidemic of disease occurring in animals. Examples: Anthrax, Rabies, Brucellosis, Bovine TB, Endemic typhus, Tick typhus
 - **Endemiytic:** Outbreak (epidemic) of a disease in bird population

Endemic
- **Endemic:** refers to the ‘usual or expected frequency of disease’ within a population group; is the ‘constant presence of a disease in a defined geographical area’
 - **Hyperendemic:** When a disease is constantly present at a high incidence and/or prevalence rate and affects all age groups equally.
 - **Holoendemic:** When a disease has a high level of infection beginning early in life and affects most children of population. So, disease is more common among children than adults
- For the disease to be in an endemic steady state: \(R_0 \times S = 1 \) [where, \(R_0 \) = Basic reproduction number of an infection (the mean number of secondary cases a typical single infected case will cause in a population with no immunity and in the absence of interventions); \(S \) = Proportion of susceptibles in population]
- **Endemic curve:** Is drawn between no. of cases due to a disease and the time
 - **Endemic curve IS NOT a straight line:** as number of cases for the endemic disease in a population will not be fixed throughout a year; it will show a seasonal or other variation
Review of Preventive and Social Medicine

- **Endemic curve Vs epidemic curve**: In endemic curve, the baseline of the curve NEVER touches zero

![Endemic curve](https://kat.cr/user/Blink99/)

- When a disease occurs ‘clearly in excess of normal expectancy’, it becomes an Epidemic
 - *Epidemic*: of or relating to a disease that originates outside the geographical area in which it occurs

DISEASE TRANSMISSION

Definitions

- **Incubation period**[^1]: is the time interval between invasion by an infectious agent and appearance of the first sign or symptom of the disease in question
- **Median incubation period**[^1]: Is the time required for 50% of cases to occur
- **Generation time**[^1]: is the time taken for a person from receipt of infection to develop maximum infectivity
 - Is roughly equal to the incubation period of the disease
- **Latent period**: is the period from disease initiation to disease detection, used in non-infectious diseases as equivalent of incubation period
- **Serial interval**[^1]: is the gap in onset between primary case (first case in the community) and secondary case (case developing through infection from the primary case)
 - By collecting information on series of secondary cases with serial intervals, one can guess the incubation period of a disease
- **Period of communicability**: is the time during which an infectious agent may be transferred directly/indirectly from an infected person to another person, from infected animal to man or from an infected person to animal, including arthropods
 - An important measure of communicability is secondary attack rate

![Incubation period and serial interval](https://kat.cr/user/Blink99/)

[^1]: Serial interval[^1]: is the gap in onset between primary case (first case in the community) and secondary case
Incubation Period

- Incubation period depends upon:
 - Generation time of the pathogen
 - Infective dose
 - Portal of entry
 - Individual susceptibility
- Incubation period of a disease is useful for:
 - Tracing the source of infection and contacts
 - Determining the period of surveillance
 - Applying immunization principles for prevention of diseases
 - Identification of point source or propagated epidemics
 - Estimating prognosis of a disease

Attack Rate (AR)

- Relates to no. of cases in the population at risk
- Reflects extent of epidemic
- Is used when ‘population is exposed to risk for a limited period of time, such as epidemic’

\[
AR = \frac{\text{No. of new cases of specified disease in a specified time interval}}{\text{Total population at risk during the same time interval}} \times 100
\]

Secondary Attack Rate

- Secondary Attack Rate (SAR0): Is no. of exposed persons developing the disease within range of incubation period (IP), following exposure to the primary case

\[
\text{SAR} = \frac{\text{No. of exposed persons developing disease within range of IP}}{\text{Total no. of exposed 'susceptible' contacts}} \times 100
\]

- Denominator includes only those susceptible in close contact0
- Primary case is always excluded both from numerator and denominator for SAR calculation
- Secondary Attack Rate (SAR) of few diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Secondary Attack Rate (SAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small pox</td>
<td>30 – 45%</td>
</tr>
<tr>
<td>Measles2</td>
<td>> 80%</td>
</tr>
<tr>
<td>Chicken pox2</td>
<td>~90%</td>
</tr>
<tr>
<td>Mumps2</td>
<td>~86%</td>
</tr>
<tr>
<td>Pertussis</td>
<td>~90%</td>
</tr>
</tbody>
</table>

Source

- Source: Is a person, animal, object or substance from which an infectious agent passes or is disseminated to the host
 - Source refers to immediate source of infection & may or may not be part of reservoir

Reservoir

- Reservoir0: Is any person, animal, arthropod, plant, soil or substance (or combination of these) in which an infectious agent lives & multiplies, on which it primarily depends for survival, & where it reproduces itself in such a manner that it can be transmitted to a susceptible host
Review of Preventive and Social Medicine

- **Human Reservoir:**
 - Cases: Persons having particular disease, health disorder or condition under investigation
 - Carriers: Infected person or animal that harbours a specific agent in the absence of discernible clinical disease, & serves as a potential source of infection for others; Carriers are less infectious than cases but are more dangerous epidemiologically

- **Animal reservoir:** E.g. Rabies, Influenza, Yellow Fever, Histoplasmosis

- **Reservoir in non-living things:** E.g. Soil harbour agents for Tetanus, Anthrax, Coccidiomycosis, Mycetoma

<table>
<thead>
<tr>
<th>Infection</th>
<th>Source</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hookworm</td>
<td>Soil<sup>a</sup></td>
<td>Man<sup>a</sup></td>
</tr>
<tr>
<td>Tetanus</td>
<td>Soil<sup>a</sup></td>
<td>Soil<sup>a</sup></td>
</tr>
<tr>
<td>Typhoid</td>
<td>Feces/urine/Food/Milk/Water</td>
<td>Case/Carrier</td>
</tr>
</tbody>
</table>

Cases

- **Cases:** Persons having particular disease, health disorder or condition under investigation
 - Clinical cases: Mild, Moderate, Severe or Fatal
 - Subclinical cases: Inapparent, covert, missed or abortive
 - Latent Infection: Host does not shed the infectious agent which lies dormant in host without symptoms. (E.g. Herpes simplex, Brill Zinsser Disease, Ancylostomiasis)

Cases in Epidemiology

- **Primary case:** First case of communicable disease introduced into the population unit being studied
- **Secondary cases:** Cases that develop from contact with the primary case
- **Index case:** First case that comes to the notice of the investigator (first case reported to the health system)

Carriers

- **Carriers:** Infected person or animal that harbours a specific agent in the absence of discernible clinical disease, & serves as a potential source of infection for others; Carriers are less infectious than cases but are more dangerous epidemiologically

- **Carriers by type:**
 - Incubatory Carriers: shed infectious agent during incubation period of disease, e.g. Measles, Mumps, Polio, Pertussis, Influenza, Diphtheria, Hepatitis-B^Q
 - Convalescent Carriers: shed the disease agent during the period of Convalescence, e.g. Typhoid, Bacillary Dysentery, Amoebic Dysentery, Cholera, Diphtheria & Pertussis^Q (Clinical recovery does not coincide with bacteriological recovery^Q)
 - Healthy carriers: emerge from subclinical cases without suffering from overt disease, e.g. Poliomyelitis, Cholera, Meningococcal Meningitis, Diphtheria & Salmonellosis

- **Carriers by duration:**
 - Temporary Carriers: shed infectious agent for short periods of time, e.g. Incubatory carriers, Convalescent carriers, Healthy carriers
 - Chronic Carriers: excretes infectious agents for indefinite periods, e.g. Typhoid, Hepatitis-B, Dysentery, Meningococcal Meningitis, Malaria, Gonorrhoea, etc

- **Carriers by portal of exit:**
 - Urinary carriers, e.g. typhoid
 - Intestinal carriers, e.g. typhoid, cholera, amoebiasis

^I Index case^Q: First case that comes to the notice of the investigator

https://kat.cr/user/Blink99/
- Nasal carriers, e.g., Diphtheria, staphylococcal food poisoning
- Respiratory carriers
- Nasopharyngeal carriers, e.g., Meningococcus

INVESTIGATION OF AN EPIDEMIC

Objectives of Investigation of an Epidemic

- To define magnitude or involvement (time, place, person)
- To determine responsible conditions and factors
- To identify causes, source(s) and modes of transmission
- To make recommendations to prevent reoccurrence

Steps for Investigation of an Epidemic

- **Verification of diagnosis:**
 - Is the 'first step in investigation of an epidemic'?
 - It 'is not necessary to examine all cases'; take sample
 - Do not wait for laboratory results for epidemiological investigations
- **Confirmation of existence of an epidemic:**
 - Compare with disease frequencies during same period in previous years
 - Epidemic threshold: An arbitrary limit of '2 standard errors from the endemic occurrence'
- **Defining the population at risk:**
 - Obtaining the map of the area
 - Calculation of 'appropriate denominator of population at risk'
- **Rapid search for all cases and their characteristics:**
 - Medical survey
 - Epidemiological case sheet
 - Searching for more cases: Search for new cases is carried out everyday, till the area is declared free of epidemic; this period is usually taken as 'twice the incubation period of the disease since the occurrence of last case'
- **Data analysis:**
 - Time: Construction of an epidemic curve
 - Place: Preparation of a spot map
 - Person: Analysis by age, sex, occupation and other risk factors
- **Formulation of Hypothesis**
- **Testing of hypothesis**
- **Evaluation of ecological factors**
- **Further investigation of population at risk**
- **Writing the report**

IMMUNITY, VACCINES AND COLD CHAIN

Vaccine

- **Vaccine:** Is an immuno-biological substance designed to produce specific protection against a given disease

History of Vaccination

- Term 'Vaccine' was coined by: Louis Pasteur
- Term 'Vaccination' was coined by: Edward Jenner
- First vaccine to be developed: Small pox (1798)
- First vaccine was developed by: Edward Jenner
- Important milestones in vaccination:
Review of Preventive and Social Medicine

Epidemiology and Vaccines

<table>
<thead>
<tr>
<th>Year</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1798</td>
<td>Smallpox vaccine</td>
</tr>
<tr>
<td>1885</td>
<td>Rabies vaccine</td>
</tr>
<tr>
<td>1892</td>
<td>Cholera vaccine</td>
</tr>
<tr>
<td>1921</td>
<td>BCG vaccine</td>
</tr>
<tr>
<td>1923</td>
<td>Diphtheria toxoid</td>
</tr>
<tr>
<td>1923</td>
<td>Pertussis vaccine</td>
</tr>
<tr>
<td>1927</td>
<td>Tetanus toxoid</td>
</tr>
<tr>
<td>1937</td>
<td>Influenza vaccine</td>
</tr>
<tr>
<td>1937</td>
<td>Yellow fever vaccine</td>
</tr>
<tr>
<td>1949</td>
<td>Mumps vaccine</td>
</tr>
<tr>
<td>1954</td>
<td>IPV</td>
</tr>
<tr>
<td>1957</td>
<td>OPV</td>
</tr>
<tr>
<td>1960</td>
<td>Measles vaccine</td>
</tr>
<tr>
<td>1962</td>
<td>Rubella vaccine</td>
</tr>
<tr>
<td>1968</td>
<td>Type C meningococcal vaccine</td>
</tr>
<tr>
<td>1971</td>
<td>Type A meningococcal vaccine</td>
</tr>
<tr>
<td>1976</td>
<td>Hepatitis B vaccine</td>
</tr>
</tbody>
</table>

Types of Vaccines

- **Live ‘attenuated’ vaccines:**
 - Are prepared from repeated passage of organisms in tissue culture or chick embryos
 - Attenuation implies ‘Reduced pathogenicity/ virulence; Maintained antigenicity/ immunogenicity’

- **Inactivated/ Killed vaccines:**
 - Organisms killed by heat or chemicals stimulate active immunity, when introduced in body
 - Safe but less efficacious than live vaccines
 - Usually administered by intramuscular or subcutaneous route

- **Toxoids:**
 - Toxins produced by organisms are detoxicated and used for vaccine preparation
 - Highly efficacious and safe

- **Cellular fractions:**
 - Vaccines are prepared from extracted cellular fractions

- **Combination (or Mixed) vaccines:**
 - More than one kind of immunizing agents is used in vaccine

Examples of Types of Vaccines

<table>
<thead>
<tr>
<th>Live ‘attenuated’ vaccines²</th>
<th>Killed ‘inactivated’ vaccines²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Pertussis</td>
</tr>
<tr>
<td>OPV (Sabin – Oral polio vaccine)</td>
<td>IPV (Salk – Inactivated polio vaccine)</td>
</tr>
<tr>
<td>Measles vaccine</td>
<td>Rabies vaccine</td>
</tr>
<tr>
<td>Mumps vaccine</td>
<td>Cholera vaccine</td>
</tr>
<tr>
<td>Rubella vaccine</td>
<td>Meningococcal vaccine</td>
</tr>
<tr>
<td>Yellow fever vaccine</td>
<td>Hepatitis B vaccine</td>
</tr>
<tr>
<td>Typhoidal</td>
<td>Typhim – Vi vaccine</td>
</tr>
<tr>
<td>Live plague vaccine</td>
<td>Killed plague vaccine</td>
</tr>
<tr>
<td>LAIV (live attenuated influenza vaccine)</td>
<td>Killed influenza vaccine</td>
</tr>
<tr>
<td>Varicella vaccine</td>
<td>JE (Japanese encephalitis) vaccine</td>
</tr>
<tr>
<td>Epidemic typhus vaccine</td>
<td>KFD (Kyasanur forest disease) vaccine</td>
</tr>
</tbody>
</table>
Epidemiology and Vaccines

Strains of Commonly Used Vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Strain(s)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Danish-1331 strain (WHO recommended)</td>
</tr>
<tr>
<td>OPV/ IPV</td>
<td>P1, P2, P3 strains (Monovalent or Trivalent)</td>
</tr>
<tr>
<td>Measles vaccine</td>
<td>Edmonston Zagreb strain (MC)</td>
</tr>
<tr>
<td></td>
<td>Schwartz strain</td>
</tr>
<tr>
<td></td>
<td>Moraten strain</td>
</tr>
<tr>
<td>Mumps vaccine</td>
<td>Jeryl Lynn strain</td>
</tr>
<tr>
<td>Rubella vaccine</td>
<td>RA 27/3</td>
</tr>
<tr>
<td>Yellow Fever vaccine</td>
<td>17 D strain</td>
</tr>
<tr>
<td>Variella vaccine</td>
<td>OKA strain</td>
</tr>
<tr>
<td>Japanese Encephalitis vaccine</td>
<td>Nakayama strain</td>
</tr>
<tr>
<td></td>
<td>Beijing P3 strain</td>
</tr>
<tr>
<td></td>
<td>SA 14-14-2 (Used in India)</td>
</tr>
<tr>
<td>Swine Flu Vaccine (killed)</td>
<td>A7/ California/ 2009</td>
</tr>
<tr>
<td>Malaria vaccine</td>
<td>SPI 66 strain (Lytic Coktail)</td>
</tr>
<tr>
<td></td>
<td>Pf 25 strain</td>
</tr>
<tr>
<td>HIV vaccines</td>
<td>mVA (modified Vaccinia Ankara) strain</td>
</tr>
<tr>
<td></td>
<td>rAAV (recombinant Adeno associated viral vaccine)</td>
</tr>
<tr>
<td></td>
<td>CTL (Cytotoxic T- lymphocytic) strain</td>
</tr>
<tr>
<td></td>
<td>AIDSVAX strain</td>
</tr>
<tr>
<td></td>
<td>Subunit Vaccine strain</td>
</tr>
</tbody>
</table>

Contraindications to Vaccines

- **Vaccines contraindicated in Pregnancy**: All live vaccines EXCEPT Yellow fever vaccine
- **Vaccines contraindicated in HIV**:
 - Asymptomatic HIV: NONE
 - Symptomatic HIV: All live vaccines EXCEPT BCG vaccine
- **Vaccines contraindicated in Immuno-suppression**: All live vaccines
- **Vaccines contraindicated in Corticosteroid therapy**: All live vaccines
- **Vaccines contraindicated in fever**: Typhoid vaccines
 - Typhoral
 - Typhim – Vi
 - TAB
- **Vaccines contraindicated in ARTI/ diarrhoea**: NONE
- **Vaccines contraindicated together**: Yellow fever and Cholera vaccine
- **Vaccine contraindicated in Preterm-premature baby with birth weight < 2 kg**: Hepatitis B
- **Vaccines contraindicated in age < 1 year (infants)**:
 - Yellow fever vaccine
 - Meningococcal vaccine
 - Pneumococcal vaccine
• **Vaccines contraindicated in age < 2 year (infants):**
 - Meningococcal vaccine
 - Pneumococcal vaccine
 - Typhoid vaccines

• **Vaccine contraindicated in age > 2 year (infants):** Pertussis vaccine (may lead to neurological complications – 1 per 1,70,000 vaccines) [Although now give till 5-6 years in NIS, India]

• **Vaccine contraindicated in progressive neurological disease:** Pertussis vaccine (Pertussis vaccine IS NOT CONTRAINDICATED IN epilepsy controlled on medications, Cerebral palsy)

• **Only absolute contraindication to killed vaccines:**

Specific Side-effects of Vaccines

• **Guillian Barre Syndrome:** Killed influenza vaccine

• **Vaccine associated paralysis:** OPV (Sabin)

• **Toxic shock syndrome (TSS):** Measles vaccine, MMR

• **Shock:** DPT, Pertussis vaccine

• **Hypersensitivity:** Hep-B, Meningococcal vaccine, DPT, dT

General Rules for Multiple Vaccine Administration

• 2 live vaccines can be given together

• Live and killed vaccines can be given together

• Multiple vaccines can be given together

• Cholera vaccine and Yellow fever vaccine cannot be given together

• OPV is a live vaccine where single dose is not sufficient for immunization

Live Vaccines

• Live vaccines are prepared from live attenuated organisms
 - **Attenuation:** Reduced pathogenicity/ virulence BUT maintained antigenicity/ immunogenicity

• **Live vaccines are more potent agents than killed vaccines:**
 - Multiply in the host and the resulting antigenic host is larger than what is injected
 - Have all the major and minor antigenic components
 - Engage certain tissues of the body (e.g. intestinal mucosa by OPV)
 - There may be other mechanisms such as persistence of latent virus

• **General properties to Live vaccines:**
 - Immunization is generally achieved with a single dose (EXCEPT OPV)
 - Should not be administered to immuno-deficient/ immuno-suppressed
 - 2 live vaccines can be administered simultaneously at different sites (or at an interval of 3 weeks)

• **Examples of Live ‘attenuated’ vaccines:**
 - BCG – OPV (Sabin – Oral polio vaccine)
 - Measles vaccine – Mumps vaccine
 - Rubella vaccine – Yellow fever vaccine
 - Typhoral – Live plague vaccine
 - LAIV (live attenuated influenza vaccine) – Varicella vaccine
 - Epidemic typhus vaccine

BCG Vaccine

• BCG stands for ‘Bacille Calmette Guerin’ – an ‘avirulent strain’ produced by 239 subcultures over a period of 13 years
Measles Vaccine

- **Type**: Live attenuated, lyophilized (Freeze dried) vaccine (Tissue culture vaccines
 - Chick embryo or Human diploid cell line)
- **Strains used**:
 - Edmonston Zagreb Strain (Most Common)
 - Schwartz Strain
 - Moraten Strain
- **Dose**: 0.5 ml
- **Route**: Subcutaneous
- **Site**: Antero-lateral aspect of thigh (middle one-third)
- **Age of administration in National Immunization schedule (India)**: 9 months (can be lowered to 6-9 months in epidemics & malnutrition)
- **Diluent for Reconstitution**: Distilled Water or sterile water
 - Use within 1hr after reconstitution with diluent
- **Measles & MMR vaccine can lead to Toxic Shock Syndrome
- Measles vaccine is contraindicated in pregnancy
- **Cold chain Temperature for storage**: +2 to +8 degree C
- **Protective efficacy**: > 90% (with one dose)
- **Duration of Protection**: Life long
- **IP of vaccine induced measles**: 7 days
- **Ideal gap between 2 successive doses of Measles vaccine**: 6 months

WHO recommended strain

- **DANISH 1331 strain**

BCG is a lyophilized (freeze dried) vaccine:

- **Strength**: 0.1 mg in 0.1 ml
- **Route**: Intra-dermal
 - Tuberculin syringe (Omega microstat syringe, 26 gauge needle)
 - Left deltoid muscle is chosen ONLY by convention
- **Age for vaccination**:
 - Direct BCG: Is administered upto 1 year age, without Mantoux Test
 - Indirect BCG: Beyond age 1 year, it is recommended after prior Mantoux Test
- **Phenomena after vaccination**:
 - After 2 - 3 weeks: Papule formation
 - 5 weeks: 4 - 8 mm diameter of papule
 - 6 - 8 weeks: Breaks into a shallow ulcer, seen covered with a crust
 - 6 - 12 weeks: Permanent tiny, round scar, typically 4 - 8 mm diameter
 - 8 - 14 weeks: Mantoux test becomes positive
- **Protective efficacy**:
 - For pulmonary tuberculosis: 0% (Zero)
 - For severe forms of tuberculosis: 0 - 80% (median 50%)
 - For Leprosy: 20 - 40%
- **Protective duration**: 20 years

Complications:

- Prolonged severe ulceration at site of vaccination
- Suppurative lymphadenitis
- Osteomyelitis
- Disseminated BCG infection
- Death

Epidemiology and Vaccines

https://kat.cr/user/Blink99/
Poliomyelitis Vaccines

<table>
<thead>
<tr>
<th></th>
<th>OPV (Sabin)</th>
<th>IPV (Salk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of vaccine</td>
<td>Live attenuated virus</td>
<td>Killed formalised virus</td>
</tr>
<tr>
<td>Mode of administration</td>
<td>Oral</td>
<td>Subcutaneous or i.m.</td>
</tr>
<tr>
<td>Type of immunity</td>
<td>Humoral + Intestinal (local)</td>
<td>Humoral</td>
</tr>
<tr>
<td>Prevention of</td>
<td>Paralysis + intestinal re-infection</td>
<td>Paralysis</td>
</tr>
<tr>
<td>Control of epidemics</td>
<td>Effective</td>
<td>Not useful</td>
</tr>
<tr>
<td>Manufacture</td>
<td>Easy</td>
<td>Difficult</td>
</tr>
<tr>
<td>Cost</td>
<td>Cheaper</td>
<td>Expensive</td>
</tr>
<tr>
<td>Storage & transport</td>
<td>Require sub-zero temperatures</td>
<td>Less stringent conditions</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Short</td>
<td>Longer</td>
</tr>
<tr>
<td>VAPP</td>
<td>1 per 1 million vaccinees</td>
<td>Zero incidence</td>
</tr>
</tbody>
</table>

Inactivated (Salk) Polio Vaccine (IPV)

- Is a type of killed vaccine
- **Schedule:** First 3 doses at 1-2 month interval each and 4th dose after 6-12 months of last dose
- Induces Humoral immunity (IgM, IgG, IgA); NO LOCAL IMMUNITY
- **Composition of IPV:**

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>20 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>2 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 3</td>
<td>4 D antigen units</td>
</tr>
</tbody>
</table>

Advantages of IPV:
- Safe in immunodeficiency disorders
- Safe in persons on radiation therapy/ corticosteroid therapy
- Useful in those over 50 years age
- Safe during pregnancy (VAPP)
- No risk of Vaccine associated paralytic polio (VAPP)
- **IPV is unsuitable in epidemics:**
- Immunity is not rapidly achieved as > 1 doses required
- Injections can precipitate paralysis during epidemics
- **Composition of Improved IPV:**

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>40 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>8 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 3</td>
<td>32 D antigen units</td>
</tr>
</tbody>
</table>

Oral (Sabin) Polio Vaccine (OPV)

- Is a live attenuated ‘trivalent’ vaccine: Contains 3 strains of polio virus
- **Schedule for OPV in NIS, India:**

<table>
<thead>
<tr>
<th>Dose</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPV-0 (Zero dose)</td>
<td>At birth</td>
</tr>
<tr>
<td>OPV-1</td>
<td>6 weeks</td>
</tr>
<tr>
<td>OPV-2</td>
<td>10 weeks</td>
</tr>
<tr>
<td>OPV-3</td>
<td>14 weeks</td>
</tr>
<tr>
<td>OPV-B (Booster dose)</td>
<td>16-24 months</td>
</tr>
</tbody>
</table>

- **Mechanism of action:**
 - **Primary multiplication:** Intestinal epithelial cells
 - **SECONDARY MULTIPLICATION:** Peyer’s patches (leads to viraemia)
Epidemiology and Vaccines

- Induces ‘both systemic as well as local immunity’ (Nasal & duodenal IgA, Serum IgM, IgG, IgA)

- **Composition of OPV**:

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>3 lac TCID 50</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>1 lac TCID 50</td>
</tr>
<tr>
<td>Poliovirus type 3*</td>
<td>3 lac TCID 50</td>
</tr>
</tbody>
</table>

- **Dose**: 2 drops (EQUIVALENT TO 0.1 ml\(^9\))

- **Advantages of OPV**:
 - Easy to administer
 - Induces both humoral and systemic immunity
 - Single dose also produces substantial immunity
 - Vaccinees spread immunity to others by excretion of virus
 - Relatively inexpensive
 - Useful in controlling epidemics

- **Complication**: Can lead to Vaccine associated paralytic poliomyelitis (VAPP)
 - 1 case per 1 million vaccines\(^9\)

- OPV is a quite a thermostable vaccine

- OPV should not be repeatedly freezeed and thawed

- **Cold chain temperature for long term storage**: -20\(^\circ\)C to -40\(^\circ\)C

- **During transportation, OPV should be kept on**:
 - Dry ice (solidified carbon dioxide)\(^9\)
 - A freezing mixture (wet ice + ammonium chloride)

- **Heat-stabilized OPV vaccine**: Can be kept without loosing potency for 1 year at 4\(^\circ\)C and for a month at room temperature

Vaccine Vial Monitor

- **VVM is a marker of potency**: VVM is a simple tool which enables vaccinator to know if vaccine is potent at the time of administration
 - VVM is a label containing a heat-sensitive material which is placed on a vaccine vial to register cumulative heat exposure over time

- **VVM indicates efficiency of cold chain**\(^9\) (temperature maintenance)

- **VVM is a mark on OPV vial consisting of**:
 - An outer circle
 - An inner square (made of heat sensitive material)

Figure: Vaccine vial monitor

- **WHO grading of VVM in OPV**:
 - Is based on colour changes in VVM: ONLY INNER SQUARE CHANGES COLOUR, circle always remain blue
 - Based on VVM, OPV is usable upto Grade II\(^9\)

<table>
<thead>
<tr>
<th>WHO Grade</th>
<th>Outer Circle</th>
<th>Inner Square</th>
<th>Inference(^9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>Blue</td>
<td>White</td>
<td>OPV can be used</td>
</tr>
<tr>
<td>Grade II</td>
<td>Blue</td>
<td>Light blue</td>
<td>OPV can be used</td>
</tr>
<tr>
<td>Grade III</td>
<td>Blue</td>
<td>Blue</td>
<td>OPV CANNOT be used</td>
</tr>
<tr>
<td>Grade IV</td>
<td>Blue</td>
<td>Purple/ Black</td>
<td>OPV CANNOT be used</td>
</tr>
</tbody>
</table>

(Grade III is Discard point)
DPT Vaccine

- **Type:** Combined TRIPLE vaccine for Diphtheria, Pertussis & Tetanus; D & T are Toxoids, P is killed acellular bacilli
- **Dose:** 0.5 ml
- **Route:** Intramuscular
- **Site:** Antero-lateral aspect of thigh, middle 1/3 (earlier it was administered at gluteal region, but presence of fat in buttocks breaks the adjuvant & reduces absorption of DPT vaccine)
- **Composition of DPT Vaccine:**

<table>
<thead>
<tr>
<th>Contents</th>
<th>Amount per dose (0.5 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria Toxoid</td>
<td>25 Lf Glaxo</td>
</tr>
<tr>
<td></td>
<td>30 Lf Kasauli</td>
</tr>
<tr>
<td>Tetanus Toxoid</td>
<td>5 Lf</td>
</tr>
<tr>
<td></td>
<td>10 Lf</td>
</tr>
<tr>
<td>Pertussis killed acellular bacilli</td>
<td>20,000 million</td>
</tr>
<tr>
<td></td>
<td>32,000 million</td>
</tr>
<tr>
<td>Aluminium phosphate</td>
<td>2.5 mg</td>
</tr>
<tr>
<td></td>
<td>3.0 mg</td>
</tr>
<tr>
<td>Thiomersal</td>
<td>0.01 %</td>
</tr>
<tr>
<td></td>
<td>0.01%</td>
</tr>
</tbody>
</table>

- Aluminium phosphate or aluminium hydroxide is used as adjuvant in DPT vaccine. It increases immunogenicity of vaccine.
- Thiomersal is used as preservative in DPT Vaccine.

- **Age for immunization in National Immunization schedule (NIS, India):**

<table>
<thead>
<tr>
<th>Dose</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPT<sub>1</sub></td>
<td>6 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>2</sub></td>
<td>10 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>3</sub></td>
<td>14 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>Booster</sub></td>
<td>16-24 months of age</td>
</tr>
<tr>
<td>DPT<sub>Booster</sub></td>
<td>5 years of age</td>
</tr>
</tbody>
</table>

- Recommended interval between 3 successive doses: 1 month
- 2 months gap between 2 successive doses of DPT do not offer any advantage over one-month interval
- **Absolute Contraindications to DPT Vaccine:**
 - Severe hypersensitivity reaction to previous dose
 - Progressive neurological disease (E.g. active Epilepsy) [Cerebral palsy & seizures controlled on anti-epileptics do not preclude the use of DPT; DPT should be given under these circumstances]

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccine status for DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Epilepsy</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Epilepsy controlled on antiepileptic</td>
<td>Can be given</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Can be given</td>
</tr>
</tbody>
</table>

- DPT vaccine (Measles vaccine) can result in fever: Antipyretic is given with DPT vaccine as ‘take home, need based’ medication
- **Cold Chain Temperature of DPT:** +2° to +8°C
 - If DPT vaccine gets frozen accidentally: discard the vaccine
- Adult type of Diphtheria – tetanus vaccine (dT): contains up to 2 Lf of diphtheria toxoid per dose; given 2 doses 4-6 weeks apart, followed by a booster after 6-12 months; is useful for immunizing children over 12 yrs of age & adults

https://kat.cr/user/Blink99/
For Other Vaccines

Refer to Chapter 5, Theory

New National Immunization Schedule (NIS, India)

<table>
<thead>
<tr>
<th>Age</th>
<th>Vaccines Given</th>
</tr>
</thead>
<tbody>
<tr>
<td>At birth</td>
<td>BCG, OPV0</td>
</tr>
<tr>
<td>At 06 weeks (1 ½ months)</td>
<td>DPT, OPV1, HepB1, HiB1</td>
</tr>
<tr>
<td>At 10 weeks (2 ½ months)</td>
<td>DPT2, OPV2, HepB2, HiB2</td>
</tr>
<tr>
<td>At 14 weeks (3 ½ months)</td>
<td>DPT3, OPV3, HepB3, HiB3</td>
</tr>
<tr>
<td>At 9 months (completed)</td>
<td>Measles 1st dose, Vitamin–A (1 Lac IU)</td>
</tr>
<tr>
<td></td>
<td>Vitamin-A (2 Lac IU) every 6 months till age of 5 years</td>
</tr>
<tr>
<td>16–24 months</td>
<td>DPTB, OPVB, JE Live, Measles 2nd dose</td>
</tr>
<tr>
<td>At 5–6 years</td>
<td>DPT</td>
</tr>
<tr>
<td>At 10 years</td>
<td>TT</td>
</tr>
<tr>
<td>At 16 years</td>
<td>TT</td>
</tr>
<tr>
<td>For pregnant women</td>
<td>TT and TT2 (one month apart)</td>
</tr>
<tr>
<td></td>
<td>TT Booster if 2TT doses received in last 3 years</td>
</tr>
</tbody>
</table>

(JE Vaccine only in 110 districts) (HiB introduced as Pentaralent vaccine – ‘HiB + HepB + DPT’ in 18 states)

Important Practical Considerations Under NIS

- Vitamin-A is given at 9th, 18th, 24th, 30th, 36th, 42th, 48th, 54th, 60th months (A total of 1 Lac + 2 Lac = 17 Lac IU is given to a completely immunized child by 5 years of age)\(^1\)
- OPV: Minimum 5 doses are required for development of immunity\(^2\)
- DPT: Minimum 3 doses are given a month apart with booster after 1 year of the 3rd dose (and another booster at 5-6 years age)
- TT: A fully immunized adult (excluding pregnancy in females) would have received 7 doses of TT

Guidelines on TT in Pregnancy

- Primigravida: 2 doses 1 month apart, As soon as possible (New Guideline)
 OR TT1 (16-20 weeks) & TT2 (20-24 weeks) (Older Guideline)
 - Duration of protection with 2 doses: All subsequent pregnancies in next 3 years\(^3\)
- Multigravida (completely immunized in last 3 years): 1 booster dose\(^4\)
- Multigravida (partially immunized in previous pregnancy in last 3 years): 2 doses, 1 month apart
- Multigravida (unimmunized in previous pregnancy in last 3 years): 2 doses, 1 month apart
- Multigravida (completely immunized in previous pregnancy earlier than 3 years): 2 doses, 1 month apart
- RULE FOR Delayed immunization of TT in pregnancy (as per Period of gestation – POG): Give 2 doses of TT, 1 month apart, anytime in pregnancy, IRRESPECTIVE OF TIME OF DELIVERY (so as to provide protection for at least next 3 years)

https://kat.cr/user/Blink99/
Situations

<table>
<thead>
<tr>
<th>(pregnant female reporting for the 1<sup>st</sup> time at)</th>
<th>Recommendation</th>
<th>Status of patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>4½ month POG</td>
<td>2 doses; 1 each at 4½ m & 5½ m POG</td>
<td>Completely immunized for current pregnancy; subsequent half protection for next 3 years</td>
</tr>
<tr>
<td>5<sup>th</sup> month POG</td>
<td>2 doses; 1 each at 5<sup>th</sup> m & 6<sup>th</sup> m POG</td>
<td></td>
</tr>
<tr>
<td>6<sup>th</sup> month POG</td>
<td>2 doses; 1 each at 6<sup>th</sup> m & 7<sup>th</sup> m POG</td>
<td></td>
</tr>
<tr>
<td>7<sup>th</sup> month POG</td>
<td>2 doses; 1 each at 7<sup>th</sup> m & 8<sup>th</sup> m POG</td>
<td></td>
</tr>
<tr>
<td>8<sup>th</sup> month POG</td>
<td>2 doses; 1 each at 8<sup>th</sup> m & 9<sup>th</sup> m POG</td>
<td>Partially immunized for current pregnancy; subsequent half protection for next 3 years</td>
</tr>
<tr>
<td>9<sup>th</sup> month POG</td>
<td>2 doses; 1<sup>st</sup> at 9<sup>th</sup> m POG & 2<sup>nd</sup> 1 m after (post-delivery)</td>
<td></td>
</tr>
<tr>
<td>Just before delivery</td>
<td>2 doses; 1<sup>st</sup> before delivery & 2<sup>nd</sup> 1 m after</td>
<td>Unimmunized for current pregnancy; subsequent half protection for next 3 years</td>
</tr>
<tr>
<td>Post delivery</td>
<td>2 doses; 1 each at just after delivery & 1 m later (post-delivery)</td>
<td></td>
</tr>
</tbody>
</table>

- A child born to unimmunised/partially-immunized mother must be given protection. Give 750 IU of antitoxin (heterologous serum) within 6 hours of birth.

Age Limits for Delayed Immunization in NIS, India⁶

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age limit</th>
<th>Reason for limit (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Upto 1 year of age (Direct BCG)</td>
<td>Subclinical immunity develops > 1 yr age</td>
</tr>
<tr>
<td>OPV</td>
<td>Upto 5 years of age</td>
<td>Polio cases are MC in < 5 yrs age</td>
</tr>
<tr>
<td>DPT</td>
<td>Upto 7 years of age</td>
<td>–</td>
</tr>
<tr>
<td>HepB</td>
<td>Upto 1 year of age</td>
<td>–</td>
</tr>
<tr>
<td>Measles</td>
<td>Upto 5 year of age</td>
<td>Measles cases MC in < 5 yrs age</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Upto 5 year of age*</td>
<td>Xerophthalmia cases MC in < 5 yrs age</td>
</tr>
<tr>
<td>DPT</td>
<td>Upto 7 year of age</td>
<td>Diphtheria cases MC in < 7 yrs age</td>
</tr>
<tr>
<td>JE Vaccine</td>
<td>Upto 15 year of age</td>
<td>–</td>
</tr>
<tr>
<td>TT</td>
<td>NO AGE LIMIT</td>
<td>–</td>
</tr>
</tbody>
</table>

(* Vitamin A was earlier given till the age of 3 years)

Cases of Delayed Immunization

- A completely unimmunized child 9 months of age should receive⁶: BCG, DPT-1b (next two doses one month apart each and booster after 1 year of 3rd dose), OPV-1 (next two doses one month apart each and booster after 1 year of 3rd dose), HepB -1 (next two doses one month apart each), Measles, and Vitamin A (1 Lac IU)
- A completely unimmunized child 18 months of age should receive: BCG (Only after Mantoux Test: Indirect BCG), DPT-1 (next two doses one month apart each and booster after 1 year of 3rd dose), OPV-1 (next two doses one month apart each and booster after 1 year of 3rd dose), Measles (if not suffered from measles disease previously), and Vitamin A (2 Lac IU)
- A completely unimmunized child 30 months of age should receive: BCG (Only after Mantoux Test: Indirect BCG), DPT-1, OPV-1 (next two doses one month apart each and booster after 1 year of 3rd dose), Measles (if not suffered from measles disease previously), and Vitamin A (2 Lac IU)
- A completely unimmunized child 4 years of age should receive⁶: BCG (Only after Mantoux Test: Indirect BCG), DPT-1, OPV-1 (next two doses one month apart each and booster after 1 year of 3rd dose), Measles (if not suffered from measles disease previously)
Adverse Effects Following Immunization (AEFI)

- **Minor Vaccine Reactions:**

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Possible minor reaction</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPT</td>
<td>Local reaction (pain, swelling, redness)</td>
<td>Upto 50%</td>
</tr>
<tr>
<td></td>
<td>Fever</td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Local reaction (pain, swelling, redness)</td>
<td>Upto 50%</td>
</tr>
<tr>
<td>Pneumococcal</td>
<td>Local reaction (pain, swelling, redness)</td>
<td>30-50%</td>
</tr>
<tr>
<td>Meningococcal</td>
<td>Mild local reactions</td>
<td>Upto 71%</td>
</tr>
</tbody>
</table>

- **Rare vaccine reactions:**

<table>
<thead>
<tr>
<th>Rare reactions</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppurative lymphadenitis</td>
<td>BCG</td>
</tr>
<tr>
<td>BCG osteitis</td>
<td></td>
</tr>
<tr>
<td>Disseminated BCGiosis</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Measles/ MMR</td>
</tr>
<tr>
<td>Febile seizures</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Encephalopathy</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Rubella/ MMR</td>
</tr>
<tr>
<td>Vaccine associated paralytic poliomyelitis</td>
<td>OPV</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Tetanus/ DT</td>
</tr>
<tr>
<td>Brachial neuritis</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>Pertussis/ DPT-whole cell</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Encephalopathy</td>
<td></td>
</tr>
<tr>
<td>Persistent (>3hours) inconsolable screaming</td>
<td></td>
</tr>
<tr>
<td>Hypotonic hypo-responsive episode (HHE)</td>
<td></td>
</tr>
</tbody>
</table>

Cold Chain

- **Cold chain:** Is a system of storage and transportation of vaccines from the point of manufacture to the point of administration (actual vaccination site)
- **Cold chain temperature of vaccines available in India:**
 - OPV (Sabin):
 - Routine storage: +2°C to +8°C
 - Long term storage: −20°C to −40°C
 - Yellow fever vaccine: −30°C to +5°C
 - All other vaccines: +2°C to +8°C (Also known as the ‘cold chain temperature of vaccines in India50)
 - Diluents: Can be stored in +2°C to +8°C OR can be kept outside cold chain (at room temperature)
 - Vitamin A: Is stored outside cold chain (at room temperature)

Cold Chain Components (equipments) & Levels in India

<table>
<thead>
<tr>
<th>Level</th>
<th>Component</th>
<th>Temperature</th>
<th>Storage duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>State/ Regional level</td>
<td>Walk-in-cold rooms (WIC)</td>
<td>+2°C to +8°C</td>
<td>3 months</td>
</tr>
<tr>
<td></td>
<td>Walk-in-freezers (WIF)</td>
<td>−20°C to −40°C</td>
<td></td>
</tr>
<tr>
<td>District level</td>
<td>Large ILRs (Ice-lined refrigerator)</td>
<td>+2°C to +8°C</td>
<td>1 month</td>
</tr>
<tr>
<td></td>
<td>Large DFs (Deep freezers)</td>
<td>−20°C to −40°C</td>
<td></td>
</tr>
<tr>
<td>PHC level</td>
<td>Small ILRs</td>
<td>+2°C to +8°C</td>
<td>1 month²</td>
</tr>
<tr>
<td></td>
<td>Small DFs</td>
<td>−20°C to −40°C</td>
<td></td>
</tr>
<tr>
<td>Sub-centre level</td>
<td>Vaccine carriers</td>
<td>+2°C to +8°C</td>
<td>48 – 72 hrs</td>
</tr>
<tr>
<td></td>
<td>Day carriers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session level</td>
<td>Fully frozen icepack</td>
<td>+2°C to +8°C</td>
<td>1 – 3 hours</td>
</tr>
</tbody>
</table>
Most important component of cold chain in India: ILR

Temperature of cold chain in India: +2°C to +8°C

Minimum level of vaccine storage (in cold chain) in India: Primary health centre (below PHC level, vaccines are ‘transported to sub-centres on immunization days’ in vaccine carriers and day carriers)

Maximum chance of cold chain failure in India: Sub-centre and village level

Instrument used to monitor the temperature of cold chain at PHC: Dial Thermometer

Ice-lined Refrigerator (ILR)

Is ‘most important component of cold chain’ in India

Temperature of ILR (Cold chain) in India: +2°C to +8°C

Temperature monitoring of ILR: Dial thermometer (Twice daily)

ILR is used for storage: All vaccines

300/240 litres ILRs are supplied to districts and 140 litres ILR is supplied to PHCs

ILRs must be kept on a horizontal leveled surface, atleast 10 cms away from walls

ILRs can maintain temperature of vaccines if provided ‘with even 8 hours of uninterrupted electricity per day’

Ice-pack

Is prepared by keeping in a Deep freezer

Is used for: Temperature maintenance during vaccine transportation, in a vaccine carrier

Temperature maintenance during an immunization session

Is of total 320 – 340 ml capacity

Has a ‘horizontal mark’ – water fill level (as water expands on freezing)

NOTHING should be added to water for freezing in an ice-pack

Has generally 2 holes – MEANT FOR keeping vaccines

Dial Thermometer

Is the instrument used to monitor the temperature of cold chain at PHC

Is kept in ILR (Ice-lined refrigerator- component of cold chain) at PHC

Is ‘based on principle of thermocouple’

Recommended temperature monitoring at PHC level is: Twice daily

Immunoglobulins

Types of immunoglobulins:

- IgG: comprises 85% of total serum immunoglobulins, largely extravascular, ‘only class of immunoglobulins to cross placenta’

- IgM: comprises 10% of total serum immunoglobulins, ‘indicative of recent infection’, has high agglutinating and complement-fixing ability

- IgA: comprises 15% of total serum immunoglobulins, predominantly found in secretions, ‘primary defence mechanism at mucous membranes’

- IgD: exact function not known

- IgE: concentrated in submucous tissues, ‘responsible for immediate allergic anaphylaxis reaction’
Preparations of immunoglobulins:

<table>
<thead>
<tr>
<th></th>
<th>Human normal Ig’s</th>
<th>Human specific Ig’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Antibody-rich fraction obtained from a pool of > 1000 donors</td>
<td>Plasma of recovered patients or immunized individuals</td>
</tr>
<tr>
<td>Composition</td>
<td>> 90% IgG; less IgA</td>
<td>5 times antibody potential of standard preparation</td>
</tr>
<tr>
<td>Examples</td>
<td>Hepatitis A, Measles, Mumps, Rabies, Tetanus</td>
<td>Hepatitis B, Varicella, Diphtheria</td>
</tr>
</tbody>
</table>

DISINFECTION

Definitions in Disinfection

- **Asepsis:** Prevention of contact with microorganisms
- **Cleaning:** Removal of adherent visible blood/soil/proteinaceous substances/microorganisms/debris from surfaces, crevices, serrations, joints, lumens of instruments/devices/equipment by manual/mechanical process for handling or further decontamination
- **Detergent:** Surface cleaning agent (hydrophilic and lipophilic component) that acts by lowering surface tension
- **Disinfection:** Thermal or chemical destruction of most of the pathogens
- **Germicide:** Agent that destroys microorganisms, especially pathogens
- **Hospital disinfectant:** Disinfectant registered for use in any medical facility; efficacy is demonstrated against Salmonella choleraesuis, Staphylococcus aureus, Pseudomonas aeruginosa
- **Sanitizer:** Agent that reduces number of bacterial contaminants to safe levels as per public health requirements (mainly used for inanimate objects)
- **Sterile:** State of being free from all living microorganisms

Properties of Ideal Disinfectant [Mnemonic: SOURCES BEEN Fully Sterile]

- Soluble in water
- Odourless
- Unaffected environmentally (active with organic matter; compatible with chemicals)
- Residual effect
- Cleaner
- Environmental friendly
- Stable in concentration and use-dilution
- Broad antimicrobial spectrum
- Easy to use
- Economical
- Nontoxic
- Fast acting
- Surface compatible (non corrosive, no deterioration)

Chemical Disinfectants: Oxidizing Agents

- **Potassium permanganate:**
 - Aquariums
 - Feet before entering swimming pools
 - Fruits and vegetables
- **Hydrogen peroxide:** Bactericidal, virucidal, fungicidal. Sporicidal
 - Surfaces in hospital settings
• Antiseptic
 • Cleaning wounds and discharging ulcers
• *Paracetic acid*:
 • Gram-positive, gram-negative bacteria
 • Fungi, yeasts, viruses

Chemical Disinfectants: Metals as Microbiocides

• Silver (Prophylaxis of conjunctivitis, Topical therapy for burns, Bonding to indwelling catheters)
• Iron, Copper, Zinc

Chemical Disinfectants: Miscellaneous

• *Pasteurization*: 70 degrees Celsius for 30 minutes for pathogenic microorganisms except spores
• *Microwaves*: Disinfect contact lenses, dental instruments, dentures, milk, urinary catheters, cultures
• *Flushing and Water Disinfectors*: Disinfect bedpans, urinals, washbowls, surgical instruments and anaesthesia tubes
• *Ultraviolet radiation*: Disinfect drinking water, air, titanium implants, contact lenses
• *Ozone*

Factors affecting Efficacy of Sterilization

• Cleaning
• Pathogen type
• Biofilm accumulation
• Lumen length, diameter
• Restricted flow
• Device design, construction
MULTIPLE CHOICE QUESTIONS

DEXT DEFINITION AND EPIDEMIOLOGICAL METHODS

1. Residence of three villages with three different types of water supply were asked to participate in a study to identify cholera carriers. Because several cholera deaths had occurred in the recent past, virtually everyone present at the time submitted to examination. The proportion of residents in each village who were carriers was computed and compared. This study is a:
 (a) Cross-sectional [AIIMS May 03]
 (b) Case-control study
 (c) Concurrent cohort study
 (d) Non-concurrent

2. The analytical study where population is the unit of study is: [AIPGME 1996]
 (a) Cross-sectional
 (b) Ecological
 (c) Case-control
 (d) Cohort

3. All of the following are true about ‘Evidence-based medicine’ except: [AIIMS November 2011]
 (a) Aims to apply best available evidence gained from scientific method to clinical decision making
 (b) Research paper is investigated by the tools quoted in research paper itself to check validity
 (c) Opinions of medical professionals and researchers have been given least importance
 (d) Evidence is generated from weak and poor studies

4. Natural history of disease is studied with: [Recent Question 2013]
 (a) Longitudinal studies
 (b) Cross-sectional studies
 (c) Trials
 (d) None

5. Cause to effect progression is seen in all except: [DNB June 2010] [DNB December 2011]
 (a) Case control study
 (b) Ecological study
 (c) Cohort study
 (d) Randomized control trial

6. Father of Evidence Based Medicine is [AIIMS May 2014]
 (a) Sackett
 (b) Da vinci
 (c) Hippocrates
 (d) Tolstoy

Review Questions

7. Hypothesis is a: [MP 2000]
 (a) Axiom
 (b) Verified variable
 (c) Established document
 (d) Variable to be tested

8. Studying distribution of disease or health related characteristics in human population and identifying the characteristics with which disease seem to associated is:
 (a) Descriptive epidemiology
 (b) Experimental epidemiology
 (c) Analytical epidemiology
 (d) Ecological epidemiology

9. Best study of first choice for assessment of UNKNOWN or New disease with no etiological hypothesis?
 (a) Cohort study
 (b) Case control study
 (c) Cross-sectional study
 (d) Descriptive epidemiology

MEASUREMENTS IN EPIDEMIOLOGY

10. The following is true about prevalence and incidence:
 (a) Both are rates [AIIMS Nov 03, AIIMS May 05]
 (b) Prevalence is a rate but incidence is not
 (c) Incidence is a rate but prevalence is not
 (d) Both are not rates

11. Prevalence is a: [Recent Question 2013]
 (a) Rate
 (b) Ratio
 (c) Proportion
 (d) Mean

12. Incidence of a disease in a population of 30,000 and 300 new cases is: [DNB December 2011]
 (a) 0.1 per 1000
 (b) 10 per 1000
 (c) 100 per 1000
 (d) 1 per 1000

13. For calculation of incidence denominator is taken as:
 (a) Mid year population [Recent Question 2012]
 (b) Population at risk
 (c) Total number of cases
 (d) Total number of deaths
Review Questions

14. All of the following are true regarding the Ratio except: [AP 2001]
 (a) Numerator is component of denominator
 (b) Numerator is not a component of denominator
 (c) Numerator & denominator are not related values
 (d) It is expressed as a number

15. True about prevalence: [MP 2002]
 (a) It is a ratio
 (b) Prevalence rate is the ideal measure for studying disease etiology or causation
 (c) Increases with increase in duration of disease
 (d) Decreases with decrease in case fatality

IDC

16. In WHO recommended Death Certificate, Main Underlying Cause of Death is recorded on: [AIIMS Nov 1999]
 (a) Line Ia
 (b) Line Ib
 (c) Line Ic
 (d) Line II

Mortality Measurements

17. All are true for Standardized Mortality ratio (SMR) except: [AIIMS Nov 1992]
 (a) Is a form of direct standardization
 (b) Is calculated as Observed deaths/ Expected deaths × 100
 (c) Permits adjustment for age
 (d) Can be used for disease as event of occurrence

18. Following can be used as a yardstick for the assessment of standards of therapy: [AIPGME 1996]
 (a) Specific death rate
 (b) Case fatality rate
 (c) Proportional mortality rate
 (d) Survival rate

19. About direct standardization all are true except: [AIPGME 00, 02]
 (a) Age specific death rate is not needed
 (b) A standard population is needed
 (c) Population should be comparable
 (d) Two populations are compared

20. The rate adjusted to allow for the age distribution of the population is: [AIIMS Nov 03, AIIMS May 05]
 (a) Perinatal mortality rate
 (b) Crude mortality rate
 (c) Fertility rate
 (d) Age-standardized mortality rate

21. All of the following statements are true about the childhood mortality rates in India except:
 (a) Almost 2/3rd of infant mortality rate (IMR) occurs in neonatal period [AIPGME 2005]
 (b) Almost 2/3rd of the under-five mortality occurs in the first year of life
 (c) About one in ten children die before they reach the age of five years
 (d) Neonatal mortality is higher among female children as compared to males

22. Which is best in order to make a comparison between 2 populations? [AIIMS Nov 2001]
 (a) Standardized mortality rate
 (b) Disease specific death rate
 (c) Proportional mortality rate
 (d) Age specific death rate

23. At what point in time is the population assessed for calculation of the crude death rate? [AIIMS May 01]
 (a) 1st Jan
 (b) 1st May
 (c) 1st July
 (d) 31st Dec

24. All are indicators of mortality except: [AIIMS May 1994]
 (a) Case fatality rate
 (b) Life expectancy
 (c) Duration of sickness
 (d) Standardised death rate

25. In an outbreak of cholera in a village of 2000 population 20 cases have occurred and 5 have died. Case fatality rate is: [AIPGME 1991]
 (a) 1%
 (b) 0.25%
 (c) 5%
 (d) 25%

26. All the statements are true about standardization except: [AIPGME 2006], [AIIMS June 2000]
 (a) Standardization allows comparison to be made between two different populations
 (b) The national population is always taken as the standard population
 (c) For direct Standardization, age specific rates of the study population are applied to that of the standard population
 (d) For Indirect Standardization age specific rates of the standard population are applied to the study population

27. Direct standardization is used to compare the mortality rates between two countries. This is done because of the differences in: [AIIMS Nov, May 2006, AIPGME 2007]
 (a) Causes of death
 (b) Numerators
 (c) Age distributions
 (d) Denominators
28. Which one of the following is a better indicator of the severity of an acute disease? [AIIMS May 1995, 04, AIPGME 2005, AIIMS Nov 1999]
(a) Cause specific death rate
(b) Case fatality rate
(c) Standardized mortality ratio
(d) Five year survival rate

29. Maximum power of destruction of a disease is measured by: [DPG 2006]
(a) Survival rate
(b) Case fatality rate
(c) Specific death rate
(d) Proportional mortality rate

30. Estimating the burden of particular disease in a community is measured by: [Karnataka 2005]
(a) Proportional mortality rate
(b) Disease specific mortality
(c) Cruve death rate
(d) Incidence of disease

31. Case fatality rate is a method measuring: [Karnataka 2005]
(a) Infectivity
(b) Pathogenicity
(c) Virulence
(d) Average duration of disease

32. Which one is not true of case fatality rate? [Karnataka 2006]
(a) It is a ratio
(b) Time interval is non-specified
(c) It may vary from the same disease in different epidemics
(d) It is useful in chronic diseases

33. The usefulness for “Case Fatality Rate” is very limited in: [Karnataka 2009]
(a) Sub-acute illness
(b) Acute illness
(c) Chronic illness
(d) All of the above

34. Direct standardisation is used to compare the mortality rates between two countries. This is done because of differences in: [AIIMS May 2010]
(a) Causes of death
(b) Numerators
(c) Age distribution
(d) Denominators

35. Most useful parameter to predict the virulence of acute illness is: [AIPGME 2011]
(a) Standardised mortality ratio (SMR)
(b) Case fatality rate (CFR)
(c) Secondary attack rate (SAR)
(d) Incidence

36. Standardised mortality rate is standardised for: [DPG 2011]
(a) Age
(b) Disease
(c) Region
(d) A particular time period

37. Direct standardization is used to compare mortality rates between 2 countries. This is done because there are differences in: [AIIMS November 2011]
(a) Causes of death
(b) Age distributions
(c) Numerators
(d) Denominators

38. Proportional mortality rate is: [Recent Question 2012]
(a) Rate
(b) Ratio
(c) Proportion
(d) None

Review Questions

39. Sullivan’s Index: [DNB 2008]
(a) Measures disability
(b) Measures life years adjusted with death
(c) Measures life expectancy free of disability
(d) Measures life expectancy

40. All are true about standardised mortality rates Except: [UP 2002]
(a) Two population can be compared
(b) Age specific data not required
(c) It removes confounding effect of different age group
(d) Age, sex, race adjusted rate can be obtained

41. True statement regarding specific death rates: [UP 2005]
(a) Specific for age and sex
(b) Identify particular group or group “at risk for preventive action”
(c) Maybe cause or disease specific
(d) All of the above

42. Which of the following estimating the burden of a disease in the community is: [UP 2007]
(a) Disease specific mortality
(b) Proportional mortality rate
(c) Maternal mortality rate
(d) Child mortality rate

43. Case fatality rate is: [AIIMS 1997][MP 2001]
(a) Spreading power of a disease
(b) Killing power of a disease in a time
(c) Killing power of a disease with no time interval
(d) Resistance of disease

44. Severity of the disease best assessed by:
(a) Disease specific mortality rate
(b) Cruve death rate
(c) Age specific mortality rate
(d) Case fatality rate

45. Case fatality rate indicates: [MP 2001, AP 2014]
(a) Infectivity of disease
(b) Herd immunity of disease in community
(c) Killing power of disease
(d) Relative importance of disease in community
46. Sullivan index is the measure of:
(a) Disability rate
(b) Pregnancy rate
(c) GNP
(d) Literacy rate

47. Killing power of disease is:
(a) Secondary attack rate
(b) Case fatality rate
(c) IMR
(d) MMR

48. Health status of two populations is best compared by:
(a) Standardized mortality rate
(b) Case fatality rate
(c) Survival rate
(d) Secondary attack rate

MORBIDITY MEASUREMENTS

49. If a new effective treatment is initiated and all other factors remain the same; which of the following is most likely to happen:
(a) Incidence will not change
(b) Prevalence will not change
(c) Neither incidence nor prevalence will change
(d) Incidence and prevalence will change

50. Improved prevention of an acute, nonfatal disease is likely to:
(a) decrease the prevalence of the disease
(b) increase the prevalence of the disease
(c) decrease the incidence of the disease
(d) increase the incidence of the disease

51. A diagnostic test has been introduced that will detect a certain disease 1 yrs earlier than it is usually detected. Which of the following is most likely to happen to the disease within the 10 yrs after the test its introduced?
(Assumed that early detection has no effect on the natural history of the disease. Also assume that no changes in death certification practices occur during the 10yrs.):
(a) The period prevalence rate will decrease
(b) The apparent 5 yr survival rate will increase
(c) The age adjusted mortality rate will decrease
(d) The incidence rate will decrease

52. If the prevalence is very low as compared to the incidence for a disease, it implies:
(a) Disease is very fatal and/or easily curable
(b) Disease is non-fatal
(c) Calculation of prevalence & incidence is wrong
(d) Nothing can be said, as they are independent

53. The incidence rate of a disease is 5 times greater in women than in men, but the prevalence rates show no sex difference. The best explanation is that:
(a) The case fatality rate for this disease is lower in women
(b) The case fatality rate for this disease is higher for women
(c) The duration of disease is shorter in men
(d) Risk factors for developing the disease are more common in women

54. Prevalence of a disease:
(a) Is the best measure of disease frequency in etiological studies
(b) Can only be determined by a cohort study
(c) Is the number of new cases in a defined population
(d) Describes the balance between incidence, mortality and recovery

55. In a village having population of 1000, we found patients with certain disease. The results of as new diagnostic test on that disease are as follows:

<table>
<thead>
<tr>
<th>Test result</th>
<th>Disease Present</th>
<th>Disease Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>180</td>
<td>400</td>
</tr>
<tr>
<td>–</td>
<td>20</td>
<td>400</td>
</tr>
</tbody>
</table>

What is the percent prevalence of disease?
(a) 0.20
(b) 2
(c) 18
(d) 20

56. Measurement of incidence rate of a disease includes:
(a) Number of new cases
(b) Number of new and old cases
(c) Only notified cases
(d) Whole population

57. Incidence rate refers to:
(a) Only old cases
(b) Both old and new cases
(c) Only new cases
(d) None of the above

58. The relationship between incidence and prevalence can be expresses as:
(a) The product of incidence and mean duration of disease
(b) The dividend of incidence and mean duration of disease
(c) The sum of incidence and mean duration of disease
(d) The difference of incidence and mean duration of disease

59. Prevalence of cataract at one point of time can be determined by:
(a) Longitudinal study
(b) Cross-sectional study
(c) Surveillance
(d) Cohort study
60. A district has total population 10 lacs, with under-16 population being 30%. The prevalence of blindness is 0.8/1000 among under-16 population. Calculate total number of blind among under-16 population in the district.

(a) 240
(b) 2400
(c) 24000
(d) 240000

[AIIMS November 2012]

(a) 0.018
(b) 0.02
(c) 0.05
(d) 18

[AIIMS November 2012]

62. All about incidence are false except:
(a) No affected by duration
(b) More than prevalence
(c) Measures old and new cases
(d) Used for chronic conditions

[Recent Question 2012]

63. In a population of 5000 number of new cases of TB is 500; old cases in the same population are 150. What is the prevalence of TB?

(a) 9%
(b) 12%
(c) 13%
(d) 18%

[Recent Question 2014]

Review Questions

64. Denominator while calculating the secondary attack rate include:
(a) All the people living in next fifty houses
(b) All the close contacts
(c) All susceptible amongst close contact
(d) All susceptible in the whole village

[Bihar 2004]

65. Attack rate is:
(a) Incidence of the disease
(b) Prevalence of the disease
(c) Killing power of the disease
(d) Incubation period of the disease

[MP 2001] [TN 1998] [AP 2000]

66. Incidence rate is calculated from:
(a) Case-control
(b) Prospective study
(c) Retrospective study
(d) RCT

[AP 2007]

67. Incidence rate can be calculated from:
(a) Cohort study
(b) Case control study
(c) Cross sectional study
(d) Descriptive study

[Kolkata 2005]

68. Attack rate:
(a) Indicates lethality of disease
(b) Is a incidence rate
(c) Is a prevalence rate
(d) Depends upon involved time/incubation period of disease

[MP 2001]

69. The secondary attack rate of measles is more than mumps. What is the conclusion?
(a) Measles is more dangerous than mumps
(b) Mumps is more dangerous than measles
(c) Measles is more infectious than mumps
(d) Measles is more common than mumps

[MH 2006]

70. Which one of the following is an Index of communicability of an Infection?
(a) Carrier rate
(b) Prevalence rate
(c) Secondary attack rate
(d) Primary attack rate

[R] 2007

71. High prevalence associated with:
(a) High cure rate
(b) Immigration of healthy people
(c) Longer duration of disease
(d) Less Incidence of disease

[R] 2008

72. Which one of the following is an Index of communicability of an Infection?
(a) Carrier rate
(b) Prevalence rate
(c) Secondary attack rate
(d) Primary attack rate

[R] 2008

DESCRIPTIVE EPIDEMIOLOGY

73. Changes in occurrence of a disease over long periods of time are known as:
(a) Epidemics
(b) Seasonal trends
(c) Cylcical trends
(d) Secular trends

[AIPGME 1994]

74. All are true for Point source epidemic except:
(a) Epidemic curve rises and falls sharply
(b) Clustering of cases within a short period of time
(c) Person-to-person transmission
(d) All cases usually develop within one incubation period

[AIIMS Sep 1996] [AIPGME 2000] [JIPMER 2014] [AIIMS Nov 06]

75. True regarding point source epidemic is:
(a) Secondary waves occur
(b) There is a rapid rise in the wave which flattens (Plateau)
(c) All cases occur in a single incubation period of the disease
(d) It is propagative

[AIIMS Nov 06] [AIPGME 2000] [JIPMER 2014]
76. Regarding point source epidemic true:
(a) Rapid rise & fall [PGI Dec 08]
(b) Only infectious cause
(c) Explosive
(d) No secondary attack rate
(e) No secondary waves

77. True regarding point-source epidemic is/are:
(a) Rapid rise [PGI June 02]
(b) Rapid fall
(c) Slow rise
(d) Slow fall
(e) No secondary waves

78. Secular trend refers to:
(a) Long term changes [PGI June 2005]
(b) Short term changes
(c) Seasonal changes
(d) Periodical changes
(e) Religion changes

79. Secular trends are:
(a) Progressive changes occurring over a long period of time [DNB June 2009]
(b) Explosion of changes in a limited span of time
(c) Periodic changes occurring over a long period
(d) Sudden epidemic of a new occurring

80. 20 pregnant women were asked about the history of smoking when they came for regular antenatal visit and then followed up to see how many of them had Low birth weight babies. What is the type of study?
(a) Case control [Recent Question 2014]
(b) Prospective cohort
(c) Cross sectional
(d) Ecological

81. Bhopal gas tragedy is an example of?
(a) Point source epidemic [DNB 2008]
(b) Continuous epidemic
(c) Propagated epidemic
(d) Slow epidemic

82. Seasonal trend is:
(a) Seasonal variation of disease occurrence may be related to environmental conditions [UP 2002]
(b) Some diseases occurs in cyclic spread over short periods of time
(c) Some disease occurs in cyclic changes over long period of time
(d) Non infectious conditions never show periodic fluctuations

83. Descriptive epidemiology includes all Except:
(a) Retrospective and prospective study [UP 2003]
(b) Disease
(c) Time
(d) Place

84. A graph shows an uniform curve with no secondary curves the following statement is correct: [AP 2000]
(a) Multiple exposure
(b) Pointed epidemic
(c) Sporadic
(d) Pandemic

85. All are true about Point source epidemic except:
(a) Secondary Waves are not seen [AP 2008]
(b) All the cases occur simultaneously
(c) Plateau is seen
(d) None

86. Food poisoning is an example of:
(a) Common source, single exposure epidemic [TN 2005]
(b) Common source, continuous exposure epidemic
(c) Propagated epidemic
(d) Modern epidemic

87. About secular trend, true is:
(a) Changes are seen periodically [MP 2000]
(b) Affected by environmental conditions
(c) Changes occurs over decades in particular direction
(d) Vector dynamics is important

88. Rapid rise and fall in epidemic curve without any secondary waves is seen in:
(a) Point source epidemic, single exposure [MP 2001]
(b) Propagated epidemic
(c) Point source multiple exposure epidemic
(d) Seasonal trend

89. Secular trend of disease refers to occurrence of:
(a) Annual disease cycles [MP 2007]
(b) Bi-annual disease cycles
(c) 10 years or more disease cycles
(d) Consistent change in one direction

90. Disease occurs in cycles over short period of time:
(a) Seasonal trend [RJ 2002]
(b) Cyclic trend
(c) Secular trend
(d) All

ANALYTICAL EPIDEMIOLOGY
91. All of the following help reduce bias except:
(a) Blinding [AIPGME 1996]
(b) Randomization
(c) Ethical considerations
(d) Matching

92. The systematic distortion of retrospective studies that can be eliminated by a prospective design is:
(a) Confounding [AIIMS May 04]
(b) Effect modification
(c) Recall bias
(d) Measurement bias
93. The ratio between the incidence of disease among exposed and non-exposed is called:
 (a) Causal risk
 (b) Relative risk
 (c) Attributable risk
 (d) Odds ratio

94. Hawthorne effect is seen in:
 (a) Case-control study
 (b) Cohort study
 (c) Cross-sectional study
 (d) Retrospective cohort study

95. A study compared 150 children with a particular disease with 300 disease free children to examine past experiences that may contribute to the development of the illness. What kind of study is this? [AIPGME 2002]
 (a) Cohort
 (b) Controlled clinical trial
 (c) Case series
 (d) Case control

96. Which of the following is not a cause of bias?
 (a) Confounding [AIPGME 1993]
 (b) Selection
 (c) Misclassification
 (d) Random error

97. The table given below shows cases of breast cancer occurring in a randomized clinical trial of a new drug designed to prevent the disease. In this study, 1000 healthy women between the ages of 60 and 65 were given the drug and 1000 were givenW the placebo for 5 years. [AIIMS Sep 1996]

<table>
<thead>
<tr>
<th></th>
<th>Breast Cancer</th>
<th>No Breast Cancer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>40</td>
<td>960</td>
<td>1000</td>
</tr>
<tr>
<td>New Drug</td>
<td>10</td>
<td>990</td>
<td>1000</td>
</tr>
</tbody>
</table>

What is the relative risk of breast cancer in patients exposed to drug?
 (a) 25%
 (b) 50%
 (c) 75%
 (d) 100%

98. A study began in 1970 with a group of 5000 adults in Delhi who were asked about their alcohol consumption. The occurrence of cancer was studied in this group between 1990-1995. This is an example of: [AIPGME 2000]
 (a) Cross-sectional study
 (b) Retrospective cohort study
 (c) Concurrent cohort study
 (d) Case-control study

99. TATA memorial hospital conducted a cohort study on 7000 subjects who were smokers over a ten-year period & found 70 subjects developed lung cancer. Concurrent evaluation of general population in the catchment area of hospital, out of 7000 non-smoker subjects only 7 developed lung cancer. The RR for developing lung cancer is: [AIPGME 1996]
 (a) 1
 (b) 10
 (c) 100
 (d) 0.1

100. In an investigation to study the effect of smoking on renal cell cancer, it is observed that 30 of the 50 patients were smokers as compared to 10 out of 50 control subjects. The odd ratio of renal cancer associated with smoking will be:
 (a) 3.0
 (b) 0.33
 (c) 6.0
 (d) 0.16

101. Matching is done for removal of:
 (a) Bias
 (b) Known confounding
 (c) Unknown confounding
 (d) Known confounding + Unknown confounding

102. In a study of 200 smokers & 300 non-smokers were followed up over a period of 10 yrs to find out incidence of hypertension. Out of 200 smokers, 60 developed hypertension, as compared to 60 non-smokers of which 30 developed hypertension. The risk ratio of the study: [AIIMS Nov 2001]
 (a) 3
 (b) 30
 (c) 1/3
 (d) 6

103. In a study begun in 1965, a group of 3000 adults in Baltimore were asked about alcohol consumption. The occurrence of cancer was studied in the group between 1981 and 1995. This is an example of: [AIPGME 2004]
 (a) Cross sectional study
 (b) Concurrent cohort
 (c) Retrospective cohort
 (d) Clinical trial

104. The physical examination records of the entire incoming freshman class of 1935 at the University of Minnesota were examined in 1977 to see if their recorded height and weight at the time of admission to university was related to their chance of developing CHD. This is an example of:
 (a) Cross sectional study [AIIMS Dec 1997]
 (b) Concurrent cohort
 (c) Retrospective cohort
 (d) Clinical trial

https://kat.cr/user/Blink99/
105. Retrospective cohort studies are characterized by all the following except: [AIIMS May 1995]
 (a) The study groups are exposed and non-exposed
 (b) Incidence rates are compared
 (c) The required sample size is smaller than that needed for a concurrent cohort study
 (d) The required sample size is similar to that needed for a concurrent cohort study

106. At an initial examination in Oxford, Migraine headache was found in 5 of 1000 men aged 30-35yrs and in 10 of 1000 women aged 30 to 35 yrs. The inference that women have a two times greater risk of developing migraine headache than men in this age group is:
 (a) Correct [AIIMS Feb 1997]
 (b) Incorrect, because a ratio has been used to compare male and female rates
 (c) Incorrect, because of failure to recognize the cohort effect of age in the two groups
 (d) Incorrect, because of failure to distinguish between incidence and prevalence

107. All the following are advantages of case control studies except: [Recent Question 2013][AIPGME 1996-02]
 (a) Useful in rare diseases [AIIMS June 2000]
 (b) Relative risk can be calculated
 (c) Odds ratio can be calculated
 (d) Cost-effective and inexpensive

108. A one day census of inpatients in a mental hospital could:
 (a) Give good information about the patients in that hospital at that time [AIIMS May 2005]
 (b) Give reliable estimates of seasonal factors in admissions
 (c) Enable us to draw conclusions about the mental hospitals of India
 (d) Enable us to estimate the distribution of different diagnosis in mental illness in the local area

109. The incidence of carcinoma cervix in women with multiple sexual partners is 5 times the incidence seen in those with a single partner. Based on this, what is the attributable risk? [AIIMS May 2001]
 (a) 20% (b) 40% (c) 50% (d) 80%

110. In a study 400 smokers and 600 non-smokers were followed up over a period of 10 years to find out the incidence of hypertension. The following table summarizes the data at the end of the study:

<table>
<thead>
<tr>
<th></th>
<th>Hypertension</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>280</td>
</tr>
<tr>
<td>No</td>
<td>30</td>
<td>570</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>850</td>
</tr>
</tbody>
</table>

The risk ratio in this study is: [AIIMS Nov 05]
 (a) 0.06 (b) 0.60 (c) 6.0 (d) 60.0

111. Several studies have shown that 85% of cases of lung cancer are due to cigarette smoking. It is a measure of:
 (a) Incidence rate [AIIMS Nov 05, AIPGME 07]
 (b) Relative risk
 (c) Attributable risk
 (d) Population attributable risk

112. It is probable that physician have a higher index of suspicion for tuberculosis in children without BCG than those with BCG scar. This is so and an association is found between Tuberculosis and not having BCG scar, the association may be due to:
 (a) Selection bias [AIIMS Nov 2005]
 (b) Interviewer bias
 (c) Surveillance bias
 (d) Non-response bias

113. To investigate effect of tobacco chewed on oral cancer, its observed that 30 out of 50 patients were tobacco chewers as compared to 10 tobacco chewers out of 50 control subjects. The odds ratio of oral cancer associated with smoking will be:
 (a) 6.0 [AIIMS June 1998]
 (b) 60
 (c) 3.0
 (d) Insufficient data given for calculation

114. Framingham Heart Study is an example of:
 (a) Case control study [AIIMS Sep 1996]
 (b) Cohort study
 (c) Cross-sectional study
 (d) Interv entional study

115. Which of the following statements is not correct? [AIIMS Nov 2001][AIPGME 1994]
 (a) A cohort study is more expensive in comparison to case control study
 (b) A cohort study starts with people exposed to risk factor or suspected cause while case control study starts with disease
 (c) A long follow-up period often needed with delayed results in a cohort study whereas a case control study yields relatively quick results
 (d) A cohort study is more appropriate when the disease or exposure under investigation is rare, in comparison to case control study

116. For a community physician which of the following is more important? [AIIMS June 1998]
 (a) Relative risk
 (b) Odds ratio
 (c) Attributable risk
 (d) Prevalence of the disease
117. Which of the following research methods studies have only people who are initially free of the disease of interest?
(a) A case-control study
(b) A case series study
(c) A prevalence survey
(d) A cohort study

118. False about Odds Ratio is:
(a) It is always positive
(b) It can be 0.3
(c) It can be 3.0
(d) It is always >1

119. An Odds ratio = 1 indicates that the association between the two factors is:
(a) Is perfect
(b) Is low
(c) Is high
(d) Does not exist

120. Which of the following bias can be reduced by allowing equal interview time?
(a) Berksonian bias
(b) Recall bias
(c) Selection bias
(d) Interviewer bias

121. Which of the following is ideal to ensure similarity between experimental & control groups?
(a) Randomization
(b) Matching
(c) Stratified randomization
(d) Cross over study

122. All can be used as controls in a study of genetic condition except:
(a) Hospital Controls
(b) Sibling Controls
(c) Neighbourhood Controls
(d) General Population

123. True about case control studies is –
(a) Minimal problems of bias
(b) Time consuming & expensive to carry out
(c) Easy to measure incidence
(d) Suitable to investigate rare diseases

124. A study was carried out to find out safety of OCPs. Relative risk (or Odds Ratio) of thromboembolism among OCP users to non-users in the given case control study is:

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>% who used OCPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases of thromboembolism</td>
<td>84</td>
<td>50</td>
</tr>
<tr>
<td>Controls</td>
<td>168</td>
<td>14</td>
</tr>
</tbody>
</table>

(a) 0.14
(b) 6
(c) 1
(d) Insufficient data to calculate

125. Incidence rate of lung cancer among smokers is 10 per 1000 and among Non-smokers is 1 per 1000. The extent to which lung cancer can be attributed to smoking is:
(a) 10%
(b) 90%
(c) 1%
(d) 100%

126. All of the following have individuals as unit of study except:
(a) Cohort studies
(b) Case control studies
(c) Cross-sectional studies
(d) Ecological studies

127. Match the following:

<table>
<thead>
<tr>
<th>Type of study</th>
<th>Unit of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Cohort study</td>
<td>I. Healthy volunteers</td>
</tr>
<tr>
<td>B. Ecological study</td>
<td>II. Population</td>
</tr>
<tr>
<td>C. RCT</td>
<td>III. Individual</td>
</tr>
<tr>
<td>D. Field trials</td>
<td>IV. Patient</td>
</tr>
</tbody>
</table>

(a) A – I, B – III, C – IV, D – II
(b) A – III, B – II, C – IV, D – I
(c) A – III, B – II, C – I, D – IV
(d) A – I, B – III, C – II, D – IV

128. In a case-control study of a suspected association between breast cancer and the contraceptive pill, all of the following are true statements except:

(a) The control should come from a population that has the same potential for breast cancer as the cases
(b) The control should exclude women known to be taking the pill at the time of the survey
(c) All the controls need to be healthy
(d) The attributable risk of breast cancer resulting from the pill may be directly measured

129. Which of the following statements is not true about ‘cohort study’?

(a) Provides incidence of disease
(b) Indicated when there is good evidence of association between exposure and disease
(c) Done when incidence of disease is very low among exposed
(d) Done when ample funds are available

130. The association between coronary artery disease (CAD) and smoking was found to be as follows:

<table>
<thead>
<tr>
<th></th>
<th>CAD</th>
<th>No CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Nonsmokers</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

The Odds ratio can be estimated as:

(a) 0.65
(b) 0.8
(c) 1.3
(d) 2.25
131. In a prospective study comprising 10000 subjects, 6000 subjects were put on beta carotene and 4000 were not. 3 out of the first 6000 developed lung cancer and 2 out of the second 4000 developed lung cancer. What is the interpretation of the above?
 (a) Beta carotene is protective in lung cancer
 (b) Beta carotene is not protective in lung cancer
 (c) The study design is not sufficient to draw any meaningful conclusions
 (d) Beta carotene is carcinogenic

132. Relative risk is the measure of the strength of the association between the suspected cause & event. Relative risk of one indicates:
 (a) Positive association exposure & disease
 (b) 2 times high association
 (c) No association at all
 (d) 4 times higher association

133. Relative risk of a disease measures the
 (a) Strength of association between suspected cause and effect
 (b) Biological plausibility between suspected cause and effect
 (c) Temporal relationship between suspected cause and effect
 (d) Specificity of association between suspected cause and effect

134. The association between low birth weight and maternal smoking during pregnancy can be studied by obtaining smoking histories of women at the time of their visit and then subsequently correlating birth weight with smoking histories. What type of study is this?
 (a) Clinical trial
 (b) Cross-sectional
 (c) Prospective
 (d) Case-control

135. False about Randomised Control Trials is:
 (a) Results of attrition are included in the analysis
 (b) Randomisation is done while selecting subjects for the study
 (c) Double blinding is the most common form of blinding observed
 (d) Cross-over design helps removing ethical concerns

136. True about case control over cohort study:
 (a) Attributable risk can be calculated
 (b) Odd’s ratio can be calculated
 (c) For rare disease
 (d) Bias minimum
 (e) Large sample required

137. True about case control study:
 (a) Helpful for evaluation of rare diseases
 (b) Expensive
 (c) Incidence can be measured
 (d) Rare causes studied
 (e) Selection bias common

138. True about case control study is
 (a) Proceeds from effect to cause
 (b) Exposure already occurred
 (c) Odd’s ratio can be determined
 (d) Incidence can be calculated
 (e) Cases have to be followed for long time

139. True about confounding factor
 (a) It is found equally between the study and the control groups
 (b) It is itself a risk factor for the disease
 (c) Confounding can be eliminated by selecting a small group
 (d) It is associated either with the exposure or the disease

140. Nested case control study is a type of
 (a) Retrospective study
 (b) Prospective study
 (c) Descriptive study
 (d) Cross-sectional study

141. Recall bias is most commonly associated with which study design
 (a) Case control study
 (b) Cohort study
 (c) Randomised controlled trial
 (d) Cross-sectional study

142. Incidence can be calculated in:
 (a) Case-control study
 (b) Prospective study
 (c) Retrospective study
 (d) Cross-sectional study

143. Confounding bias is reduced by all except:
 (a) Matching
 (b) Blinding
 (c) Randomisation
 (d) Multivariate analysis

144. A person wants to study a disease ‘X’ and fat consumption. He collected data for a number of people affected with ‘X’ from the government hospital and details of fat consumption from food industry. This type of study is known as:
 (a) Experimental study
 (b) Ecological study
 (c) Pesiological study
 (d) Cross-sectional study

145. A study revealed that in a study group, intake of beta-carotene decreases carcinoma of colon but it actually may be due to increased intake of dietary fibre. This is due to:
 (a) Confounding factor
 (b) Misclassification bias
 (c) Randomisation
 (d) Sampling error
146. **Case control study is used for study of:**
(a) Common diseases
(b) Uncommon diseases
(c) Rare diseases
(d) Unknown diseases

147. In a study, 400 smokers and 600 non-smokers were followed up over a period of 10 years to find out the incidence of hypertension. The following table summarises the data at the end of the study [DPG 2011]

<table>
<thead>
<tr>
<th>Hypertension</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>120</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Non-Smoking</td>
<td>30</td>
<td>570</td>
<td>600</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>850</td>
<td>1000</td>
</tr>
</tbody>
</table>

The risk ratio of the study is
(a) 0.06
(b) 0.60
(c) 6.0
(d) 60.0

148. In a UK study, it was found that there were more deaths from Asthma than the sale of Anti-asthma drugs. This is an example of [AIIMS November 2011]
(a) Cohort study
(b) Case reference study
(c) Ecological study
(d) Experimental study

149. **Incidence is determined by:** [AIIMS May 2011]
(a) Prospective study
(b) Case control study
(c) Cross sectional study
(d) Retrospective study

150. Which of the following is not a true difference between Case control and Cohort study?
(a) Case control study requires more time than cohort study [AIPGME 2012]
(b) Cohorts are chosen based on exposure in a cohort study
(c) Cohort study is generally prospective in direction
(d) Case control study must be used for rare diseases

151. **Confounding can be eliminated by all except:** [AIIMS May 2012]
(a) Matching
(b) Blinding
(c) Randomization
(d) Multivariate analysis

152. **Case-control study is a type of:** [DNB 2008]
(a) Descriptive epidemiological study
(b) Analytical study
(c) Longitudinal study
(d) Experimental epidemiological study

153. **The analytical study where population is the unit of study is:** [DNB 2007]
(a) Cross-sectional
(b) Ecological
(c) Case-control
(d) Cohort

154. **Cross sectional study is:** [DNB December 2011]
(a) Longitudinal study [Recent Questions 2014]
(b) Prospective study
(c) Retrospective study
(d) Prevalence study

155. **Which is not an analytical study?** [DNB June 2011]
(a) Case control
(b) Cohort study
(c) RCT
(d) Cross sectional

156. **Odds ratio is related to:** [DNB June 2009]
(a) Relative risk
(b) Incidence
(c) Prevalence
(d) Attributable risk

157. In a study done to establish smoking as a risk factor for a disease, 30 out of 50 smokers developed the disease while 10 out of 50 non-smokers developed the disease. **Odds ratio is?** [DNB December 2010]
(a) 3
(b) 6
(c) 5
(d) 10

158. **Which is not an analytical study?** [DNB 2008]
(a) Case control study
(b) Cohort study
(c) Ecological studies
(d) Field trials

159. **True about case control study is:** [Recent Question 2012, 2014]
(a) Not possible for rare disease
(b) Odds ratio cannot be calculated
(c) Attributable risk cannot be calculated
(d) Bias is not seen

160. **Features of Case control study is/are:** [PGI May 2013]
(a) Useful for study of rare diseases
(b) Large sample size required
(c) Association measured by Relative risk
(d) Study multiple potential risk factors of a disease
(e) Higher accuracy rate

161. A study revealed lesser incidence of carcinoma colon in pure vegetarians than non vegetarians by which it was concluded that beta-carotene is protective against cancer. This may not be true because the vegetarian subjects may be consuming high fibre diet which is protective against cancer. This is an example of:
(a) Multifactorial causation [AIIMS May 2012]
(b) Causal association
(c) Confounding factor
(d) Common association
162. Berksonian bias is a type of:

(a) Selection bias
(b) Interviewer bias
(c) Information bias
(d) Recall bias

[Recent Question 2012] [Recent Question 2013]

163. A person found some correlation between fatty food intake and a disease due to obesity. He did this by collecting data from the food manufacturers and hospitals respectively. Such a study is?

(a) Ecological study
(b) Cross sectional study
(c) Psephological study
(d) Experimental study

[AIIMS May 2012]

164. Confounding can be removed by:

(a) Assign confounders equally to both cases and controls
(b) Stratification
(c) Matching
(d) All of the above

[DNB June 2011]

165. Relative risk is calculated in:

(a) Cross sectional study
(b) Cohort study
(c) Case control study
(d) None

[Recent Question 2013]

166. Attributable risk means:

(a) Fatality of a disease
(b) Disease risk ratio between exposed and non-exposed
(c) Risk difference between exposed and non-exposed
(d) Communicability of a disease

[Recent Question 2012]

167. Berksonian bias is due to:

(a) Presence of confounding factors in both cases and controls
(b) Questioning the cases more thoroughly ac compared to controls
(c) Different rates of admission to hospital due to different diseases
(d) Better recall by the cases as compared to controls

[DNB December 2010]

168. Which of the following is true about cohort study?

(a) Disease to risk factor study
(b) Effect to cause study
(c) NOT associated with attributable risk
(d) Associated with antecedent causation

[Recent Question 2014]

169. Definition of Population attributable risk

(a) Risk of disease among exposed as compared to non-exposed
(b) Difference in risk of exposed and non-exposed groups
(c) Estimate of amount of disease that can be reduced if risk factor is modified/eliminated
(d) Extent to which disease can be attributed to risk factor under study

[AIIMS November 2014]

170. Following are true about cohort study except:

(a) Large number of subjects
(b) Expensive
(c) Done for rare cause
(d) Less time consuming

[DNB 2002]

171. ‘Relative risk’ is:

(a) Risk among exposed/Risk among non-exposed
(b) Risk among exposed/Risk in total population
(c) Risk among exposed/Risk among exposed-Risk in non exposed
(d) None of the above

[DNB 2004]

172. The analytical study where population is the unit of study is:

(a) Cross sectional
(b) Ecological
(c) Case-control
(d) Cohort

[DNB 2007]

173. Which is not an analytical study?

(a) Case control study
(b) Cohort study
(c) Ecological studies
(d) Field trials

[DNB 2008]

174. Case-control study is a type of?

(a) Descriptive epidemiological study
(b) Analytical study
(c) Longitudinal study
(d) Experimental epidemiological study

[DNB 2008]

175. Matching is done to remove:

(a) Confounding factors
(b) Selection bias
(c) Observation bias
(d) Sampling error

[Bihar 2003]

176. Relative risk was studied for disease and cause, the value was 1. It implies:

(a) No association
(b) Positive association
(c) Both
(d) None

[Bihar 2004]

177. Relative risk is:

(a) No of persons diseased among Non-exposed/Incidence among exposed
(b) Incidence of Non exposed/Incidence among exposed × 100
(c) Incidence among exposed/Incidence among Non-exposed × 100
(d) Incidence among exposed/Incidence among Non-exposed

[Bihar 2005]

178. Attributal risk is:

(a) Incidence of disease among exposed-incidence of among nonexposed × 100 / Incidence rate among exposed

[Bihar 2006]
179. Incidence rate is measured by: [UP 2000]
(a) Case control study
(b) Cohort study
(c) Cross-sectional study
(d) Cross-over study

180. Cohort study does not include: [UP 2003]
(a) Expensive
(b) Study for chronic disease
(c) Incidence rate calculated
(d) Starts with the disease

181. Case control study- estimate: [UP 2008]
(a) Only odd’s ratio
(b) Odds ratio and attributable risk
(c) Relative risk, attributable risk, population attributable risk
(d) Incidence, Relative risk, and attributable risk

182. Which one of the following statement regarding case control studies is correct? [AP 2000]
(a) Used for rare diseases
(b) Incidence rate can be calculated
(c) Treatment can be formulated
(d) Takes long time for the results

183. Which is true regarding ‘Case control study’? [1999, AP 2003]
(a) Used for rare disease
(b) Incidence can be calculated from it
(c) It is a Prospective study
(d) It is a Longitudinal study

184. All are advantages of case control study except: [AP 2004]
(a) Cheap and easy
(b) Fast and effective
(c) No ethical problem and several factors identified
(d) Distinguishing between causes and associated factors

185. All are true regarding confounding factor except: [AP 2006]
(a) It is associated with exposure under investigation
(b) It is distributed equally in study & control groups
(c) It is associated both with exposure and disease
(d) It is removed by matching in case control study

186. Most appropriate method to know about contribution of risk factor to disease: [AP 2007]
(a) Relative risk
(b) Attributable risk
(c) Absolute risk
(d) Odds ratio

187. What is not true about cross sectional study? [AP 2008]
(a) Also called prevalence study
(b) Tells etiology
(c) Shows pattern of disease
(d) Snapshot of a population

188. Incidence rate is calculated by: [Kolkata 2005]
(a) Retrospective study
(b) Cross sectional study
(c) Prospective study
(d) All of the above

189. Odds’ ratio is an estimate of: [MP 2000]
(a) Relative risk
(b) Attributable risk
(c) Prevalences
(d) Incidence rates

190. Regarding case control study true is: [MP 2001]
(a) Useful for rare diseases [JIPMER 2014]
(b) Incidence can be calculated
(c) Takes longer time
(d) Relative risk can be calculated

191. Case control studies do not provide following except: [MP 2001]
(a) Attributable risk
(b) Prevalence of disease
(c) Incidence of disease
(d) Odds ratio

192. Calculate the relative risk for a population in which incidence of disease among exposed is 20 and non exposed is 4: [MP 2002]
(a) 16
(b) 0.5
(c) 24
(d) 5

193. Attribute risk gives a better idea of: [MP 2007]
(a) Strength of association between cause and effect
(b) Impact of successful preventive health programme
(c) Assessing aetiological role or factor in disease
(d) Potential public health importance of disease

194. Healthy worker effect is bias of which type? [MH 2003]
(a) Selection bias
(b) Recall bias
(c) Confounding bias
(d) Berksonian bias

195. True about cross-sectional epidemiological study is: [MH 2005]
(a) Suitable for study of rare diseases
(b) Chronic diseases can be studied
(c) Involves few number of subjects
(d) Relatively inexpensive study

196. Bias due to wrong interpretation of laboratory test results and inter-observer variation is: [MH 2005]
(a) Selection bias
(b) Sampling bias
(c) Observation bias
(d) Recall bias
197. Strength of association is most commonly indicated by:
 (a) Relative risk
 (b) Attributable risk
 (c) Population attributable risk
 (d) None

 [Karnataka 2003, MH 2005]

198. What is the odds ratio for the following?
 (a) ad/bc
 (b) ab/cd
 (c) ac/bd
 (d) bc/ad

 [MH 2006]

199. What will be the Odds ratio if the diseased with risk factor = a; diseased without risk factor = b; not diseased but with risk factor = c; not diseased as well as not with risk factor = d?
 (a) ad/bc
 (b) ab/cd
 (c) ac/bd
 (d) bc/ad

 [MH-SS-ET 2007, MH 2008]

200. Incidence is measured by:
 (a) Case control study
 (b) Cohort study
 (c) Cross sectional study
 (d) All of these

 [RJ 2000]

201. True about case control study all except:
 (a) Quick
 (b) Incidence
 (c) Proceeds from effect to cause
 (d) None of these

 [R 2000]

202. Incidence of a disease is measured by:
 (a) Case control study
 (b) Cohort study
 (c) Cross sectional study
 (d) None of these

 [RJ 2001]

203. Attributable risk is measured by:
 (a) Cohort study
 (b) Case control study
 (c) Cross sectional study
 (d) None

 [R 2002]

204. Cohort study is:
 (a) Needs few patients
 (b) Incidence can be calculated
 (c) Proceeds from effect to cause
 (d) Odd ratio can be calculated

 [RJ 2006]

205. Odd’s ratio is indirect estimate of:
 (a) Relative risk
 (b) Prevalence rate
 (c) Attributable risk
 (d) Incidence rate

 [RJ 2006]
212. Intention-to-treat analysis is done in (a) Cohort study [AIPGME 2002] (b) Survival analysis studies (c) Randomized control trials (d) Multiple time series studies

213. Random in Randomization in a clinical trial means - (a) Equal but unknown chance [AIIMS Nov 1992] (b) Unequal and unknown chance (c) Unequal but known chance (d) Equal and known chance

214. The major purpose of random assignment in a clinical trial is to: [AIPGME 1996] (a) Help ensure that study subjects are representative of the general population (b) Facilitate double blinding (c) Facilitate measurement of outcome variables (d) Ensure that the study groups are comparable on base line characteristics

215. Which one of the following statements regarding pre-post clinical trial is most appropriate? (a) They cannot be randomized [AIIMS May 05] (b) They are useful in studies involving mortality (c) They use the patient as his or her own control (d) They are usually easier to interpret than the comparable parallel clinical trial

216. The heart of randomized controlled trail is (a) Protocol [Karnataka 2008] (b) Intervention (c) Randomization (d) None of the above

217. All of the following are Experimental/Interventional studies except: [AIIMS Nov 2000] (a) Randomised control trials (b) Field trials (c) Community trials (d) Ecological studies

218. In a controlled trial to compare two treatments, the main purpose of randomization is to ensure that: (a) The two groups will be similar in prognostic factors [AIIMS Nov 2002] (b) The clinician does not know which treatment the subjects will receive (c) The sample may be referred to a known population (d) The clinician can predict in advance which treatment the subjects will receive

219. In a randomized controlled trial, the essential purpose of randomization is: [AIPGME 06] (a) To produce double blinding (b) To decrease the follow-up period (c) To eliminate the selection bias (d) To decrease the sample size

220. All are true about Experimental trials except (a) Can’t double blind in animal trials (b) All animal trials are unethical

221. Efficacy of a new drug A is compared with an existing drug B in (a) Clinical trial phase I [AIPGME 2012] (b) Clinical trial phase II (c) Clinical trial phase III (d) Clinical trial phase IV

222. Gold standard study for Clinical research is (a) Randomised double-blind trial (b) Systematic meta-analysis (c) Ecological study [AIIMS November 2011] (d) Retrospective cohort study

223. About RCT all are true except [AIIMS May 2011] (a) Baseline characteristics are comparable (b) Bias eliminated by double blinding (c) Sample size depends on type of study (d) Dropouts are excluded from the study

224. Maximum tolerated dose of a new drug is evaluated in: (a) Phase 1 [AIIMS May 2013] (b) Phase 2 (c) Phase 3 (d) Phase 4

225. Selection bias can be eliminated by: (a) Randomization [DNB December 2011] (b) Single blinding (c) Double blinding (d) Matching

Review Questions

226. Randomized controlled trials are all except: [DNB 2002] (a) Clinical trials (b) Preventive trials (c) Before and after comparison studies (d) Evaluation of Health Services

227. In Randomized control trials, randomization is an attempt to eliminate: [AP 2000] (a) Selection bias (b) Out come bias (c) Uncontrolled trials (d) Natural experiments

228. All of the following are true regarding RCT except: [AP 2006] (a) Double binding is done to remove investigator bias (b) Drop outs results are excluded from the study (c) Randomizations is the heart of a control trial (d) 1st step in RCT is drawing up a protocol

229. In randomized control trial randomization is done to avoid: [MP 2001] (a) Selection bias (b) Observer’s bias (c) Interviewer’s bias (d) Recall bias
230. Double blind study means:
(a) Observer is blind about the study
(b) Person or group being observed is blind about the study
(c) Both observer and person or group being observed is blind about the study
(d) Interpreters and analyzer are blind about the study

231. Most difficult criterion to establish Causal Association in aetiology of a disease is:
(a) Temporality
(b) Strength of association
(c) Specificity of association
(d) Biological plausibility

232. Which of the following studies is best for establishing causation?
(a) Case-control study
(b) Cohort study
(c) Randomized control trials
(d) Case-series study

233. An advertisement in a medical journal stated that 2000 subjects with sore throat were treated with our new medicine. With in 4 days, 94% were asymptomatic. The advertisement claims that the medicine was effective. Based on the evidence given above, the claim:
(a) Is correct
(b) May be incorrect as the conclusion is not based on a rate
(c) May be incorrect because of failure to recognize a long-term cohort effect
(d) Incorrect because as no control or comparison group was involved

234. To test the association between risk factor and disease, which of the following is the weakest study design?
(a) Case-control study
(b) Ecological study
(c) Cohort study
(d) Cross-sectional study

235. Of the different epidemiological study designs available to test the association between risk factor and disease, the best design is of:
(a) Case-control study
(b) Ecological study
(c) Cohort study
(d) Cross-sectional study

236. In establishing Causal Association, most essential criterion is:
(a) Consistency of relationship
(b) Temporal relationship
(c) Duration of relationship
(d) Strength of relationship

237. The most important measure to establish a causal relationship is:
(a) Consistency
(b) Temporality
(c) Biological plausibility
(d) Dose-response relationship

238. Suspected cause preceding the observed effect is an example for:
(a) Coherence
(b) Temporality
(c) Biological plausibility
(d) Specificity

239. Current smokers are at higher risk of developing lung cancer as compared to ex-smokers, criticality of casualty satisfied here is:
(a) Temporal relationship
(b) Consistency
(c) Strength of association
(d) Reversibility or reversible association

240. Association of high altitude areas with goiter is example of:
(a) Causal association
(b) Direct association
(c) Temporal association
(d) Indirect association

241. Infections transmitted to man from vertebrate animals are known as:
(a) Exotic
(b) Anthropozoonoses
(c) Zooanthroponoses
(d) Epizootic

242. ‘Endemic Disease’ means that a disease:
(a) Occurs clearly in excess of normal expectancy
(b) Is constantly present in a given population group
(c) Exhibits seasonal pattern
(d) Is prevalent among animals

243. Occurrence of a disease in a haphazard and irregular pattern is known as:
(a) Endemic
(b) Epidemic
(c) Sporadic
(d) Pandemic

244. Sentinel surveillance is done to detect
(a) Missing number of cases
(b) Total number of cases
(c) Incidence of disease
(d) Factors affecting occurrence of disease
245. HIV cases are reported from all over the world. This is called as [DPG 2007]
(a) Endemic (b) Epidemic (c) Pandemic (d) Sporadic

246. Following is part of “Sentinel Surveillance” EXCEPT [Karnataka 2009]
(a) Method for identifying the missing cases (b) Supplementing the notified cases (c) To estimate the disease prevalence in total population (d) To estimate the fatality of the disease

247. The ability of an infectious agent to invade and multiply in a host is called [Karnataka 2009]
(a) Pathogenicity (b) Infectivity (c) Virulence (d) Communicability

248. Pandemics are caused by: [PGI Dec 2K]
(a) Hepatitis B (b) Influenza – A (c) Influenza – B (d) Influenza – C

249. Post exposure vaccination is given in: [Recent Question 2013]
(a) Typhoid (b) Rabies (c) Mumps (d) Rubella

250. Disease(s) infectious before onset of symptoms is/are: [PGI May 2012]
(a) Measles (b) Mumps (c) Cholera (d) Hepatitis B (e) Poliomyelitis

Review Questions

251. Hospital acquired infection of surgical wound is mostly by: [AP 2005]
(a) Doctor (b) Patient (c) Air borne (d) Instruments

252. Subclinical infection is not seen in: [MP 2002]
(a) Rabies (b) AIDS (c) Polio (d) Hepatitis A

253. Hospital Acquired infections are called as: [MP 2007]
(a) Empiriatric infections (b) Nosocomial infections (c) Iatrogenic infections (d) Emporithic infections

254. Disease imported in a country, which was not otherwise present? [MH 2007]
(a) Epornithic disease (b) Zoonotic disease (c) Exotic disease (d) Epizootic disease

DISEASE TRANSMISSION

255. Soil is an important reservoir for all except: [AIPGME 2008]
(a) Brucellosis (b) Coccidiomycosis (c) Anthrax (d) Tetanus

256. The time taken for 50% of patients to develop the disease following exposure to the disease is known as: [AIIMS June 1999]
(a) Incubation period (b) Median incubation period (c) Generation time (d) Secondary Attack rate

257. In a 6-membered family, there are two parents and four children all aged between 2-6 years. One of the children (3 yr old) is completely immunized for his age, whereas other 3 siblings are totally unimmunised. On 12 August 2006, one of the latter got measles. 2 other siblings also got measles by 18 August 2006. Secondary attack rate is: [AIIMS May 1995]
(a) Zero (b) 33 % (c) 66 % (d) 100%

258. A village has 100 under five children. The coverage of measles vaccine is 60%. Following a measles case 26 children developed measles. The secondary attack rate is: [AIIMS May 1999]
(a) 25% (b) 40% (c) 50% (d) 65%

259. Generation time in epidemiology is defined as: [AIIMS May 1995]
(a) The interval between marriage and the birth of first child (b) The interval of time between the receipt of infection by host and maximal infectivity of the host (c) The interval of time between primary case and secondary cases (d) Interval of time between invasion by infectious agent and appearance of first sign or symptom of the disease/in question

260. All of the following are used as proxy measures for incubation period in disease except: [AIIMS Nov 1993 & Sep 1996]
(a) Latent period (b) Period of communicability (c) Serial interval (d) Generation time
261. Soil act as reservoir of infection for all of the following except: [AIPGME 1995]
 (a) Tetanus
 (b) Anthrax
 (c) Coccidiomycosis
 (d) Dracunculiasis

262. A family consists of 2 parents & 6 children susceptible to measles. There occurs a primary case of measles and 3 secondary cases within a short period of time. Secondary attack rate is: [AIIMS June 2000]
 (a) 60%
 (b) 38%
 (c) 67%
 (d) 50%

263. Denominator while calculating the secondary attack rate includes: [AIPGME 03]
 (a) All the people living in next fifty houses
 (b) All the close contacts
 (c) All susceptibles amongst close contact
 (d) All susceptibles in the whole village

264. Serial interval is: [Recent Question 2013]
 [AIPGME-2000-02, AIIMS June 99 & 2000 May 02]
 (a) Time gap between primary and secondary case
 (b) Time gap between index and primary case
 (c) Time taken for a person from receipt of infection to develop maximum infectivity
 (d) The time taken from infection till a person infects another person

265. Which of the following is not spread by fomites? [DPG 2007]
 (a) AIDS
 (b) Typhoid
 (c) Diarrhea
 (d) Hepatitis A

266. Serial interval means [DPG 2005]
 (a) Difference between primary and secondary cases
 (b) Longest incubation period
 (c) Shortest incubation period
 (d) Time in which the parasite develops in the vector

267. Time interval between receipt of infection by a host and maximum infectivity of that host is known as [DPG 2008]
 (a) Generation time
 (b) Incubation period
 (c) Serial interval
 (d) Secondary attack rate

268. Generation time in epidemiology is defined as [Karnataka 2004]
 (a) The interval between marriage and the birth of first child
 (b) The interval of time between the receipt of infection by host and maximal infectivity of the host
 (c) The interval of time between primary case and secondary cases
 (d) Interval of time between invasion by infection agent and appearance of first sign or symptom of the disease/ in question

269. The transmission of filariasis is an example of [Karnataka 2005]
 (a) Propagative transmission
 (b) Cyclical transmission
 (c) Cyclo-developmental transmission
 (d) Cyclo-propagative transmission

270. The following diseases are communicable during later part of incubation period EXCEPT [Karnataka 2009]
 (a) Measles
 (b) Whooping Cough
 (c) Hepatitis A
 (d) Typhoid

271. Which of the following statement about “Reservoir” of an infection is NOT correct? [Karnataka 2009]
 (a) Reservoir can transmit infection to a susceptible host
 (b) “Reservoir” and “Source” of infection are synonymous
 (c) Non-living thing can be Reservoir
 (d) Reservoir can be an animal

272. The gap in time between the onset of the primary case and the secondary case is called [Karnataka 2009]
 (a) Serial interval
 (b) generation time
 (c) incubation period
 (d) communicable period

273. Which of the following statement about “Incubation Period” (IP) is NOT correct? [Karnataka 2009]
 (a) It is the time interval between invasion by an infectious agent and appearance of the first sign or symptom
 (b) During IP, the infectious agent undergoes multiplication in the host
 (c) The factors such as infective dose of pathogens and portal of entry determines IP
 (d) Infectious disease are not communicable during IP

274. Which of the following does not have non human reservoirs [PGI June 08]
 (a) Polio
 (b) Pertussis
 (c) Salmonella Typhi
 (d) Neisseria meningitidis
 (e) Cl. Teani

275. Disease highly transmitted during incubation period is/ are: [PGI June 08]
 (a) Pertussis
 (b) Cholera
 (c) Measles
 (d) Brucellosis
 (e) Chicken-pox

276. Incubatory carriers seen in: [PGI June 08]
 (a) Cholera
 (b) Bubonic plague
 (c) Mumps
 (d) Measles
 (e) Influenza
277. Sex ratio is:
(a) 1 male per 1000 female
(b) 1000 female per 1000 male
(c) Females per 1000 male
(d) 1000 female per 1000 male
(e) One lakh female per one lakh

278. Isolation is needed in which of the following diseases:
(a) Diphtheria
(b) T.B.
(c) Cholera
(d) Herpes zoster
(e) Streptococcal pharyngitis

279. Isolation is advised in
(a) Polio
(b) Diphtheria
(c) Leprosy
(d) Pneumonic plague
(e) HIV

280. Carrier stage seen in:
(a) Polio
(b) Cholera
(c) Pertusis
(d) Plague
(e) Tetanus

281. Which of the following diseases have incubation period < 10 days:
(a) Cholera
(b) Influenza
(c) Plague
(d) Measles
(e) Rubella

282. Isolation is done in following case/s:
(a) T.B.
(b) Cholera
(c) Measles
(d) Typhoid
(e) Streptococcal pharyngitis

283. Healthy carrier seen in:
(a) T.B.
(b) Diphtheria
(c) Cholera
(d) Typhoid
(e) Tetanus

284. Healthy carrier seen in:
(a) T.B.
(b) Diabetes
(c) Cholera
(d) Rabies
(e) Tetanus

285. Presence of infectious arthropod agent on clothes or dressing is termed
(a) Infection
(b) Infestation
(c) Contamination
(d) Contagion

286. The gap in time between the onset of the primary case and the secondary case is called
(a) Serial interval
(b) Generation time
(c) Communicable period
(d) Median incubation period

287. Isolation is useful for:
(a) Hepatitis A
(b) Diphtheria
(c) Typhoid
(d) Cholera
(e) Poliomyelitis

288. All of the following are used as proxy measures for incubation period, except:
(a) Latent period
(b) Period of communicability
(c) Serial interval
(d) Generation time

289. Quarantine period should be:
(a) Minimum incubation period
(b) Maximum incubation period
(c) Period of communicability
(d) Median incubation period

290. Interval between primary and secondary case is called as:
(a) Generation time
(b) Serial interval
(c) Incubation period
(d) Lead time

291. First case that comes to notice of physician is:
(a) Primary case
(b) Secondary case
(c) Index case
(d) Refer case

292. Application of incubation period is all except:
(a) To differentiate primary case from secondary cases
(b) To find out time for isolation
(c) To find out time for quarantine
(d) To prevent infection to the contacts of the infected person

293. Chronic carrier state is seen in:
(a) Poliomyelitis
(b) Measles
(c) Malaria
(d) Tetanus

294. Time between infection and maximum infectivity is known as:
(a) Incubation period
(b) Serial interval
(c) Generation time
(d) Communicable period
Epidemiology and Vaccines

Review of Preventive and Social Medicine

295. **Serial interval is:** [Recent Question 2013][DNB December 2009]
 (a) Time interval between invasion of infection and appearance of first sign or symptom
 (b) Time between onset of primary case and secondary case
 (c) Interval of time between receipt of infection by a host and maximum infectivity
 (d) Time in which infectious agent is transferred from one host to another

296. **All of the following are correct regarding Period of isolation except** [AIIMS May 2014]
 (a) Measles – Upto 3 days of onset of rash
 (b) Chicken pox – Upto 6 days of onset of rash
 (c) Herpes zoster – Upto 6 days of onset of rash
 (d) Rubella – Until 7 days after appearance of rash

Review Questions

297. **Man is dead end for:** [DNB 2006]
 (a) Tetanus, measles
 (b) Measles, yellow fever
 (c) Tetanus, yellow fever
 (d) Rabies, tetanus

298. **All of the following are used as proxy measures for incubation period except?** [DNB 2007]
 (a) Latent period
 (b) Period of communicability
 (c) Serial interval
 (d) Generation time

299. **Man is the dead end for:** [Bihar 2003]
 (a) Tetanus
 (b) Rabies
 (c) Measles
 (d) Pertussis

300. **Which of the following carries excrete infectious agents for indefinite periods?** [UP 2007]
 (a) Incubatory carrier
 (b) Convalescent carrier
 (c) Healthy carrier
 (d) Chronic carrier

301. **Vertical transmission is seen in :** [UP 2007]
 (a) Herpes simplex
 (b) Tetanus
 (c) Whooping cough

302. **A patient will not shed organisms in:** [AP 2001]
 (a) Latent infection
 (b) Incubation period
 (c) Carrier State
 (d) Convalescence

303. **Isolation is required till negative cultures in:** [AP 2002]
 (a) Diphtheria
 (b) Polio

 (a) Polio
 (b) Tetanus
 (c) Measles
 (d) Diphtheria

305. The following set of words cannot be used synonymously in epidemiology: [AP 2005]
 (a) Source and Reservoir
 (b) Index and primary case
 (c) Latent infection and subclinical infection
 (d) Serial interval and incubation period

306. **Serial interval means:** [All India 1993][UPSC 1999][AP 2007]
 (a) Time between primary or secondary case
 (b) Interval of time between receipt of infection by a host and maximal infectivity of that host
 (c) Time during which an infectious agent may be transferred directly or indirectly from an infected person to another person
 (d) The time interval between invasion by an infectious agent and appearance of the first sign or symptom of the disease in question

307. **Communicability of a disease is determined by:** [Kerala 1988][TN 2000]
 (a) Relative risk
 (b) Primary attack rate
 (c) Attributable risk
 (d) Secondary attack rate

308. **Following are biological transmission except:** [TN 2000]
 (a) Developmental
 (b) Propagative
 (c) Cyclopropagative
 (d) Cyclodevelopmental

309. **Man is an host with dead end transmission all of the following diseases, except:** [TN 2005]
 (a) Rabies
 (b) Tetanus
 (c) Malaria
 (d) Japanese encephalitis

310. **A carrier who gets infected from another carrier is known as:** [TN 2005]
 (a) Incubatory carrier
 (b) Paradoxical carrier
 (c) Convalescent carrier
 (d) Pseudo carrier

311. **Carrier has no role in transmission of which of the following disease:** [Kolkata 2004]
 (a) Cholera
 (b) Measles
 (c) Diphtheria
 (d) Typhoid
312. The time between primary and secondary case is:
 (a) A period of communicability
 (b) Serial interval
 (c) Incubation period
 (d) Generation time

313. Droplet nuclei are seen in all except:
 (a) Typhoid
 (b) Measles
 (c) Diphtheria
 (d) Pertussis

314. Carriers are infective in all except:
 (a) Polio
 (b) Measles
 (c) Diphtheria
 (d) Typhoid

315. Generation time is:
 (a) Time interval between the onset of primary & secondary case
 (b) Time interval between the entry of organism in the body & appearance of symptoms
 (c) Time interval between the onset of disease & maximum infectivity
 (d) Time lag between the 1st possible detection & usual time of diagnosis

316. Index case is:
 (a) 1st detected case of the communicable disease in a community
 (b) 1st registered case by investigator
 (c) 1st treated case
 (d) 1st detected case developing after contact with primary case

317. Which of the following is not a method of transmission of infection through direct contact?
 (a) Transplacental
 (b) Kissing
 (c) Sexual Intercourse
 (d) Syringe and needle

318. Organism multiplying and developing in the hosts is called as:
 (a) Cyclopropagative
 (b) Cyclodevelopmental
 (c) Developmental
 (d) Propagative

319. Median incubation period means:
 (a) The time required for 50% of the cases to occur following exposure
 (b) Time gap between onset of primary and secondary case
 (c) Interval between first clinical detection and final critical point
 (d) Time between exposure to a risk factor and subsequent development of clinical manifestations to a particular disease

320. Serial interval is:
 (a) Gap between primary and sec. case
 (b) Gap between disease & death time
 (c) Time for primary case

321. Man is secondary host in:
 (a) Malaria
 (b) Hydatid disease
 (c) Both
 (d) Filariasis only

322. Serial Interval is:
 (a) Time interval between the onset of primary and secondary case
 (b) Time interval between the onset of primary and last known case
 (c) Average interval between cases
 (d) Sequential interval between cases

323. Serial interval measures:
 (a) Incubation period
 (b) Sensitivity
 (c) Specificity
 (d) Positive predictive value

INVESTIGATION OF AN EPIDEMIC

324. The area is declared free of epidemic
 (a) Till last secondary case recovers
 (b) No new case reported for the incubation period of disease since the last case
 (c) No new case reported for twice the incubation period of disease since the last case
 (d) No new case reported for six months since the last case

325. Which of the following is the initial-most step in investigation of an epidemic?
 (a) Defining the population at risk
 (b) Confirmation of existence of an epidemic
 (c) Verification of diagnosis
 (d) Rapid search for all cases and their characteristics

Review Questions

326. In epidemic, 1st step is:
 (a) Verification of diagnosis
 (b) Isolation
 (c) Immunization
 (d) Notification

IMMUNITY, VACCINES AND COLD CHAIN

327. Which of the following statements regarding live vaccines is false?
 (a) Two live vaccines cannot be administered simultaneously
 (b) Booster doses are not required when live vaccines are administered
328. Strain used for BCG vaccine:
(a) Edmonston Zagreb strain
(b) Oka strain
(c) 'Danish' 1331
(d) RA 27/3 strain

329. Which is not true about measles vaccine?
(a) Egg culture
(b) Freeze dried
(c) Reconstituted vaccine should be used within one hour
(d) Given after 9 months of age

330. Most heat sensitive vaccine is:
(a) BCG
(b) Polio
(c) Measles
(d) DPT

331. A 10-month-old unimmunised child should be given-
(a) DPT-1, OPV-1, Measles, Vitamin-A
(b) BCG, DPT-1, OPV-1, Measles, Vitamin-A
(c) BCG, DPT-1, OPV-1
(d) BCG, DT-1, OPV-1, Measles, Vitamin A

332. Which of the following statements is true about BCG vaccination?
(a) Distilled water is used as diluent for BCG vaccine
(b) The site for injection should be cleaned thoroughly with spirit
(c) Mantoux test becomes positive after 48 hours of vaccination
(d) WHO recommends Danish 1331 strain for vaccine production

333. A 3 yr old completely unimmunised child comes to an immunization clinic at PHC for the first time. He should receive:
(a) BCG, Measles, Vitamin-A
(b) DT-1, OPV-1, Measles, Vitamin-A
(c) BCG, DPT-1, OPV-1, Measles, Vitamin-A
(d) DPT-1, OPV-1, Measles, Vitamin-A

334. All of the following are killed vaccines except:
(a) Salk Polio
(b) Japanese encephalitis
(c) Rabies
(d) Yellow fever

335. The efficiency of cold chain system for oral polio vaccine as monitored by Vaccine Vial Monitor (VVM) depends on:
(a) Change in the colour of vaccine
(b) Temperature indicator of the system
(c) Viral potency test
(d) Change in colour of monitor

336. The following statements are true about DPT vaccine except:
(a) Aluminum salt has an adjuvant effect
(b) Whole killed bacteria of Bordetella pertussis has an adjuvant effect
(c) Presence of acellular pertussis component increases its immunogenicity
(d) Presence of H. influenzae type B component increases its immunogenicity

337. Which one of the following doses in Loeffler units of Diphtheria Toxoid is incorporated in DPT vaccine per dose?
(a) 5
(b) 15
(c) 25
(d) 35

338. Salk vaccine is a-
(a) Live vaccine
(b) Live attenuated vaccine
(c) Killed vaccine
(d) Toxoid

339. Temperature in an ILR at PHC is recorded using:
(a) Kata thermometer
(b) Sling psychrometer
(c) Dial thermometer
(d) Anemometer

340. The risk of cold chain failure is greatest at:
(a) Regional level
(b) District Level
(c) PHC level
(d) Subcentre & village level

341. If a 11-month old child has received two doses of DPT and polio, comes for further immunization after 5 months of the last dose, what should be done?
(a) Repeat the whole course
(b) Repeat the 2nd dose and continue rest of the course
(c) Give 3rd dose and continue the course
(d) Give only booster dose

342. In one single visit, a 9 month-old, un-immunized child can be given the following vaccination:
(a) Only BCG
(b) BCG, DPT-1, OPV-1
(c) DPT-1, OPV-1, Measles
(d) BCG, DPT-1, OPV-1, Measles

343. All of the following statements are true about DPT vaccine except:
(a) It should be stored in deep freezer
(b) Exposure to direct sunlight when in use should be avoided
(c) Store stocks are needed for three months at PHC level
(d) Half used vials should not be put back into the cold chain after the session
Epidemiology and Vaccines

344. Active and passive immunity should be given together in all except:

(a) Tetanus
(b) Rabies
(c) Measles
(d) Hepatitis B

345. Which vaccine is contraindicated in pregnancy?

(a) Rubella
(b) Diphtheria
(c) Tetanus
(d) Hepatitis B

346. Antisera is obtained from

(a) Guinea pig
(b) Rabbit
(c) Rat
(d) Horse

347. Adjuvant used in DPT is

(a) Silica
(b) Magnesium
(c) Manganese
(d) Aluminium

348. Which of the following is a live vaccine?

(a) Salk polio vaccine
(b) Sabin polio vaccine
(c) Hepatitis B vaccine
(d) Rabies vaccine

349. Administration of which vaccine can result in paralysis in children?

(a) Measles vaccine
(b) Polio vaccine
(c) DT vaccine
(d) DPT vaccine

350. Which of the following is called ‘first immunization’ of the baby?

(a) Colostrum
(b) Handing over the baby to mother
(c) OPV
(d) DPT+BCG

351. A 9 month old un-immunized child was brought to the dispensary, which vaccination should be given to this baby at first visit?

(a) OPV + BCG
(b) OPV + Measles
(c) OPV + BCG + DPT + Measles
(d) OPV + DPT + BCG

352. Which of the following vaccine is not administered at birth?

(a) OPV
(b) BCG
(c) Hepatitis B
(d) Hib

353. BCG vaccination is given

(a) Prodermally
(b) Subcutaneously
(c) Intramuscularly
(d) Intradermally

354. The following is true for ‘Live Vaccines’ EXCEPT

(a) Live vaccines engage certain tissues of the body
(b) Live vaccines should not be administered to a patient of Leukemia
(c) Two live vaccines cannot be given simultaneously
(d) With an exception, immunization is generally achieved with a single dose of live vaccine

355. In which of the following, Herd Immunity cannot protect the individual?

(a) Tetanus
(b) Diphtheria
(c) Poliomyelitis
(d) All of the above

356. Live vaccines are:

(a) BCG
(b) OPV
(c) DPT
(d) Measles
(e) TT

357. Vaccine (s) not to be frozen is/are:

(a) BCG
(b) OPV
(c) DPT
(d) Measles
(e) TT

358. Live vaccines are all except:

(a) BCG
(b) Measles
(c) Polio
(d) Hib
(e) HBV

359. Live attenuated vaccines are:

(a) Sabin
(b) BCG
(c) Varicella
(d) Hib
(e) HBV

360. Incorrect matches are

(a) Measles-Jeryl-Lynn strain
(b) Chickenpox –OKA-strain
(c) Oral polio-sabin
(d) Rubella-Edmoston-zagreb strain

361. In vaccines incorrect match is

(a) Measles – Jeryllyn
(b) Rubella - Copenhagen
(c) Mumps - Schwartz
(d) Chicken pox – OKA
(e) Polio – sabin
362. Live vaccine includes:
(a) Pertussis
(b) BCG
(c) Yellow fever
(d) Mumps
(e) Hepatitis B

363. Which of the following is false regarding Oral Polio Vaccine (OPV)?
[AIIMS Nov 2009]
(a) It is a killed vaccine
(b) Residual neuro-paralysis is a complication
(c) Requires sub-zero temperature for storage long term
(d) Induces intestinal and humoral immunity

364. HPV vaccine is
[AIIMS November 2009]
(a) Monovalent
(b) Bivalent
(c) Quadrivalent
(d) Bivalent & quadrivalent

365. Vaccine with maximum efficacy
[AIIMS May 2010]
(a) OPV
(b) Measles
(c) BCG
(d) TT

366. Which of the following vaccine should not be given during pregnancy?
[DPG 2011]
(a) HBV
(b) Measles, Mumps, Rubella
(c) Typhoid
(d) Cholera

367. Which is true about BCG?
[AIIMS May 2011]
(a) Distilled water is used as diluent
(b) Site for injection is cleaned with spirit
(c) Mantoux test positive in 6 weeks
(d) WHO recommends Danish 1331 for vaccine production

368. False about vaccines
[AIIMS May 2011]
(a) Thiomersal is used as preservative in DPT vaccine
(b) Kanamycin is used as preservative in measles vaccine
(c) Neomycin is used as preservative in BCG vaccine
(d) Magnesium chloride used to stabilize OPV

369. Vaccine which should not be given to an elderly man is
[AIPGME 2012]
(a) Measles vaccine
(b) H. influenzae vaccine
(c) TT vaccine
(d) Pneumococcal vaccine

370. All are live vaccines except
[PGI May 2011]
(a) Japanese encephalitis
(b) Rabies
(c) Poliomyelitis
(d) Typhoid
(e) Measles

371. How many fully frozen ice packs should a vaccine carrier contain?
[Karnataka 2011]
(a) 2
(b) 4
(c) 6
(d) 8

372. At Primary Health Centre (PHC) level, vaccines are stored in the
[Karnataka 2011]
(a) Cold box
(b) Deep freezer
(c) Ice lined refrigerator
(d) Walk in cold room

373. Which vaccine(s) is/are not contraindicated in pregnancy?
[PGI May 2012]
(a) Rubella
(b) Varicella
(c) Hepatitis B
(d) Measles
(e) Rabies

374. At PHC level vaccine storage is by:
[DNB June 2009]
(a) ILR
(b) Walk in cold rooms
(c) Cold boxes
(d) Vaccine carriers

375. Which disease is prevented by giving booster dose to a 5-6 years old child?
[DNB December 2011]
(a) Measles
(b) BCG
(c) DT
(d) DPT

376. Which type of vaccine is MMR?
[DNB December 2010]
(a) Live attenuated
(b) Killed
(c) Toxoid
(d) Subunit

377. True about SA-14-14-2 vaccine is:
[Recent Question 2013]
(a) Diploid cell inactivated
(b) Killed vaccine
(c) Life long immunity
(d) Primary immunization 2 doses

378. In measles outbreak, measles vaccine can be given within:
[Recent Question 2013]
(a) 2-3 months
(b) 3-5 months
(c) 2-7 months
(d) 6-9 months

379. Name of mumps vaccine is:
[Recent Question 2012, 2013]
(a) Jeryll Lynn
(b) Edmonston
(c) DANISH 1331
(d) OKA
380. Use of one of the following vaccination is contraindicated in pregnancy: [DNB 2007]
(a) Hepatitis-B
(b) Cholera
(c) Rabies
(d) Yellow fever

381. Zero dose of polio vaccine in which given: [DNB 2007]
(a) Before giving DPT
(b) At birth
(c) When child is having diarrhea
(d) When child is having polio

382. A full course of immunization against with 3 doses of tetanus toxoid, confers for how many years: [DNB 2008]
(a) 5
(b) 10
(c) 15
(d) 20

383. Additional component of UIP PLUS does not include: [NUPGET 2013]
(a) Hepatitis B vaccine
(b) Safe motherhood
(c) Acute respiratory infections
(d) Diarrhoea

384. Which of the following Human papilloma virus subtypes are not covered by Quadrivalent Anti-cervical cancer vaccine? [PGI May 2013]
(a) Type 6
(b) Type 7
(c) Type 11
(d) Type 16
(e) Type 18

385. Rabies vaccine for pre exposure prophylaxis is given at: [DNB June 2010]
(a) 0, 3, 7 days
(b) 0, 3, 7, 14 days
(c) 0, 3, 7, 14, 30 days
(d) 0, 7, 28 days

386. According to latest guidelines of vaccination, which of the following is applicable at the age of 5 years?
(a) DT booster + Vitamin A [AIIMS November 2013]
(b) DT
(c) DPT + OPV
(d) DPT + Vitamin A

387. Killed vaccine is: [Recent Question 2013]
(a) Hepatitis A
(b) Measles
(c) OPV
(d) BCG

388. Hepatitis B vaccine, dose schedule in adult (months): [Recent Question 2012]
(a) 0, 1, 2 months
(b) 2, 4, 6 months
(c) 0, 6, 12 months
(d) 0, 1, 6 months

389. True about polio vaccination is all except: [DNB June 2010]
(a) Follow up of AFP every 30 days
(b) Salk contains three types of polio virus
(c) Pulse polio doses are extra and supplemental
(d) Oral polio vaccine provides intestinal immunity also

390. Protective levels of Tetanus anti-toxin is: [Recent Question 2012]
(a) >0.01 IU/ml
(b) >0.5 IU/ml
(c) >1.0 IU/ml
(d) >5 IU/ml

391. Which of the following is NOT a cholera vaccine? [Recent Question 2013]
(a) Ty21 A
(b) CVD-103-HgR
(c) WC-rBS
(d) mORC-Vax

392. Mass vaccination is ineffective in: [Recent Question 2012]
(a) Measles
(b) Poliomyelitis
(c) Tetanus
(d) None of the above

393. Trivalent oral polio vaccine contains, type 3 virus: [Recent Question 2012]
(a) 100,000 TCID 50
(b) 200,000 TCID 50
(c) 300,000 TCID 50
(d) 400,000 TCID 50

394. OPV Bivalent vaccine contains: [Recent Question 2012]
(a) P1 & P2
(b) P1 & P3
(c) P2 & P3
(d) P1, P2 & P3

395. True regarding SA-14-14-2 Japanese Encephalitis vaccine: [AIIMS November 2013]
(a) Cell culture derived live attenuated
(b) Killed vaccine
(c) Life long immunity
(d) Primary schedule consist of 2 doses

396. True regarding Cervical cancer vaccine is/are: [PGI November 2013]
(a) Bivalent and quadrivalent
(b) Given to married women in 20-45 years age group
(c) MC subtypes 16, 18
(d) Two doses given
(e) Gives 100% protection

397. Which of the following vaccines can result in Thrombocytopenia? [AIIMS May 2014]
(a) MMR vaccine
(b) Typhoid vaccine
(c) Influenza vaccine
(d) HiB vaccine
398. Which of the following is NOT true about Oral Polio Vaccine? [AIIMS May 2014]
(a) Induces both local and systemic immunity
(b) Maternal antibody is completely protective
(c) Live attenuated vaccine
(d) Requires sub-zero temperature for long term storage

399. Newborn child with HIV + and symptomatic, which vaccine will NOT be given [Recent Question 2014]
(a) Measles
(b) OPV vaccine
(c) BCG
(d) Live J.E.

400. Live attenuated vaccine can be given to [Recent Question 2014]
(a) Children under 8 years
(b) HIV patients
(c) Patients on steroids
(d) Patients on radiation

401. Zero dose of Polio vaccine is which is given: [DNB 2000]
(a) Before giving DPT
(b) At birth
(c) When child is having diarrhoea
(d) When child is having Polio

402. Which is a live vaccine: [DNB 2000]
(a) BCG
(b) Salk
(c) DPT
(d) Tetanus toxoid

403. Zero dose of Polio vaccine is which is given: [DNB 2001]
(a) Before giving DPT
(b) At birth
(c) When child is having diarrhoea
(d) When child is having Polio

404. Which is a live vaccine: [DNB 2001]
(a) BCG
(b) Salk
(c) DPT
(d) Tetanus toxoid

405. The following are live attenuated vaccines except: [DNB 2002]
(a) Oral polio
(b) Yellow fever
(c) Measles
(d) Influenza

406. Storage temperature for vaccine is: [DNB 2004]
(a) -4°C to 0°C
(b) 0°C to 4°C
(c) +2°C to 8°C
(d) +4°C to 12°C

407. Leprosy commonly spreads by: [DNB 2004]
(a) Milk
(b) Droplet
(c) Water
(d) Mosquitoes

408. Zero dose of Polio vaccine is given: [DNB 2005]
(a) Before giving DPT
(b) At birth
(c) When child is having diarrhoea
(d) When child is having Polio

409. Yellow fever vaccination starts protection after how many days of injection: [DNB 2005]
(a) 5 days
(b) 10 days
(c) 15 days
(d) 20 days

410. Which is a live attenuated vaccine: [DNB 2005]
(a) BCG
(b) Salk
(c) DPT
(d) Tetanus toxoid

411. Ring vaccination is: [DNB 2006]
(a) Given by a ring shaped machine
(b) Given to produce a ring shaped lesion
(c) Given around 200 yards of a case detected
(d) Given around a mile of a case detected

412. The following are live attenuated vaccines except: [DNB 2006]
(a) Oral polio
(b) Yellow fever
(c) Measles
(d) Influenza

413. Use of the following vaccination is generally contraindicated in pregnancy: [DNB 2007]
(a) Hepatitis B
(b) Cholera
(c) Rabies
(d) Yellow fever

414. Zero dose of Polio vaccine is which is given: [DNB 2007]
(a) Before giving DPT
(b) At birth
(c) When child is having fever
(d) When child is having Polio

415. Yellow fever vaccination starts protection after how many days of injection: [DNB 2007]
(a) 5 days
(b) 10 days
(c) 15 days
(d) 20 days

416. A full course of immunization against Tetanus with 3 doses of Tetanus toxoid, confers immunity for how many years? [DNB 2008]
(a) 5
(b) 10
(c) 15
(d) 20
417. The neurological complications of DPT are due to:
(a) Pertussis component \[\text{Bihar 2003}\]
(b) Diphtheria
(c) Tetanus
(d) Adjuvant

(c) Antibody responses maintained at higher levels for a longer period of time
(d) Production of antibody more slow

427. Toxoid vaccines: \[\text{UP 2003}\]
(a) The micro-organism produces exotoxins
(b) The micro-organism produces endotoxins
(c) The organism killed by heat or chemical
(d) These organisms passed repeatedly in the laboratory in tissue culture

428. Which of the following is inactivated vaccine:
(a) Salk polio vaccine \[\text{Kerala 2001}\] \[\text{UP 2004}\]
(b) Ty21 typhoidal vaccine
(c) HDC-Edmonston-Zagreb measles strain
(d) BCG

429. All are true statement regarding BCG vaccination Except:
(a) Given subcutaneously
(b) It can be given in tuberculin negative patients
(c) Prevent haemagglutagenous spread
(d) It is prepared from M. bovis

430. Immunoglobulins found maximum is secretions:
(a) IgM \[\text{UP 2006}\]
(b) IgG
(c) IgA
(d) IgD

431. The vaccine administered as “Nose drops”:
(a) Rubella \[\text{UP 2006}\]
(b) Poliomyelitis
(c) Influenza
(d) Measles

432. Congenital passive immunity is NOT found in:
(a) Polio \[\text{UP 2008}\]
(b) Mumps
(c) Rubella
(d) Measles

433. All are correct regarding Premunition except:
(a) It is a state of active immunity \[\text{AP 2000}\]
(b) Protects an individual
(c) Protects entire community
(d) Immunity depends on the presence of an inactive infection with the same species in the host

434. Rabies:
(a) Cell culture vaccine is cheaper and effective \[\text{AP 2003}\]
(b) BPL vaccine has more number of doses
(c) Cell culture vaccine is less effective
(d) None

435. The Following is a live attenuated vaccine:
(a) Cholera vaccine \[\text{TN 1994}\] \[\text{TN 2000}\]
(b) Sabin vaccine
(c) Pertussis vaccine
(d) Human dipleoid cell vaccine rabies
436. All are killed vaccines Except: [Kolkata 2002]
 (a) Measles
 (b) Hepatitis B
 (c) Plague
 (d) Diphtheria

437. Minimum gap that should be allowed in between to administer two live vaccines: [Kolkata 2004]
 (a) 2 weeks
 (b) 4 weeks
 (c) 2 months
 (d) 4 months

438. Which of the following is not a killed vaccine:
 [Kolkata 2004]
 (a) DPT
 (b) Rabies
 (c) Hepatitis B
 (d) Diphtheria

439. Human immunoglobulin is given in all except: [Kolkata 2009]
 (a) Rabies
 (b) Hepatitis B
 (c) Measles
 (d) chickenpox

440. Mg2+ ion is used as a stabilizer in: [Kolkata 2009]
 (a) OPV
 (b) DPT
 (c) BCG
 (d) Measles

441. Active and passive immunization is done simultaneously in all except: [MP 2001]
 (a) Hepatitis B
 (b) Measles
 (c) Rabies
 (d) Tetanus

442. Following is a live attenuated vaccine: [MP 2001]
 (a) BCG
 (b) Hepatitis B
 (c) Japanese encephalitis
 (d) Salk

443. Killed vaccine among following is: [MP 2002]
 (a) BCG
 (b) Salk
 (c) Sabin
 (d) Yellow fever

444. Vaccine preventable neonatal disease is: [MP 2003]
 (a) Tuberculosis
 (b) Measles
 (c) Pertussis
 (d) Tetanus

445. The strain which is used for production of BCG vaccine at commercial level is: [MP 2003]
 (a) Bacille Calmette Guerin
 (b) Tween-80
 (c) Danish-1331
 (d) PPD-RT-23

446. Ty 21a is vaccine of: [MP 2005]
 (a) Typhoid
 (b) Cholera
 (c) Hepatitis
 (d) Rota virus

447. Under UIP programme which of the following vaccines is administered at 9 months of age?
 (a) DPT-1
 (b) BCG
 (c) Measles
 (d) Hepatitis B-1

448. Recommended dose of anti-rabies serum to be given for passive immunization of adult victim of dog bite is:
 [MP 2009]
 (a) 20 i.u.
 (b) 40 i.u.
 (c) 60 i.u.
 (d) 80 i.u.

449. The vaccines is yet to be available for:
 [MP 2009]
 (a) Dengue fever
 (b) Japanese encephalitis
 (c) Yellow fever
 (d) Russian spring summer encephalitis

450. DPT vaccine is stored at what temperature (in °C)?
 [MH 2005]
 (a) 2-4
 (b) 4-8
 (c) 0
 (d) - 20

451. All are live vaccine except: [RJ 2000]
 (a) 17-D
 (b) Rubella
 (c) Salk
 (d) Measles

452. Toxic shock syndrome is due to which vaccine: [RJ 2001]
 (a) Mumps
 (b) Measles
 (c) Salk
 (d) Tetanus

453. Which is not a live vaccine? [RJ 2001]
 (a) Sabin
 (b) 17-D
 (c) Salk
 (d) Measles

454. BCG vaccine is:
 [RJ 2002]
 (a) Killed
 (b) Live attenuated
 (c) Toxoid
 (d) Cellular fraction

455. BCG is given:
 [RJ 2002]
 (a) Intramuscular
 (b) Intradermal
 (c) Subcutaneous
 (d) Intravenous

456. In national immunization programme, total No of OPV dose are:
 [RJ 2003]
 (a) 3
 (b) 4
 (c) 5
 (d) 6
457. Salk vaccine is:
(a) Live
(b) Killed
(c) Toxoid
(d) None

458. Passive immunization is available for all except:
(a) Tetanus
(b) Hepatitis
(c) Diphtheria
(d) Measles

459. Live attenuated vaccine are all except:
(a) Oral typhoid
(b) Influenza
(c) Yellow fever
(d) Pertussis

DISINFECTION

460. Rideal-Walker Coefficient is employed for the assessment of:
(a) Effect of autoclaving
(b) Sufficiency of Pasteurisation
(c) Effect of Incineration
(d) Germicidal Power of a disinfectant

461. Standard against which disinfectants are measured is:
(a) Chlorine
(b) Ozone
(c) Phenol
(d) UV Radiation

462. Chlorine exerts a disinfectant action in all except:
(a) Bleaching Powder
(b) Cetrimide
(c) Halozone tablets
(d) Sodium hypochlorite

463. ‘Savlon’ contains:
(a) Chlorhexidine and chloroxylenol
(b) Cetavlon and chloroxylenol
(c) Cetavlon and hibitane
(d) Hibitane and chloroxylenol

464. Which of the following is not a sporidical agent?
(a) Glutaraldehyde
(b) Formaldehyde
(c) Chlorine dioxide
(d) Cresol

465. Disinfection of water by routine chlorination can be classified as:
(a) Sterilization
(b) Concurrent disinfection
(c) Terminal disinfection
(d) Pre-current disinfection

466. Sputum can be disinfected by:
(a) Boiling
(b) Burning
(c) Drying
(d) Autoclaving

467. Savlon contains:
(a) Cetrimide + chlorhexidine
(b) Cetrimide + chlorhexidine + butyl alcohol
(c) Cetrimide + butyl alcohol
(d) Cetrimide + Cetavlon

468. There is an outbreak of MRSA infection in a ward of a hospital. What is the best way to control the infection?
(a) Vancomycin given empirically to all the patients
(b) Frequent fumigation of the ward
(c) Wearing masks before any invasive procedure in ICU
(d) Washing of hands before and after attending the patients

469. Sputum is sterilized by all except:
(a) Autoclaving
(b) Boiling
(c) Cresol
(d) Chlorhexidine

470. Which of the following is used to test the efficiency of sterilisation of an autoclave?
(a) Bacillus subtilis
(b) Clostridium tetani
(c) Bacillus stearothermophilus
(d) Bacillus pumilus

471. The amount of bleaching powder necessary to disinfect choleric stools, is:
(a) 50 gm/lit
(b) 75 gm/lit
(c) 90 gm/lit
(d) 100 gm/lit

472. Sterilization and disinfection of blood spills is done by:
(a) Formaldehyde
(b) Sodium hypochlorite
(c) Tincture iodine
(d) Phenols

473. Syringes and glassware are sterilized by:
(a) Irradiation
(b) Autoclave
(c) Hot air oven
(d) Glutaraldehyde

474. Nosocomial infections are those which develop
(a) Within 24 hours after hospitalization
(b) Within 48 hours of hospitalization
(c) After 48 hours of hospitalization
(d) After 7 days of hospitalization

https://kat.cr/user/Blink99/
Review Questions

475. Disinfectant is one which: [MH 2000]
(a) Kills bacteria and spores
(b) Kills bacteria only
(c) Kills spores only
(d) Kills viruses

476. Fibreoptic scopes are sterilized by: [AIIMS Nov 2003][MH 2002][JIPMER 2014]
(a) Glutaraldehyde
(b) Ethylene oxide
(c) Autoclaving
(d) Alcohol

477. As compared to a routine case control study, nested case control study avoids problems (in study design) related to: [AIIMS Nov 04]
(a) Temporal association
(b) Confounding bias
(c) Need for long follow up
(d) Randomization

478. When an intervention is applied to community to evaluate its usefulness, it is termed as a trial for - [AIIMS Nov 05][AIPGME 06]
(a) Efficacy
(b) Effectiveness
(c) Efficiency
(d) Effect modification

479. A total of 5000 patients of glaucoma are identified and surveyed by patient interviews regarding family history of glaucoma. Such a study design is called: [AIIMS Nov 2004]
(a) Case series report
(b) Case control study
(c) Clinical trial
(d) Cohort study

480. In assessing the association between maternal nutritional status and the birth weight of the newborn, two investigators A and B studied separately and found significant results with \(P \) values 0.02 and 0.04 respectively. From this information, what can you infer about the magnitudes of association found by the two investigators? [AIPGME 2003]
(a) The magnitude of association found by investigator A is more than found by B
(b) The magnitude of association found by investigator B is more than that found by A
(c) The estimates of association obtained by A and B will be equal, since both are significant
(d) Nothing can be concluded as the information given is inadequate

481. Which of the following statements is false about nested case control study? [AIIMS Nov 1992]
(a) Is a cohort study nested in a case control study
(b) It maintains temporal association
(c) Is useful for rare diseases with expensive diagnostic tests
(d) Recall bias is not seen

482. A drug company is developing a new pregnancy-test kit for use on an outpatient basis. The company used the pregnancy test on 100 women who are known to be pregnant. Out of 100 women, 99 showed positive test. Upon using the same test on 100 non-pregnant women, 90 showed negative result. What is the sensitivity of the test? [AIIMS May 03]
(a) 90%
(b) 99%
(c) Average of 90 & 99
(d) Can’t be calculated from the data

483. The extent to which a specific health care treatment, service, procedure, program, or other intervention does what it is intended to do when used in a community dwelling population is termed its: [AIPGME 2006]
(a) Efficacy
(b) Effectiveness
(c) Effect modification
(d) Efficiency

484. Iron and Folic acid supplementation forms: [AIPGME 02]
(a) Health promotion
(b) Specific protection
(c) Primordial prevention
(d) Secondary prevention

485. All of the following are true about the Herd Immunity for infectious diseases except: [AIPGME 05, 07]
(a) It refers to group protection beyond what is afforded by the protection of immunized individuals
(b) It is likely to be more for infections that do not have a sub-clinical phase
(c) It is affected by the presence and distribution of alternative animal hosts
(d) In the case of tetanus it does not protect the individual

486. Evidence based medicine, which of the following is not useful: [PGI Dec 07]
(a) Personal Exposure
(b) RCT
(c) Case Report
(d) Meta Analysis
(e) Systematic review

487. Discovery of cholera by John Snow was a: [Recent Question 2013][DNB December 2011]
(a) Cohort study
(b) Cross sectional study
(c) Natural experiment study
(d) Clinical trial

488. Hypothesis is not tested by: [DNB June 2011]
(a) Descriptive studies
(b) Analytical studies
(c) Case control studies
(d) Cohort studies
Review Questions

489. Reverse cold chain is seen in:
(a) Expired vaccine from PHC to manufactured
(b) Carrying vaccine to periphery center
(c) Testing for potency of vaccine
(d) Stool specimen of polio send for testing

490. Disability free life expectancy is measured by:-
(a) Human development index
(b) Physical quality of life index
(c) Sullivan’s index
(d) Chandler’s index

491. About premunition all are true except:
(a) Good for individual
(b) Good for community
(c) Species specificity present
(d) Prevention from infection

492. Hospital based study among following is:
(a) Cohort
(b) Case control study
(c) Cross sectional
(d) Cross over study

493. In the context of epidemiology-a set of questions is constructed in such a manner that it takes into account all the important epidemiological factors of a given disease:
(a) Health model
(b) Epidemiological triad
(c) Epidemiological surveillance
(d) Mathematical model
DEFINITION AND EPIDEMIOLOGICAL METHODS

1. Ans. (a) Cross-sectional study [Ref. Park 21/e p66, Park 22/e p67]

CROSS SECTIONAL STUDY:
- Is based on the single examination of a cross-section of a population 'at one point of time', results of sample are then projected to whole population
- Is simplest form of observational epidemiological study
- Provides 'Prevalence of the disease' under study
- More useful for chronic diseases
- Tells about distribution of a disease in a population, 'rather than its etiology'
- Gives 'Snapshot of a population'
- Provides little information about the natural history of disease or incidence

2. Ans. (b) Ecological [Ref. Park 21/e p59, Park 22/e p60]

Also Remember
- Types of epidemiological studies:

<table>
<thead>
<tr>
<th>Type of epidemiological study</th>
<th>Unit of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Observational studies</td>
<td></td>
</tr>
<tr>
<td>a. Descriptive studies</td>
<td></td>
</tr>
<tr>
<td>b. Analytical studies</td>
<td></td>
</tr>
<tr>
<td>i. Cohort study</td>
<td>Individual</td>
</tr>
<tr>
<td>ii. Case control study</td>
<td>Individual</td>
</tr>
<tr>
<td>iii. Cross sectional study</td>
<td>Individual</td>
</tr>
<tr>
<td>iv. Ecological study</td>
<td>Population</td>
</tr>
<tr>
<td>2. Experimental studies</td>
<td></td>
</tr>
<tr>
<td>a. Randomized controlled trial</td>
<td>Patients</td>
</tr>
<tr>
<td>b. Field trial</td>
<td>Healthy people</td>
</tr>
<tr>
<td>c. Community trial</td>
<td>Community</td>
</tr>
</tbody>
</table>

3. Ans. (d) Evidence is generated from weak and poor studies [Ref. Grading quality of evidence and strength of recommendations, BMJ 2004; p1490]

EVIDENCE BASED MEDICINE/ PRACTICE
- Is considered 'Gold standard for clinical practice'
- Aims to apply best available evidence gained from scientific method to clinical decision making
- Research paper is investigated by the tools quoted in research paper itself to check validity
- Highest importance is given to strongest epidemiological studies
 - Most important: Meta-analyses, Systematic reviews, Blinded trials
 - Least importance: Opinions and conventional wisdom of researchers and experts
- Statistical parameters used:
 - Likelihood ratios
 - Receiver operator characteristic curve
4. Ans. (a) Longitudinal studies [Ref. K. Park 22/e p67]
5. Ans. (b) Ecological study [Ref. K. Park 22/e p60]
6. Ans. (a) Sackett [Ref. Encyclopedia of Public Health by W. Kirch, Pg 417]
 - Father of Evidence based medicine (EBM): David Sackett
 - Founded first Department of Clinical Epidemiology in Canada
 - Founded Oxford Centre for EBM
 - Wrote books:
 1. Clinical Epidemiology
 2. Evidence Based Medicine

Review Questions

7. Ans. (d) Variable to be tested [Ref. Park 21/e p66, Park 22/e p67]
8. Ans. (a) Descriptive epidemiology [Ref. Park 21/e p59, Park 22/e p60]
9. Ans. (d) Descriptive epidemiology [Ref. Park 21/e p59, Park 22/e p60]

MEASUREMENTS IN EPIDEMIOLOGY

10. Ans. (c) Incidence is a rate but prevalence is not [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p67]

TOOLS OF MEASUREMENT IN EPIDEMIOLOGY:
- **Rate:** Numerator (a) is a part of denominator (b) and multiplier is 1000 or 10,000 or 100,000 or so on…
- **Ratio:** Numerator (a) is not a part of denominator (b) and BOTH numerator and denominator are unrelated
- **Proportion:** Numerator (a) is a part of denominator (b) and multiplier is 100
 - Proportion is always expressed in percentage (%)
- Incidence is a rate, Prevalence is a proportion

11. Ans. (c) Proportion [Ref. K. Park 22/e p53]
12. Ans. (b) 10 per 1000 [Ref. K. Park 22/e p58]
13. Ans. (b) Population at risk [Ref. K. Park 22/e p58]

Review Questions

14. Ans. (a) Numerator is component of denominator [Ref. Park 21/e p52, Park 22/e p53]
15. Ans. (c) Increases with increase in duration of disease [Ref. Park 21/e p58, 59, Park 22/e p60]

IDC

16. Ans. (c) Line Ic [Ref. Park 21/e p52, 53, Park 22/e p53, 54]

WHO RECOMMENDED DEATH CERTIFICATE (for International use):
- Consist of four lines:
 - Line Ia: Disease or condition directly leading to death
 - Line Ib: Antecedent/ underlying cause
 - Line Ic: MAIN ANTECEDENT/ UNDERLYING CAUSE
 - Line II: Other significant conditions contributing to death BUT not related to disease/ condition causing it
- Concept of underlying cause, Line Ic is the MOST IMPORTANT line in death certificate, thus also known as ‘Essence of Death Certificate’
Also Remember

- **Registration of vital events in India: 100% registration of 4 vital events by 2010 (under National Population Policy 2000)**
 - Birth: Central Births and Deaths Registration Act’ 1969 (REGISTER < 21 DAYS)
 - Death: Central Births and Deaths Registration Act’ 1969 (REGISTER < 21 DAYS)
 - Marriage: The Hindu Marriage Act, 1955 (REGISTER < 30 DAYS)
 - Pregnancy: No legislation yet in India

Mortality Measurements

17. Ans. (a) Is a form of direct standardization [Ref. Park 21/e p56, Park 22/e p57]
 - Adjusted or standardized rates:
 - While comparison of death rates of two populations, ‘crude death rate is not the right yardstick’, as age-compositions are different
 - Age-adjustment or age-standardization removes confounding effect of different age structures
 - Indirect standardization: Standardized mortality ratio (SMR):
 - Is simplest and most useful form
 - Method: Calculate expected deaths, assuming that study group experiences the death rates of a standard population
 \[
 SMR = \frac{\text{Observed deaths}}{\text{Expected deaths}} \times 100
 \]
 - Feasibility: Permits adjustment where age-specific rates (ASDRs) are not available or are unstable because of small numbers

Also Remember

- **Types of population used in standardization:**
 - In direct standardization: Mortality rates of population of interest are used
 - Indirect standardization: Mortality rates of standard population are used
- **Other indirect standardization techniques:**
 - Life table analysis
 - Regression techniques
 - Multivariate analysis
 - Survival analysis

18. Ans. (d) Survival rate [Ref. Park 21/e p55, Park 22/e p56]
 - Survival rate: Is the proportion of survivors in a group (e.g. of patients), studied and followed over a period of time (e.g. over a period of 5 years)
 - Is used to ‘describe prognosis’ in certain disease conditions
 - Can be used as a ‘yardstick for the assessment of standards of therapy’
 - Survival period is usually reckoned from the date of diagnosis or start of the treatment
 - Quite useful in cancer studies
 - Survival rate calculation: \[SR = \frac{\text{Total No. of patients alive after 5 years}}{\text{Total No. patients diagnosed or treated}} \times 100 \]
 - Specific death rate:
 - Help identify particular ‘at risk’ group(s) for preventive action
 - Permit comparison between different causes within same population
 - Specific death rate calculation: \[SDR = \frac{\text{No. of deaths from a specific cause in a year}}{\text{Mid year population}} \times 100 \]
 - Case fatality rate:
 - CFR represents ‘killing power of a disease’
It is closely related to virulence of organism.

CFR calculation: \[\text{CFR} = \frac{\text{No. of deaths due to a disease}}{\text{No. of cases of that disease}} \times 100 \]

Proportional mortality rate: No. of deaths due to a particular cause (or in a specific age group) per 100 (or 1000) total deaths.

Is simplest measure of estimating the burden of a disease in the community.

Is a useful health status indicator: Indicates magnitude of preventable mortality.

\[\text{PMR} = \frac{\text{Deaths due to a disease}}{\text{Total deaths from all diseases}} \times 100 \]

CFR is the complement of Survival Rate.

Survival analysis is carried out by using ‘Kaplan Meier Estimator’ (Product limit estimator).

KME is a non-parametric estimation.

Advantage of KME: takes into account censored data (part of sample lost).

19. Ans. (a) Age specific death rate is not needed. [Ref. Park 21/e p55, 56, Park 22/e p56, 57]

<table>
<thead>
<tr>
<th>Direct Standardization</th>
<th>Indirect Standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Use actual ASDRs* on the standard age structure</td>
</tr>
<tr>
<td>Utility when</td>
<td>Both are available</td>
</tr>
<tr>
<td>1. No. of deaths in each age group</td>
<td></td>
</tr>
<tr>
<td>2. Population in each age group</td>
<td></td>
</tr>
</tbody>
</table>

20. Ans. (d) Age-standardized mortality rate [Ref. Park 21/e p55, Park 22/e p56]

21. Ans. (d) Neonatal mortality is higher among female children as compared to males [Ref. Park 21/e p518-30, Park 22/e p520-32]

According to older values of 2005, when question came in exam.

Almost 2/3rd of IMR occurs in neonatal period (IMR = 47 per 1000 LB and NNMR = 32 per 1000 LB)

Almost 2/3rd of the U5MR occurs in the first year of life (IMR = 47 per 1000 LB and U5MR = 63 per 1000 LB)

About one in ten children die before they reach the age of five years (U5MR = 63 per 1000 LB).

[PLEASE NOTE: For current values, see Annexure 15]

22. Ans. (a) Standardised mortality rate [Ref. Park 21/e p55, 56, Park 22/e p56, 57]

23. Ans. (c) 1st July [Ref. Park 21/e p52, Park 22/e p53]

Also Refer to Annexure 2

24. Ans. (c) Duration of sickness [Ref. Park 21/e p24-25, Park 22/e p22, 23]

INDICATORS OF HEALTH:
- Mortality indicators:
 - Crude death rate (CDR)
 - Life expectancy (LE)
 - Infant mortality rate (IMR)
 - Child mortality rate (CMR)
 - Under 5 proportional mortality rate (USMR)
 - Maternal mortality rate (MMR)
 - Disease specific mortality
 - Proportional mortality rate

Also Remember
- Best indicators of socio-economic development of a country:
 - U5MR (best indicator)
 - IMR (2nd best indicator)

25. Ans. (d) 25% [Ref. Park 21/e p54, Park 22/e p55]

In the given question, in an outbreak of cholera in a village of 2000 population, 20 cases have occurred and 5 have died.

Thus, CFR = Total no. of deaths due to a disease / Total no. of cases due to that disease × 100

Or, CFR = \(\frac{5}{20} \times 100 = 25\% = 25\% \)

And, Survival rate = 1 – CFR = 1 – 0.25 = 0.75 (75%)

26. Ans. (b) The national population is always taken as the standard population [Ref. Basic Epidemiology by Beaglehole, WHO; p25 Park 21/e p56, Park 22/e p57]

- Standard population: Is a population where numbers in each age and sex group are known
 - Two frequently used standard populations are:
 1. Segi world population
 2. European standard population
 - Choice of standard population is arbitrary:
 1. Available standard populations may be used
 2. Standard population may also be created using 2 populations
 3. The national population need not always be taken as the standard population
 4. Is commonly used in occupational studies: Comparison of mortality in an industry and general population
 5. Can be used for occurrence of disease (rather than death)

27. Ans. (c) Age distributions [Ref. Park 21/e p55, Park 22/e p56]

28. Ans. (b) Case fatality rate [Ref. Park 21/e p54, Park 22/e p55]

- CFR is the ‘complement of Survival Rate’
 - CFR = 1 – Survival Rate

Also Remember
- CFR of few important diseases:

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Case fatality rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies</td>
<td>100%</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>80%</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>30 – 35% (median 35%)</td>
</tr>
<tr>
<td>Chicken pox</td>
<td>< 1%</td>
</tr>
</tbody>
</table>
29. Ans. (b) Case fatality rate [Ref. Park 21/e p54, Park 22/e p55]
30. Ans. (a) Proportional mortality rate [Ref. Park 21/e p54, Park 22/e p55]
31. Ans. (c) Virulence [Ref. Park 21/e p54, Park 22/e p55]
32. Ans. (a) It is a ratio; (d) It is useful in chronic diseases [Ref. Park 21/e p54, Park 22/e p55]
33. Ans. (c) Chronic illness [Ref. Park 21/e p54, Park 22/e p55]
34. Ans. (c) Age distribution [Ref. Park 22/e p56]
35. Ans. (b) Case fatality rate (CFR) [Ref. Park 21/e p54, Park 22/e p55]
36. Ans. (a) Age [Ref. Park 21/e p55, Park 22/e p56]
37. Ans. (b) Age distributions [Ref. Park 21/e p55, Park 22/e p56]
38. Ans. (c) Proportion [Ref. K. Park 22/e p53]

Review Questions

39. Ans. (c) Measures life expectancy free of disability [Ref. Park 21/e p25, Park 22/e p23]
40. Ans. (b) Age specific data not required [Ref. Park 21/e p56, Park 22/e p57]
41. Ans. (d) All of the above [Ref. Park 21/e p54, Park 22/e p55]
42. Ans. (b) Proportional mortality rate [Ref. Park 21/e p54, Park 22/e p55]
43. Ans. (c) Killing power of a disease with no time interval [Ref. Park 21/e p54, Park 22/e p55]
44. Ans. (d) Case fatality rate [Ref. Park 21/e p54, Park 22/e p55]
45. Ans. (c) Killing power of disease [Ref. Park 21/e p54, Park 22/e p55]
46. Ans. (a) Disability rate [Ref. Park 21/e p25, Park 22/e p23]
47. Ans. (b) Case fatality rate [Ref. Park 21/e p54, Park 22/e p55]
48. Ans. (a) Standardized mortality [Ref. Park 21/e p55, 56, Park 22/e p56, 57]

MORBIDITY MEASUREMENTS

49. Ans. (a) Incidence will not change [Ref. Park 21/e p57, Park 22/e p58]
 - Relationship between Incidence and Prevalence: Given the assumption that population is stable AND incidence & duration are unchanging,
 - Prevalence = Incidence × Mean duration of the disease
 - Incidence reflects causal factors
 - Duration reflects the prognostic factors
 In the given question, a new effective treatment is initiated and all other factors remain the same, Thus new cases will keep on occurring at the same rate,
 So, incidence will not change
 However, effective treatment will cure more cases, so old cases will reduce,
 Thus, incidence will reduce
 HOWEVER, OVER LONG PERIOD OF TIME, incidence MAY also reduce if it is an infectious disease (as total case load in the community is reducing)
50. Ans. (c) decrease the incidence of the disease [Ref. Park 21/e p57, Park 22/e p58]

INCIDENCE:
 - Is defined as the 'no. of new cases' occurring in a defined population during a specified period of time
 - For a given period,
 Incidence = Number of new cases of disease/Total population at risk × 1000
 - Incidence is a RATE, expressed per 1000
 - Special types of incidence rates:
 - Attack rate: Incidence rate used when population is exposed for a small interval of time, e.g. epidemic
 - Secondary Attack Rate (SAR): Is no. of exposed persons developing the disease within range of incubation period, following exposure to the primary case
 In the given question, there is an improved prevention of an acute, nonfatal disease, Thus, no. of new cases or incidence will reduce
51. Ans. (b) The apparent 5 yr survival rate will increase [Ref. Epidemiology by Leon Gordis 4/e p97, Park 22/e p86]

- Incidence: Is 'number of new cases occurring in a defined population over a specified period of time'
- Prevalence: Is total current (Old + New) cases in a given population over,
 - Types of prevalence:
 i. a point of time (Point Prevalence)
 ii. a period of time (Period Prevalence)
- Prevalence = Incidence × Mean duration of disease \[P = I \times d\]
- Prevalence describes the balance between incidence, mortality and recovery
- Age adjusted (standardized) mortality rate:
 - Removes confounding effect of different age structures in 2 populations, while comparing crude death rates
 - Standardization may be:
 1. Direct standardization: Availability of age-specific death rates and population in each age group
 2. Indirect standardization: Standardized mortality ratio (SMR): Age-specific rates are not available
- Survival rate:
 - Survival rate calculation: \[SR = \frac{\text{Total No. of patients alive after 5 years}}{\text{Total No. of patients diagnosed or treated}} \times 100\]
 - Survival rate is complement of Case fatality rate (CFR): \[SR = 1 - CFR\]
 - WHENEVER screening is performed: Higher 5-year survival rate is observed; THIS IS A POTENTIAL BIAS DUE TO earlier diagnosis being made (and not because people live longer)

In the given question, a diagnostic test has been introduced that will detect a certain disease 1 yrs earlier than it is usually detected;

Thus, Incidence rate (new cases) will remain same after 10 years

Since duration of disease will remain same, the period prevalence rate will reamin same after 10 years

And it will also have no effect on age adjusted mortality rate

But, since disease is getting detected 1 year earlier than usual (LEAD TIME), treatment can be started 1 year earlier (CFR will be apparently lowered), thus leading to apparent increase in survival rate

Also Remember:

- 5-year survival rate:
 - Is used as ‘an index of success in cancer treatment’
 - Is not an appropriate measure to assess therapy that was introduced less than 5 years ago
- Life table approach: Is used for the ‘actual observed survival’ overtime
 - It attempts to predict the onset of events over time from previous patterns for all patients at risk
 - Cohorts of patients are followed up to determine prognosis
 - Probabilities are calculated of survival for different lengths of time
 - Assumptions made in Life table analysis:
 1. There is no secular (temporal) change in effectiveness of treatment or in survivorship over calendar time
 2. Survival experience of people who are lost to follow-up is same as experience of those who are followed-up
 - Kaplan Meier Method:
 1. Is an approach for Life table analysis
 2. In KM method, ‘predetermined intervals (1 month, 1 year, etc.) are not used’
 3. Exact point in time where death took place is identified; each death terminates previous interval and a new interval is started
 4. KM method is suited for small studies
- Median survival time:
 - Is the length of time that half of the study population survives
 - Advantages over Mean survival:
 1. Median survival time is less affected by extreme values (outliers)
 2. Observation of only half of the deaths in the group is required (not of the whole group)
- Relative survival time:
 - Is the ratio of observed survival to the expected survival rate-
52. Ans. (a) Disease is very fatal and/or easily curable. [Ref. Park 21/e p57, 58, Park 22/e p58, 59]
 * Relationship between Incidence and Prevalence: Given the assumption that population is stable AND incidence & duration are unchanging,
 \[\text{Prevalence} = \text{Incidence} \times \text{Mean duration of the disease} \]
 \[P = I \times d \]
 - Incidence reflects causal factors
 - Duration reflects the prognostic factors
 * In the given question, the prevalence is very low as compared to the incidence for a disease, and \(P = I \times d \),
 - Either disease is very fatal, or
 - Disease is easily curable
 * Another situation, if incidence for a disease is higher among females but prevalence is same in both the sexes, Since \(P = I \times d \),
 - Thus, \((\text{duration of disease}) \) must be lower among females:
 - Either the disease is more fatal among females, or
 - Disease is easily curable among females
 * Another situation, if a drug reduces mortality due to a disease but does not cure,
 - Then,
 - Duration of disease is getting increased (as drug is not curing the disease, but reducing deaths)
 - Incidence of disease will be unaffected/remain same (as cases are not getting cured, disease will keep on transmitting at the same rate)
 - Since \(P = I \times d \),
 - Prevalence will also increase (as incidence is same, but duration of disease is increasing; old cases will keep on increasing)
 * Another situation, if a new better vaccine for a disease is introduced in a community,
 - Then,
 - Incidence of the disease will decrease over a period of time (as better vaccine implies better protective efficacy against the disease)
 - Duration of disease will remain same (as over a short period of time, a new vaccine is not likely to affect the natural history of the disease)
 - Since \(P = I \times d \),
 - Prevalence will also reduce over a period of time (as incidence is reducing and duration of disease is remaining same)

53. Ans. (b) The case fatality rate for this disease is higher for women. [Ref. Park 20/e p58, Park 21/e p57, 58, Park 22/e p58, 59]
 In the given question, if incidence for a disease is 5 times higher among females but prevalence rate show no sex difference,
 - Since \(P = I \times d \),
 - Thus, \((\text{duration of disease}) \) must be lower among females
 - Either the disease is more fatal among females, or
 - Disease is easily curable among females

54. Ans. (d) Describes the balance between incidence, mortality and recovery. [Ref. Park 20/e p58, Park 21/e p57-59, Park 22/e p58-60]
 * Prevalence = Incidence \times \text{Mean duration of disease} \[P = I \times d \]
 - Prevalence describes the balance between incidence, mortality and recovery
 * Incidence is the best measure of disease frequency in etiological studies
 * Incidence can be determined from: Cohort study
 * Prevalence can be determined from: Cross Sectional Study.

Also Remember
 * Incidence is ‘number of new cases occurring in a defined population over a specified period of time’
 * ‘Prevalence is a Proportion’
 * Example: For a city with a population of 1000, following figure represents occurrence of the disease ‘Tuberculosis’. Each circle represents one case and length of the horizontal line represents the duration of the disease.
Incidence would include cases: 3, 4, 5 and 8
Point prevalence (Jan 1) cases: 1, 2 and 7
Point prevalence (Dec. 31) cases: 1, 3, 5 and 8
Period prevalence (Jan-Dec) cases: 1, 2, 3, 4, 5, 7 and 8

Figure: Number of cases of a disease beginning, developing and ending during a period of time
- Incidence Tuberculosis 2007 = 4/1000 × 1000 = 4 per thousand
- Point Prevalence Tuberculosis January 1, 2007 = 3/1000 × 100 = 0.3 %
- Point Prevalence Tuberculosis December 31, 2007 = 4/1000 × 100 = 0.4 %
- Period Prevalence Tuberculosis 2007 = 7/1000 × 100 = 0.7 %

55. Ans. (d) 20 [Ref. Park 21/e p57-59, Park 22/e p58-60]
- Prevalence is defined as all current cases (old + new) at a given point of time
- Prevalence = \(\frac{\text{No. of all current cases of a disease at a time}}{\text{Estimated total population at that time}} \times 100 \)

And ‘cases are those persons having the disease’ (Controls are healthy people, without the disease)

In the given question,

<table>
<thead>
<tr>
<th>Test result</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present: Cases</td>
</tr>
<tr>
<td>+</td>
<td>180</td>
</tr>
<tr>
<td>–</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>

Thus, Prevalence = 200/(200 + 800) × 100 = 20%

Also Remember
- PREVALENCE IS A PROPORTION (Prevalence IS NOT A RATIO): Numerator is a part of denominator and is always expressed in percentage.
- Prevalence of few important infections in India:

<table>
<thead>
<tr>
<th>Infection</th>
<th>Prevalence (India) [2011]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis infection</td>
<td>40%</td>
</tr>
<tr>
<td>HIV infection</td>
<td>0.27%</td>
</tr>
</tbody>
</table>
56. Ans. (a) Number of new cases [Ref. Park 21/e p57, Park 22/e p58]
57. Ans. (c) Only new cases [Ref. Park 21/e p57, Park 22/e p58]
58. Ans. (a) The product of incidence and mean duration of disease [Ref. Park 20/e p58, Park 21/e p58, Park 22/e p59]
59. Ans. (b) Cross-sectional study [Ref. Park 21/e p56, Park 22/e p57]
60. Ans. (a) 240 [Ref. K. Park 22/e p59]
61. Ans. (b) 0.02 [Ref. K. Park 22/e p58]
62. Ans. (a) No affected by duration [Ref. K. Park 22/e p58]
63. Ans. (c) 13% [Ref. K. Park 22/e p59]

64. Ans. (c) All susceptible amongst close contact [Ref. Park 21/e p95, Park 22/e p96]
65. Ans. (a) Incidence of the disease [Ref. 21/e p57, Park 22/e p58]
66. Ans. (b) Prospective study [Ref. Park 21/e p74, Park 22/e p75]
67. Ans. (a) Cohort study [Ref. Park 21/e p74, Park 22/e p75]
68. Ans. (b) Is a incidence rate [Ref. Park 21/e p57, Park 22/e p58]
69. Ans. (c) Measles is more infectious than mumps [Ref. Park 21/e p95, Park 22/e p96]
70. Ans. (c) Secondary attack rate [Ref. Park 21/e p95, Park 22/e p96]
71. Ans. (c) longer duration of disease [Ref. Park 21/e p57-59, Park 22/e p58-60]
72. Ans. (c) Secondary attack rate [Ref. Park 21/e p95, Park 22/e p96]

DESCRIPTIVE EPIDEMIOLOGY

73. Ans. (d) Secular trends [Ref. Park 21/e p62, Park 22/e p63]
74. Ans. (c) Person-to-person transmission [Ref. Park 21/e p61, Park 22/e p62]

Epidemic:
- Definitions of epidemic:
 - Occurrence of no. of cases of a disease ‘clearly in excess of normal expectancy (NE)’
 1. Normal expectancy is derived by looking at average of no. of cases of the disease in previous 3 – 5 years in that geographical area
 2. If NE = zero, ‘even one case is considered epidemic’
 - Statistically speaking; epidemic is when no. of cases ‘exceed twice the standard deviation’
 - No. of cases > Mean + 2SD (>µ + 2σ)
 - Occurrence of a new disease in a population (as NE = Zero)
 - Reoccurrence of an eliminated/ eradicated disease in a population (as NE = Zero)
- Types of Epidemics: Refer to theory.

Also Remember
- **Epidemic curve:** Is drawn between no. of cases in epidemic and time elapsed (time distribution of epidemic cares)

75. Ans. (c) All cases occur in a single incubation period of the disease [Ref. Park 21/e p61, Park 22/e p62]

Also Remember
- **Endemic:** Constant presence of a disease or infectious agent in a defined geographical area
- **Pandemic:** An epidemic usually affecting a large proportion of the population, occurring over a large geographical area such as part of a nation, nation, continent or world
- **Sporadic:** Cases which are ‘scattered about’
 - Cases are widely separated in space and time
 - Show little or no connection with each other
 - There is no recognizable source of infection
Review of Preventive and Social Medicine

76. Ans. (a) Rapid rise and fall; (c) Explosive; (e) No secondary wave [Ref. Park 21/e p61, Park 22/e p62]
77. Ans. (a) Rapid rise; (b) Rapid fall; (e) No secondary waves [Ref. Park 21/e p61, Park 22/e p62]
78. Ans. (a) Long term changes [Ref. Park 21/e p62, Park 22/e p63]
79. Ans. (a) Progressive changes occurring over a long period of time [Ref. Park 22/e p63]
80. Ans. (b) Prospective cohort [Ref. Park 22/e p72]

Review Questions

81. Ans. (a) Point Source epidemic [Ref. Park 21/e p61, Park 22/e p62]
82. Ans. (a) Seasonal variation of disease occurrence may be related to environmental conditions [Ref. Park 22/e p62]
83. Ans. (a) Retrospective and prospective study [Ref. Park 21/e p69-79, Park 22/e p70-80]
84. Ans. (b) Pointed epidemic [Ref. Park 21/e p61, Park 22/e p62]
85. Ans. (c) Plateau is seen [Ref. Park 21/e p61, Park 22/e p62]
86. Ans. (a) Common source, single exposure epidemic [Ref. Park 22/e p62]
87. Ans. (c) Changes occurs over decades in particular direction [Ref. Park 21/e p62, Park 22/e p63]
88. Ans. (a) Point source epidemic, single exposure [Ref. Park 21/e p61, Park 22/e p62]
89. Ans. (d) Consistent change in one direction [Ref. Park 21/e p62, Park 22/e p63]
90. Ans. (b) Cyclic trend [Ref. Park 21/e p61-62, Park 22/e p62, 63]

ANALYTICAL EPIDEMIOLOGY

91. Ans. (c) Ethical considerations [Ref. Park 21/e p69-79, Park 22/e p70-80]
 - Bias: Is any systematic error in an epidemiological study, occurring during data collection, compilation, analysis and interpretation
 - Some important types of biases in epidemiological studies: Refer to Theory
 - Minimization of biases in epidemiological studies:
 - Blinding:
 - Type Method Minimizes
 - Single blinding Study subjects are not aware of the treatment they are receiving Subject bias
 - Double blinding Study subjects as well as investigator are not aware of the treatment study subjects are receiving Subject bias + Investigator bias
 - Triple blinding Study subjects, investigator as well as analyzer are not aware of the treatment study subjects are receiving Subject bias + Investigator bias + Analyzer bias
 - Randomization: in Randomized Controlled trial (RCT) is a statistical procedure by which participants are allocated into either of two groups, viz., ‘Experimental Group’ (in which intervention is given) and ‘Reference Group’ (in which intervention is not given) to ensure elimination of selection Bias.

Also Remember

- Berksonian bias is a type of selection bias
- Confounding is not strictly a type of bias: (Confounding is removed by matching)
 - It does not result from systematic error in research designs
 - It arises due to non-random distribution of risk factors in source population also occurs in study population
Contd…

• **Methods used to control confounding:**

<table>
<thead>
<tr>
<th>Method</th>
<th>Utility to control confounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomization</td>
<td>Most ideal method</td>
</tr>
<tr>
<td>Restriction</td>
<td>Limiting study to people who have particular characteristics</td>
</tr>
<tr>
<td>Matching</td>
<td>Mostly useful in case control studies</td>
</tr>
<tr>
<td>Stratification</td>
<td>Useful for larger studies</td>
</tr>
<tr>
<td>Statistical modeling</td>
<td>When many confounding variables exist simultaneously</td>
</tr>
</tbody>
</table>

• Randomization is superior to BOTH matching and blinding:

<table>
<thead>
<tr>
<th>Technique</th>
<th>Removes or minimizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matching</td>
<td>Known confounding factors</td>
</tr>
<tr>
<td>Binding</td>
<td>BIAS</td>
</tr>
<tr>
<td>Single blinding</td>
<td>Subject bias</td>
</tr>
<tr>
<td>Double blinding</td>
<td>Subject bias + Investigator bias</td>
</tr>
<tr>
<td>Triple blinding</td>
<td>Subject bias + Investigator bias + Analyzer bias</td>
</tr>
<tr>
<td>Randomisation</td>
<td>Unknown confounding factors</td>
</tr>
</tbody>
</table>

• Randomisation is known as ‘Heart of a trial’
• Open trial: A trial without blinding; thus is full of biases

92. **Ans. (c) Recall bias** [Ref. Park 21/e p69-70, Park 22/e p70-71]
• In a Nested case control study, interviews are performed at the beginning of the study (at baseline), and data are obtained before the disease has developed, thereby eliminating the problem of Recall bias

93. **Ans. (b) Relative risk** [Ref. Park 21/e p74, Park 22/e p75]
• Strength of association in a cohort study is evaluated by:
 - Relative risk (RR)
 - Attributable risk (AR)
 - Population attributable risk (PAR)

 Relative risk (RR) = \[\frac{\text{Incidence among exposed}}{\text{Incidence among non-exposed}} \]

 - **Interpretation of RR:** Incidence of disease among exposed IS SO MANY TIMES HIGHER as compared to that among non-exposed

 Attributable risk (AR) = \[\frac{\text{Incidence among exposed}-\text{Incidence among non-exposed}}{\text{Incidence among exposed}} \]

 - **Interpretation of AR:** So much disease can be attributed to exposure

 Population attributable risk (PAR) = \[\frac{\text{Incidence among total}-\text{Incidence among non-exposed}}{\text{Incidence among total}} \]

 - **Interpretation of PAR:** If risk factor is modified or eliminated, there will be so much reduction in incidence of disease in the given population
Also Remember

- Relative risk (RR) is of importance to clinician, whereas Population attributable risk (PAR) is of importance to public health programme manager/epidemiologist

Relative risk (RR) Versus Odds Ratio (OR):

<table>
<thead>
<tr>
<th>Synonyms</th>
<th>Relative risk (RR)</th>
<th>Odds Ratio (OR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk ratio</td>
<td>Estimates strength of association in a cohort study</td>
<td>Estimates strength of association in a case control study</td>
</tr>
<tr>
<td>Measure of strength of association</td>
<td>More accurate estimate</td>
<td>Less accurate (only an estimate of RR)</td>
</tr>
<tr>
<td>Calculation</td>
<td>odds exposed/ non-exposed</td>
<td>ad/ bc</td>
</tr>
</tbody>
</table>

94. Ans. (b) cohort study [Ref. Textbook in Psychiatric Epidemiology, p10 and A Dictionary of Public Health, Dr. Jugal Kishore, p423-24]

- ATTENTION BIAS (HAWTHORNE EFFECT):
 - Is a type of subject bias
 - Study subjects systematically alter their behaviour when they know they are being observed

95. Ans. (d) Case control [Ref. Park 21/e p67, Park 22/e p68]

In the given question, a study compared 150 children with a particular disease with 300 disease free children to examine past experiences that may contribute to the development of the illness. Since two groups, one diseased (cases) and one group of disease-free children (controls) are examined about past experiences (exposure), it is a retrospective design, i.e. Case control study.

Also Remember

- In a case control study, selection of controls is a prerequisite:
 - If the study group is small, choose up to 4 controls per case (In larger studies with equal cost to collect cases and controls 1:1 is sufficient)
 - Controls must be similar to cases, as much as possible except for the absence of disease under study
 - Choice of cases and controls must not be influenced by exposure status
 - Failure to select comparable controls can lead to biases

96. Ans. (d) Random error [Ref. Basic Epidemiology by Beaglehole, WHO; p46-52, Park 22/e p47-53]

POTENTIAL ERRORS IN EPIDEMIOLOGICAL STUDIES:

- Random errors:
 - Also known as ‘Sampling errors’: Is ‘divergence due to chance alone’ of an observation on a sample from the true population value, leading to ‘lack of precision’ in the measurement of association
 - Random error ‘cannot be completely eliminated’
 - Random errors can be reduced by: careful measurement of exposure and outcome, thus making the individual measurements as precise as possible
 - Best way of reducing sampling errors (increasing precision): Increase the sample size in the study

- Systematic errors:
 - Also known as ‘Biases’: occur whenever there is a tendency to produce results that differ in systematic manner from the true values (Bias is any systematic error in an epidemiological study, occurring during data collection, compilation, analysis and interpretation)

97. Ans. (a) 25% [Ref. Park 21/e p74, Park 22/e p75]

- Relative Risk (RISK RATIO) is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor
- Relative Risk (RR) = Incidence among exposed/ Incidence among non-exposed
In the given question,

<table>
<thead>
<tr>
<th></th>
<th>Breast Cancer</th>
<th>No Breast Cancer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>40</td>
<td>960</td>
<td>1000</td>
</tr>
<tr>
<td>New Drug</td>
<td>10</td>
<td>960</td>
<td>1000</td>
</tr>
</tbody>
</table>

Thus, considering new drug as exposure (placebo as non-exposure) and development of breast cancer as disease,

\[
I_{\text{exp}} = \frac{40}{1000} \times 1000 = 10 \text{ per 1000} \\
I_{\text{non-exp}} = \frac{960}{1000} \times 1000 = 40 \text{ per 1000}
\]

Thus, \(RR = \frac{I_{\text{exp}}}{I_{\text{non-exp}}} = 0.25\) (25%; ideally RR is a ratio – MUST NOT be expressed as percentage)

Interpretation: New drug is efficacious in prevention of breast cancer; new drug is protective for breast cancer

98. **Ans. (c) Concurrent cohort study**
[Ref. Park 21/e p72, 73, Park 22/e p73, 74]

COHORT STUDY:
- Is a type of analytical (observational) study used for ‘hypothesis testing’
- Is known by several synonyms:
 - Prospective study
 - Forward looking study
 - Cause to effect study
 - Exposure to outcome study
 - Risk factor to disease study
 - Incidence study
 - Follow up study
- Types of cohort studies:
 - Prospective cohort study:
 1. Known as ‘Current cohort study’ or ‘Concurrent cohort study’
 2. Outcome has not yet occurred when the study has begun: Only exposure has occurred; we look for development of same disease in both exposed and non-exposed groups
 3. Examples:
 i. Framingham heart study
 ii. Doll & Hills prospective study on smoking and lung cancer
 - Retrospective cohort study
 1. Known as ‘Historical cohort study’ or ‘Non-concurrent cohort study’
 2. Combines advantages of both Cohort study and Case control study
 3. Both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups
 4. Sample size required is same as that of prospective cohort study
 5. Examples:
 i. Effect of fetal monitoring on neonatal deaths
 ii. PVC exposure and angiosarcoma of liver
 - Combined prospective-retrospective cohort study
 1. Known as ‘Mixed cohort study’
 2. Combines designs of both prospective cohort study and retrospective cohort study
 3. Both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups; later cohort is followed prospectively into future for outcome
 4. Examples:
 i. Court-Brown & Doll study on effects of radiation therapy
99. Ans. (b) 10 [Ref. Park 21/e p74, Park 22/e p75]

- Relative Risk (RISK RATIO) is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor
- Relative Risk (RR) = Incidence among exposed / Incidence among non-exposed
 \[
 RR = \frac{I_{\text{exp}}}{I_{\text{non-exp}}}
 \]

In the given question, TATA memorial hospital conducted a cohort study on 7000 subjects who were smokers over a ten-year period & found 70 subjects developed lung cancer,

Thus, \(I_{\text{exp}} = \times 1000 = 10 \) per thousand

Also, concurrent evaluation of general population in the catchment area of hospital, out of 7000 non-smoker subjects only 7 developed lung cancer,

Thus, \(I_{\text{non-exp}} = \times 1000 = 1 \) per 1000

Therefore, \(RR = \frac{10}{1} = 10 \) per 1000 / 1 per 1000 = 10

Interpretation: Strength of association between smoking and lung cancer is 10 (Lung cancer is 10 times more common among smokers as compared to non-smokers)

HAD RR BEING 1, it would have implied that exposure (smoking) and disease under study (lung cancer) are not associated at all (Smoking is neither causative nor protective for lung cancer)

HAD RR BEING < 1, it would have implied that exposure (smoking) is protective for the disease under study (lung cancer)

Also Remember

- Attributable risk (AR):
 - Is a good measure of extent of public health problem caused by the exposure
 - Is a useful tool for assessing priorities for health action
 - Is also known as ‘Absolute risk’ or ‘excess risk’ or ‘risk difference’

100. Ans. (c) 6.0 [Ref. Park 21/e p69, Park 22/e p70]

- Strength of association in a case control study: Case Control Study cannot provide with incidences, so Relative Risk cannot be calculated; so in a Case Control Study, we calculate ‘an estimate of Relative Risk’, known as ‘Odds Ratio’ (CROSS PRODUCT RATIO)
- CORRECT TABLE CONSTRUCTION in a case control study: Table will have disease at the top (row) and history of exposure/ risk factor on the left (column)
- Odds Ratio In a 2 × 2 table for a case control study:

<table>
<thead>
<tr>
<th>Exposure present</th>
<th>Disease Present</th>
<th>Disease Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure present</td>
<td>a</td>
<td>B</td>
</tr>
<tr>
<td>Exposure absent</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Odds Ratio (Cross Product Ratio) = \(\frac{ad}{bc} \)

- Thus in the given question, correct table IS TO BE CONSTRUCTED FIRST:
Epidemiology and Vaccines

<table>
<thead>
<tr>
<th>Renal cell cancer Present (cases)</th>
<th>Renal cell cancer Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to smoking present</td>
<td>a</td>
</tr>
<tr>
<td>Exposure to smoking absent</td>
<td>b</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>b + d</td>
</tr>
</tbody>
</table>

Now, total cases of renal cell cancer \((a + c) = 50\), smoking exposure present \((a) = 30\)
Total controls \((b + d) = 50\), smoking exposure present \((b) = 10\)
Therefore, \(c = [(a + c) – (a)] = [50 – 30] = 20\) and,
\(d = [(b + d) – (b)] = [50 – 10] = 40\)

<table>
<thead>
<tr>
<th>Renal cell cancer Present (cases)</th>
<th>Renal cell cancer Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to smoking present</td>
<td>30</td>
</tr>
<tr>
<td>Exposure to smoking absent</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

Odds ratio = \(ad/bc = 30 \times 40/20 \times 10 = 6\)

Interpretation of Odds ratio = 6: Renal cell cancer cases have 6 times higher odds than controls of having had the history of exposure to smoking

Also Remember

- **Interpretation of Odds ratios (OR):** Is similar to Relative risk (RR) in cohort study (as OR is an estimate of RR)
 - OR > 1: Cases have so-many times higher odds than controls of having had the history of exposure under study
 - OR = 1: Cases have equal odds as controls of having had the history of exposure under study; thus exposure IS NOT ASSOCIATED with disease under study
 - OR < 1: Cases have so-many times lesser odds as controls of having had the history of exposure under study; thus exposure IS PROTECTIVE for the disease under study

101. Ans. (b) Known confounding

[Ref. Park 21/e p68, Park 22/e p69]

- **Confounding:** Any factor associated with both exposure and outcome, and has an independent effect in causation of outcome is a confounder
- **Matching:** Process of selecting controls in a such a way that they are similar to cases (with regard to certain pertinent selected variables which may influence the outcome of disease, thereby distorting the results)
 - **Matching eliminates confounding:** Matching distributes known confounding factors equally in two groups
- **Types of matching:**
 - **Caliper matching:** Process of matching comparison group subjects to study group subjects within a specified distance for a continuous variable (matching age to within 2 years)
 - **Frequency matching:** Frequency distributions of matched variable(s) are similar in study and comparison groups
 - **Category matching:** Process of matching study and control group subjects in broad classes (e.g. occupational groups)
 - **Individual matching:** Relies on identifying individual subjects for comparison, each resembling a study subject for matched variable(s)
 - **Pair matching:** Individual matching in which study & comparison subjects are paired

102. Ans. (d) 6

[Ref. Park 21/e p74, Park 22/e p75]

- **Relative Risk (RISK RATIO):** is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor
- **Relative Risk (RR) =** Incidence among exposed / Incidence among non-exposed

In the given question, 200 smokers & 300 non-smokers were followed up over a period of 10 yrs to find out incidence of hypertension,

Out of 200 smokers, 60 developed hypertension, thus \(\text{lexp} = 60/200 \times 1000 = 300\)
And, out of 600 non-smokers, 30 developed hypertension, thus \(\text{Inon-exp} = 30/600 \times 1000 = 50\)
Review of Preventive and Social Medicine

Thus, Risk ratio = \(\frac{I_{\text{exp}}}{I_{\text{non-exp}}} = \frac{300}{50} = 6 \)

Interpretation: Strength of association between smoking and hypertension is 6 (Hypertension is 6 times more common among smokers as compared to non-smokers)

103. Ans. (b) **Concurrent cohort** [Ref. Epidemiology by Leon Gordis, 4/e p152 and Park 22/e p73]

In the given question, a study began in 1965, a group of 3000 adults in Baltimore were asked about alcohol consumption and the occurrence of cancer was studied in the group between 1981 and 1995, Since risk factor/exposure (alcohol consumption) was assessed first (1965) and then development of disease was noted in due course of time (followed-up till 1981-1995), Thus it is a Concurrent cohort study

Also Remember

- Preference of epidemiological studies for establishing causality:
 - 1st preference: Meta-analysis
 - 2nd preference: Randomised controlled trials (RCTs)
 - 3rd preference: Retrospective (Non-concurrent/ Historical) cohort study
 - 4th preference: Prospective cohort study (Concurrent cohort study)
 - 5th preference: Case control study
 - 6th preference: Cross-sectional study
 - 7th preference: Ecological study
- Examples of concurrent cohort study:
 - Framingham heart study
 - Doll & Hills prospective study on smoking and lung cancer

104. Ans. (c) **Retrospective cohort** [Ref. Epidemiology by Leon Gordis, 4/e p152-53 and Park 22/e p73]

In the given question, the physical examination records of the entire incoming freshman class of 1935 at the university of Minnesota were examined in 1977 to see if their recorded height and weight at the time of admission to university was related to their chance of developing CHD. Since both exposure (Weight and height) as well as outcome (CHD) have occurred when the study has begun AND first they went back in time and take only exposure into consideration (height, weight from past hospital/college records), then looked for development of same disease (CHD) in both exposed and non-exposed groups. Thus it is a Retrospective cohort study.

105. Ans. (c) The required sample size is smaller than that needed for a concurrent cohort study [Ref. Epidemiology by Leon Gordis, 4/e p152-53]

106. Ans. (d) Incorrect, because of failure to distinguish between incidence and prevalence [Ref. Park 21/e p57, 58, Park 22/e p58, 59]

In the given question, during an initial examination in Oxford, Migraine head ache was found in 5 of 1000 men aged 30-35yrs and in 10 of 1000 women aged 30 to 35 yrs

Thus, information provided does not distinguish between incidence and prevalence of migraine headache. Therefore, we cannot infer that women have a two times greater risk of developing migraine headache than men in this age group [for drawing that conclusion, a cohort study must be undertaken]

Also Remember

- Incidence is the best measure of disease frequency in etiological studies
- Incidence can be determined from: Cohort study
- Prevalence can be determined from: Cross Sectional Study

107. Ans. (b) **Relative risk can be calculated** [Ref. Park 21/e p70, Park 22/e p71]

- Relative risk calculation requires incidences, which can be found only through cohort studies
- In Case Control Studies, we calculate ‘an estimate of relative risk: Odds Ratio’
Also Remember

Cohort studies versus Case control studies:

<table>
<thead>
<tr>
<th></th>
<th>Cohort Studies</th>
<th>Case Control Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before start Synonyms</td>
<td>Only exposure has occurred</td>
<td>Both exposure as well as outcome have occurred</td>
</tr>
<tr>
<td></td>
<td>Prospective study</td>
<td>Retrospective study</td>
</tr>
<tr>
<td></td>
<td>Forward looking study</td>
<td>Backward looking study</td>
</tr>
<tr>
<td></td>
<td>Cause to effect study</td>
<td>Effect to cause study</td>
</tr>
<tr>
<td></td>
<td>Exposure to outcome study</td>
<td>Outcome to exposure study</td>
</tr>
<tr>
<td></td>
<td>Risk factor to disease study</td>
<td>Disease to risk factor study</td>
</tr>
<tr>
<td></td>
<td>Incidence study</td>
<td>TROHOC study</td>
</tr>
<tr>
<td></td>
<td>Follow up study</td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td>Provides Incidence, Relative risk</td>
<td>Easy to carry out</td>
</tr>
<tr>
<td></td>
<td>Allows study of several etiological factors simultaneously</td>
<td>Inexpensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No risk to subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimal ethical problems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No loss to follow up (No Attrition)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Particularly suitable to investigate rare diseases</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Ethical problems</td>
<td>Selection of an appropriate control-group may be difficult</td>
</tr>
<tr>
<td></td>
<td>Loss to follow up (attrition)</td>
<td>Cannot measure incidence</td>
</tr>
<tr>
<td></td>
<td>Time consuming</td>
<td>Can only estimate Odds ratio</td>
</tr>
<tr>
<td></td>
<td>Expensive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not suitable to investigate rare diseases</td>
<td></td>
</tr>
</tbody>
</table>

- Maximum allowable attrition rate in a cohort study for valid results: 5% (Thus Ideal retention rate in a Cohort study: > 95%)
- **COHORT STUDY IS BETTER THAN A CASE CONTROL STUDY** (despite problems of ethics, attrition, expensive & time-consuming): As Relative risk (RR) is a better estimate of strength of association than Odds ratio (OR)

108. **Ans. (a) Give good information about the patients in that hospital at that time** [Ref. Park 21/e p66, Park 22/e p67]

In the given question, a one day census of inpatients in a mental hospital is carried out AT A POINT OF TIME, Thus it is a cross-sectional study (neither forward looking, nor backward looking)

Being a cross-sectional study, it can provide good information about the patients in that hospital at that time (Is a snapshot of the population, provides prevalence BUT cannot establish causality)

It cannot give reliable estimates of seasonal factors in admissions (since it is done only in a day), for which a longitudinal study design is preferable (as latter can cover all seasons)

It would not enable us to draw conclusions about the mental hospitals of India, as it is being done in only one hospital for only one day

It also would not enable us to estimate the distribution of different diagnosis in mental illness in the local area, as it is being done for only inpatients (Not OPD patients) and only for a day

109. **Ans. (d) 80%** [Ref. Park 21/e p74, Park 22/e p75]

- AR calculation requires incidence which can be obtained from only a cohort study (Not from a case control study).
- *Is a good measure of extent of public health problem caused by the exposure*
- *Is a useful tool for assessing priorities for health action*
- *Is also known as ‘Absolute risk’ or ‘excess risk’ or ‘risk difference’*

In the given question,

Exposure is multiple sexual partners (and non-exposure is a single sex partner)

If incidence of carcinoma cervix (disease) among non-exposed (single sex partner) is ‘x’,

Then, incidence of carcinoma cervix (disease) among exposed (multiple sex partners) is ‘5x’,

Thus, AR = (5x – x)/5x × 100 = 80%

Interpretation of AR = 80%: 80% of carcinoma cervix (disease) can be attributed to exposure (multiple sex partners)

110. **Ans. (c) 6.0** [Ref. Park 21/e p74, Park 22/e p75]

- *Relative Risk (RISK RATIO) is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor*
• Relative Risk (RR) = \frac{\text{Incidence among exposed}}{\text{Incidence among non-exposed}} = \frac{I_{\text{exp}}}{I_{\text{non-exp}}}

In the given question,

<table>
<thead>
<tr>
<th>Hypertension</th>
<th>Present</th>
<th>Absent</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking present</td>
<td>120</td>
<td>280</td>
<td>400</td>
</tr>
<tr>
<td>Smoking absent</td>
<td>30</td>
<td>570</td>
<td>600</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>850</td>
<td>1000</td>
</tr>
</tbody>
</table>

Exposed (smokers) = 400
Non-exposed (non-smokers) = 600

Incidence of hypertension in exposed (smokers) = \frac{120}{400} \times 1000

Incidence of hypertension in non-exposed (non-smokers) = \frac{30}{600} \times 1000

Thus, \text{RR} = \frac{I_{\text{exposed}}}{I_{\text{non-exposed}}} = \frac{120/400 \times 1000}{30/600 \times 1000} = 6

Interpretation of RR = 6: Smokers (exposed) have SIX times higher chances of development of Hypertension (disease) as compared to non-smokers (non-exposed)

111. Ans. (c) Attributable risk [Ref. Park 21/e p74, Park 22/e p75]

In the given question, 85% of cases of lung Cancer are due to cigarette smoking, thus it is a measure of attributable risk.

Also Remember

• Attributable risk (AR):
 - Is a good measure of extent of public health problem caused by the exposure
 - Is a useful tool for assessing priorities for health action
 - Is also known as ‘Absolute risk’ or ‘excess risk’ or ‘risk difference’
• Relative risk (RR) IS A BETTER ESTIMATE of strength of association than Attributable risk (AR)
• Standardized mortality ratio (SMR):
 - Is a special type of risk ratio: Comparison of observed mortality with expected mortality
 - Is a type of Indirect standardization

112. Ans. (b) Interviewer bias [Ref. A Dictionary of Public Health, Dr. Jugal Kishore; p423-24]

113. Ans. (a) 6.0 [Ref. Park 21/e p69, Park 22/e p70]

114. Ans. (b) Cohort study [Ref. Park 21/e p76, Park 22/e p77]

FRAMINGHAM HEART STUDY:

• Is a classical example of cohort study
• Initiated in 1948 by US Public Health Service at Framingham, a town in Massachusetts, USA
• Aim: To study the relationship of risk factors (serum cholesterol, blood pressure, weight, smoking) to the subsequent development of cardiovascular diseases
• Age group: 30 – 62 years
• Sample size: 5127 (4469 – 69% of the sample actually underwent first examination)
• Method: Multiple exposure were studied, as well as complex interactions among the exposures using multivariate techniques
• Follow-up:
 - Study population was examined every 2 years for 20 years
 - Daily surveillance of hospitalizations at only hospital at Framingham
• Findings of study:
 - Increasing risk of CHD with increasing age & more frequently in males
- Hypertensive have a greater risk of CHD
- Elevated blood cholesterol level is associated with CHD
- Tobacco smoking and habitual use of alcohol are associated with increased risk of CHD
- Increased physical activity is associated with decrease in CHD development
- Increase in body weight is associated predisposes to CHD
- Diabetes mellitus increases risk of CHD

115. Ans. (d) A cohort study is more appropriate when the disease or exposure under investigation is rare, in comparison to case control study [Ref. Park 21/e p70, Park 22/e p71]

Also Remember

- Potential biases in cohort studies:
 - Bias in assessment of outcome
 - Information bias (esp. in retrospective cohort studies)
 - Bias from non-response and loss to follow up
 - Analytic bias

- Longitudinal studies:
 - Cohort study
 - Case control study

116. Ans. (c) Attributable risk [Ref. Park 21/e p74, Park 22/e p75]

117. Ans. (d) A cohort study [Ref. Park 21/e p67-76, Park 22/e p68-77]

118. Ans. (d) It is always >1 [Ref. Epidemiology by Leon Gordis, 4/e p183-84]

- Odds ratio (OR): Ratio of odds that cases were exposed to a risk factor to the odds that the controls were exposed
 - Is used to ‘measure strength of association in a case control study’
 - Is also known as ‘Cross product ratio’ or ‘Relative odds’
 - Is an ‘estimate of Relative risk (RR)’, which is used to measure strength of association in a cohort study
 - ‘RR is more accurate than OR’ as a measure of strength of association
 - OR calculation: CORRECT TABLE CONSTRUCTION in a case control study requires that table will have disease at the top (row) and history of exposure/ risk factor on the left (column)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Present (cases)</th>
<th>Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure present</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Exposure absent</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Odds Ratio (Cross Product Ratio) = ad/bc

- **Odds ratio is a good estimate of RR when the derivation of Odds ratio is based on 3 assumptions:**
 1. The disease being investigated must be relatively rare
 2. The cases must be representative of those with the disease
 3. The controls must be representative of those without the disease

- **Interpretation of Odds ratio is just like relative risk:** OR can be >1, = 1 or < 1

<table>
<thead>
<tr>
<th>Odds ratio</th>
<th>INTERPRETATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR > 1</td>
<td>So many times odds that cases were exposed to a risk factor is more to the odds that the controls were exposed (Positive Association)</td>
<td>OCPs</td>
</tr>
<tr>
<td>OR = 1</td>
<td>Odds that cases were exposed to a risk factor is same as the odds that the controls were exposed (No Association)</td>
<td>Smoking</td>
</tr>
<tr>
<td>OR < 1</td>
<td>So many times odds that cases were exposed to a risk factor is less than the odds that the controls were exposed (Negative Association)</td>
<td>Regular physical activity</td>
</tr>
</tbody>
</table>

- Relationship between odds and probability of developing a disease:
Review of Preventive and Social Medicine

\[
\text{Odds} = \frac{\text{Probability}}{1 - \text{Probability}}, \text{ and }
\text{Probability} = \frac{\text{Odds}}{1 + \text{Odds}}
\]

119. Ans. (d) Does not exist [Ref. Epidemiology by Leon Gordis, 4/e p183-84]

120. Ans. (d) Interviewer bias [Ref. A Dictionary of Public Health, Dr. Jugal Kishore; p284]

- INTERVIEWER BIAS: Systematic error due to interviewer’s subconscious or conscious gathering of selective data
 1. Is a type of information bias
 2. Is a type of investigator bias
 3. Commonly occurs due to interviewer devoting more time of interview with cases as compared to controls
 4. Can be eliminated/ reduced by devoting equal interview time to cases as well as controls

121. Ans. (c) Stratified randomization [Ref. Epidemiology by Leon Gordis, 4/e p183-84]

- Stratified randomization: Study population is ‘first stratified’ by each variable which is considered important, and then randomization is done to each treatment groups within each stratum
 - Comparison groups become similar as possible as regards participant characteristics that might influence the response to the intervention
 - Equal numbers of participants with a characteristic thought to affect prognosis or response to the intervention will be allocated to each comparison group.
 - Stratification increase the likelihood that two groups will be more comparable
 - Stratified randomization is performed by
 1. Performing separate randomization for each strata
 2. By using minimization

122. Ans. (b) Sibling Controls [Ref. Park 21/e p68, Park 22/e p69]

CONTROLS IN A CASE CONTROL STUDY:

- In a case control study, selection of controls is a prerequisite
- If the study group is small, choose up to 4 controls per case (In larger studies with equal cost to collect cases and controls 1:1 is sufficient).
- Cases are diseased individuals, Controls are those free from the disease under study
- Controls must be similar to cases, as much as possible except for the absence of disease under study
- Sources of controls:
 - Hospital controls: are often a ‘source of selection bias’
 - Neighbourhood controls: provide similar socio-economic and living conditions
 - Relatives: Sibling controls are unsuitable in genetic studies
 - General population: by choosing a random sample
 - Best friends controls

Also Remember

- Historical controls:
 - Used in a study of new therapy; especially when disease is uniformly fatal and a new drug becomes available
 - ‘Comparison group is selected from the past’, usually from records of patients with same disease who were treated before new therapy became available
 - Disadvantages:
 1. Need meticulous system of data collection of patients
 2. Quality of data collected is usually not comparable
 3. One is not sure if difference is due to therapy only
- Matching: Is selection of controls so that they are similar to cases in various respects
 - Matching is done to ‘eliminate known confounding’
 - Cases and controls are matched for every factor ‘except risk factor under study’
123. Ans. (d) Suitable to investigate rare diseases [Ref. Park 21/e p70, Park 22/e p71]
 - If there is a rare disease to be studied, and,
 - Cohort study is done: One may get very few cases or no case at the end of study (as disease is rare); this will be wastage of time and money
 - Case control study is done: Controls are chosen for the few available cases and history of possible/suspected exposure(s) is explored

124. Ans. (b) 6 [Ref. Park 21/e p69, Park 22/e p70]
 - Strength of association in a case control study: Case Control Study cannot provide with incidences, so Relative Risk cannot be calculated; so in a Case Control Study, we calculate ‘an estimate of Relative Risk’, known as ‘Odds Ratio’ (CROSS PRODUCT RATIO)
 - CORRECT TABLE CONSTRUCTION in a case control study: Table will have disease at the top (row) and history of exposure/risk factor on the left (column)
 - Therefore, Odds Ratio (Cross Product Ratio) = \frac{ad}{bc}
 - Thus in the given question, correct table IS NOT GIVEN; correct construction of table is required first

<table>
<thead>
<tr>
<th>Exposure to OCPs present (cases)</th>
<th>Thromboembolism Present</th>
<th>Thromboembolism Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to OCPs absent</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
<td>b + d</td>
</tr>
</tbody>
</table>

Now, total cases (a + c) = 84, OCP exposure present (a) = 50% of 84 = 42
Total controls (b + d) = 168, OCP exposure present (b) = 14% of 168 = 24
Therefore, c = [(a + c) - (a)] = [84 - 42] = 42 and,
d = [(b + d) - (b)] = [168 - 24] = 144

Table construction,

<table>
<thead>
<tr>
<th>Exposure to OCPs present (cases)</th>
<th>Thromboembolism Present</th>
<th>Thromboembolism Absent (controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to OCPs absent</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>144</td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td>168</td>
</tr>
</tbody>
</table>

Odds ratio = \frac{ad}{bc} = 42 \times 144 / 24 \times 42 = 6

Interpretation of Odds ratio = 6: Thromboembolic cases have 6 times higher odds than controls of having had the history of exposure to OCPs.

125. Ans. (b) 90% [Ref. Park 21/e p74, Park 22/e p75]
 - In the given data,
 - Incidence among exposed (I_{exp}) = 10/1000
 - Incidence among non-exposed (I_{non-exp}) = 1/1000
 - Incidence among total (I_{tot}) = 11/1000
 - Relative risk (RR) = \frac{I_{exp}}{I_{non-exp}} = 10
 - Interpretation of RR: Incidence of lung cancer (disease) among smokers (exposed) IS TEN TIMES HIGHER as compared to that among non-smokers (non-exposed)
 - Attributable risk (AR) = \frac{(I_{exp} - I_{non-exp})}{I_{exp}} \times 100 = 90%
 - Interpretation of AR: 90% of lung cancer (disease) can be attributed to smoking (exposure)
 - Population attributable risk (PAR) = \frac{I_{tot} - I_{non-exp}}{I_{tot}} \times 100 = 91%
 - Interpretation of PAR: If smoking (risk factor) is modified or eliminated, there will be 91% reduction in incidence of lung cancer (disease) in the given population
 - Relative risk (RR) is of importance to clinician, whereas Population attributable risk (PAR) is of importance to public health programme manager/epidemiologist
 - Absolute risk: Is ‘attributable risk’ or ‘excess risk’ or ‘risk difference’
 - Is a useful measure of extent of public health problem caused by an exposure

https://kat.cr/user/Blink99/
126. Ans. (d) Ecological studies [Ref. Park 21/e p59, Park 22/e p60]
127. Ans. (b) A – III, B – II, C – IV, D – I [Ref. Park 21/e p59, Park 22/e p60, and Basic Epidemiology by Beaglehole, WHO; p31]
128. Ans. (d) The attributable risk of breast cancer resulting from the pill may be directly measured [Ref. Park 21/e p70, 74]

AR calculation requires incidence which can be obtained from only a cohort study (Not from a case control study)
- In a Case Control Study, ‘Cases’ are diseased and ‘Controls’ are healthy
- Controls should be similar to Cases in all respects (for ensuring comparability)
- Cases should be matched with controls for all factors ‘EXCEPT for the (risk) factor under study’ (otherwise the etiological role of risk factor under study, which we are studying, would be eliminated from the study, since both groups are exactly similar in all respects); So if controls do not exclude women known to be taking the pill at the time of the survey, both groups will become similar in respect to risk factor (contraceptive pill) under study and no relationship can be established with breast cancer

129. Ans. (c) Done when incidence of disease is very low among exposed [Ref. Park 21/e p75, Park 22/e p76]
- Case control study is preferable for rare diseases: Cohort study IS NOT USEFUL to investigate rare diseases as whole time, and expense may yield little/ no disease, thus strength of association may not be calculable
- COHORT STUDY IS BETTER THAN A CASE CONTROL STUDY (despite problems of ethics, attrition, expensive & time-consuming): As Relative risk (RR) is a better estimate of strength of association than Odds ratio (OR)

130. Ans. (d) 2.25 [Ref. Park 21/e p69, Park 22/e p70]

Thus in the given question,
Odds Ratio = $30 \times 30/20 \times 20 = 2.25$

131. Ans. (b) Beta carotene is not protective in lung cancer [Ref. Park 21/e p74, Park 22/e p75]
- Relative Risk (RISK RATIO) is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor
- Relative Risk (RR) = I_{exp}/I_{nonexp}

In the given question,
Exposure is beta carotene and disease is lung cancer
Incidence of lung cancer among those exposed to beta carotene (I_{exp}) = 3/6000
Incidence of lung cancer among those not exposed to beta carotene (I_{nonexp}) = 2/4000
Therefore, $RR = 1$ (i.e., I_{exp} IS SAME AS I_{nonexp})
If $RR = 1$, it implies ‘Incidence among exposed’ IS SAME AS ‘Incidence among non-exposed’. Therefore, whether the person is exposed or not (to a factor), incidence of disease developing later will remain the same. Thus, exposure (beta carotene) and disease under study (lung cancer) are not associated at all.
Thus ‘Beta carotene is neither causative nor protective for lung cancer’

Also Remember
- With a large sample size (10000 study subjects) this cohort study is sufficient to draw meaningful conclusions

132. Ans. (c) No association at all [Ref. Park 21/e p74, Park 22/e p75]
- Relative Risk (RISK RATIO) is used to estimate risk of disease (calculated as incidence of that disease) with exposure to a factor
- Relative Risk (RR) = $\frac{\text{Incidence among exposed}}{\text{Incidence among non - exposed}}$
 \[RR = \frac{I_{exp}}{I_{nonexp}} \]
- RR measures ‘Strength of Association’ between risk factor and disease under study
 - If $RR > 1$, it implies incidence among exposed is SO MANY TIMES more than incidence among non-exposed. Thus non-exposed also have a risk of disease (Incidence among non-exposed) but risk increases with exposure
 - If $RR = 1$, it implies ‘Incidence among exposed’ IS SAME AS ‘Incidence among non-exposed’. Therefore, whether the person is exposed or not (to a factor), incidence of disease developing later will remain the same. Thus, exposure and disease under study are not associated at all. For example, Milk consumption and Lung cancer
RELATIVE RISK

RR > 1	I_{exp} > I_{nonexp}	So many times chances/incidence of disease development is more among exposed as compared to non-exposed (Positive Association)	Smoking	Lung Cancer
RR = 1	I_{exp} = I_{nonexp}	Chances/incidence of disease development is same among exposed as compared to non-exposed (No Association)	Smoking	HIV/AIDS
RR < 1	I_{exp} < I_{nonexp}	Chances/incidence of disease development is less among exposed as compared to non-exposed (Negative Association)	Vitamin-A intake	Epithelial cancers

Interpretation

- RR < 1 is possible. It implies, incidence among non-exposed is more than incidence among exposed. Thus factor/exposure is NOT CAUSATIVE, rather protective for the disease. For example, Vitamin-A as exposure and development of Epithelial cancers as disease.

Also Remember

- Relative risk can ONLY be determined exactly from a Cohort Study
- Case Control Study cannot provide with incidences, so Relative Risk cannot be calculated. So in a Case Control Study, we calculate ‘an estimate of Relative Risk’, known as ‘Odds Ratio’ (CROSS PRODUCT RATIO)

133. Ans. (a) Strength of association between suspected cause and effect [Ref. Park 21/e p74, Park 22/e p75]

134. Ans. (c) Prospective [Ref. Park 21/e p72, 73, Park 22/e p73, 74]

135. Ans. (b) Randomisation is done while selecting subjects for the study [Ref. Park 21/e p77-79, Park 22/e p78-80]

- **Randomisation** in Randomized Controlled trial (RCT) is a statistical procedure by which participants are allocated into either of two groups, viz., ‘Experimental Group’ (in which intervention is given) and ‘Reference Group’ (in which intervention is not given)
- **The essential purposes of randomization in a randomized controlled trial are:**
 - Participants have ‘Equal and Known Chance’ of falling into either ‘Experimental Group’ or ‘Reference Group’
 - To eliminate Selection Bias (Selection Bias or ‘Susceptibility Bias’ is the bias due to differential susceptibility of two groups to outcome, even before intervention/experiment is performed; Thus two groups are not comparable)
 - To ensure comparability among two groups
 - To have ‘similar prognostic factors’ among two groups
- ‘Randomisation is done while dividing patients into the Experimental (Intervention) Group and the Reference Group’ AND not while selecting patients forRCT
- Randomisation is known as ‘Heart of a trial’
- **Randomisation IS SUPERIOR to Matching:**
 - Randomization ensures ‘both known and unknown’ confounding factors are distributed equally among the two groups, thereby nullifying their effect on result (whereas matching is useful for only known confounding factors)
 - Randomization ‘removes both confounding and bias’

<table>
<thead>
<tr>
<th>Blinding</th>
<th>Matching</th>
<th>Randomization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removes</td>
<td>Bias</td>
<td>Known confounding</td>
</tr>
<tr>
<td>Types</td>
<td>Single blinding</td>
<td>Caliper matching</td>
</tr>
<tr>
<td></td>
<td>Double blinding</td>
<td>Frequency matching</td>
</tr>
<tr>
<td></td>
<td>Triple blinding</td>
<td>Category matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Individual matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pair matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selection bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Known confounding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unknown confounding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Random number tables</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Computer software</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lottery Method</td>
</tr>
</tbody>
</table>
Also Remember

- Unit of study in RCT: Patient
- RCT is of two types:
 1. Experimental group: Is exposed to specific medication or intervention
 2. Reference group: Is not exposed to specific medication or intervention
- Crossover design: Comparisons are made between 2 groups:
 1. Experimental group: Is exposed to specific medication or intervention
 2. Reference group: Is not exposed to specific medication or intervention

Then the groups are crossed-over (exposed group now becomes non-exposed and vice-versa)

- Cross-over design RCT helps removing ethical concerns
- Intention to treat trial: Implies that the results of a RCT are unaffected by attrition (loss to follow up) or change over of study subjects from one group to another
- Randomisation is best done by ‘Random number tables’
- Blinding removes Subject Bias (Single Blinding); Subject Bias & Observer Bias (Double Blinding) or Subject Bias, Observer Bias & Analyzer Bias (Triple Blinding)
 - Double blinding is the most common form of blinding observed
 - OPEN TRIAL is a trial without blinding

136. Ans. (b) Odds ratio can be estimated; (c) For rare disease [Ref. Park 21/e p75, Park 22/e p76]

137. Ans. (a) Helpful for evaluation of rare diseases; (e) Selection bias common [Ref. Park 21/e p75, Park 22/e p76]

- Case control study:
 - Selection of an appropriate control group may be difficult
 - Is prone to several biases:
 1. Selection Bias
 2. Recall bias
 3. Survival bias
 4. Admission bias
 5. Non-response bias

138. Ans. (a) Proceeds from effect to cause; (b) Exposure already occurred; (c) Odds ratio can be determined [Ref. Park 21/e p75, Park 22/e p76]

139. Ans. (b) It is itself a risk factor for the disease [Ref. Park 21/e p68, Park 22/e p69]

Confounding factor:
- It is found unequally distributed between the study and control groups
- Is associated with both exposure and outcome
- Has an independent effect in causation of outcome (thus is a risk factor itself)

140. Ans. (b) Prospective study [Ref. Epidemiology by Leon Gordis, 4/e p172 and Basic Epidemiology by Beaglehole, WHO; p40-41]

141. Ans. (a) Case control study [Ref. Park 21/e p69, 70, Park 22/e p70, 71]

142. Ans. (b) Prospective study [Ref. Park 22/e p76]

143. Ans. (b) Blinding [Ref. Park 22/e p69, 80 and Statistical modelling and Multivariate analysis by Lepik 1984, p1]

- Statistical modelling (for confounding control): Done by Multivariate analysis
- Blinding: Done for removal of types of Biases (subject, investigator, analyser)

144. Ans. (b) Ecological study [Ref. Park 21/e p59, Park 22/e p60]

ECOLOGICAL (CORRELATIONAL) STUDY:
- Unit of study: Population (results not applicable on individuals – “Ecological fallacy”)
- Done in a small time frame: inexpensive; use data that is already available
- Inferior to Cohort, Case control studies: Due to ecological fallacy

145. Ans. (a) Confounding factor [Ref. Park 21/e p68, Park 22/e p69]

In the given question, BOTH exposure (beta-carotene) and outcome (carcinoma of colon) are associated with a third independent factor (dietary fiber). Thus dietary fiber may affect the results through confounding.

146. Ans. (c) Rare diseases [Ref. Park 21/e p75, Park 22/e p76]
147. Ans. (c) 6.0 [Ref. Park 21/e p74, Park 22/e p75]
148. Ans. (c) Ecological study [Ref. Park 21/e p59, Park 22/e p60]
149. Ans. (a) Prospective study [Ref. Park 21/e p74, Park 22/e p75]
150. Ans. (a) Case control study requires more time than cohort study [Ref. Park 21/e p70, Park 22/e p71]
151. Ans. (b) Blinding [Ref. K. Park 22/e p69]
152. Ans. (b) Analytical study [Ref. K. Park 22/e p60]
153. Ans. (b) Ecological [Ref. K. Park 22/e p60]
154. Ans. (d) Prevalence study [Ref. K. Park 22/e p60]
155. Ans. (c) RCT [Ref. K. Park 22/e p60]
156. Ans. (a) Relative risk [Ref. K. Park 22/e p70]
157. Ans. (b) 6 [Ref. K. Park 22/e p70]
158. Ans. (d) Field trials [Ref. K. Park 22/e p60]
159. Ans. (c) Attributable risk cannot be calculated [Ref. K. Park 22/e p71]
160. Ans. (a) Useful for study of rare diseases; (d) Study multiple potential risk factors of a disease [Ref. K. Park 22/e p71]
161. Ans. (c) Confounding factor [Ref. K. Park 22/e p69]
162. Ans. (a) Selection bias [Ref. K. Park 22/e p71]
163. Ans. (a) Ecological study [Ref. K. Park 22/e p67]
164. Ans. (d) All of the above [Ref. K. Park 22/e p69]
165. Ans. (b) Cohort study [Ref. K. Park 22/e p75]
166. Ans. (c) Incidence among exposed/incidence among non-exposed [Ref. K. Park 22/e p75]
167. Ans. (c) Different rates of admission to hospital due to different diseases [Ref. K. Park 22/e p71]
168. Ans. (d) Associated with antecedent causation [Ref. Park 22/e p76]
169. Ans. (c) Estimate amount of disease that can be reduced if risk factor is modified/eliminated [Ref. Park 22/e p75]

Review Questions

170. Ans. (d) Less time consuming [Ref. Park 21/e p75, Park 22/e p76]
171. Ans. (a) Incidence of disease among exposed/incidence of among non-exposed [Ref. Park 21/e p74, Park 22/e p75]
172. Ans. (b) Ecological [Ref. Park 21/e p59, Park 22/e p60]
173. Ans. (d) Ecological study [Ref. Park 21/e p59, Park 22/e p60]
174. Ans. (b) Analytical study, (c) Longitudinal study [Ref. Park 21/e p59, Park 22/e p60]
175. Ans. (a) Confounding factors [Ref. Park 21/e p68, Park 22/e p69]
176. Ans. (a) No association [Ref. Park 21/e p74, Park 22/e p75]
177. Ans. (d) Incidence among exposed/incidence among Non-exposed [Ref. Park 21/e p74, Park 22/e p75]
178. Ans. (a) Incidence of disease among exposed-incidence of among nonexposed ÷ 100/Incidence rate among exposed [Ref. Park 21/e p74, Park 22/e p75]
179. Ans. (b) Cohort study [Ref. Park 21/e p74, Park 22/e p75]
180. Ans. (d) Starts with the disease [Ref. Park 21/e p71, 72, Park 22/e p72, 73]
181. Ans. (a) Only odd’s ratio [Ref. Park 21/e p69, Park 22/e p70]
182. Ans. (a) Used for rare diseases [Ref. Park 21/e p75, Park 22/e p76]
183. Ans. (a) Useless for rare disease; (d) It is a longitudinal study [Ref. Park 21/e p75, Park 22/e p76]
184. Ans. (d) Distinguishing between causes and associated factors [Ref. Park 21/e p75, Park 22/e p76]
185. Ans. (b) It is distributed equally in study & control groups [Ref. Park 21/e p68, Park 22/e p69]
186. Ans. (b) Attributable risk [Ref. Park 21/e p74, Park 22/e p75]
Review of Preventive and Social Medicine

187. Ans. (b) Tells etiology [Ref. Park 21/e p66, Park 22/e p67]
188. Ans. (c) Prospective study [Ref. Park 21/e p75, Park 22/e p76]
189. Ans. (a) Relative risk [Ref. Park 21/e p69, Park 22/e p70]
190. Ans. (a) Useful for rare diseases [Ref. Park 21/e p70, Park 22/e p71]
191. Ans. (d) Odds ratio [Ref. Park 21/e p69, Park 22/e p70]
192. Ans. (d) 5 [Ref. Park 21/e p74, Park 22/e p75]
193. Ans. (a) Relative risk [Ref. Park 21/e p74, Park 22/e p75]
194. Ans. (a) Selection bias [Ref. Park 21/e p69, Park 22/e p70]
195. Ans. (b) Chronic diseases can be studied [Ref. Park 21/e p66, Park 22/e p67]
196. Ans. (c) Observation bias [Ref. Park 21/e p127, Park 22/e p130]
197. Ans. (a) Relative risk [Ref. Park 21/e p74, Park 22/e p75]
198. Ans. (a) ad/bc [Ref. Park 21/e p69, Park 22/e p70]
199. Ans. (a) ad/bc [Ref. Park 21/e p69, Park 22/e p70]
200. Ans. (b) Cohort study [Ref. Park 21/e p74, Park 22/e p75]
201. Ans. (b) Incidence [Ref. Park 21/e p75, Park 22/e p76]
202. Ans. (b) Cohort study [Ref. Park 21/e p74, Park 22/e p75]
203. Ans. (a) Cohort study [Ref. Park 21/e p74, Park 22/e p75]
204. Ans. (b) Incidence can be calculated [Ref. Park 21/e p75, Park 22/e p76]
205. Ans. (a) Relative risk [Ref. Park 21/e p75, Park 22/e p76]
206. Ans. (a) Cohort [Ref. Park 21/e p75, Park 22/e p76]

EXPERIMENTAL EPIDEMIOLOGY

207. Ans. (c) The patients do not know which treatment they are receiving [Ref. Park 21/e p79, Park 22/e p80]
208. Ans. (d) The dropouts from the trial should be excluded from the analysis [Ref. The Medical Journal of Australia 2003, (79); 438-40]
 - *Intention to treat trial:* Implies that the results of a RCT are unaffected by attrition (loss to follow up) or change over of study subjects from one group to another
 - The dropouts from the trial are not excluded from the analysis
 - Intention to treat analyses are done to avoid the effects of crossover and drop-out, which may break the randomization to the treatment groups in a study
 - Intention to treat analysis provides information about the potential effects of treatment policy rather than on the potential effects of specific treatment

Also Remember

- Blinding removes Subject Bias (*Single Blinding*); Subject Bias & Observer/Investigator Bias (*Double Blinding*) or Subject Bias, Observer/Investigator Bias & Analyzer Bias (*Triple Blinding*)
- RCT is done by allocation of all patients (units of study) in 2 groups:
 - Experimental group: Is exposed to specific medication/intervention
 - Reference group: Is not exposed to specific medication/intervention
- *Sample size estimation depends upon:*
 - Prevalence of the disease in population under study
 - Error rate (precision level)
 - α-error and β-error
 - Power of test (1 – β)

209. Ans. (c) It helps to eliminate alternative explanations for the results of the study [Ref. Park 21/e p67, 68, Park 22/e p68, 69]
210. **Ans. (a)** To equalize the effects of extraneous variables, thus guarding against bias
[Ref. Park 21/e p78, Park 22/e p79]

Also Remember

- *Inferential statistics*: Includes inference about a population from a random sample drawn from it or, more generally, about a random process from its observed behavior during a finite period of time,
 - Point estimation
 - Interval estimation
 - Hypothesis testing (statistical significance testing)
 - Prediction

- *Placebo*: The placebo effect is a phenomenon in which a physiologically inert treatment, or placebo, improves a patient’s condition relative to similar patients who receive no treatment
 - Inert pills and sham surgeries are typical placebos: Do not directly cause any physiological changes to the body, but patients treated with them tend to improve compared to patients who receive no treatment

211. **Ans. (a)** Is a randomized controlled clinical trial
[Ref. Park 21/e p77-81, Park 22/e p78, 82]

In the given question, a pharmaceutical company develops a new anti-hypertensive drug; samples of 24 hypertensive patients, randomly selected from a large population of hypertensive people, are randomly divided into 2 groups of 12, and one group is given the new drug over a period of 1 month & the other group is given a placebo according to the same schedule,

Since a new drug (intervention) is given it is an experimental/ interventional study (not a prospective study which is only observational in design)

Also, there are 2 groups, i.e. experimental group (Intervention – new drug is given) and reference group (no intervention is given – only placebo is given) which are compared concurrently, thus it is a ‘Concurrent parallel design of RCT’ (there is no cross-over)

Also, neither the patients nor the treating physicians are aware of which patients are in which group, thus it is a ‘double blinded RCT’

212. **Ans. (c)** Randomized control trials
[Ref. The Medical Journal Of Australia. 2003, (79); 438-40]

213. **Ans. (d)** Equal and known chance
[Ref. The Concise Oxford English Dictionary, 10/e p1185]

Also Remember

- Randomisation in Random sampling is to ensure every unit of population has equal chance of being selected
 - Types of random (Probability/ Non-purposive sampling):
 1. Simple random sampling
 2. Systematic random sampling
 3. Stratified random sampling
 4. Multistage random sampling
 5. Multiphase random sampling
 6. Cluster random sampling

214. **Ans. (d)** Ensure that the study groups are comparable on base line characteristics
[Ref. Park 22/e p79 and Epidemiology by Leon Gordis, 4/e p116-17]

215. **Ans. (c)** They use the patient as his or her own control
[Ref. Handbook of Drug Abuse Prevention by Slobada & Bukoski; p534-35]

- **Pre-post clinical trial:**
 - *Does not have a true control group*: Patient as his or her own control
 - *Each patient has a pre-test score followed by a post-test*: Difference in scores reflect change attributed to intervention
 - *Use*: Is often used in assessing whether knowledge, attitudes or pre-existing risk behaviors change when a subject is assigned to an intervention
 - *Limitations*:
 1. Difficult to assess if change is due to developmental intercourse
 2. Difficult to assess if change is due to regression to mean
 3. Cannot be used for studies involving mortality as post-test won’t be available
Review of Preventive and Social Medicine

4. More difficult to interpret than the comparable parallel clinical trial
5. Cannot be randomized

216. Ans. (c) Randomization [Ref. Park 21/e p78, Park 22/e p79]
217. Ans. (d) Ecological studies [Ref. Park 21/e p59, Park 22/e p60]

Also Remember

- Ecological study (Correlational study):
 - Type of analytical (observational) epidemiological study which provide the ‘least satisfactory type of evidence on causality’
 - Units of study: Population
 - Advantage: Data can be used from populations with different characteristics
 - Potential problem: Socio-economic confounding
 - Ecological fallacy: Is an error of interpretation of statistical data in an ecological study, whereby characteristics are ascribed to a group of individuals which they may not possess as individuals

218. Ans. (a) The two groups will be similar in prognostic factors [Ref. Park 21/e p78, Park 22/e p79]
219. Ans. (c) To eliminate the selection bias [Ref. Park 21/e p78, Park 22/e p79]
220. Ans. (a) Can’t double blind in animal trials; (b) All animal trials are unethical; (c) Can’t do interim analysis. [Ref. Internet] [Ref. Park 22/e p77-84]
 - Double blinding can be performed in animal trials
 - Ethical issues in animal trials is under debate
 - Interim analysis can be done in experimental trials
 - Experimental trials are longitudinal and prospective.

221. Ans. (c) Clinical trial phase III [Ref. Fundamental of Clinical Trials, 1/e p4]

CLINICAL TRIALS
- Phases of a Trial:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Unit of study</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-CLINICAL TRIALS/ LAB-EXPERIMENTS</td>
<td>Animals</td>
<td>Pretesting in animals</td>
</tr>
<tr>
<td>CLINICAL TRIALS</td>
<td>Healthy Human volunteers</td>
<td>Microdosing</td>
</tr>
<tr>
<td>Phase 0</td>
<td>Healthy human volunteers</td>
<td>Establishment of safety and non-toxicity</td>
</tr>
<tr>
<td>Phase I</td>
<td>Phase II</td>
<td>Establishment of effectiveness</td>
</tr>
<tr>
<td>Phase III</td>
<td>Phase IV</td>
<td>Comparison with older/ existing drug(s)</td>
</tr>
<tr>
<td>Phase IV</td>
<td>Patients</td>
<td>Assessment of long term side effects</td>
</tr>
</tbody>
</table>

- Phase III is a RCT: Comparison of a new drug with an existing old drug
- Longest phase of a trial: Phase IV
- New drug is launched in market after: Phase III
- Post-marketing surveillance: Phase IV

222. Ans. (b) Systematic meta-analysis [An introduction to clinical research, 1/e p182]

EVIDENCE-PYRAMID IN RESEARCH: [From top to bottom]
- Meta-analysis (Highest clinical relevance: GOLD STANDARD)
- Systematic review
- Cohort study
- Case control study
- Case series
- Case report
- Ideas, Editorials, Opinions
- Animal research
- In-vitro (test-tube) research (Lowest clinical relevance)
223. Ans. (d) Dropouts are excluded from the study [Ref. Park 21/e p586, Park 22/e p588]

224. Ans. (a) Phase 1 [Ref. Prospectives on Cancer Care by Fawcett, 1/e p183]
 - Phase 1 Clinical trials is used to evaluate Maximum tolerated dose (MTD) of a new drug

225. Ans. (a) Randomization [Ref. K. Park 22/e p70, 79]

Review Question

226. Ans. (c) Before and after comparison studies [Ref. Park 21/e p79, Park 22/e p80]

227. Ans. (a) Phase 1 [Ref. Park 21/e p78]

228. Ans. (b) Drop outs results are excluded from the study [Ref. Park 21/e p77-79, Park 22/e p78-80]

229. Ans. (a) Selection bias [Ref. Park 21/e p78]

230. Ans. (c) Both observer and person or group being observed is blind about the study [Ref. Park 22/e p80]

ASSOCIATION AND CAUSATION

231. Ans. (c) Specificity of association [Ref. Park 21/e p85, 86, Park 22/e p86, 87]

HILL’S (Surgeon General’s) CRITERIA OF CAUSAL ASSOCIATION:

- Temporal association:
 - Implies ‘cause precedes effect’ or ‘effect follows cause’
 - Considers both ‘order of appearance’ as well as ‘length of interval between exposure and disease’
 - Is ‘most important criterion’ of causal association
 - Is ‘best established by a cohort study’ (Especially Concurrent cohort study)

- Strength of association:
 - Relative risk (cohort study)
 - Odds ratio (case control study)

- Specificity of association:
 - Implies that disease under study is caused only by risk factor under study
 - Is ‘most difficult criterion to establish’
 - Is ‘weakest criterion’ of causal association

- Consistency of association:
 - Implies that results are replicable in different settings and by different methods

- Biological plausibility:
 - Implies existence of biological credibility of association (anatomically, physiologically explainable/ justifiable)

- Coherence of association:
 - Implies that the causal association must be coherent (supported by) with relevant facts/related studies

- Dose-response relationship:
 - Implies that increase in dose of cause increases incidence/ prevalence of effect

- Cessation of exposure; Reversibility:
 - Implies that removal of possible cause reduces the risk of disease

- Study design:
 - Implies that if study design is based on a strong study design
 - Abilities of epidemiological study designs to prove causality:

<table>
<thead>
<tr>
<th>Type of study</th>
<th>Ability to prove causation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomised controlled trial</td>
<td>Strong</td>
</tr>
<tr>
<td>Cohort study</td>
<td>Moderate</td>
</tr>
<tr>
<td>Case control study</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Weak</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Ecological study</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Also Remember

- Judging the evidence for causal association:
 - Temporality of association (Highest weight given)
 - Biological plausibility
 - Consistency of association and
 - Dose-response relationship
- Hill’s criteria (sometimes also known as ‘Surgeon General’s Criteria’ of causal association) in epidemiology are ANALOGOUS to Koch’s Postulates (of causal association between a microbe and disease) in Microbiology

232. Ans. (c) Randomized control trials [Ref. Epidemiology by Leon Gordis, 4/e p221 and Basic Epidemiology by Beaglehole, WHO; p80]

233. Ans. (d) Incorrect because as no control or comparison group was involved [Ref. Epidemiology by Leon Gordis, 4/e p 117]

- An epidemiological study is characterized by presence of a control/comparison group: Without a comparison group it is difficult to ascribe the causality of risk factor/exposure to a disease

COMPARISON GROUPS IN EPIDEMIOLOGICAL STUDIES:

<table>
<thead>
<tr>
<th>Type of study</th>
<th>First group</th>
<th>Comparison group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Exposed group (presence of risk factor/exposure)</td>
<td>Non-exposed group (absence of risk factor/exposure)</td>
</tr>
<tr>
<td>Case control study</td>
<td>Cases group (diseased persons)</td>
<td>Controls group (non-diseased persons)</td>
</tr>
<tr>
<td>Randomized controlled trial</td>
<td>Experimental group (intervention given)</td>
<td>Reference group (no intervention given)</td>
</tr>
</tbody>
</table>

- If no comparison group is chosen in epidemiological studies:
 - In a **Cohort study**: Strength of association (Relative Risk) between risk factor (exposure) and disease cannot be determined
 - In a **case control study**: Strength of association (Odds Ratio) between disease and risk factor (exposure) cannot be determined
 - In a **Randomized controlled trial**: Actual outcome cannot be ascribed to the intervention

In the given question, an advertisement in a medical journal stated that 2000 subjects with sore throat were treated with their new medicine and with in 4 days, 94% were asymptomatic; the advertisement claims that the medicine was effective

Since, no comparison group (Reference group - Patients without new medicine treatment or placebo-treated) was used in the study, there is a possibility that the effect (asymptomatic) could be spontaneous (for e.g. reduction of fever) or due to some other factor (for e.g. environmental)

Thus the above claim is false/incorrect

234. Ans. (b) Ecological study [Ref. Epidemiology by Leon Gordis, 4/e p204 and Basic Epidemiology by Beaglehole, WHO; p80]

235. Ans. (c) Cohort study [Ref. Basic Epidemiology by Beaglehole, WHO; p41]

- Most preferable observational/analytical study design: Cohort study
- Least preferable observational/analytical study design: Ecological study

Useful Parameter(s) obtained by epidemiological studies:

<table>
<thead>
<tr>
<th>Epidemiological studies</th>
<th>Useful parameter(s) obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Incidence, Relative risk, Attributable risk, Population attributable risk</td>
</tr>
<tr>
<td>Case control study</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Group characteristics</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Review Questions

236. Ans. (b) Temporal relationship \[Ref. Park 21/e p85, Park 22/e p86\]

237. Ans. (b) Temporality \[Ref. Park 21/e p85, Park 22/e p86\]

238. Ans. (b) Temporality \[Ref. K. Park 22/e p86\]

EPIDEMIOLOGY OF INFECTIOUS DISEASES

241. Ans. (b) Anthropozoonoses \[Ref. Park 21/e p89, Park 22/e p90\]

- **ZOONOSES**
 - *Anthropozoonoses*: Infections transmitted from animals (zoo) to man (anthro):
 1. Rabies
 2. Plague
 3. Anthrax
 4. Hydatid disease
 5. Trichinosis
 - *Zooanthropones*: Infections transmitted from man (anthro) to animals (zoo):
 1. Human TB in cattle
 - *Amphilxenosis*: Infections transmitted in either direction between animals and man:
 1. Trypanosoma cruzi
 2. Schistosoma japonicum

242. Ans. (b) Is constantly present in a given population group \[Ref. Park 21/e p89, Park 22/e p90\]

- **Endemic**: refers to the ‘usual or expected frequency of disease’ within a population group; is the ‘constant presence of a disease in a defined geographical area’
 - **Hyperendemic**: When a disease is constantly present at a high incidence and/or prevalence rate and affects all age groups equally.
 - **Holoendemic**: When a disease has a high level of infection beginning early in life and affects most of children population. So, disease is more common among children than adults

- For the disease to be in an endemic steady state:
 \[R_0 \times S = 1\]
 where, \(R_0\) = Basic reproduction number of an infection (the mean number of secondary cases a typical single infected case will cause in a population with no immunity to the disease and in the absence of interventions to control the infection); \(S\) = Proportion of susceptibles in population
Review of Preventive and Social Medicine

- **Endemic curve**: Is drawn between no. of cases due to a disease and the time
 - **Endemic curve IS NOT a straight line**: as number of cases for the endemic disease in a population will not be fixed throughout a year; it will show a seasonal or other variation
 - **Endemic curve Vs epidemic curve**: In endemic curve, the baseline of the curve NEVER touches zero
- When a disease occurs ‘clearly in excess of normal expectancy’, it becomes an **Epidemic**

Epidemic: of or relating to a disease that originates outside the geographical area in which it occurs

243. Ans. (c) Sporadic [Ref. Park 21/e p89, Park 22/e p90]

244. Ans. (a) Missing number of cases [Ref. Park 21/e p38, Park 22/e p38]

245. Ans. (c) Pandemic [Ref. Park 21/e p89]

246. Ans. (d) To estimate the fatality of the disease [Ref. Park 21/e p38, Park 22/e p38]

247. Ans. (b) infectivity [Ref. Internet] [Ref. Park 22/e p89]
 - **Infectivity**: Number infected/Number exposed
 - **Pathogenicity**: Number of diseased/Number infected
 - **Virulence**: Number of serious condition & mortality/Number diseased
 - **Case fatality**: Number of deaths/Number of cases
 - **Communicability**: Ability of a disease to spread from infective to susceptible hosts

248. Ans. (b) Influenza A [Ref. Park 21/e p89, Park 22/e p90]
 - Hepatitis B is endemic throughout the world
 - Influenza B and C does not cause Pandemics

249. Ans. (b) Rabies [Ref. K. Park 22/e p254-55]

250. Ans. (a) Measles; (b) Mumps; (d) Hepatitis B; (e) Poliomyelitis [Ref. K. Park 22/e p92]

Review Questions

251. Ans. (d) Instruments [Ref. Park 21/e p89, 332, Park 22/e p90, 331]

252. Ans. (a) Rabies [Ref. Park 21/e p90, 251-52, Park 22/e p91, 252-53]

253. Ans. (b) Nosocomial infections [Ref. Park 21/e p89, 332, Park 22/e p90, 331]

254. Ans. (c) Exotic disease [Ref. Park 21/e p89, Park 22/e p90]

DISEASE TRANSMISSION

255. Ans. (a) Brucellosis [Ref. Park 21/e p92, Park 22/e p93]
 - **Source**: Is a person, animal, object or substance from which an infectious agent passes or is disseminated to the host.
 - Source refers to immediate source of infection & may or may not be part of reservoir
 - **Reservoir**: Is any person, animal, arthropod, plant, soil or substance (or combination of these) in which an infectious agent lives & multiplies, on which it primarily depends for survival, & where it reproduces itself in such a manner that it can be transmitted to a susceptible host.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Source</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hookworm</td>
<td>Soil</td>
<td>Man</td>
</tr>
<tr>
<td>Tetanus</td>
<td>Soil</td>
<td>Soil</td>
</tr>
<tr>
<td>Typhoid</td>
<td>Feces/urine/Food/Milk/Water</td>
<td>Case/ Carrier</td>
</tr>
</tbody>
</table>

- **Human Reservoir**:
 - **Cases**: Persons having particular disease, health disorder or condition under investigation
 1. Clinical cases: Mild, Moderate, Severe or Fatal
 2. Subclinical cases: Inapparent, covert, missed or abortive
 3. Latent Infection: Host does not shed the infectious agent which lies dormant in host without symptoms, e.g. Herpes simplex, Brill Zinsser Disease, Ancylostomiasis

https://kat.cr/user/Blink99/
- **Carriers**: Infected person or animal that harbours a specific agent in the absence of discernible clinical disease, & serves as a potential source of infection for others. **Carriers are less infectious than cases but are more dangerous epidemiologically.**

1. **Carriers by type:**
 i. **Incubatory Carriers**: shed infectious agent during incubation period of disease, e.g. Measles, Mumps, Polio, Pertussis, Influenza, Diphtheria, Hepatitis-B
 ii. **Convalescent Carriers**: shed the disease agent during the period of Convalescence, e.g. Typhoid, Bacillary Dysentery, Amoebic Dysentery, Cholera, Diphtheria & Pertussis *(Clinical recovery does not coincide with bacteriological recovery)*
 iii. **Healthy carriers**: emerge from subclinical cases without suffering from overt disease, e.g. Poliomyelitis, Cholera, Meningococcal Meningitis, Diphtheria & Salmonellosis

2. **Carriers by duration:**
 i. **Temporary Carriers**: shed infectious agent for short periods of time, e.g. Incubatory carriers, Convalescent carriers, Healthy carriers
 ii. **Chronic Carriers**: excretes infectious agents for indefinite periods, e.g. Typhoid, Hepatitis-B, Dysentery, Meningococcal Meningitis, Malaria, Gonorrhoea, etc

3. **Carriers by portal of exit**
 i. Urinary carriers, e.g. typhoid
 ii. Intestinal carriers, e.g. typhoid, cholera, amoebiasis
 iii. Nasal carriers, e.g. Diphtheria, staphylococcal food poisoning
 iv. Respiratory carriers
 v. Nasopharyngeal carriers, e.g. Meningococcus

- **Animal reservoir**, e.g. Rabies, Influenza, Yellow Fever, Histoplasmosis
- **Reservoir in non-living things**, e.g. Soil harbour agents for Tetanus, Anthrax, Coccidiomycosis, Mycetoma

Also Remember

- **Reservoir(s) of important diseases:**

<table>
<thead>
<tr>
<th>Disease</th>
<th>Microorganism</th>
<th>Reservoir(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemic Typhus</td>
<td>Rickettsia prowazekii</td>
<td>Humans</td>
</tr>
<tr>
<td>Endemic Typhus</td>
<td>Rickettsia typhi</td>
<td>Rats</td>
</tr>
<tr>
<td>Scrub Typhus</td>
<td>Rickettsia tsutsugamushi</td>
<td>Trombiculid Mite</td>
</tr>
<tr>
<td>Indian Tick Typhus</td>
<td>Rickettsia conori</td>
<td>Rodents</td>
</tr>
<tr>
<td>RMSF</td>
<td>Rickettsia rickettsii</td>
<td>Rodents</td>
</tr>
<tr>
<td>Rickettsial Pox</td>
<td>Rickettsia akari</td>
<td>Mice</td>
</tr>
<tr>
<td>Trench fever</td>
<td>Bartonella quintana</td>
<td>Humans</td>
</tr>
<tr>
<td>Q fever</td>
<td>Coxiella burnetti</td>
<td>Cattle, sheep, goat</td>
</tr>
<tr>
<td>Dracunculiasis</td>
<td>Dracunculus medinensis</td>
<td>Humans</td>
</tr>
<tr>
<td>Ascariasis</td>
<td>Ascaris lumbricoides</td>
<td>Humans</td>
</tr>
<tr>
<td>Ancylostomiasis</td>
<td>Ancylostoma duodenale</td>
<td>Humans</td>
</tr>
</tbody>
</table>

256. **Ans. (b) Median incubation period** [Ref. Park 21/e p95, Park 22/e p96]
- **Incubation period**: is the time interval between invasion by an infectious agent and appearance of the first sign or symptom of the disease in question
- **Median incubation period**: Is the time required for 50% of cases to occur following exposure
- **Generation time**: is the time taken for a person from receipt of infection to develop maximum infectivity
 - Is roughly equal to the incubation period of the disease
- **Secondary Attack Rate (SAR)**: Is no. of exposed persons developing the disease within range of incubation period (IP), following exposure to the primary case

\[
SAR = \frac{\text{No. of exposed persons developing disease within range of IP}}{\text{Total no. of exposed 'susceptible' contacts}} \times 100
\]

- Denominator includes only those susceptible to disease
- **Primary case is always excluded both from numerator and denominator** for SAR calculation
Also Remember

- Incubation period depends upon:
 - Generation time of the pathogen
 - Portal of entry
- Incubation period of a disease is useful for:
 - Tracing the source of infection and contacts
 - Determining the period of surveillance
 - Applying immunization principles for prevention of diseases
 - Identification of point source or propagated epidemics
 - Estimating prognosis of a disease
- Latent period: Is the period from disease initiation to disease detection, used in non-infectious diseases as equivalent of incubation period
- Serial interval: is the gap in onset between primary case (first case in the community) and secondary case (case developing through infection from the primary case)
 - By collecting information on series of secondary cases with serial intervals, one can guess the incubation period of a disease
- Period of communicability: is the time during which an infectious agent may be transferred directly/indirectly from an infected person to another person, from infected animal to man or from an infected person to animal, including arthropods
 - An important measure of communicability is secondary attack rate
- Secondary Attack Rate (SAR) of few diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Secondary Attack Rate (SAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smallpox</td>
<td>30 – 45%</td>
</tr>
<tr>
<td>Measles</td>
<td>> 80%</td>
</tr>
<tr>
<td>Chickenpox</td>
<td>~ 90%</td>
</tr>
<tr>
<td>Mumps</td>
<td>~ 86%</td>
</tr>
<tr>
<td>Pertussis</td>
<td>~ 90%</td>
</tr>
</tbody>
</table>

257. Ans. (d) 100% [Ref. Park 21/e p95, Park 22/e p96]

In the given question,
- There is a 6-membered family, comprising of two parents and four children
- On 12 August 2006, one of the children got measles, so she/he is the primary case
- By 18 August 2006, 2 other siblings also got measles, so they are the secondary cases
- Parents are not susceptible (in a country like India), one of the children (3 yr old) is completely immunized for his age thus she/he is not-susceptible, and primary case is not included in numerator or denominator
- Therefore, total no. of susceptibles in the family: 6 - 2 - 1 - 1 = 2
- So, SAR = × 100 = 100%

Interpretation: All of these susceptible develop the disease from primary case within range of incubation period

258. Ans. (d) 65% [Ref. Park 21/e p94, Park 22/e p95]

In the given question, a village has 100 under five children and the coverage of measles vaccine is 60%; following a measles case 26 children developed measles,
- Since coverage of Measles vaccine is 60%, 60% of 100 children i.e. 60 children are vaccinated (not susceptible to Measles)
- So only 40 children are susceptible to Measles
- Out of 40 children, 1 child develops Measles (primary case) and then out of rest 39 susceptible (primary case excluded from denominator), 26 develop Measles
- Therefore, SAR = 26/39 × 100 = 66%

Interpretation: Two-thirds of those susceptible develop the disease from primary case within range of incubation period.

Also Remember

- Cases in epidemiology:
 - Primary case: First case of communicable disease introduced into the population unit being studied
 - Index case: First case that comes to the notice of the investigator (first case reported to the health system)
 - Secondary cases: Cases that develop from contact with the primary case
• **Cases in epidemiology:**
 - Primary case: First case of communicable disease introduced into the population unit being studied
 - Index case: First case that comes to the notice of the investigator (first case reported to the health system)
 - Secondary cases: Cases that develop from contact with the primary case

• **Attack rate (AR):**
 - Relates to no. of cases in the population at risk
 - Reflects extent of epidemic
 - Is used when ‘population is exposed to risk for a limited period of time, such as epidemic’

\[
AR = \frac{\text{No. of new cases of specified disease in a specified time interval}}{\text{Total population at risk during the same time interval}} \times 100
\]

259. **Ans. (b) The interval of time between the receipt of infection by host and maximal infectivity of the host** [Ref. Park 21/e p94, 95, Park 22/e p95, 96]

<table>
<thead>
<tr>
<th>Generation time</th>
<th>Incubation period (IP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Is the time taken for a person from receipt of infection to develop maximum infectivity</td>
</tr>
<tr>
<td>Remark</td>
<td>Is roughly equal to the IP of the disease</td>
</tr>
<tr>
<td>Applicability</td>
<td>Transmissions of infections whether clinical</td>
</tr>
</tbody>
</table>

260. **Ans. (b) Period of communicability** [Ref. Park 21/e p95, Park 22/e p96]

Also Remember

- Generally communicable disease are not communicable in incubation period EXCEPT:
 - Measles
 - Chickenpox
 - Whooping cough (Pertussis)
 - Hepatitis A

261. **Ans. (d) Dracunculiasis** [Ref. Park 21/e p92, Park 22/e p93]

262. **Ans. (a) 60%** [Ref. Park 21/e p92, Park 22/e p96]

In the given question, a family consists of 2 parents & 6 children susceptible to measles. There occurs a primary case of measles and 3 secondary cases within a short period of time. Thus, **numerator is 3** (Primary case is excluded from numerator). Now denominator includes those susceptible to disease (and in close contact)

Both parents cannot be considered susceptible *(In a country like India, measles infection is quite common in 6 months – 3 years age, virtually affecting everyone. ALSO, like infection, vaccine too provides lifelong immunity)*

There are 6 children, but since one is a primary case, he shall be excluded from the denominator.

Thus 6 MINUS 1 = 5 are only susceptible

Therefore, **Denominator is 5**

So, **SAR = 3/ 5 \times 100 = 60%**

Interpretation: Two-fifths of those susceptible develop the disease from primary case within range of incubation period

Also Remember

- **Cases in epidemiology:**
 - Primary case: First case of communicable disease introduced into the population unit being studied
 - Index case: First case that comes to the notice of the investigator (first case reported to the health system)
 - Secondary cases: Cases that develop from contact with the primary case
Review of Preventive and Social Medicine

- **Cases in epidemiology:**
 - Primary case: First case of communicable disease introduced into the population unit being studied
 - Index case: First case that comes to the notice of the investigator (first case reported to the health system)
 - Secondary cases: Cases that develop from contact with the primary case

- **Attack rate (AR):**
 - Relates to no. of cases in the population at risk
 - Reflects extent of epidemic
 - Is used when 'population is exposed to risk for a limited period of time, such as epidemic'

\[
AR = \frac{\text{No. of new cases of specified disease in a specified time interval}}{\text{Total population at risk during the same time interval}} \times 100
\]

263. Ans. (c) All susceptibles amongst close contact [Ref. Park 21/e p95, Park 22/e p96]

- **Secondary Attack Rate (SAR):** Is no. of exposed persons developing the disease within range of incubation period, following exposure to the primary case
- **Denominator includes only those susceptible to disease**
- **Primary case is always excluded both from numerator and denominator for SAR calculation**
- **For Example:** In a pre-nursery class of 100 students, 33 students are already immunized for measles and 33 others had suffered from measles previously. Then a student ‘Rohit’ develops measles one day and 22 other students develop measles subsequently in the next week. What is the SAR?

Solution: 22 other students develop measles within incubation period (IP of Measles: 10-14 days) from primary case ‘Rohit’. Thus, **numerator is 22** (Primary case ‘Rohit’ is excluded from numerator).

Now denominator includes those susceptible to disease (and in close contact)

33 students are immunized already, therefore they are not susceptible (*Immunization confers life long immunity to infections like measles*)

33 students have suffered from measles previously, therefore they are not susceptible (*Natural infection confers life long immunity to infections like measles and chickenpox*)

Thus 100 MINUS (33 + 33) = 34 are only susceptible

Therefore, **Denominator is 33** (34 MINUS 1; as Primary case ‘Rohit’ is excluded from denominator also)

So, SAR = 22/33 × 100 = 66%

Interpretation: Two-thirds of those susceptible develop the disease from primary case within range of incubation period.

Also Remember

- In measles disease, both natural infection and vaccination confers life long immunity/protection from infection of measles.

264. Ans. (a) Time gap between primary and secondary case [Ref. Park 21/e p95, Park 22/e p96]

265. Ans. (a) AIDS [Ref. Park 21/e p94, 320-21]

266. Ans. (a) Difference between primary and secondary cases [Ref. Park 21/e p95 Park 22/e p96]

267. Ans. (a) Generation time [Ref. Park 21/e p95]

268. Ans. (b) The interval of time between the receipt of infection by host and maximal infectivity of the host [Ref. Park 21/e p95, Park 22/e p96]

269. Ans. (c) Cyclo-developmental transmission [Ref. Park 21/e p93, Park 22/e p96]

270. Ans. (d) Typhoid [Ref. Park 21/e p91, Park 22/e p92]

271. Ans. (b) “Reservoir” and “Source” of infection are synonymous [Ref. Park 21/e p90-92, Park 22/e p91, 93]

272. Ans. (a) Serial interval [Ref. Park 21/e p95, Park 22/e p96]

273. Ans. (d) Infectious disease are not communicable during IP [Ref. Park 21/e p94, 95, Park 22/e p95-96]

274. Ans. (a) Polio; (c) Salmonella typhi [Ref. Park 21/e p90-92, Park 22/e p91-93]

275. Ans. (a) Pertussis; (c) Measles [Ref. Park 21/e p91, Park 22/e p92]
276. Ans. (c) Mumps; (d) Measles; (e) Influenza [Ref. Park 21/e p91, Park 22/e p92]
277. Ans. (c) Females for 1000 males [Ref. Park 21/e p446, Park 22/e p498]
278. Ans. ALL CHOICES [Ref. Park 21/e p110-11, Park 22/e p111-12]
 • Isolation: Separation for the period of communicability of persons/animals from others to prevent disease transmission

<table>
<thead>
<tr>
<th>Disease</th>
<th>Duration of isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken pox</td>
<td>6 days after onset of rash</td>
</tr>
<tr>
<td>Measles</td>
<td>Onset of catarrhal to 3rd day of rash</td>
</tr>
<tr>
<td>German Measles</td>
<td>NONE (except 1st trimester of pregnancy)</td>
</tr>
<tr>
<td>Cholera, Diphtheria</td>
<td>3 days after tetracyclines started till 48 hours of antibiotics</td>
</tr>
<tr>
<td>Shigellosis, Salmonellosis</td>
<td>Until 3 consecutive negative stool cultures</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>3 weeks</td>
</tr>
<tr>
<td>Influenza</td>
<td>3 days after onset</td>
</tr>
<tr>
<td>Polio</td>
<td>2 weeks adult, 6 weeks paediatric</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Until 3 weeks of effective chemotherapy</td>
</tr>
<tr>
<td>Herpes zoster</td>
<td>6 days after onset of rash</td>
</tr>
<tr>
<td>Mumps</td>
<td>Until swelling subsides</td>
</tr>
<tr>
<td>Pertussis</td>
<td>4 weeks or until paroxysms cease</td>
</tr>
<tr>
<td>Meningococcal meningitis,</td>
<td>Until first 6 hours antibiotics completed</td>
</tr>
<tr>
<td>Streptococcal pharyngitis</td>
<td></td>
</tr>
</tbody>
</table>

279. Ans. (a) Polio; (b) Diphtheria; (c) Leprosy; (d) Pneumonic plague [Ref. Park 21/e p110-11, Park 22/e p111-12]
280. Ans. (a) Polio; (b) Cholera; (c) Pertussis [Ref. Park 21/e p91, Park 22/e p92]
281. Ans. (a) Cholera; (b) Influenza; (c) Plague [Ref. Park 21/e p94, Park 22/e p95]
282. Ans. ALL CHOICES [Ref. Park 21/e p110-11, Park 22/e p111-12]
283. Ans. (b) Diphtheria; (c) Cholera; (d) Typhoid [Ref. Park 21/e p91, Park 22/e p92]
284. Ans. (c) Cholera; [Ref. Park 21/e p91, Park 22/e p92]
285. Ans. (c) Contamination [Ref. Park 21/e pg 88, Park 22/e p89]
 - Infection: Entry of organism and its multiplication and/or development in host
 - Infestation: Lodgement, development and reproduction of arthropods on surface of body or clothes
 - Contamination: Presence of infectious organism on body or in clothings/beds/toys/surgical instruments/dressings/in-animate objects
 - Contagion: Transmission of disease from one person to another by direct or indirect contact
286. Ans. (a) Serial interval [Ref. Park 21/e pg 95, Park 22/e p96]
287. Ans. (b) Period of communicability [Ref. K. Park 22/e p95]
288. Ans. (b) Maximum incubation period [Ref. K. Park 22/e p95, 113]
289. Ans. (b) Serial interval [Ref. K. Park 22/e p96]
290. Ans. (c) Index case [Ref. K. Park 22/e p96]
291. Ans. (b) To find out time for isolation [Ref. K. Park 22/e p96]
292. Ans. (c) Malaria [Ref. K. Park 22/e p92]
293. Ans. (c) Generation time [Ref. K. Park 22/e p96]
294. Ans. (b) Time between onset of primary case and secondary case [Ref. Park 22/e p96]
295. Ans. (d) Rubella – Until 7 days after appearance of rash [Ref. K. Park 22/e p112]

Review Questions
297. Ans. (d) Rabies, tetanus [Ref. Park 21/e p251, 285, Park 22/e p252, 284]
298. Ans. (b) Period of communicability [Ref. Park 21/e p94-95, Park 22/e p95-96]
Review of Preventive and Social Medicine

299. Ans. (a) Tetanus; (b) Rabies [Ref. Park 21/e p285, Park 22/e p284]

300. Ans. (d) Chronic carrier [Ref. Park 21/e p91, Park 22/e p92]

301. Ans. (a) Herpes simplex [Ref. Park 21/e p92, Park 22/e p93]

302. Ans. (a) Latent infection [Ref. Park 21/e p94, Park 22/e p95]

303. Ans. (a) Diphtheria [Ref. Park 21/e p110-11, Park 22/e p111-12]

304. Ans. (b) Tetanus [Ref. Park 21/e p97-98, Park 22/e p98-99]

305. Ans. (a) Source and Reservoir [Ref. Park 21/e p90, Park 22/e p91]

306. Ans. (a) Time between primary or secondary case [Ref. Park 21/e p95, Park 22/e p96]

307. Ans. (d) Secondary attack rate [Ref. Park 21/e p95, Park 22/e p96]

308. Ans. (a) Developmental [Ref. Park 21/e p93, Park 22/e p94]

309. Ans. (c) Malaria [Ref. Park 21/e p235, 251, 261, 285, Park 22/e p284]

310. Ans. (b) Paradoxical carrier [Ref. Park 21/e p91, Park 22/e p92]

311. Ans. (b) Measles [Ref. Park 21/e p137, Park 22/e p138-139]

312. Ans. (b) Serial interval [Ref. Park 21/e p95, Park 22/e p96]

313. Ans. (a) Typhoid [Ref. Park 21/e p92, 93, Park 22/e p93-94]

314. Ans. (b) Measles [Ref. Park 21/e p137, Park 22/e p138-139]

315. Ans. (c) Both [Ref. Park 21/e p233, 278]

316. Ans. (a) Incubation period [Ref. Park 21/e p95, Park 22/e p96]

324. Ans. (c) No new case reported for twice the incubation period of disease since the last case [Ref. Park 22/e p123]

• **Objectives of Investigation of an Epidemic:**
 - To define magnitude or involvement (time, place, person)
 - To determine responsible conditions and factors
 - To identify causes, source(s) and modes of transmission
 - To make recommendations to prevent reoccurrence

• **STEPS FOR INVESTIGATION OF AN EPIDEMIC:**
 - **Verification of diagnosis:**
 1. Is the ‘first step in investigation of an epidemic’
 2. It is ‘not necessary to examine all cases’: take sample
 3. Do not wait for laboratory results for epidemiological investigations
 - **Confirmation of existence of an epidemic:**
 1. Compare with disease frequencies during same period in previous years
 2. **Epidemic threshold:** An arbitrary limit of ‘2 standard errors from the endemic occurrence’
 - **Defining the population at risk:**
 1. Obtaining the map of the area
 2. Calculation of ‘appropriate denominator of population at risk’
 3. **Rapid search for all cases and their characteristics:**
 1. Medical survey
 2. Epidemiological case sheet
3. Searching for more cases: Search for new cases is carried out everyday, till the area is declared free of epidemic; this period is usually taken as ‘twice the incubation period of the disease since the occurrence of last case’

- Data analysis:
 1. Time: Construction of an epidemic curve
 2. Place: Preparation of a spot map
 3. Person: Analysis by age, sex, occupation and other risk factors
- Formulation of hypothesis
- Testing of hypothesis
- Evaluation of ecological factors
- Further investigation of population at risk
- Writing the report

325. Ans. (c) Verification of diagnosis [Ref. Park 21/e p120, Park 22/e p124]

Review Questions

326. Ans. (a) Verification of diagnosis [Ref. Park 21/e p119, Park 22/e p123]

IMMUNITY, VACCINES AND COLD CHAIN

327. Ans. (a) Two live vaccines cannot be administered simultaneously [Ref. Park 21/e p98, Park 22/e p99]

LIVE VACCINES:
- Are prepared from live attenuated organisms
- Live vaccines are more potent agents than killed vaccines:
 - Multiply in the host and the resulting antigenic host is larger than what is injected
 - Have all the major and minor antigenic components
 - Engage certain tissues of the body (e.g. intestinal mucosa by OPV)
 - There may be other mechanisms such as persistence of latent virus
- Immunization is generally achieved with a single dose (EXCEPT OPV)
- Should not be administered to immuno-deficient or immuno-suppressed persons
- 2 live vaccines can be administered simultaneously at different sites (or at an interval of 3 weeks)
- Examples of Live ‘attenuated’ vaccines:
 - BCG
 - OPV (Sabin – Oral polio vaccine)
 - Measles vaccine
 - Mumps vaccine
 - Rubella vaccine
 - Yellow fever vaccine
 - Typhoral
 - Live plague vaccine
 - LAIV (live attenuated influenza vaccine)
 - Varicella vaccine
 - Epidemic typhus vaccine

Also Remember

- Attenuation: Reduced pathogenicity/virulence BUT maintained antigenicity/immunogenicity
- General rules for multiple vaccine administration:
 - 2 live vaccines can be given together
 - Live and killed vaccines can be given together
 - Cholera vaccine and Yellow fever vaccine cannot be given together
 - OPV is a live vaccine where single dose is not sufficient for immunization

https://kat.cr/user/Blink99/
328. Ans. (c) ‘Danish’ 1331 [Ref. Park 21/e p176, Park 22/e p178]

- **STRAINS OF COMMONLY USED VACCINES:**

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Strain(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Danish-1331 strain (WHO recommended)</td>
</tr>
<tr>
<td>OPV/ IPV</td>
<td>P1, P2, P3 strains (Mono or Tri-valent)</td>
</tr>
<tr>
<td>Measles vaccine</td>
<td>Edmonston Zagreb strain (MC) Schwartz strain</td>
</tr>
<tr>
<td>Moraten strain</td>
<td></td>
</tr>
<tr>
<td>Mumps vaccine</td>
<td>Jeryll Lynn strain</td>
</tr>
<tr>
<td>Rubella vaccine</td>
<td>RA 27/3</td>
</tr>
<tr>
<td>Yellow Fever vaccine</td>
<td>17 D strain</td>
</tr>
<tr>
<td>Varicella vaccine</td>
<td>OKA strain</td>
</tr>
<tr>
<td>JE vaccine</td>
<td>Nakayama strain</td>
</tr>
<tr>
<td></td>
<td>Beijing P3 strain</td>
</tr>
<tr>
<td></td>
<td>SA 14-14-2 (MC)</td>
</tr>
<tr>
<td>Malaria vaccine</td>
<td>SPF 66 strain (Lytic Coktail)</td>
</tr>
<tr>
<td></td>
<td>PI 25 strain</td>
</tr>
<tr>
<td>HIV vaccines</td>
<td>mVA (modified Vaccinia Ankara) strain</td>
</tr>
<tr>
<td></td>
<td>rAAV (recombinant Adeno associated viral vaccine) strain</td>
</tr>
<tr>
<td></td>
<td>AIDSVAX strain</td>
</tr>
<tr>
<td></td>
<td>Subunit Vaccine strain</td>
</tr>
<tr>
<td>H1N1 vaccine</td>
<td>A7/California/2009 strain</td>
</tr>
</tbody>
</table>

329. Ans. (a) Egg culture [Ref. Park 21/e p138, 139, Park 22/e p140, 141]

- **MEASLES VACCINE:**
 - **Type:** Live attenuated, lyophilized (Freeze dried) vaccine (Tissue culture vaccines – Chick embryo or Human diploid cell line)
 - **Strains used:**
 1. Edmonston Zagreb Strain (Most Common)
 2. Schwartz Strain
 3. Moraten Strain
 - **Dose:** 0.5 ml
 - **Route:** Subcutaneous
 - **Site:** Antero-lateral aspect of thigh (middle one-third)
 - **Age of administration in National Immunization schedule (India):** 9 months (can be lowered to 6-9 months in epidemics & malnutrition)
 - **Diluent for Reconstitution:** Distilled Water or sterile water
 - **Use within 1 hr after reconstitution with diluent**
 - **Measles (& MMR) vaccine can lead to Toxic Shock Syndrome**
 - **Measles vaccine is contraindicated in pregnancy**
 - **Cold chain Temperature for storage:** +2 to +8 degree C
 - **Protective efficacy:** > 95% (with one dose)
 - **Duration of Protection: Life long**
 - **IP of vaccine induced measles:** 7 days
 - **Ideal gap between 2 successive doses of Measles vaccine:** 6 months

- **Also Remember**
 - **Measles immunoglobulin**
 - **Type:** Human Normal Immunoglobulin
 - **Dose (WHO recommended):** 0.25 ml/kg body weight

330. Ans. (b) Polio [Ref. Combination Vaccines by Ronald W. Ellis; p43]

- **Thermolability of vaccines:** sensitivity to heat
 - Reconstituted BCG > YF > OPV > Measles & Reconstituted Measles > Hep B > DPT > DT > BCG > TT
 - **Most Thermolabile vaccine:** Reconstituted BCG
 - **Most Thermostable vaccine:** TT
331. Ans. (b) BCG, DPT-1, OPV-1, Measles, Vitamin-A [Ref. IAP Guidebook on Immunization]

- National Immunization Schedule (NIS) of India: (New modified)

<table>
<thead>
<tr>
<th>Age of child</th>
<th>Vaccine(s) recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Birth</td>
<td>BCG, OPV0 Hep-B*</td>
</tr>
<tr>
<td>6 weeks (1½ months)</td>
<td>DPT1, OPV1, Hep-B1*, HiB1</td>
</tr>
<tr>
<td>10 weeks (2½ months)</td>
<td>DPT2, OPV2, Hep-B2*, HiB2</td>
</tr>
<tr>
<td>14 weeks (3½ months)</td>
<td>DPT3, OPV3, Hep-B3*, HiB3</td>
</tr>
<tr>
<td>9 months</td>
<td>Measles, Vitamin A (1 lac IU)</td>
</tr>
<tr>
<td>Thereafter every 6 months (till 5 years age*)</td>
<td>Vitamin A (2 lac IU) each</td>
</tr>
<tr>
<td>16 – 24 months</td>
<td>DPTB, OPV, JE Live* Measles 2nd Dose</td>
</tr>
<tr>
<td>5 – 6 years</td>
<td>DPTB</td>
</tr>
<tr>
<td>10 years</td>
<td>TT</td>
</tr>
<tr>
<td>16 years</td>
<td>TT</td>
</tr>
<tr>
<td>For pregnant females</td>
<td>2 doses TT a month apart (pref. 4th and 5th m)</td>
</tr>
</tbody>
</table>

(*Recent changes in NIS: 1. HepB has been included;
2. Vitamin A is administered till 5 years age
3. Japanese encephalitis (Live) vaccine in 110 districts
4. DPT Booster at 5-6 y age
5. HiB introduced as Penta vaccine (HiB + HepB + DPT) in 18 states

- Age limits for delayed immunization in NIS, India:

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Age limit</th>
<th>Reason for limit (if any)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Upto 1 year of age (Direct BCG)</td>
<td>Subclinical immunity develops after 1 yr age</td>
</tr>
<tr>
<td>OPV</td>
<td>Upto 5 years of age</td>
<td>Polio cases are MC in < 5 yrs age</td>
</tr>
<tr>
<td>HepB</td>
<td>Upto 1 year of age</td>
<td>-</td>
</tr>
<tr>
<td>Measles</td>
<td>Upto 5 year of age</td>
<td>Measles cases MC in < 5 yrs age</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Upto 5 year of age*</td>
<td>Xerophthalmia cases MC in < 5 yrs age</td>
</tr>
<tr>
<td>DPT</td>
<td>Upto 7 year of age</td>
<td>Diphtheria cases MC in < 7 yrs age</td>
</tr>
<tr>
<td>JE</td>
<td>No age limit</td>
<td>-</td>
</tr>
<tr>
<td>TT</td>
<td>Up to 15 years of age</td>
<td>-</td>
</tr>
</tbody>
</table>

(*Vitamin A was earlier given till the age of 3 years)

Also Remember

- In India, NIS starts at birth; and ends at 16 years (males) and with last pregnancy (females)
- ‘Indirect BCG’ is given after 1 year age: After a prior Mantoux test
- Any number of vaccines (live and/or killed) can be given together
- There need not be a gap of 1 month between a live and a killed vaccine
- BCG and Measles vaccine can be given together for a case of delayed immunization
- Minor fever, diarrhea, ARI or other illness is NOT a contraindication for any of the vaccines
- Doses and schedule remain same even if baby is premature and/or underweight
- In Delhi’s Immunization Schedule, there are 2 additional vaccines:
 - MMR (single dose at 15 months of age)
 - Typhoid (single dose between 2-5 years of age)
- Guidelines on TT in pregnancy:
 - Primigravida: 2 doses 1 month apart, as early as possible in pregnancy
 - DURATION OF PROTECTION WITH 2 DOSES: ALL SUBSEQUENT PREGNANCIES IN NEXT 3 YEARS
 - Multigravida (completely immunized in last 3 years): 1 booster dose is sufficient
 - Multigravida (partially immunized in previous pregnancy in last 3 years): 2 doses, 1 month apart
 - Multigravida (unimmunized in previous pregnancy in last 3 years): 2 doses, 1 month apart
 - Multigravida (completely immunized in previous pregnancy earlier than 3 years): 2 doses, 1 month apart
 - RULE FOR Delayed immunization of TT in pregnancy (as per Period of gestation – POG): Give 2 doses of TT, 1 month apart, anytime in pregnancy, IRRESPECTIVE OF TIME OF DELIVERY (so as to provide protection for atleast next 3 years).
332. Ans. (d) WHO recommends Danish 1331 strain for vaccine production [Ref. Park 21/e p176, Park 22/e p178]

BCG VACCINE:
- BCG stands for ‘Bacille Calmette Guerin’ – an ‘avirulent strain’ produced by 239 subcultures over a period of 13 years
- **Type of vaccine:** Live attenuated vaccine
 - **Liquid (fresh) type vaccine**
 - **Freeze dried (lyophilized) vaccine:** More stable; used currently
- **WHO recommended strain:** DANISH 1331 strain
 - Vaccine strain is derived from ‘Mycobacterium bovis’
 - Prepared at BCG laboratory, Guindy, Chennai in India
- **BCG is a lyophilized (freeze dried) vaccine:**
 - Is reconstituted with Normal Saline (NaCl) as diluent
 - Must be used within 1 hour of reconstitution
- **Dose:** 0.1 ml
- **Strength:** 0.1 mg in 0.1 ml
- **Route:** Intra-dermal
 - Tuberculin syringe (Omega microstat syringe, 26 gauge needle)

Refer to theory

Also Remember
- **BCG is contraindicated in (Being a live vaccine)**
 - Pregnancy
 - Immunosuppressive states
 - During corticosteroid therapy
- **Thermolability of vaccines:** sensitivity to heat. Reconstituted BCG > YF > OPV > Measles & Reconstituted Measles > Hep B > DPT > DT > BCG > TT
 - Most Thermolabile vaccine: Reconstituted BCG
 - Most Thermostable vaccine: TT
- **WHO recommended policy on BCG vaccination in HIV:**
 - Asymptomatic HIV positive infants in high endemic areas: BCG can be given
 - Asymptomatic HIV positive infants in low endemic areas: BCG need not be given

333. Ans. (d) [Ref. IAP Guidebook on Immunization]
- **Vaccines to be given in situations of delayed immunizations in India:**
 - 9 month old unimmunized child comes for immunization first time:
 1. BCG (Direct)
 2. OPV, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 3. DPT, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 4. HepB, (3 successive doses 1 month apart)
 5. Measles
 6. Vitamin A (1 Lac IU)
 - 1½ yr old unimmunized child comes for immunization first time:
 1. BCG (Indirect)
 2. OPV, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 3. DPT, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 4. Measles
 5. Vitamin A (2 Lac IU)
 - 3½ yr old unimmunized child comes for immunization first time:
 1. BCG (Indirect)
 2. OPV, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 3. DPT, (3 successive doses 1 month apart, booster after 1 year of 3rd dose)
 4. Measles
5. Vitamin A (2 Lac IU)

334. Ans. (d) Yellow fever [Ref. Park 21/e p98, Park 22/e p99]
- Vaccine: Is an immuno-biological substance designed to produce specific protection against a given disease.
- Example of types of vaccines:

<table>
<thead>
<tr>
<th>Live 'attenuated' vaccines</th>
<th>Killed 'inactivated' vaccines</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Pertussis</td>
</tr>
<tr>
<td>OPV (Sabin – Oral polio vaccine)</td>
<td>IPV (Salk – Inactivated polio vaccine)</td>
</tr>
<tr>
<td>Measles vaccine</td>
<td>Rabies vaccine</td>
</tr>
<tr>
<td>Mumps vaccine</td>
<td>Cholera vaccine</td>
</tr>
<tr>
<td>Rubella vaccine</td>
<td>Meningococcal vaccine</td>
</tr>
<tr>
<td>Yellow fever vaccine</td>
<td>Hepatitis B vaccine</td>
</tr>
<tr>
<td>Typhoral</td>
<td>Typhim – Vi vaccine</td>
</tr>
<tr>
<td>Live plague vaccine</td>
<td>Killed plague vaccine</td>
</tr>
<tr>
<td>LAIV (live attenuated influenza vaccine)</td>
<td>Killed influenza vaccine</td>
</tr>
<tr>
<td>Varicella vaccine</td>
<td>JE (Japanese encephalitis) vaccine</td>
</tr>
<tr>
<td>Epidemic typhus vaccine</td>
<td>KFD (Kyasanur forest disease) vaccine</td>
</tr>
</tbody>
</table>

Toxoids

<table>
<thead>
<tr>
<th></th>
<th>Cellular fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria toxoid</td>
<td>Meningococcal vaccine</td>
</tr>
<tr>
<td>Tetanus toxoid</td>
<td>Pneumococcal vaccine</td>
</tr>
<tr>
<td></td>
<td>Hepatitis B vaccine</td>
</tr>
</tbody>
</table>

Combination vaccines

| DPT | DT | MMR | TAB | DPTP |

Also Remember

- **Polyvalent vaccines**: Vaccines prepared from two or more strains of same species
- **Autogenous vaccines**: Organism in the vaccine is obtained from the same patient
- Hepatitis B is a ‘Subunit vaccine’
- H. influenza B (HiB) vaccine is a ‘Conjugate vaccine’
- Specific contraindications of vaccines:
 - Vaccines contraindicated in Pregnancy: All live vaccines EXCEPT Yellow fever vaccine
 - Vaccines contraindicated in HIV:
 1. Asymptomatic HIV: NONE
 2. Symptomatic HIV: All live vaccines EXCEPT BCG vaccine
 - Vaccines contraindicated in Immuno-suppression: All live vaccines
 - Vaccines contraindicated in Corticosteroid therapy: All live vaccines
 - Vaccines contraindicated in fever: Typhoid vaccines
 1. Typhoral
 2. Typhim – Vi
 3. Vaccines contraindicated in ART/ diarrhoea: NONE
 - Vaccines contraindicated together: Yellow fever and Cholera vaccine
 - Vaccine contraindicated in Preterm-premature baby with birth weight < 2 kg: Hepatitis B
 - Vaccines contraindicated in age < 1 year (infants):
 1. Yellow fever vaccine
 2. Meningococcal vaccine
 3. Pneumococcal vaccine
 - Vaccines contraindicated in age < 2 year (infants):
 1. Meningococcal vaccine
 2. Pneumococcal vaccine
 3. Typhoid vaccines

Contd...
Review of Preventive and Social Medicine

Contd…

- Vaccine contraindicated in age > 2 year (infants): Pertussis vaccine (may lead to neurological complications – 1 per 1,70,000 vaccines)
- Vaccine contraindicated in progressive neurological disease: Pertussis vaccine (Pertussis vaccine IS NOT CONTRAINDED IN epilepsy controlled on medications, Cerebral palsy)
- Only absolute contraindication to killed vaccines: Severe local or general reaction to a previous dose

• Specific side-effects of vaccines:
 - Guillain Barre Syndrome: Killed influenza vaccine
 - Vaccine associated paralysis: OPV (Sabin)
 - Toxic shock syndrome (TSS): Measles vaccine, MMR
 - Shock: DPT, Pertussis vaccine
 - Hypersensitivity: Hep-B, Meningococcal vaccine, DPT, dT

• General rules for multiple vaccine administration:
 - 2 live vaccines can be given together
 - Live and killed vaccines can be given together
 - Cholera vaccine and Yellow fever vaccine cannot be given together
 - OPV is a live vaccine where single dose is not sufficient for immunization

335. Ans. (d) Change in colour of monitor [Ref. National Health Programs of India by Dr. J. Kishore 8/e p156, Park 22/e p189]
 Refer to Figure vaccine vial monitor p113
 - WHO grading of VVM in OPV: (Marker of potency
 - Is based on colour changes in VVM: ONLY INNER SQUARE CHANGES COLOUR, circle always remain blue

<table>
<thead>
<tr>
<th>WHO Grade</th>
<th>Outer Circle</th>
<th>Inner Square</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I</td>
<td>Blue</td>
<td>White</td>
<td>OPV can be used</td>
</tr>
<tr>
<td>Grade II</td>
<td>Blue</td>
<td>Light blue</td>
<td>OPV can be used</td>
</tr>
<tr>
<td>Grade III</td>
<td>Blue</td>
<td>Blue</td>
<td>OPV CANNOT be used</td>
</tr>
<tr>
<td>Grade IV</td>
<td>Blue</td>
<td>Purple/ Black</td>
<td>OPV CANNOT be used</td>
</tr>
</tbody>
</table>

Also Remember

- VVM has been introduced for almost all vaccines (in NIS) too in India
- In VVM, ‘direct relationship exists between the rate of colour change and temperature’
 - The lower the temperature, the slower the colour change
 - The higher the temperature, the faster the colour change
- Rules for VVM use in India:
 - Rule 1: If the inner square is lighter than the outer circle, the vaccine may be used
 - Rule 2: If the inner square is the same colour as, or darker than, the outer circle, the vaccine must not be used
- The VVM inner square start point colour: Is approximately 10% of the outer circle colour
- Validation of VVMs: Optical densitometer (for colour density measurement)
- VVM is best interpreted on a nominal scale: Usable or non-usable

336. Ans. (c) Presence of acellular pertussis component increases its immunogenicity [Ref. IAP Guidebook on Immunization; p15]
 • DPT VACCINE:
 - Type: Combined TRIPLE vaccine for Diphtheria, Pertussis & Tetanus; D & T are Toxoids, P is killed acellular bacilli
 - Dose: 0.5 ml
 - Route: intramuscular
 - Site: Antero-lateral aspect of thigh, middle 1/3 (earlier it was administered at gluteal region ,but presence of fat in buttocks breaks the adjuvant & reduces absorption of DPT vaccine)
 - Aluminium phosphate or aluminium hydroxide is used as adjuvant in DPT vaccine: It increases immunogenicity of vaccine
 - Thiomersal is used as preservative in DPT Vaccine
- Age for immunization in National Immunization schedule (NIS, India):

<table>
<thead>
<tr>
<th>Dose</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPT<sub>1</sub></td>
<td>6 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>2</sub></td>
<td>10 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>3</sub></td>
<td>14 weeks of age</td>
</tr>
<tr>
<td>DPT<sub>Booster</sub></td>
<td>16-24 months of age</td>
</tr>
<tr>
<td>DPT<sub>Booster</sub></td>
<td>5 years of age</td>
</tr>
</tbody>
</table>

- The 2 months gap between 2 successive doses of DPT do not offer any advantage over one-month interval
- Absolute Contraindications to DPT vaccine:
 1. Severe hypersensitivity reaction to previous dose
 2. Progressive neurological disease (E.g. active Epilepsy) [Cerebral palsy & seizures controlled on anti-epileptics do not preclude the use of DPT; DPT should be given under these circumstances]

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccine status for DPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Epilepsy</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Epilepsy controlled on antiepileptic</td>
<td>Can be given</td>
</tr>
<tr>
<td>Cerebral Palsy</td>
<td>Can be given</td>
</tr>
</tbody>
</table>

- DPT vaccine (¶ Measles vaccine) can result in fever: Antipyretic is given with DPT vaccine as ‘take home, need based’ medication
- Cold Chain Temperature of DPT: +2° to +8°C
- If DPT vaccine gets frozen accidentally; discard the vaccine
- Recommended interval between 3 successive doses: 1 month
- Adult type of Diphtheria – tetanus vaccine (dT): contains up to 2 Lf of diphtheria toxoid per dose; given 2 doses 4-6 weeks apart, followed by a booster after 6-12 months; is useful for immunizing children over 12 yrs of age & adults

337. Ans. (c) 25 [Ref. Park 21/e p152, Park 22/e p154]
- DPT VACCINE:
 - Composition of DPT Vaccine:

<table>
<thead>
<tr>
<th>Contents</th>
<th>Glaxo</th>
<th>Kasauli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria Toxoid</td>
<td>25 Lf</td>
<td>30 Lf</td>
</tr>
<tr>
<td>Tetanus Toxoid</td>
<td>5 Lf</td>
<td>10 Lf</td>
</tr>
<tr>
<td>Pertussis killed acellular bacilli</td>
<td>20,000 million</td>
<td>32,000 million</td>
</tr>
<tr>
<td>Aluminium phosphate</td>
<td>2.5 mg</td>
<td>3.0 mg</td>
</tr>
<tr>
<td>Thiomersal</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

338. Ans. (c) Killed vaccine [Ref. Park 21/e p98, Park 22/e p99]
- Vaccines for Poliomyelitis:

<table>
<thead>
<tr>
<th>OPV (Sabin)</th>
<th>IPV (Salk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of vaccine</td>
<td>Live attenuated virus</td>
</tr>
<tr>
<td>Mode of administration</td>
<td>Oral</td>
</tr>
<tr>
<td>Type of immunity</td>
<td>Humoral + Intestinal (local)</td>
</tr>
<tr>
<td>Prevention of Control of epidemics</td>
<td>Paralysis + intestinal re-infection</td>
</tr>
<tr>
<td>Manufacture</td>
<td>Effective</td>
</tr>
<tr>
<td>Cost</td>
<td>Easy</td>
</tr>
<tr>
<td>Storage & transport</td>
<td>Cheaper</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Require sub-zero temperatures</td>
</tr>
<tr>
<td>VAPP</td>
<td>Short</td>
</tr>
<tr>
<td></td>
<td>1 per 1 million vaccinees</td>
</tr>
<tr>
<td></td>
<td>Killed formolised virus</td>
</tr>
<tr>
<td></td>
<td>Subcutaneous or i.m.</td>
</tr>
<tr>
<td></td>
<td>Humoral</td>
</tr>
<tr>
<td></td>
<td>Paralysis</td>
</tr>
<tr>
<td></td>
<td>Not useful</td>
</tr>
<tr>
<td></td>
<td>Difficult</td>
</tr>
<tr>
<td></td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td>Less stringent conditions</td>
</tr>
<tr>
<td></td>
<td>Longer</td>
</tr>
<tr>
<td></td>
<td>Zero incidence</td>
</tr>
</tbody>
</table>
Inactivated (Salk) Polio Vaccine (IPV):
- Schedule: First 3 doses at 1-2 month interval each and 4th dose after 6-12 months of last dose
- Induces Humoral immunity (IgM, IgG, IgA); NO LOCAL IMMUNITY
- Composition of IPV:

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>20 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>2 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 3</td>
<td>4 D antigen units</td>
</tr>
</tbody>
</table>

- **Advantages of IPV:**
 1. Safe in immunodeficiency disorders
 2. Safe in persons on radiation therapy / corticosteroid therapy
 3. Useful in those over 50 years age
 4. Safe during pregnancy
 5. No risk of Vaccine associated paralytic polio (VAPP)
- IPV is unsuitable in epidemics:
 1. Immunity is not rapidly achieved as > 1 doses required
 2. Injections can precipitate paralysis during epidemics
- Improved IPV:
 1. Composition of Improved IPV:

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>40 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>8 D antigen units</td>
</tr>
<tr>
<td>Poliovirus type 3</td>
<td>32 D antigen units</td>
</tr>
</tbody>
</table>

 2. Has enhanced potency and better heat stabilization
 3. 1st dose gives 90% protection while 2 doses provide 100% protection

Also Remember

Oral (Sabin) Polio Vaccine (OPV):
- Is a live attenuated ‘trivalent’ vaccine: Contains 3 strains of polio virus
- Schedule for OPV in NIS, India:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPV-0 (Zero dose)</td>
<td>At birth</td>
</tr>
<tr>
<td>OPV-1</td>
<td>6 weeks</td>
</tr>
<tr>
<td>OPV-2</td>
<td>10 weeks</td>
</tr>
<tr>
<td>OPV-3</td>
<td>14 weeks</td>
</tr>
<tr>
<td>OPV-B (Booster dose)</td>
<td>16-24 months</td>
</tr>
</tbody>
</table>

- **Mechanism of action:**
 1. Primary multiplication: Intestinal epithelial cells
 2. SECONDARY MULTIPLICATION: Peyer’s patches (leads to viraemia)
- Induces ‘both systemic as well as local immunity’ (Nasal & duodenal IgA, Serum IgM, IgG, IgA)
- Composition of OPV:

<table>
<thead>
<tr>
<th>Components</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poliovirus type 1</td>
<td>3 lac TCID 50</td>
</tr>
<tr>
<td>Poliovirus type 2</td>
<td>1 lac TCID 50</td>
</tr>
<tr>
<td>Poliovirus type 3</td>
<td>3 lac TCID 50</td>
</tr>
</tbody>
</table>

- **Dose:** 2 drops (EQUIVALENT TO 0.1 ml)
Contd…

- Advantages of OPV:
 1. Easy to administer
 2. Induces both humoral and systemic immunity
 3. Single dose also produces substantial immunity
 4. Vaccinees spread immunity to others by excretion of virus
 5. Relatively inexpensive
 6. Useful in controlling epidemics
- Complication: Can lead to Vaccine associated paralytic poliomyelitis (VAPP) – 1 case per 1 million vaccines
- OPV is quite a thermolabile vaccine
- OPV should not be repeatedly freeze and thawed
- Cold chain temperature: + 2°C to + 8°C (–20°C to –40°C for long term storage)
- During transportation, OPV should be kept on:
 1. Dry ice (solidified carbon dioxide)
 2. A freezing mixture (wet ice + ammonium chloride)
- Heat-stabilized OPV vaccine: Can be kept without loosing potency for 1 year at 4°C and for a month at room temperature

339. Ans. (c) Dial thermometer [Ref. Park 21/e p102, Park 22/e p106]
 - Dial Thermometer:
 - Is the instrument used to monitor the temperature of cold chain at PHC
 - Is kept in ILR (Ice-lined refrigerator- component of cold chain) at PHC
 - Is ‘based on principle of thermocouple’
 - Recommended temperature monitoring at PHC level is: Twice daily
 Also Refer to Chapter 11 Ans. 24

340. Ans. (d) Subcentre & village level [Ref. Park 21/e p103, Park 22/e p10
 - Cold chain components (equipments) and levels in India:

<table>
<thead>
<tr>
<th>Level</th>
<th>Component</th>
<th>Temperature</th>
<th>Storage duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>State/ Regional level</td>
<td>Walk-in-cold rooms (WIC)</td>
<td>+2°C to +8°C</td>
<td>3 months</td>
</tr>
<tr>
<td></td>
<td>Walk-in-freezers (WIF)</td>
<td>–20°C to –40°C</td>
<td></td>
</tr>
<tr>
<td>District level</td>
<td>Large ILRs (Ice-lined refrigerator)</td>
<td>+2°C to +8°C</td>
<td>1 month</td>
</tr>
<tr>
<td></td>
<td>Large DFs (Deep freezers)</td>
<td>–20°C to –40°C</td>
<td></td>
</tr>
<tr>
<td>PHC level</td>
<td>Small ILRs</td>
<td>+2°C to +8°C</td>
<td>1 month</td>
</tr>
<tr>
<td></td>
<td>Small DFs</td>
<td>–20°C to –40°C</td>
<td></td>
</tr>
<tr>
<td>Sub-centre level</td>
<td>Vaccine carriers</td>
<td>+2°C to +8°C</td>
<td>48 – 72 hours</td>
</tr>
<tr>
<td></td>
<td>Day carriers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session level</td>
<td>Fully frozen icepack</td>
<td>+2°C to +8°C</td>
<td>1 – 3 hours</td>
</tr>
</tbody>
</table>

- Most important component of cold chain in India: ILR
- Minimum level of vaccine storage (in cold chain) in India: Primary health centre (below PHC level, vaccines are ‘transported to sub-centres on immunization days’ in vaccine carriers and day carriers)
- Maximum chance of cold chain failure in India: Sub-centre and village level
- Instrument used to monitor the temperature of cold chain at PHC: Dial Thermometer

Also Remember

- Ice-lined refrigerator (ILR):
 - Is ‘most important component of cold chain’ in India
 - Temperature of ILR (Cold chain) in India: +2°C to +8°C
 - Temperature monitoring of ILR: Dial thermometer (Twice daily)
 - ILR is used for storage of: All vaccines (Yellow fever vaccine is not apart of National immunization schedule of India, hence not stored in ILR)
 - 300/240 litres ILRs are supplied to districts and 140 litres ILR is supplied to PHCs
 - ILRs must be kept on a horizontal leveled surface, atleast 10 cms away from walls
 - ILRs can maintain temperature of vaccines if provided ‘with even 8 hours of uninterrupted electricity per day’

Contd…
Review of Preventive and Social Medicine

Contd…

- Ice-pack:
 - Is prepared by keeping in a Deep freezer
 - Is used for:
 1. Temperature maintenance during vaccine transportation, in a vaccine carrier
 2. Temperature maintenance during an immunization session
 - Is of total 320-340 ml capacity
 - Has a ‘horizontal mark’ – Water fill level (as water expands on freezing)
 - NOTHING should be added to water for freezing in an ice-pack
 - Has generally 2 holes – MEANT FOR keeping vaccines
- OPV is only vaccine in National immunization schedule (NIS) of India which requires a sub-zero temperature (–20°C to –40°C) for long term storage and transportation, thus it is also known as ‘Urban vaccine’
- Reverse Cold Chain: Is the term used for transportation of stools samples from a suspected polio case for diagnosis (National Polio Elimination Programme)
 - Temperature of Reverse Cold Chain: +2°C to +8°C
 - Specific ‘red vaccine carrier’ is used in reverse cold chain
 - Warm chain: Keeping a preterm, pre-mature newborn against the body to mother to prevent neonatal hypothermia (NNH)– ‘Kangaroo Mother Care’

341. Ans. (c) Give 3rd dose and continue the course [Ref. Park 21/e p151, Park 22/e p153]
Refer to answer 292
• Interval between doses of DPT:
 - Current recommendation: Allow an interval of 4 weeks between 3 doses, followed by a booster at age of 1½ – 2 years, followed by another booster at 5 – 6 years
 - 2 month intervals DO NOT offer any advantage over 1 – month intervals for protection against Diphtheria and Tetanus, and may not enhance Pertussis protection
 - Shorter intervals confer protection at an earlier age which may be particularly important in Pertussis control

In the given question, a 11-month old child has received two doses of DPT and polio, comes for further immunization after 5 months of the last dose, there is NO NEED to repeat the whole course. Continue form this point onwards, and complete the course.

342. Ans. (d) BCG, DPT-1, OPV-1, Measles [Ref. Park 21/e p113, Park 22/e p114-115]
Refer to answer 328

> Also Remember

Important Practical Considerations:
- Vitamin-A is given at 9th, 18th, 24th, 30th, 36th, 42nd, 48th, 54th and 60th months (A total of 1 Lac + 2 Lac + 2 Lac + 2 Lac + 2 Lac = 17 Lac IU is given to a completely immunized child by 5 years of age)
- OPV: Minimum 5 doses are required for development of immunity
- DPT: Minimum 3 doses are given a month apart with booster after 1 year of the 3rd dose
- TT: A fully immunized adult (excluding pregnancy in females) would have received 7 doses of TT

343. Ans. (a) It should be stored in deep freezer; (c) Store stocks.................... [Ref. Park 21/e p101]
• All vaccines are stored at temperature of +2°C to +8°C including OPV (OPV vaccine is stored at -20°C to -40°C, i.e., Subzero/ freezing temperatures only for long term storage) but YF vaccine (YF vaccine is stored at -30°C to +5°C)
• Vitamin-A and Diluents (Normal Saline for BCG and Distilled/Sterile Water for Measles) need not be stored in cold chain; but they should be brought to temperature of cold chain before reconstitution
• All vaccines opened (partially or totally used) are discarded.
Also Remember

- All unopened/ unused vaccines from an immunization session (if maintained in cold chain) can be brought back to ILR at PHC maximum three times
- Any vaccine (barring OPV and YF vaccine), if accidently frozen: DISCARD IT

344. Ans. (c) Measles [Ref. Park 21/e p139, Park 22/e p141]

<table>
<thead>
<tr>
<th>Active Immunity</th>
<th>Passive Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Immunity as a result of antibody production in the body. It depends on humoral and cellular responses of host</td>
</tr>
<tr>
<td>Modes of acquiring</td>
<td>The host body does not produce it’s own but depends on ready-made antibodies to be transferred to it</td>
</tr>
<tr>
<td>Following clinical infection,</td>
<td>Administering immunoglobulin/antiserum</td>
</tr>
<tr>
<td>Following subclinical/inapparent infection</td>
<td>Transplacental transfer of antibodies</td>
</tr>
<tr>
<td>Following immunization with an antigen</td>
<td>Transfer of lymphocytes</td>
</tr>
</tbody>
</table>

345. Ans. (a) Rubella [Ref. Park 21/e p98, Park 22/e p99]

Also Remember

- **Rubella (German Measles):**
 - Causative agent: RNA virus of Togavirus family
 - Incubation period: 14 – 21 days (~18 days)
 - There is ‘no known carrier state’ for post-natally acquired rubella
 - 40% women in reproductive age group are susceptible to rubella in India
 - Rubella vaccine: live attenuated, ‘strain RA 27/3’
- **Vaccines contraindicated in Pregnancy:** ALL LIVE VACCINES (barring Yellow Fever Vaccine) and MENINGOCOCCAL VACCINE
 - BCG
 - OPV
 - Yellow fever
 - Measles vaccine
 - MMR (Measles, Mumps & Rubella)
 - Oral Typhoid (Ty 21a)
 - Varicella
 - Live Plague vaccine
 - LAIV (Live attenuated Influenza viral vaccine)
 - Varicella vaccine
 - Meningococcal Vaccine
- ‘Live vaccines are usually not given in pregnancy’ due to the potential risk of causing the disease in the immunoconpromised mother:
 - However, when the likelihood of disease exposure is high or when infection would pose a risk to the mother or fetus, then vaccination with a live vaccine is generally recommended in exceptional cases (especially with OPV and Yellow Fever vaccines)
- What if a live vaccine is accidentally given during pregnancy? Does this mean that the pregnancy should be terminated? **No.** This alone would not be considered a medical reason to end a pregnancy because the chance of the fetus being infected is generally very low. Counseling by a knowledgeable healthcare provider would be recommended

346. Ans. (d) Horse [Ref. Park 21/e p101, Park 22/e p102]

- **Antisera (Antitoxins):** Materials prepared in animals; non-human sources like horses
 - Provides passive immunization
 - Common uses: Tetanus, Diphtheria, Botulism, Rabies, Gas gangrene, Snake bite

347. Ans. (d) Aluminium [Ref. Park 21/e p151, Park 22/e p153]
348. Ans. (b) Sabin polio vaccine [Ref. Park 21/e p98, Park 22/e p99]
349. Ans. (b) Sabin polio vaccine [Ref. Park 21/e p105, Park 22/e p107]

- Rare vaccine reactions:

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCG</td>
<td>Suppurative lymphadenitis, Osteitis, Disseminated infection</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Anaphylaxis</td>
</tr>
<tr>
<td>Measles/ MMR</td>
<td>Febrile seizures, Thrombocytopenia, Anaphylaxis, Encephalopathy</td>
</tr>
<tr>
<td>OPV</td>
<td>Vaccine associated paralytic Poliomyelitis (VAPP)</td>
</tr>
<tr>
<td>TT</td>
<td>Brachial neuritis, Anaphylaxis</td>
</tr>
<tr>
<td>Pertussis (whole cell)</td>
<td>Persistent screaming, Seizures, Anaphylaxis, Encephalopathy, Hypotonic hypo-responsive episode (HHE)</td>
</tr>
</tbody>
</table>

Also Remember

ADVERSE EFFECTS FOLLOWING IMMUNIZATION (AEFI):

- **Minor Vaccine Reactions:**

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Possible minor reaction</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPT</td>
<td>Local reaction (pain, swelling, redness)</td>
<td>Up to 50%</td>
</tr>
<tr>
<td></td>
<td>Fever</td>
<td>Up to 50%</td>
</tr>
<tr>
<td></td>
<td>Local reaction (pain, swelling, redness)</td>
<td>Up to 50%</td>
</tr>
<tr>
<td></td>
<td>Local reaction (pain, swelling, redness)</td>
<td>30-50%</td>
</tr>
<tr>
<td></td>
<td>Mild local reactions</td>
<td>Up to 71%</td>
</tr>
</tbody>
</table>

- **Rare vaccine reactions:**

<table>
<thead>
<tr>
<th>Rare reactions</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppurative lymphadenitis</td>
<td>BCG</td>
</tr>
<tr>
<td>BCG osteitis</td>
<td></td>
</tr>
<tr>
<td>Disseminated BCGiosis</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Measles/ MMR</td>
</tr>
<tr>
<td>Febrile seizures</td>
<td></td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Encephalopathy</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>Rubella/ MMR</td>
</tr>
<tr>
<td>Vaccine associated paralytic poliomyelitis</td>
<td>OPV</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>Tetanus/ DT</td>
</tr>
<tr>
<td>Brachial neuritis</td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>Pertussis/ DPT-whole cell</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td></td>
</tr>
<tr>
<td>Encephalopathy</td>
<td></td>
</tr>
<tr>
<td>Persistent (>3 hours)</td>
<td></td>
</tr>
<tr>
<td>inconsolable screaming</td>
<td></td>
</tr>
<tr>
<td>Hypotonic hypo-responsive episode (HHE)</td>
<td></td>
</tr>
</tbody>
</table>

350. Ans. (a) Colostrum [Ref. Park 21/e p491, Park 22/e p492]

COLOSTRUM:

- Is the most suitable food immediately after birth of the baby; Regular milk comes 3 – 6 days after birth
- Also known as ‘Beestings’, ‘First milk’ or ‘Immune Milk’
- High in carbohydrates, protein, and antibodies and low in fat
- Contains all five immunoglobulins found in all mammals, IgA, IgD, IgE, IgG and IgM
- Known as ‘first immunization’ of newborn

351. Ans. (c) OPV + BCG + DPT + Measles [Ref. Park 21/e p113-14, Park 22/e p114-115]
352. Ans. (d) Hib [Ref. Park 21/e p113, Park 22/e p114-115]
353. Ans. (d) Intradermally [Ref. Park 21/e p176, Park 22/e p178]
354. Ans. (c) Two live vaccines cannot be given simultaneously [Ref. Park 21/e p98, Park 22/e p99]
 [New Guideline: Two live vaccines can be given together except cholera vaccine and YF vaccine]
355. Ans. (a) Tetanus [Ref. Park 21/e p285]
356. Ans. (a) BCG; (b) Oral Polio Vaccine; (c) Chickenpox vaccine; (d) MMR [Ref. Park 21/e p98, Park 22/e p99]
357. Ans. (a) BCG; (c) DPT; (d) Measles; (e) TT [Ref. Park 21/e p101, Park 22/e p102]
358. Ans. (d) Rabies [Ref. Park 21/e p98, Park 22/e p99]
359. Ans. (a) Sabin; (b) BCG; (c) Varicella [Ref. Park 21/e p98, Park 22/e p99]
360. Ans. (a) Measles – Jeryl-Lynn strain; (d) Rubella – Edmonston-Jagreb strain [Ref. Park 22/e p140, 142]
361. Ans. (a) Measles – Jeryll Lynn; (b) Rubella - Copenhagen; (c) Mumps - Schwartz [Ref. Park 22/e p140, 142, 143]
362. Ans. (b) BCG; (c) Yellow fever; (d) Mumps [Ref. Park 21/e p98, Park 22/e p99]
363. Ans. (a) It is a killed vaccine [Ref. Park 21/e p98, Park 22/e p99]
364. Ans. (d) Bivalent & quadrivalent [Ref. Internet]
365. Ans. (b) Measles [Ref. Park 22/e p136, 138-139]
 • Measles vaccine efficacy with single dose: 85%
 • OPV vaccine efficacy with single dose: 65-80%
 • BCG vaccine efficacy with single dose: 50%
 • TT vaccine efficacy with single dose: 70%
 • Rubella vaccine efficacy with single dose: 95% (HIGHEST)
366. Ans. (b) Measles, Mumps, Rubella [Ref. Park 22/e p110]
367. Ans. (d) WHO recommends Donish 1331 for vaccine production [Ref. Park 22/e p178]
 • New guidelines say that site for BCG vaccine must NOT be cleaned with spirit as it kills the live components of a vaccine
368. Ans. (c) Neomycin is used as preservative in BCG vaccine [Ref. Park 22/e p140, 153, 188]
 • DPT vaccine contains Thiomersal (Preservative)
 • OPV contains Magnesium chloride (Thermostabilizer)
 • DPT contains Aluminum hydroxide (Adjuvant)
 • Measles vaccine contain Neomycin and Erythromycin (Preservative)
 • BCG vaccine does not contain preservative
369. Ans. (b) H. influenzae vaccine [Ref. Immunization in Older Adults, Issue 21, 2007]

CDC GUIDELINES FOR IMMUNIZATION OF OLDER PEOPLE

• Influenza intramuscular inactivated vaccine (live intranasal vaccine is contraindicated)
• Pneumococcal vaccine once
• Tetanus-diphtheria toxoid (Td) booster every 10 years
• In selected patients aged 60 years or more
 – Herpes zoster (shingles)
 – Hepatitis A
 – Hepatitis B
 – Meningococcal disease
 – Varicella
 – MMR
 – Yellow fever vaccine (for travellers)
Also Remember

- Hemophilus influenza B vaccine is generally not given after 5-6 years age, unless there is HIV/AIDS, removal of spleen, Sickle cell disease, anti-cancer treatment or bone marrow transplant.

370. Ans. (b) Rabies [Ref. Park 22/e p99]
371. Ans. (b) 4 [Ref. Immunization Handbook by Medical Officers, MoHFW, 2009; p50]
 - A vaccine carrier: 4 fully frozen ice-packs
 - A day carrier: 2 fully frozen ice-packs
372. Ans. (c) Ice lined refrigerator [Ref. Park 21/e p102, Park 22/e p103]
373. Ans. (c) Hepatitis B; (e) Rabies [Ref. K. Park 22/e p111]
374. Ans. (a) ILR [Ref. K. Park 22/e p104]
375. Ans. (d) DPT [Ref. K. Park 22/e p115]
376. Ans. (a) Live attenuated [Ref. K. Park 22/e p99]
377. Ans. NONE [Ref. K. Park 22/e p260-61]
378. Ans. (d) 6-9 months [Ref. K. Park 22/e p140-41]
379. Ans. (a) Jeryll Lynn [Ref. K. Park 22/e p144]
380. Ans. (d) Yellow fever [Ref. K. Park 22/e p111]
381. Ans. (b) At birth [Ref. K. Park 22/e p115]
382. Ans. (b) 10 [Ref. Immunization for Children by M Aggarwal, 2/e p35]
383. Ans. (a) Hepatitis B vaccine [Ref. Textbook of Paediatric Nursing by Beevi, 1/e p41]
384. Ans. (b) Type 7 [Ref. Cervical Cancer by T S Kuie, 1/e p90-91]
385. Ans. (d) 0, 7, 28 days [Ref. K. Park 22/e p255]
386. Ans. (d) DPT + Vitamin A [Ref. K Park 22/e p115]
 Recent changes in immunization guidelines in India
 - 2 doses of measles vaccine
 - First dose: 9 months
 - Second dose: 16-24 months
 - 1 dose of JE Live vaccine: 16-24 months
 - DPT Booster: 5-6 years age
 - Vitamin A: Every 6 months till age of 5 years age (Starting at 9 months age)
387. Ans. (a) Hepatitis A [Ref. K. Park 22/e p99]
388. Ans. (d) 0, 1, 6 months [Ref. K. Park 22/e p196]
389. Ans. (a) Follow up of AFP every 30 days [Ref. K. Park 22/e p186-90]
390. Ans. (a) >0.01 IU/ml [Ref. K. Park 22/e p285]
391. Ans. (a) Ty21 A [Ref. K. Park 22/e p212]
392. Ans. (c) Tetanus [Ref. K. Park 22/e p285-87]
393. Ans. (c) 300,000 TCID 50 [Ref. K. Park 22/e p187]
394. Ans. (b) P1 & P3 [Ref. Vaccines by Plotkin, 6/e p 619]
395. Ans. (a) Cell culture derived live attenuated [Ref. K Park 22/e p260-61]
 - SA 14-14-2 vaccine:
 - Live attenuated cell-derived vaccine strain
 - Single dose is sufficient
 - Gives protection for 11 years
• Killed Mouse-brain derived vaccine:
 – Two primary doses 4 weeks apart
 – Booster after 1 year, then at 3-yearly intervals
 – Useful in Inter-epidemic period

396. Ans. (a) Bivalent and quadrivalent; (c) MC subtypes 16, 18

397. Ans. (a) MMR [Ref. K. Park, 22/e p108 & PSM Including Biostatistics by Dr Vivek Jain, 6/e p117]

398. Ans. (b) Maternal antibody is completely protective [Ref. Park 22/e p185]

399. Ans. (d) Live J.E. [Ref. Infectious Diseases in Children and Newer Vaccines by Ghosh, 1/e p142]

400. Ans. (a) Children under 8 years [Ref. Park 22/e p99]

Review Questions

401. Ans. (b) At birth [Ref. Park 21/e p113, Park 22/e p114-115]

402. Ans. (a) BCG [Ref. Park 21/e p98, Park 22/e p99]

403. Ans. (b) At birth [Ref. Park 21/e p113, Park 22/e p114-115]

404. Ans. (a) BCG [Ref. Park 21/e p98, Park 22/e p99]

405. Ans. (d) Influenza [Ref. Park 21/e p98, Park 22/e p99]

406. Ans. (c) +2°C to 8°C [Ref. Park 21/e p101, Park 22/e p102]

407. Ans. (b) Droplet [Ref. Park 21/e p291, Park 22/e p290]

408. Ans. (b) At birth [Ref. Park 21/e p98, Park 22/e p99]

409. Ans. (b) 10 days [Ref. Park 21/e p259, Park 22/e p258]

410. Ans. (a) BCG [Ref. Park 21/e p98, Park 22/e p99]

411. Ans. (c) Given around 200 yards of a case detected [Ref. Refer Dictionary by Dr. J Kishore]

412. Ans. (d) Yellow fever [Ref. Park 21/e p98, Park 22/e p99]

413. Ans. (d) Yellow fever [Ref. Park 21/e p98, Park 22/e p99]

414. Ans. (b) At birth [Ref. Park 21/e p113, Park 22/e p114-115]

415. Ans. (b) 10 days [Ref. Park 21/e p259, Park 22/e p258]

416. Ans. (b) 10 years [Ref. Park 21/e p286, Park 22/e p285]

417. Ans. (a) Pertussis component [Ref. Park 21/e p106, 154, Park 22/e p108, 156]

418. Ans. (c) 15–18 months [Ref. Park 21/e p141, Park 22/e p142]

419. Ans. (a) Sabin OPV [Ref. Park 21/e p98, Park 22/e p99]

420. Ans. (a) Typhoid oral [Ref. Park 21/e p215, Park 22/e p216]

421. Ans. (a) OPV + BCG + Measles + DPT [Ref. Park 22/e p97-100]

422. Ans. (b) Sabin polio [Ref. Park 21/e p98, Park 22/e p99]

423. Ans. (c) Inner square darker than the outer circle

424. Ans. (c) 4°C [Ref. Park 21/e p101, Park 22/e p102]

425. Ans. (a) BCG [Ref. Park 21/e p176, Park 22/e p178]

426. Ans. (d) Production of antibody more slow [Ref. Park 21/e p96, Park 22/e p97]

427. Ans. (a) The micro-organism produces exotoxins [Ref. Park 21/e p100, Park 22/e p101]

428. Ans. (a) Salk polio vaccine [Ref. Park 21/e p98, Park 22/e p99]

429. Ans. (a) Given subcutaneously [Ref. Park 21/e p176, Park 22/e p178]
430. Ans. (c) IgA [Ref. Park 21/e p100, Park 22/e p101]
431. Ans. (c) Influenza [Ref. Park 21/e p145, Park 22/e p147]
432. Ans. (c) Rubella [Ref. Park 21/e p97, 141, Park 22/e p142]
433. Ans. (c) Protects entire community [Ref. Park 21/e p97, Park 22/e p98]
434. Ans. (b) BPL vaccine has more number of doses
435. Ans. (b) Sabin vaccine [Ref. Park 21/e p98, Park 22/e p99]
436. Ans. (b) Influenza [Ref. Park 21/e p145, Park 22/e p147]
437. Ans. (c) Rubella [Ref. Park 21/e p97, 141, Park 22/e p142]
438. Ans. (c) Protects entire community [Ref. Park 21/e p97, Park 22/e p98]
439. Ans. (b) BPL vaccine has more number of doses
440. Ans. (b) Sabin vaccine [Ref. Park 21/e p98, Park 22/e p99]
441. Ans. (b) Influenza [Ref. Park 21/e p145, Park 22/e p147]
442. Ans. (a) BCG [Ref. Park 21/e p139, Park 22/e p141]
443. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
444. Ans. (d) Pertussis [Ref. Park 21/e p98, Park 22/e p99]
445. Ans. (b) Influenza [Ref. Park 21/e p145, Park 22/e p147]
446. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
447. Ans. (b) Live attenuated [Ref. Park 21/e p98, Park 22/e p99]
448. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
449. Ans. (b) Intradermal [Ref. Park 21/e p176, Park 22/e p178]
450. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
451. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
452. Ans. (b) Live attenuated [Ref. Park 21/e p98, Park 22/e p99]
453. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
454. Ans. (b) Intradermal [Ref. Park 21/e p176, Park 22/e p178]
455. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
456. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
457. Ans. (c) Salk [Ref. Park 21/e p98, Park 22/e p99]
458. Ans. None of the choices [Ref. Park 21/e p102, 152, Park 22/e p103, 154]
459. Ans. (d) Pertussis [Ref. Park 21/e p98, Park 22/e p99]

DISINFECTION

460. Ans. (d) Germicidal Power of a disinfectant [Ref. Russell, Hugo and Ayliffe’s Principles and Practice of Disinfection, p225]
 - Rideal Walker Coefficient (RWC):
 - Also known as ‘Carbolic acid coefficient’
 - Is used to ‘represent germicidal power of a disinfectant’
 - Standard used for comparison: Phenol (RWC = 1)
 - RWC = 10 implies: Given disinfectant is 10 times more potent than phenol
 - Organism used for testing: Salmonella typhi
 - In presence of organic matter, RWC is ineffective: Chic Martin test is employed
Also Remember

- Effect/sufficiency/adequacy of autoclaving is assessed by:
 - Spores of ‘Bacillus stearothermophilus’
 - Sterigage (chemical indicator strips)
- Effect/sufficiency/adequacy of pasteurization is assessed by:
 - Phosphatase test (MC used test)
 - Standard plate count
 - Coliform count

461. Ans. (c) Phenol [Ref. Russell, Hugo and Ayliffe’s Principles and Practice of Disinfection; p225]

462. Ans. (b) Cetrimide [Ref. Park 21/e p118, Park 22/e p120-121]

- Chemical agents for disinfection:
<table>
<thead>
<tr>
<th>Phenol & related compounds</th>
<th>Quaternary ammonia compounds</th>
<th>Halogens & related compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenol</td>
<td>Cetrimide</td>
<td>Bleaching powder</td>
</tr>
<tr>
<td>Crude phenol</td>
<td>Savlon</td>
<td>Sodium hypochlorite</td>
</tr>
<tr>
<td>Cresol</td>
<td></td>
<td>Halozone tablets</td>
</tr>
<tr>
<td>Cresol emulsions</td>
<td></td>
<td>Iodine</td>
</tr>
<tr>
<td>Chlorhexidine (Hibitane)</td>
<td></td>
<td>Iodophors</td>
</tr>
<tr>
<td>Hexachlorophane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dettol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>Formaldehyde</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>Formalin</td>
<td>Lime</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>Formaldehyde gas</td>
<td>Ethylene oxide</td>
</tr>
</tbody>
</table>

- Pure phenol is not an effective disinfectant
- Crude phenol: Phenol + Cresol
- Cresol emulsions are very powerful disinfectants:
 - Lysol (50 – 60% cresol)
 - Izal
 - Cyllin
- Dettol (Chloroxylenol): Suitable for disinfection of instruments and plastic equipments
- Savlon: Cetavlon (Cetrimide) + Hibitane (Chlorhexidine)
- Betadine: Povidone + Iodine
- Bleaching powder (CaOCl₂):
 - BP contains ‘33% available chlorine’
 - Stabilised bleach: Mixing with lime, to stabilize bleaching powder
 - Amount of BP required to disinfect 1000 litres of water: 2.5 grams

Also Remember

- Most effective skin antiseptics: Alcoholic solutions of Chlorhexidine (Hibitane) & Iodine
- Cresol is known as ‘All purpose general disinfectant’
- Cheapest disinfectant: Lime
- Disinfectants recommended:
 - For rooms: Formaldehyde
 - For Lippes loop:
 1. 1/2500 aqueous solution of Iodine
 2. Normal strength savlon–
 - For Handlotions: Hibitane (Chlorhexidine)
 - For infant feeding bottles: Sodium hypochlorite (containing 100 – 200 ppm of available chlorine)
 - For sputum: Burning

463. Ans. (c) Cetavlon and hibitane [Ref. Park 12/e p109, 20/e p117, Park 21/e p118, Park 22/e p120-121]

- Savlon: Chlorhexidine (Hibitane) 0.3% and Cetrimide (Cetavlon) 3%.
- Chlorhexidine is effective against a wide range of Gram-negative and Gram-positive vegetative bacteria, yeasts, dermatophyte fungi and lipophilic viruses; It is inactive against bacterial spores, except at elevated temperatures
Review of Preventive and Social Medicine

Also Remember

- Chlorxylenol/ parachlorometaxylenol is the major content of ‘Dettol’

464. Ans. (d) Cresol [Ref. Park 21/e p117-18, Park 22/e p119, 120, 121]
- Cresol has no significant activity against bacterial spores

465. Ans. d) Pre-current disinfection [Ref. Park 21/e p117, Park 22/e p119]

TYPES OF DISINFECTION:
- Concurrent disinfection: Is application of disinfective measures as soon as possible after discharge of infectious material from body of an infected person
 - Example: Disinfection of urine, faeces, vomit, contaminated linen, clothes, hands, dressings, gloves, aprons
- Terminal disinfection: Is application of disinfective measures after the patient has been removed by death or to a hospital or ceased to be a source of infection
 - Examples: Currently not practices; only cleaning, airing, sunning of rooms, linen, furniture
- Precurrent (Prophylactic) disinfection: Prior to occurrence of infection
 - Examples: Chlorination of water, pasteurization of milk, handwashing

466. Ans. (a) Boiling; (b) Burning; (d) Autoclaving [Ref. Park 21/e p119, Park 22/e p123]
- Methods recommended for sputum disposal:
 - Burning (after receiving in gauge/ handkerchief)
 - Boiling or Autoclaving at 20 lbs pressure X 20 min (for large volumes, as in TB hospitals) or incineration
 - 5% Cresol in a cup made to stand for 1 hour after spitting sputum in it

467. Ans. (a) Cetrimide + chlorhexidine [Ref. Park 20/e p117, Park 22/e p119]
- Savlon: Chlorhexidine (Hibitane) 0.3% and Cetrimide (Cetavlon) 3%.
- Chlorhexidine is effective against a wide range of Gram-negative and Gram-positive vegetative bacteria, yeasts, dermatophyte fungi and lipophilic viruses. It is inactive against bacterial spores, except at elevated temperatures.

Also Remember

- Chlorxylenol/ parachlorometaxylenol is the major content of ‘Dettol’

468. Ans. (d) Washing of hands before and after attending the patients [Ref. Park 21/e p333-34, Park 22/e p332-333]

MAIN PREVENTIVE MEASURES FOR NOSOCOMIAL INFECTIONS:
- Isolation of infectious patients
- Hospital staff infected must be kept away from work till cure; hygiene; aprons
- “Hand-washing with disinfectants” (not soap and water) as MOST COMMON ROUTE OF INFECTION is hands
- Dust control: Wet dusting and vacuum cleaning
- Disinfection: Patient articles and body fluids; instruments
- Control of droplet infection: Face mask; bed spacing; Lighting; Ventilation
- Nursing techniques: Barrier nursing; Task nursing
- Administrative measures: Hospital committee on infection control

469. Ans. (d) Chlorhexidine [Ref. Park 21/e p119, Park 22/e p123]
- Recommended disinfection measures for sputum: [Mnemonic: AB'C]
 - Burning
 - Boiling
 - 5% Cresol (X 1 hour)
- Chlorhexidine (Hibitane): Is a skin antiseptic RECOMMENDED FOR burns and hand disinfection

470. Ans. (c) Bacillus stearothermophilus [Ref. Modern trends in planning and designing of hospitals, 1/e p189]

AUTOCLAVING
- Principle: Steam under pressure
- Methods of autoclaving:

https://kat.cr/user/Blink99/
Results of a screening test for a disease

<table>
<thead>
<tr>
<th>Results</th>
<th>Positive</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>99</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

- **Checking sufficiency of autoclaving:**
 - Spores of Bacillus stearothermophilus
 - Chemical colour indicator strips (Sterigage)

471. Ans. (a) 50 gm/lit [Ref. K. Park 22/e p120]

472. Ans. (b) Sodium hypochlorite [Ref. K. Park 22/e p120]

473. Ans. (c) Hot air oven [Ref. K. Park 22/e p119]

474. Ans. (c) After 48 hours of hospitalization [Ref. Park 22/e p321]

Review Questions

475. Ans. (b) Kills bacteria only [Ref. Park 21/e p117, Park 22/e p119]

476. Ans. (a) Glutaraldehyde [Ref. Ananthanarayan Microbiology 4/e p32]

MISCELLANEOUS

477. Ans. (a) Temporal association [Ref. Epidemiology by Leon Gordis, 4/e p172 and Basic Epidemiology by Beaglehole, WHO; p40-41]

NESTED CASE CONTROL STUDY:

- Is a hybrid design where ‘a case control study is nested in a cohort study’
- Is predominantly a type of Cohort study (due to forward direction)
- Usefulness limited for studies involving ‘rare diseases AND whose diagnostic tests are very expensive’
- Study design:
 - A population is identified and baseline data is obtained from interviews, blood or urine tests, etc.
 - Population is then followed up for a period of time (Cohort study) for development for the disease under study
 - A Case control study is then carried out:
 1. Cases: people who developed the disease
 2. Controls: Sample from those who did not develop the disease
 - Samples/h history collected at baseline are then examined
- Advantages:
 - Elimination of problem of Recall bias: Interviews are performed at the beginning of the study (at baseline), and data are obtained before the disease has developed
 - Maintenance of temporal association: If any disease or abnormality in a biological characteristic is noted, it is more likely that it represent risk factors or other pre-morbid characteristics rather than a manifestation of early, sub-clinical disease
 - Economical to conduct: Expensive tests need not be conducted on entire population; only carried out among cases and controls

478. Ans. (b) Effectiveness [Ref. Epidemiology by Leon Gordis, 4/e p267]

EVALUATION OF HEALTH SERVICES:

- **Efficacy:** Is the effect or usefulness of an agent/ drug/ vaccine under ideal ‘controlled laboratory’ conditions
- **Effectiveness:** Is the effect or usefulness of an agent/ drug/ vaccine in real life community situations
- **Efficiency:** Is the measure of relationship between the results achieved and the effort expended in terms of money, resources and time
 - **Efficiency:** Output/ Input
 - **Evaluation of efficiency:**
Review of Preventive and Social Medicine

1. Cost-benefit analysis: Both input as well as output is in monetary terms
2. Cost-effectiveness analysis: Input is in monetary terms whereas output is in terms of ‘no. of lives saved’

Also Remember

- Measurement of efficiency requires many assumptions, it is not value-free and can serve only as a general guideline
- Cost-effectiveness analysis is expressed as:
 - Dollars per life years gained
 - Dollars per case prevented
 - Dollars per quality-adjusted life years gained
- Cost-effectiveness analysis is easier to perform than Cost-benefit analysis

479. Ans. (a) Case series report [Ref. Epidemiology by Leon Gordis, 2/e p102]

- Exposure and outcome in analytical studies:

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Remarks</th>
<th>Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective cohort study</td>
<td>Occurred</td>
<td>Followed-up</td>
<td>Start with exposure</td>
</tr>
<tr>
<td>Retrospective cohort study</td>
<td>Occurred</td>
<td>Occurred; further assessed in future</td>
<td>Start with exposure</td>
</tr>
<tr>
<td>Mixed cohort study</td>
<td>Occurred</td>
<td>Occurred</td>
<td>Start with outcome</td>
</tr>
<tr>
<td>Case control study</td>
<td>Occurred</td>
<td></td>
<td>Both exposure and outcome assessed at a point of time</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Occurred</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In a Prospective cohort study, Outcome has not yet occurred when the study has begun: Only exposure has occurred; we look for development of same disease in both exposed and non-exposed groups
- In a Retrospective cohort study, both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups
- In a Combined prospective-retrospective cohort study, both exposure as well as outcome have occurred when the study has begun: First we go back in time and take only exposure into consideration (cohorts identified from past hospital/college records), then look for development of same disease in both exposed and non-exposed groups; later cohort is followed prospectively into future for outcome
- In a Case control study, both exposure as well as outcome have occurred when the study has begun: First we take outcome into consideration, and then go back in time taking exposure into consideration; then compare exposure in both diseased (cases) and non-diseased (controls)
- In a nested case control study, only exposure has occurred when the study begins; when the disease develops in a population, then 2 groups of cases (diseased) and controls (non-diseased) are formed and their exposure status is compared
- In a case-series study, both exposure as well as outcome have occurred when the study has begun: First we take outcome into consideration, and then go back in time taking exposure into consideration; there is NO COMPARISON with non-diseased (controls)
- In a prevalence survey (cross-sectional study), exposure as well as outcome may co-exist at the time of study (there is no longitudinal direction)

In the given question, a total of 5000 patients of glaucoma are identified and surveyed by patient interviews regarding family history of glaucoma,

Since both exposure as well as outcome have occurred when the study has begun: First we take outcome into consideration, and then go back in time taking exposure into consideration; and there is NO COMPARISON with non-diseased (controls),

Therefore, it is a case series report
480. Ans. (d) Nothing can be concluded as the information given is inadequate [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p141 and Methods in Biostatistics by Mahajan, 6/e p118]
 • In the given question, In assessing the association between maternal nutritional status and the birth weight of the newborns, two investigators A and B studied separately and found significant results with p values 0.02 and 0.04 respectively
 • Only levels of significance are given, thus we can only conclude that investigator A has 98% chance of being correct whereas investigator B has 96% chance of being correct

481. Ans. (a) Is a cohort study nested in a case control study [Ref. Epidemiology by Leon Gordis, 4/e p172 and Basic Epidemiology by Beaglehole, WHO; p40-41]

482. Ans. (b) 99% [Ref. Park 21/e p128, Park 22/e p131]

483. Ans. (b) Effectiveness [Ref. Epidemiology by Leon Gordis, 4/e p267 and Basic Epidemiology by Beaglehole, WHO; p137]

Also Remember

COMMUNITY EFFECTIVENESS (CE):

\[CE = \text{Efficacy} \times \text{Diagnostic accuracy} \times \text{Patient compliance} \times \text{Provider compliance} \times \text{Coverage} \]

\[(E \times D \times PtC \times PrC \times C) \]

484. Ans. (b) Specific protection [Ref. Park 21/e p40, Park 22/e p40]

Also Remember

• If a pregnant female is found to be anemic (by hemoglobin estimation), she is given 2 or 3 tablets of IFA per day as treatment: This will now become a Secondary Level of prevention (diagnosis and treatment)
 • Primordial Level is Best level of prevention for Non-communicable diseases
 • Primary level of prevention is applied when ‘risk factors are present but disease has not yet taken place’
 – It signifies ‘intervention in the Pre-pathogenesis Phase of a disease/ health problem’
 • Secondary level of prevention is applied when disease has possibly set in: It attempts to arrest the disease process, seek unrecognized disease & treat it before irreversibility and reverse communicability of infectious diseases
 – National Health Programmes by Govt. of India mostly operate at Secondary level of prevention
 – Secondary prevention is an imperfect tool in control of transmission of disease. It is more expensive and less effective than primary prevention
 – It is an important level of prevention for disease like Tuberculosis, Leprosy and STDs

485. Ans. (b) It is likely to be more for infections that do not have a sub-clinical phase [Ref. Park 21/e p97, 98, Park 22/e p98-99]

HERD IMMUNITY:

• Herd Immunity is the level of resistance of a community or group of people to a particular disease. It refers to group protection beyond what is afforded by the protection of immunized individuals
• Elements contributing to herd immunity are:
 – Occurrence of clinical/subclinical infections in herd
 – Immunization of herd
 – Structure of herd (hosts, alternative animal hosts, insect vectors, environmental & social factors)
• It is ‘neither possible nor necessary to achieve 100% herd immunity’ to control a disease
• Herd immunity may be determined by ‘Serological Surveys’
• Herd immunity describes a type of immunity that occurs when the vaccination of the a portion of the population (or herd) provides protection to un-vaccinated individuals
• Herd immunity does not protect the individual in the case of tetanus
• Herd Immunity Threshold: Virologists have found that when a certain percentage of a population is vaccinated, the spread of the disease is effectively stopped; This critical percentage (HIT) depends on the disease and the vaccine
Epidemiology and Vaccines

<table>
<thead>
<tr>
<th>Disease</th>
<th>Herd immunity threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td>85%</td>
</tr>
<tr>
<td>Pertussis</td>
<td>92-94%</td>
</tr>
<tr>
<td>Measles</td>
<td>83-94%</td>
</tr>
<tr>
<td>Mumps</td>
<td>75-86%</td>
</tr>
<tr>
<td>Rubella</td>
<td>80-85%</td>
</tr>
<tr>
<td>Polio</td>
<td>80-86%</td>
</tr>
<tr>
<td>Smallpox</td>
<td>83-85%</td>
</tr>
</tbody>
</table>

486. Ans. (a) & (c) Personal Exposure & Case Report [*Ref. BMJ 2004; p1490*]

487. Ans. (c) Natural experiment study [*Ref. Modern Epidemiology by Rothman, 3/e p94*]

488. Ans. (a) Descriptive studies [*Ref. K. Park 22/e p60*]

Review Questions

489. Ans. (d) Stool specimen of polio send for testing [*Ref. Park 20/e p167, Park 22/e p169*]

490. Ans. (c) Sullivan’s index [*Ref. Park 20/e p25, Park 21/e p25*]

491. Ans. (b) Good for community [*Ref. Dorland’s Dictionary 30/e p1502, Jawetz 23/e p681, Park 22/e p98*]

492. Ans. (d) Cross over study; (b) Case control study [*Ref. Park 21/e p79, Park 22/e p9*]

493. Ans. (c) Epidemiological surveillance [*Ref. Park 21/e p90, Park 22/e p91*]
CHAPTER 4

Screening of Disease

Concepts in Screening

Screening of Disease

- **Screening test**: Is used to search for an unrecognized diseases or defect, in apparently healthy individuals, by means of rapidly applied tests, examinations or other procedures

- **Screening versus Diagnosis**:

<table>
<thead>
<tr>
<th>Screening</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Done on</td>
<td>Apparently healthy</td>
</tr>
<tr>
<td>Applied on</td>
<td>Groups, populations</td>
</tr>
<tr>
<td>Test results</td>
<td>Arbitrary & final</td>
</tr>
<tr>
<td>Based on</td>
<td>One criterion (cut-off)</td>
</tr>
<tr>
<td>Cost</td>
<td>Relatively cheaper</td>
</tr>
<tr>
<td>Time taken</td>
<td>Relatively rapid</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Relatively inaccurate</td>
</tr>
<tr>
<td>Basis for treatment</td>
<td>Cannot be used as basis</td>
</tr>
<tr>
<td>Initiative from</td>
<td>Investigator</td>
</tr>
</tbody>
</table>

- **Examples of important screening tests used**:

<table>
<thead>
<tr>
<th>Screening Test(s)</th>
<th>Disease screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papanicolaou (Pap) smear test, VIA*</td>
<td>Cervical cancer</td>
</tr>
<tr>
<td>Breast self examination (BSE)</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Mammography</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Bimanual oral examination</td>
<td>Oral cancer</td>
</tr>
<tr>
<td>ELISA, RAPID, SIMPLE</td>
<td>HIV (National AIDS Control Programme)</td>
</tr>
<tr>
<td>Urine for Sugar, Random blood sugar</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>AFP (alpha fetoprotein)</td>
<td>Developmental anomalies in fetus</td>
</tr>
<tr>
<td>Digital rectal examination (DRE)</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>Prostate specific antigen (PSA)</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>Fecal occult blood test</td>
<td>Colorectal cancer</td>
</tr>
</tbody>
</table>

(*Visual Inspection with 5% Acetic acid)

Principles of Screening (WHO): Suitability of a Disease for Screening (Criteria)

- The disease should be an important health problem
- There should be an effective treatment available for the disease
- Facilities for diagnosis and treatment should be available
- There should be a latent or early asymptomatic stage of the disease
- There should be a test or examination for the diagnosis of disease
- The test should be acceptable to the population
- The natural history of the disease should be adequately understood
- There should be an agreed policy on who to treat
- The total cost of finding a case should be economically balanced in relation to medical expenditure as a whole
- Case-finding should be a continuous process, not just a ‘once and for all’ project
TYPES OF SCREENING

Types of Screening

<table>
<thead>
<tr>
<th></th>
<th>Prescriptive screening</th>
<th>Prospective screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>People screened for own’s benefit</td>
<td>People screened for other’s benefit</td>
</tr>
<tr>
<td>Essential purpose</td>
<td>Case detection</td>
<td>Disease control</td>
</tr>
<tr>
<td>Request for screening</td>
<td>No specific request</td>
<td>Specific request from authority</td>
</tr>
<tr>
<td>Example(s)</td>
<td>Neonatal screening</td>
<td>Screening of immigrants</td>
</tr>
<tr>
<td></td>
<td>Pap smear</td>
<td>HIV screening among Sex workers</td>
</tr>
<tr>
<td></td>
<td>Urine for sugar</td>
<td></td>
</tr>
</tbody>
</table>

Neonatal Screening (NNS)

- Neonatal hypothyroidism (NNH):
 - Most common neonatal disorder to be screened is Neonatal hypothyroidism (NNH)
 - Blood sample of choice: Umbilical cord blood
 - Detection of: TSH, T4

- Phenylketonuria (PKU):
 - PKU is an autosomal recessive trait with a frequency of 1 in 10,000 births
 - Enzyme deficient in PKU: Phenylalanine hydroxylase
 - Treatment of PKU: restricting or eliminating foods high in phenylalanine, such as breast milk, meat, chicken, fish, nuts, cheese, legumes and other dairy products
 - Guthrie Test: Is done in neonates for mass screening of Phenylketonuria (PKU)
 - Guthrie test was the first screening test used in neonates
 - Blood sample is collected by heel prick of the baby 7-10 days after birth
 - Guthrie Test is negative in first 0-3 days of life
 - Guthrie test can detect PKU, Galactosemia and Maple syrup urine disease
 - Chemicals detected: Phenylalanine, Phenylpyruvate and Phenyllactate
 - It is a semi-quantitative test
 - Currently, Guthrie test has been replaced by Tandem mass Spectrometry (TMS)

CRITERIA IN SCREENING

Results of Screening Test: Rules for Construction of 2 × 2 Table

- Always disease (present or absent) to be represented on the top-most row of the table
- Always screening test results (positive or negative) to be represented on the left-most column of the table
- Then only all formulae (for evaluation of screening test) can be applied

<table>
<thead>
<tr>
<th>Results of a screening test for a disease</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Present</td>
</tr>
<tr>
<td>Negative</td>
<td>c (FN)</td>
</tr>
</tbody>
</table>

- ‘a’ are known as True positive (TP): Population having the disease and showing screening test results as positive
- ‘d’ are known as True negative (TN): Population not having the disease and showing screening test results as negative
- ‘b’ are known as False positive (FP): Population not having the disease but erroneously showing screening test results as positive
- ‘c’ are known as False negative (FN): Population having the disease but erroneously showing screening test results as negative

I Most common neonatal disorder to be screened is Neonatal hypothyroidism

https://kat.cr/user/Blink99/
Screening of Disease

- Total population having the disease, i.e., cases: \(a + c\) (True positive + False negative)
- Total population not having the disease, i.e., healthy: \(b + d\) (False positive + True negative)

Results of Screening Test: Evaluation/Properties of a Screening Test

- **Sensitivity**: Ability of a screening test to identify correctly all those who have the disease (cases)
 \[
 \text{Sensitivity} = \frac{a}{a + c} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FN}} \times 100
 \]
- **Specificity**: Ability of a screening test to identify correctly all those who do not have the disease (healthy)
 \[
 \text{Specificity} = \frac{d}{b + d} \times 100 = \frac{\text{TN}}{\text{FN} + \text{TN}} \times 100
 \]
- **Positive predictive value (PPV)**: Ability of a screening test to identify correctly all those who have the disease, out of all those who test positive on a screening test
 \[
 \text{PPV} = \frac{a}{a + b} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FP}} \times 100
 \]
- **Negative predictive value (NPV)**: Ability of a screening test to identify correctly all those who do not have the disease, out of all those who test negative on a screening test
 \[
 \text{NPV} = \frac{d}{c + d} \times 100 = \frac{\text{TN}}{\text{FN} + \text{TN}} \times 100
 \]
- **Percentage of false positives (FP)**: \[\% \text{FP} = \frac{b}{b + d} \times 100 = \frac{\text{FP}}{\text{FP} + \text{TN}} \times 100\]
- **Percentage of false negatives (FN)**: \[\% \text{FN} = \frac{c}{a + c} \times 100 = \frac{\text{FN}}{\text{TP} + \text{FN}} \times 100\]

Positive Predictive Value (PPV)

- **Definition**: Ability of a screening test to identify correctly all those who have the disease, out of all those who test positive on a screening test
 \[
 \text{PPV} = \frac{a}{a + b} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FP}} \times 100
 \]
- **PPV of a screening test depends on**:
 - Sensitivity
 - Specificity
 - Prevalence of disease in the population
- **PPV of a screening test is directly proportional to prevalence of disease in the population**
 - \(\text{PPV} \propto \text{Prevalence of disease}\)
 - As the prevalence of a disease increases in a population, PPV increases for the screening test

Figure: Prevalence and predictive value

https://kat.cr/user/Blink99/
Likelihood Ratio

- **Description:** Incorporates both the sensitivity and specificity of the test and provides a direct estimate of how much a test result will change the odds of having a disease
- **Likelihood ratio for a positive result (LR+)** tells you how much the odds of the disease increase when a test is positive
 \[LR^+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}} \]
- **Likelihood ratio for a negative result (LR−)** tells you how much the odds of the disease decrease when a test is negative
 \[LR^- = \frac{1 - \text{Sensitivity}}{\text{Specificity}} \]
- **Post-test odds** (the chances that patient has a disease): Once you have specified the pre-test odds (the likelihood that the patient would have a specific disease prior to testing), you multiply them by the likelihood ratio
 \[\text{Odds}_{\text{post}} = \text{Odds}_{\text{pre}} \times \text{Likelihood ratio} \]

Reliability/ Precision/ Repeatability/ Consistency/ Reproducibility

- **Definition:** Test gives consistent results when repeated more than once on the same individual or material, under the same conditions
- **Reliability is measured by:**
 - Pearson product-moment correlation coefficient
 - Cronbach’s alpha (internal consistency)
- **Reliability of a test depends on:**
 - Observer variation:
 - **Intra-observer variation:** Same observer taking 2 or more readings give varied results
 - **Inter-observer variation:** Variation between different observers on same subject/material
 - **Biological (subject) variation:** occur due to
 - Changes in parameters observed
 - Variation in perceptions and answers of patients
 - Regression to the mean
 - **Errors relating to technical methods:** occur due to
 - Defective instruments
 - Erroneous calibrations
 - Faulty reagents
 - Inappropriate/unreliable test

Validity/ Accuracy

- **Definition:** Refers to what extent the test measures which it purports to measure (adequacy of measurement)
- **Validity has 2 components:**
 - Sensitivity
 - Specificity
- **Types of Validity:**
 - **Conclusion validity:** Defines if there is a relationship between 2 variables
 - Is free of bias
 - **Internal validity:** Assuming relationship between 2 variables, defines if it is causal
 - Valid conclusions can be drawn for individuals in a sample
- **Construct validity**: Assuming causal relationship between 2 variables, defines if our theory is best to our constructs
- **External validity**: Assuming causal relationship between 2 variables, defines if our theory can be generalized to the broader population
- **Concurrent validity**: Refers to the degree of correlation with other measures of the same construct measured at the same time
- **Face (Logical) validity**: Relevance of a measurement appear obvious
- **Content validity**: Measurement of all variable components
- **Consensual validity**: If no. of experts agree to a parameter
- **Criterion validity**: If compared with a reference or gold standard
 - Is best measure of validity
 - Usually expressed as sensitivity & specificity
- **Discriminant validity**: If not showing strong correlation between 2 variables

Precision Versus Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Repeatability, reliability, consistency, reproducibility of a test</td>
<td>Degree of closeness of a measured/calculated quantity to its actual/true value, validity</td>
</tr>
<tr>
<td>Test(s)</td>
<td>Range chart, R chart</td>
<td>Mean chart, Levy Jennings (LJ) chart, Shewhart control chart</td>
</tr>
</tbody>
</table>

Screening Tests in Series & Parallel

- **Screening Tests Used in Series**: A population is subjected to one screening test followed by a second screening test; 2nd screening test is applied on those individuals only who test positive on the 1st screening test
 - Combined sensitivity of 2 tests A & B in series:
 - \[\text{Sensitivity (A) \times Sensitivity (B)} \]
 - Combined specificity of 2 tests A & B in series:
 - \[\frac{\text{Specificity (A) + Specificity (B)}}{\text{[Specificity (A) \times Specificity (B)]}} \]

- **Screening Tests Used in Parallel**: A population is subjected to two (or more) screening tests at the same time; each of the individuals is subjected to both (or all) screening tests
 - Combined sensitivity of 2 tests A & B in parallel:
 - \[\text{Sensitivity (A) + Sensitivity (B)} - \text{[Sensitivity (A) \times Sensitivity (B)]} \]
 - Combined specificity of 2 tests A & B in parallel:
 - \[\text{Specificity (A) \times Specificity (B)} \]

<table>
<thead>
<tr>
<th></th>
<th>Tests in series</th>
<th>Tests in parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined sensitivity</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>Combined specificity</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Combined PPV</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Combined NPV</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
</tbody>
</table>
Bayes’ Theorem

- Baye’s Theorem: Gives relationship between PPV of a screening test and Sensitivity, Specificity & Prevalence of disease in a population

 \[
 PPV = \frac{[\text{Sensitivity} \times \text{Prevalence}]}{[\text{Sensitivity} \times \text{Prevalence}] + [(1-\text{Specificity})(1-\text{Prevalence})]} \times 100
 \]

- Actual Baye’s Theorem: Gives relationship between Post-test probability of a disease in a population (PTP = PPV) and Sensitivity, Specificity & Post-test probability of a disease in a population (pTP = Prevalence)

 \[
 PTP = \frac{[\text{Sensitivity} \times \text{pTP}]}{[\text{Sensitivity} \times \text{pTP}] + [(1-\text{Specificity})(1-\text{pTP})]} \times 100
 \]

 - Post-test probability of a disease in a population (PTP) IS SAME AS PPV
 - Pre-test probability of a disease in a population (pTP) IS SAME AS Prevalence

- NPV is inversely proportional to Prevalence of disease in a population

 \[
 NPV = \frac{[\text{Specificity} \times (1-\text{Prevalence})]}{[\text{Specificity} \times (1-\text{Prevalence})] + [(1-\text{Sensitivity}) \times \text{Prevalence}]} \times 100
 \]
CONCEPTS IN SCREENING

1. There are several points in the course of a disease process:
 (A) Disease onset
 (B) Point of first possible detection
 (C) Final critical point
 (D) Usual time of diagnosis
 (E) Final outcome

 For a screening programme to be effective, it should be applied between:
 (a) A and B
 (b) A and C
 (c) B and C
 (d) C and D

2. Screening is the most commonly used epidemiological tool in school health services. Which level of prevention does it refer to?
 (a) Primary
 (b) Secondary
 (c) Tertiary
 (d) Primary and secondary

3. In “Iceberg Phenomenon” the tip represents what the physician sees in clinical practice and submerged portion of the iceberg represents sub clinical cases, carriers, undiagnosed cases. Essential purpose of screening test for a chronic disease is to identify:
 (a) Tip of the iceberg
 (b) Hidden portion of the iceberg
 (c) Both (a) + (b)
 (d) Waterline demarcation

4. The diagnostic power of a test to correctly exclude the disease is reflected by:
 (a) Sensitivity
 (b) Specificity
 (c) Positive predictivity
 (d) Negative predictivity

5. ‘Lead time’ refers to the time between:
 (a) Disease onset and first critical diagnosis
 (b) Disease onset and first possible point of detection
 (c) First possible point of detection and final critical point
 (d) First possible point of detection and usual time of diagnosis

6. Screening for condition recommended when:
 (a) Low case fatality rate

7. Screening of the diseases is which type of prevention?
 (a) Primordial
 (b) Primary
 (c) Secondary
 (d) Tertiary

8. Screening is done because of all except:
 (a) Testing for infection or disease in population or in individuals who are not seeking health care
 (b) It is defined presumptive identification of unrecognized disease
 (c) Search for unrecognized disease or defect by means of rapidly applied test, examinations or other procedures in apparently healthy individuals
 (d) Use of clinical or laboratory tests to detect disease in individual seeking health care for other reasons

Review Question

9. Pap Smear is used for which of the following:
 (a) Lung cancer
 (b) Colon cancer
 (c) Cervical cancer
 (d) Pancreatic cancer

10. Iceberg phenomenon is a part of disease, which presents clinically, screening tests are used for:
 (a) To detect tip of iceberg
 (b) To detect clinical cases
 (c) To detect submerged part [clinical cases]
 (d) To detect submerged part [sub clinical cases]

11. Period between the possible time of detection and the actual time of diagnosis is:
 (a) Lead time
 (b) Screening time
 (c) Generation time
 (d) Serial interval

TYPES OF SCREENING

12. Which of the following is an example of Prospective screening?
 (a) Cervical Pap smear in a 40 year old female
13. In which of the following disease, screening procedure increases the overall survival maximum?
(a) Prostate cancer [AIIMS May 2007, 08]
(b) Lung cancer [Recent Question 2013]
(c) Colon cancer [Bihar 2014]
(d) Ovarian cancer

14. Most specific screening test for Vitamin D deficiency is:
(a) 7-dehydrocholesterol [NIPGET 2013]
(b) 1, 25 dihydroxy Vitamin D
(c) 25 hydroxy Vitamin D
(d) Serum calcium levels

15. Most reliable test for screening of diabetes mellitus:
(a) GTT [Recent Question 2012]
(b) Glycosylated hemoglobin
(c) Fasting blood sugar
(d) Urine for sugar

16. Screening of cervical cancer at PHC level is done by:
(a) History and clinical examination [DNB June 2011]
(b) Colposcopy
(c) CT scan
(d) PAP smear

17. Blood screening is not done for: [Recent Question 2012]
(a) HIV
(b) HBV
(c) EBV
(d) HCV

18. Screening test has the following features except:
(a) Done on apparently healthy individuals [Karnataka 2009]
(b) It is less accurate
(c) Test results are arbitrary and final
(d) It can be used as a basis for treatment

19. For the calculation of positive predictive value of a screening test, the denominator is comprised of:
(a) True positives + False negatives [AIPGME 99, 03]
(b) False positives + True negatives
(c) True positives + False positives
(d) True positives + True negatives

20. All comprise inherent properties of a screening test except: [AIIMS June-Dec 1998]
(a) Sensitivity
(b) Specificity
(c) Yield
(d) Predictive accuracy

21. Reliability of a test means: [AIIMS Nov 2006]
(a) It measures what it is supposed to measure

22. Reliability of a screening test does not means:
(a) Reproducibility [AIIMS Nov 2006]
(b) Precision
(c) Repeatability
(d) Validity

23. True about the following is: [AIPGME 1998]

<table>
<thead>
<tr>
<th>Test</th>
<th>MI present</th>
<th>MI absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive ECG</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>Negative ECG</td>
<td>25</td>
<td>75</td>
</tr>
</tbody>
</table>

24. Positive predictive value is most affected by:
(a) Prevalence [AIPGME 1999]
(b) Sensitivity
(c) Specificity
(d) Relative risk

25. A diagnostic test for a particular disease has a sensitivity of 0.90 and a specificity of 0.90. A single test is applied to each subject in the population in which the diseases population is 10%. What is the probability that a person positive to this test, has the disease?
(a) 90%
(b) 81%
(c) 50%
(d) 91%

26. In a group of patients presenting to a hospital emergency with abdominal pain, 30% of patients have acute appendicitis. 70% of patients with appendicitis have a temperature greater than 37.5 degree Celsius and 40% of patients without appendicitis have a temperature greater than 37.5 degree Celsius. Considering these findings, which of the following statements is correct?
(a) The sensitivity of temperature greater than 37.5 degree Celsius as a marker for appendicitis is 21/49 [AIIMS Nov 2004]
(b) The specificity of temperature greater than 37.5 degree Celsius as a marker for appendicitis is 42/70
(c) The positive predictive value of temperature greater than 37.5 degree Celsius as a marker for appendicitis is 21/30
(d) The specificity of the test will depend upon the prevalence of appendicitis in the population to which it is applied
27. Specificity of a screening test is the ability of a test to detect:
(a) True positives
(b) False positives
(c) False negatives
(d) True negatives

[AIIMS Nov 2006; AIPGME 2000]

28. Diagnostic power of the test is reflected by:
(a) Sensitivity
(b) Specificity
(c) Predictive value
(d) Population attributable risk

[AIPGME 2005]

29. If the Hemoccult test is negative for screening of colonic cancer, no further test is done. If the hemoccult test is positive the individual will have a second stool sample tested with the Hemoccult II test. If this second for blood, the individual will be referred for more extensive evaluation. The effect of net sensitivity and net specificity of this method of screening is:
(a) Net sensitivity and net specificity are both increased
(b) Net sensitivity decreased and net specificity is increased
(c) Net sensitivity increased and net specificity decreased
(d) Net sensitivity remains the same and net specificity is increased

[AIIMS May 2005]

30. A screening test is used in same way in two similar populations, but the proportion of false positive results among those who test positive in population A is lower than among those who test positive in population B. What is the likely explanation for this finding?
(a) The specificity of the test is lower in population A
(b) The prevalence of the disease is lower in population A
(c) The prevalence of disease is higher in population A
(d) The specificity of the test is higher in population A

[AIIMS Nov 2008, AIIMS May 03; AIPGME 01]

31. A test for hepatitis C is performed for 200 patients with biopsy-proven disease and 200 patients known to be free of the disease. The test shows positive results on 180 of the patients with the disease, and negative results on 150 of the patients without the disease. Among those tested, this test therefore:
(a) Has a positive predictive value of 90%
(b) Has a negative predictive value of 75%
(c) Has a sensitivity of 90%
(d) Has a specificity of 82.5%

[AIPGME 2002]

32. Due to an effective prevention program, the prevalence of an infectious disease in a community has been reduced by 90%. A physician continues to use the same diagnostic test for the disease that she has always used. How have the test’s characteristics changed?
(a) Its sensitivity has increased
(b) Its positive predictive value has increased
(c) Its negative predictive value has increased
(d) The test’s characteristics have not changed

[AIPGME 1992]

33. Validity of a test is based upon all except:
(a) Sensitivity
(b) Specificity
(c) Precision
(d) Accuracy

[AIIMS Nov 95]

34. The probability of a test detecting a truly positive person from the population of diseased is the:
(a) Sensitivity of the test
(b) Specificity of the test
(c) Positive predictive value of the test
(d) Likelihood ratio

[AIIMS Nov 98]

35. For the diagnosis of Deep Vein Thrombosis, 2 tests are done together, namely Impedence Plethysmography and leg scanning after injecting 125I fibrinogen. This process will lead to:
(a) Increasing the positive predictive value
(b) Increasing the negative predictive value
(c) Increasing the pretest odds
(d) Increasing the specificity

[AIIMS Nov 2006]

36. Blood pressure (BP) of Mr. Ram is 120/80 mm Hg. 4 different sphygmomanometers (I, II, III, IV) are used to measure his BP with 3 readings each. Based on their readings, match the sphygmomanometers with their respective accuracy and precision parameters:

<table>
<thead>
<tr>
<th>Readings of sphygmomanometers</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 120/80, 120/80, 120/80</td>
<td>A Precise but Inaccurate</td>
</tr>
<tr>
<td>II 140/96, 108/62, 96/82</td>
<td>B Imprecise but Accurate</td>
</tr>
<tr>
<td>III 140/96, 140/96, 140/96</td>
<td>C Precise and Accurate</td>
</tr>
<tr>
<td>IV 122/82, 120/80, 118/78</td>
<td>D Imprecise and Inaccurate</td>
</tr>
</tbody>
</table>

[DPG 2006]

37. Which one of the following relationships shown between different parameters of a performance of a test is correct?
(a) Sensitivity = 1 - specificity
(b) Positive predictive value = 1 - negative predictive value
(c) Sensitivity is inversely proportional to specificity
(d) Sensitivity = 1 - positive predictive value

[AIIMS May 04]

38. The usefulness of a ‘screening test’ in a community depends on its:
(a) Sensitivity
(b) Specificity
(c) Reliability
(d) Predictive value

[AIPGME 2004]

39. Study this formula carefully:
\[
\text{Percent specificity} = \frac{\text{True positives}}{\text{True positive} + \text{False negatives}} \times 100
\]
Review of Preventive and Social Medicine

This denotes: [AIPGME 1996; 03]
(a) Sensitivity
(b) Specificity
(c) Positive Predictive value
(d) Negative Predictive value

40. Sensitivity indicates: [DPG 2008]
(a) Positivity in disease
(b) Detection of positivity cases not in disease
(c) It identify correctly those who have not in disease
(d) It depends upon positive cases having disease and negative cases having disease

41. Specificity of a test refers to its ability to detect:
(a) True [AIIMS May 2009]
(b) True negative
(c) False positive
(d) False negative

42. In a population of 10000 people, the prevalence of a disease is 20%. The sensitivity of a screening test is 95% and specificity is 80%. The positive predictive value of the test will be: [AIIMS Nov 2009]
(a) 54.3%
(b) 45.7%
(c) 15.3%
(d) 98.5%

43. True about reliability of a test: [AIIMS Nov 2009]
(a) Gives same results on repeated tests
(b) Investigator’s knowledge is important
(c) Consistency and reproducibility of the test are not a problem
(d) Extent of variation of measurement of contained behaviour

44. A test has high false positive rate in a community. True is: [AIIMS May 2010]
(a) High prevalence
(b) Low prevalence
(c) High sensitivity
(d) High specificity

45. True regarding specificity: [DPG 2011]
(a) Identifies false +ve
(b) Identifies false -ve
(c) Identifies true +ve
(d) Identifies true -ve

46. A doctor order 6 tests for SLE. Which of the following is needed for inference? [AIIMS May 2010]
(a) Prior probability of SLE, sensitivity and specificity of test
(b) Incidence of SLE and predictivity of each test
(c) Incidence and prevalence of SLE
(d) Relative risk of SLE in the patient

47. A graph showing curves of Normal blood sugar level and Diabetic blood sugar level is shown below. Some area is found over-lapping in the two curves. Diagnostic cut-off point of 120 mg/dl is also marked. What does the shaded area (D) represent in the graph?

48. You have clinically diagnosed a patient as having SLE and ordered 6 tests, out of which 4 have come positive and 2 have come negative. To know the probability of SLE at this point, you need to know: [AIIMS November 2011] [AIPGME 2012]
(a) Incidence of SLE and Predictive value of each test
(b) Incidence and prevalence of SLE
(c) Relative risk of SLE in this patient
(d) Prior probability of each test, Sensitivity and specificity of each test

49. A new method of measuring Haemoglobin levels has been developed. Ten successive readings of a single sample are as follows: 9.4, 10.4, 9.6, 9.1, 10.8, 12.1, 10.1, 9.8, 9.2, 9.5. But the Haemoglobin measured by standard calorimetry was 10.2. Therefore the given method has: [AIIMS November 2011]
(a) Low validity, low reliability
(b) Low validity, high reliability
(c) High validity, low reliability
(d) High validity, high reliability

50. If the prevalence of a disease in a population increases, the predictive value of a positive test: [Karnataka 2011]
(a) Increases
(b) Decreases
(c) Remains constant
(d) Becomes compromised

51. Which of the following is/are true about a screening test? [PGI November 2012]
(a) Sensitivity is 1 – False positive rate
(b) Specificity is 1 – False negative rate
(c) Post-test probability is Pre-test probability multiplied by Prevalence
(d) Predictive value does not depend on prevalence
(e) None of the above
52. A city has a population of 10000 with 500 diabetic patients. A new diagnostic test gives true positive result in 350 patients and false positive result in 1900 patients. Which of the following is/ are true regarding the test?
(a) Prevalence is 5% [PGI May 2013]
(b) Sensitivity is 70%
(c) Specificity is 80%
(d) Sensitivity is 80%
(e) Specificity is 70%

53. The formula A/A+B in the following table denotes?
<table>
<thead>
<tr>
<th>Test result</th>
<th>Persons with disease</th>
<th>Persons without disease</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>A</td>
<td>B</td>
<td>A+B</td>
</tr>
<tr>
<td>Negative</td>
<td>C</td>
<td>D</td>
<td>C+D</td>
</tr>
</tbody>
</table>

(a) Specificity [DPG 2008]
(b) Sensitivity
(c) PPV
(d) NFP

54. Sensitivity is:
(a) True positive/True positive + false negative
(b) True positive/False positive + true negative
(c) True negative/False negative + false positive
(d) True negative/False negative + true positive

55. Most number of false positives by a screening test is because of:
(a) High specificity
(b) High sensitivity
(c) High prevalence
(d) Low prevalence

56. The ability of a test to correctly diagnose the percentage of sick people who are having the condition is called as:
(a) Sensitivity
(b) Specificity
(c) Positive predictive value
(d) Negative predictive value

57. Most important factor for a test to be a good screening test is:
(a) Specificity
(b) Sensitivity
(c) Reliability
(d) Predictive value

58. Validity includes:
(a) Sensitivity and specificity
(b) Precision
(c) Acceptibility
(d) None

59. If prevalence is increased, which of the following will be seen?
(a) Sensitivity increase
(b) Specificity decrease
(c) Increase positive predictive value

60. Positive predictive value is a function of sensitivity, specificity and
(a) Incidence
(b) Prevalence
(c) Negative predictive value
(d) Accuracy

61. True statement about PPV is
(a) It increases with prevalence
(b) It decreases with prevalence
(c) No relation with prevalence
(d) Doubles with decrease in prevalence

62. 5000 persons underwent screening for a disease. Out of 500 diseased, 350 reported True positive and out of 4500 healthy, 300 reported True negative. Which of the following is correct about this screening test?
(a) Sensitivity 70% [Recent Question 2014]
(b) Specificity 70%
(c) Sensitivity 80%
(d) Specificity 80%

63. A diagnostic test for a particular disease has a sensitivity of 0.90 and a specificity of 0.80. A single test is applied to each subject in the population in which the diseased population is 30%. What is the probability that a person, negative to this test, has no disease?
(a) Less than 50% [Recent Question 2014]
(b) 70%
(c) 95%
(d) 72%

Review Question:

64. ‘Sensitivity’ is defined as

\[
\frac{\text{True positive}}{\text{True positive + False negative}}
\]

(a) True positive/True positive + False negative
(b) True positive/False positive + true negative
(c) True negative/True negative + false positive
(d) True negative/False negative + true positive

65. Sensitivity is:
(a) True positive/True positive + false negative
(b) True positive/False positive + true negative
(c) True negative/True negative + false positive
(d) True negative/False negative + true positive

66. Usefulness is:
(a) True positive/True positive + false negative
(b) True positive/False positive + true negative
(c) True negative/True negative + false positive
(d) True negative/False negative + true positive
67. Sensitivity of a test is: [DNB 2007]
(a) True positive/True positive + false negative
(b) True positive/False positive + true negative
(c) True negative/True negative + false positive
(d) True negative/False negative + true positive

68. False negative means: [Bihar 2006]
(a) Persons have disease but show negative test result
(b) Persons have not disease but show positive test result
(c) Persons have disease but show positive test result
(d) Persons have not disease but show positive test result

69. Specificity measures: [UP 2000]
(a) True positive
(b) True negative
(c) False positive
(d) False negative

70. A screening test is more sensitive: [UP 2005]
(a) Few false positive
(b) Few false negative
(c) More false positive
(d) More false negative

71. High false positive cases in a community signify that disease has: [AI 2001; UP 2008]
(a) High prevalence and Low incidence
(b) High incidence and Low prevalence
(c) Low prevalence and Low incidence
(d) High Incidence and High prevalence

72. Specificity means: [Kolkata 2005]
(a) -True positive
(b) True negative-
(c) False positive
(d) False negative-

73. High false positives in a test is due to: [Kolkata 2008]
(a) High incidence
(b) High prevalence
(c) High sensitivity
(d) High specificity

74. Positive predictive value of a test does not depend upon: [MP 2001]
(a) Sensitivity
(b) Specificity
(c) Prevalence of disease
(d) Incidence of disease

75. Sensitivity numerator is: [MP 2001]
(a) False positives
(b) False negatives
(c) True negatives
(d) True positives

76. A screening test was positive in 50% of diseased and
10% of healthy population What is the specificity of the test? [MP 2006]
(a) 0.5
(b) 0.9
(c) 0.83
(d) 0.064

77. True positive cases are detected by: [MH 2000]
(a) Specificity
(b) Sensitivity
(c) Positive predictive value
(d) Negative predictive value

78. Denominator of positive predictive value:
(a) Number of true negatives + number of false negatives [MH 2007]
(b) Number of true positives + number of true negatives
(c) Number of true positives + number of false positives
(d) Number of true positives + number of false negatives

79. Specificity means: [RJ 2002]
(a) True positive
(b) True negative
(c) False positive
(d) False negative

80. True positivity is indicated by: [RJ 2006]
(a) Sensitivity
(b) Specificity
(c) Predictive value
(d) Validity

81. More sensitive test show: [RJ 2007]
(a) Increased False +ive
(b) Decreased False +ive
(c) Increased False -ive
(d) Decreased False -ive

82. Screening in general population done in cancers of: [PGI Dec 02]
(a) Breast
(b) Colon
(c) Cervix
(d) Ovarian
(e) Pancreatic

83. Not a part of National Screening Programmes? [AIPGME 2011]
(a) Diabetes mellitus
(b) Carcinoma cervix
(c) Refractive errors
(d) Dental caries

84. Which of the following is not useful as a screening method? [AIIMS PGMEE November 2013]
(a) Pap smear for Cervical cancer
(b) CA-125 for Ovarian cancer
(c) Office endometrial washing for Endometrial cancer
(d) USG in Endometrial cancer
85. **Screening test for Breast and Genital tract malignancy** is:
(a) CA-125
(b) Mammography
(c) Office endometrial aspiration
(d) Pap smear

86. **Best time to screen in Breast self examination (BSE) technique is**
(a) 1 week before the menstruation
(b) 1 week after the menstruation
(c) During ovulation
(d) 2-3 days post-ovulation

Review Questions

87. Epidemiological survey of ‘at risk’ is called:
(a) Survey
(b) Screening
(c) Surveillance
(d) Rehabilitation

88. The method of choice of tuberculosis detection mass screening is:
(a) Tuberculin test
(b) Mass Miniature Radiography (MMR)
(c) Sputum smear examination by direct microscopy
(d) Sputum culture
CONCEPTS IN SCREENING

1. Ans. (c) B and C [Ref. Park 21/e p125, Park 22/e p128]
 - Screening programmes are most useful if it can be applied before a final critical point in a disease (i.e. point after which attempted treatment of disease may not yield desirable beneficial effects); but they cannot detect a disease before B (Point of first possible detection)
 - Thus a screening test is most useful if applied between B (Point of first possible detection) and C (Final critical point)
 - It is of no use if applied after a final critical point.

<table>
<thead>
<tr>
<th>Diseases onset detection</th>
<th>First possible point</th>
<th>Final critical diagnosis</th>
<th>Usual time of diagnosis</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E F</td>
</tr>
</tbody>
</table>

Figure: Model for early detection programmes

- B – C: Screening time
- B – D: Lead Time

* Lead time is the advantage gained by screening (leading the time of diagnosis): Early detection of disease (B rather than D) will ensure earlier institution of treatment, thus better prognosis

2. Ans. (b) Secondary [Ref. Park 21/e p39, 124, 25, Park 22/e p39, 127, 128]

3. Ans. (b) Hidden portion of the iceberg [Ref. Park 21/e p124, Park 22/e p127]
 - Differences in portions of iceberg phenomenon of disease:

<table>
<thead>
<tr>
<th>Tip of iceberg</th>
<th>Submerged part of iceberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>Clinical cases</td>
</tr>
<tr>
<td>Visibility to clinician</td>
<td>Visible Clinician</td>
</tr>
<tr>
<td>Prime importance for Detection</td>
<td>Diagnostic tests Secondary</td>
</tr>
<tr>
<td>Useless level of prevention</td>
<td>Latent, inapparent, presymptomatic, undiagnosed and undiagnosed cases and carriers</td>
</tr>
<tr>
<td></td>
<td>In Invisible Epidemiologist Screening tests Secondary</td>
</tr>
</tbody>
</table>

- Iceberg phenomenon of a disease is not shown by:
 - Rabies
 - Tetanus
 - Measles
 - Rubella
- Iceberg phenomenon of a disease is also known as: Biological spectrum of a disease

4. Ans. (d) Negative predictivity [Ref. Park 21/e p129, Park 22/e p132]
 - Screening test: Is used to search for an unrecognized diseases or defect, in apparently healthy individuals, by means of rapidly applied tests, examinations or other procedures.
 - Screening versus Diagnosis:
Screening of Disease

<table>
<thead>
<tr>
<th>Screening</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Done on</td>
<td>Apparently healthy</td>
</tr>
<tr>
<td>Applied on</td>
<td>Groups, populations</td>
</tr>
<tr>
<td>Test results</td>
<td>Arbitrary and final</td>
</tr>
<tr>
<td>Based on</td>
<td>One criterion (cut-off)</td>
</tr>
<tr>
<td>Cost</td>
<td>Relatively cheaper</td>
</tr>
<tr>
<td>Time taken</td>
<td>Relatively rapid</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Relatively inaccurate</td>
</tr>
<tr>
<td>Basis for treatment</td>
<td>Cannot be used as basis</td>
</tr>
<tr>
<td>Initiative from</td>
<td>Investigator</td>
</tr>
</tbody>
</table>

- **Examples of important screening tests used:**

<table>
<thead>
<tr>
<th>Screening Test(s)</th>
<th>Disease screened</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papanicolaou [Pap] smear test, VIA*</td>
<td>Cervical cancer</td>
</tr>
<tr>
<td>Breast self examination [BSE]</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Mammography</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Bimanual oral examination</td>
<td>Oral cancer</td>
</tr>
<tr>
<td>ELISA, RAPID, SIMPLE</td>
<td>HIV (National AIDS Control Programme)</td>
</tr>
<tr>
<td>Urine for Sugar, Random blood sugar</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>AFP [alpha feto-protein]</td>
<td>Developmental anomalies in fetus</td>
</tr>
<tr>
<td>Digital rectal examination [DRE]</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>Prostate specific antigen [PSA]</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Fecal occult blood test</td>
<td></td>
</tr>
</tbody>
</table>

(* Visual Inspection with 5% Acetic acid)

- **Results of a screening test: RULES FOR CONSTRUCTION OF 2X2 TABLE:**
 - Always disease (present or absent) to be represented on the top-most row of the table
 - Always screening test results (positive or negative) to be represented on the left-most column of the table
 - Then only all formulae (for evaluation of screening test) can be applied

<table>
<thead>
<tr>
<th>Results</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Positive</td>
<td>a (TP)</td>
</tr>
<tr>
<td>Negative</td>
<td>c (FN)</td>
</tr>
</tbody>
</table>

- ‘a’ are known as **True positive [TP]**: Population having the disease and showing screening test results as positive
- ‘d’ are known as **True negative [TN]**: Population not having the disease and showing screening test results as negative
- ‘b’ are known as **False positive [FP]**: Population not having the disease but erroneously showing screening test results as positive
- ‘c’ are known as **False negative [FN]**: Population having the disease but erroneously showing screening test results as negative
 1. Total population having the disease, i.e. cases: ‘a + c’ (True positive + False negative)
 2. Total population not having the disease, i.e. healthy: ‘b + d’ (False positive + True negative)

- **Evaluation of a screening test [properties]:**
 - **Sensitivity:** Ability of a screening test to identify correctly all those who have the disease (cases)
 \[
 \text{Sensitivity} = \frac{a}{a + c} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FN}} \times 100
 \]
 - **Specificity:** Ability of a screening test to identify correctly all those who do not have the disease (healthy)
 \[
 \text{Specificity} = \frac{d}{b + d} \times 100 = \frac{\text{TN}}{\text{TN} + \text{FP}} \times 100
 \]
 - **Positive predictive value [PPV]:** Ability of a screening test to identify correctly all those who have the disease, out of all those who test positive on a screening test
 \[
 \text{PPV} = \frac{a}{a + b} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FP}} \times 100
 \]
Review of Preventive and Social Medicine

- **Negative predictive value [NPV]:** Ability of a screening test to identify correctly all those who do not have the disease, out of all those who test negative on a screening test

\[
\text{NPV} = \frac{d}{c + d} \times 100 = \frac{\text{TN}}{\text{TN} + \text{FN}} \times 100
\]

- Percentage of false positives [FP]:

\[
\%\text{FP} = \frac{b}{b + d} \times 100 = \frac{\text{FP}}{\text{FP} + \text{TN}} \times 100
\]

- Percentage of false negatives [FN]:

\[
\%\text{FN} = \frac{c}{a + c} \times 100 = \frac{\text{FN}}{\text{TP} + \text{FN}} \times 100
\]

• **Principles of Screening [WHO]:** SUITABILITY OF A DISEASE FOR SCREENING (CRITERIA)
 - The disease should be an important health problem
 - There should be an effective treatment available for the disease
 - Facilities for diagnosis and treatment should be available
 - There should be a latent or early asymptomatic stage of the disease
 - There should be a test or examination for the diagnosis of disease
 - The test should be acceptable to the population
 - The natural history of the disease should be adequately understood
 - There should be an agreed policy on who to treat
 - The total cost of finding a case should be economically balanced in relation to medical expenditure as a whole
 - Case-finding should be a continuous process, not just a ‘once and for all’ project
• **‘Usefulness of a screening test’** is given by: Sensitivity
• **Statistical index of diagnostic accuracy:** Sensitivity
• **Diagnostic power of a screening test:** Predictive accuracy
 - Diagnostic power of a screening test to correctly identify a disease: Positive predictive value (PPV)
 - Diagnostic power of a screening test to correctly exclude a disease: Negative predictive value (NPV)
• Predictive value of a screening test depends on:
 - Sensitivity
 - Specificity
 - Prevalence of disease in the population
• **A test with a high specificity has a low Type I error rate**
• False positive rate (α) = 1 - specificity
• False negative rate (β) = 1 - sensitivity
• Power of a test (sensitivity) = 1 - β
• Receiver operating characteristic (ROC) curve, is a graphical plot between:
 - sensitivity and (1 - specificity) OR
 - true positive rate and false positive rate
• **Efficiency of a Screening Test [E]:** the percentage of the times that the test give the correct answer compared to the total number of tests

\[
E = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} \times 100 = \frac{a + d}{a + b + c + d} \times 100
\]

• **Youden’s statistic [Youden’s index]:** Is a single statistic that captures the performance of a test

\[
Y = \text{Sensitivity} + \text{Specificity} - 1
\]

5. Ans. (d) First possible point of detection and usual time of diagnosis [Ref. Park 21/e p125, Park 22/e p128]
6. Ans. (d) Early diagnosis can change disease course because of effective treatment [Ref. K. Park 22/e p127-28]
7. Ans. (c) Secondary [Ref. K. Park 22/e p39-40]
8. Ans. (a) Testing for infection or disease in population or in individuals who are not seeking health care [Park 22/e p127]

Review Questions

9. Ans. (c) Cervical cancer [Ref. Park 21/e p582, Park 22/e p530]
10. Ans. (d) To detect submerged part [sub clinical cases] [Ref. Park 21/e p124, Park 22/e p127]
11. Ans. (a) Lead time [Ref. Park 21/e p124, 25, Park 22/e p127, 128]

TYPES OF SCREENING

12. Ans. (c) Screening of immigrants in a country [Ref. Park 21/e p125, Park 22/e p128]
 - **Screening of disease:** Is used to search for an unrecognized diseases or defect, in apparently healthy individuals, by means of rapidly applied tests, examinations or other procedures
 - **Types of screening:**
	Prescriptive screening	Prospective screening
Definition	People screened for own’s benefit	People screened for other’s benefit
Essential purpose	Case detection	Essential purpose
Request for screening	No specific request	Case detection
Example[s]	Neonatal screening	Disease control
	Pap smear	Specific request from authority
	Urine for sugar	Screening of immigrants

NEONATAL SCREENING (NNS):
 - NNS is primarily a Secondary Level of Prevention
 - Neonatal hypothyroidism [NNH]:
 - Most common neonatal disorder to be screened is Neonatal hypothyroidism [NNH]
 - Blood sample of choice: Umbilical cord blood
 - Detection of: TSH, T4
 - Phenylketonuria [PKU]:
 - PKU is an autosomal recessive trait with a frequency of 1 in 10,000 births
 - Enzyme deficient in PKU: Phenylalanine hydroxylase
 - Treatment of PKU: restricting or eliminating foods high in phenylalanine, such as breast milk, meat, chicken, fish, nuts, cheese, legumes and other dairy products
 - Guthrie Test: Is done in neonates for mass screening of Phenylketonuria (PKU)
 1. Guthrie test was the first screening test used in neonates
 2. Blood sample is collected by heel prick of the baby 7 -10 days after birth
 3. Guthrie Test is negative in first 0 - 3 days of life
 4. Guthrie test can detect PKU, Galactosemia and Maple syrup urine disease
 5. Chemicals detected: Phenylalanine, Phenylpyruvate and Phenylacetate
 6. It is a semi-quantitative test
 - Currently, Guthrie test has been replaced by Tandem mass Spectrometry (TMS)

13. Ans. (c) Colon cancer [Ref. CMDT 2014 p1571]
 - Colorectal cancer is ideal for screening: as it is a common disease affecting 6% of men and women, which is fatal in half of the cases, yet it is curable if detected at an early satge
14. Ans. (c) 25 hydroxy Vitamin D [Ref. Clinical Laboratory Medicine by McClatchey, 2/e p446]
15. Ans. (c) Fasting blood sugar [Ref. K. Park 22/e p365]
17. Ans. (c) EBV [Ref. Transfusion Guidelines for Clinicians by K Bhardwaj, 1/e p110]

CRITERIA FOR SCREENING

18. Ans. (d) It can be used as a basis for treatment [Ref. Park 21/e p124, Park 22/e p127]
19. Ans. (c) True positives + False positives [Ref. Park 21/e p128, Park 22/e p131]
 - **Evaluation of screening test:**
Positive predictive value [PPV]: Ability of a screening test to identify correctly all those who have the disease, out of all those who test positive on a screening test

- **PPV of a screening test depends on:**
 1. Sensitivity
 2. Specificity
 3. Prevalence of disease in the population

- **PPV of a screening test is directly proportional to prevalence of disease in the population**

- **PPV a Prevalence of disease**

- As the prevalence of a disease increases in a population, PPV increases for the screening test

Also Remember

- PPV is also known as 'post-test probability of a disease' or 'precision rate'
- **Baye’s Theorm:** Gives relationship between PPV of a screening test and Sensitivity, Specificity and Prevalence of disease in a population
- NPV is inversely proportional to Prevalence of disease in a population

\[
PPV = \frac{[\text{Sensitivity} \times \text{Prevalence}]}{[\text{Sensitivity} \times \text{Prevalence}]+[(1 - \text{Specificity})(1 - \text{Prevalence})]} \times 100
\]

20. **Ans. (c) Yield [Ref. Park 21/e p128-29, Park 22/e p131, 132]**

- **Yield of the screening test:** Is the amount of previously unrecognized disease that is diagnosed as result of screening effort
- **Yield of the screening test depends on:**
 - Sensitivity of screening test
 - Specificity of screening test
 - Prevalence of the disease in population
 - Participation of individuals in the detection programme
- **Yield of a screening test increases by: selecting high risk population for screening**

21. **Ans. (d) It yields same reading/value when repeated under same conditions [Ref. Park 21/e p126, Park 22/e p129]**

- Reliability of a test: Test gives consistent results when repeated more than once on the same individual or material, under the same conditions
- **Reliability is also known as:** Repeatability, Precision or Reproducibility
- **Reliability is measured by:**
 - Pearson product-moment correlation coefficient
 - Cronbach’s alpha (internal consistency)
- **Reliability of a test depends on:**
 - **Observer variation:**
 1. Intra-observer variation: Same observer taking 2 or more readings give varied results
 2. Inter-observer variation: Variation between different observers on same subject/material
 - **Biological [subject] variation:** occur due to
 1. Changes in parameters observed
2. Variation in perceptions and answers of patients
3. Regression to the mean

- **Errors relating to technical methods:** occur due to
 1. Defective instruments
 2. Erroneous calibrations
 3. Faulty reagents
 4. Inappropriate/unreliable test

Also Remember

- **Intra-observer variation can be minimized by:** taking average of readings
- **Inter-observer variation can be minimized by:**
 - standardization of procedures/classifications
 - intensive training of all observers
 - making use of 2 or more observers for independent assessment
- **Accuracy:** degree of closeness of a measured or calculated quantity to its actual (true) value

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}
\]

- **Precision:** the degree to which further measurements or calculations show the same or similar results
 - Reliability is precision, while validity is accuracy
- **Reliability** is inversely related to random error

22. Ans. (d) **Validity** \[Ref. Park 21/e p126, 127, Park 22/e p129, 130\]

- **Validity:** refers to what extent the test measures which it purports to measure (adequacy of measurement)
- **Validity has 2 components:**
 - Sensitivity
 - Specificity
- **Types of Validity:**
 - **Conclusion validity:** Defines if there is a relationship between 2 variables
 - **Internal validity:** Assuming relationship between 2 variables, defines if it is causal
 1. Is free of bias
 2. Valid conclusions can be drawn for individuals in a sample
 - **Construct validity:** Assuming causal relationship between 2 variables, defines if our theory is best to our constructs
 - **External validity:** Assuming causal relationship between 2 variables, defines if our theory can be generalized to the broader population
 - **Concurrent validity:** refers to the degree of correlation with other measures of the same construct measured at the same time
 - **Face [Logical] validity:** Relevance of a measurement appear obvious
 - **Content validity:** Measurement of all variable components
 - **Consensual validity:** If no. of experts agree to a parameter
 - **Criterion validity:** If compared with a reference or gold standard
 1. Is best measure of validity
 2. Usually expressed as sensitivity and specificity
 - **Discriminant validity:** If not showing strong correlation between 2 variables

23. Ans. (d) **PPV is same as NPV** \[Ref. Park 21/e p128, Park 22/e p131\]

<table>
<thead>
<tr>
<th>Criteria</th>
<th>MI present</th>
<th>MI absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive ECG</td>
<td>300 (TP (a))</td>
<td>100 (FP (b))</td>
</tr>
<tr>
<td>Negative ECG</td>
<td>25 (FN (c))</td>
<td>75 (TN (d))</td>
</tr>
</tbody>
</table>

- Sensitivity = \[\frac{a}{a + c} \times 100 = \frac{TP}{TP + FN}\] 100
Sensitivity = \frac{300}{300 + 25} \times 100 = 92\%

Specificity = \frac{d}{b + d} \times 100 = \frac{TN}{TN + FP} \times 100

Specificity = \frac{75}{75 + 100} \times 100 = 43\%

Positive predictive value (PPV) = \frac{a}{a + b} \times 100 = \frac{TP}{TP + FP} \times 100

PPV = \frac{300}{300 + 100} \times 100 = 75\%

Negative predictive value (NPV) = \frac{d}{c + d} \times 100 = \frac{TN}{FN + TN} \times 100

NPV = \frac{75}{25 + 75} \times 100 = 75\%

Therefore,
- Sensitivity > PPV OR NPV > Specificity
- PPV = NPV

24. Ans. (a) Prevalence [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p58]
- Baye’s Theorm: Gives relationship between PPV of a screening test and Sensitivity, Specificity and Prevalence of disease in a population

PPV = \left(\frac{\text{Sensitivity} \times \text{Prevalence}}{\text{Sensitivity} \times \text{Prevalence} + (1 - \text{Specificity}) (1 - \text{Prevalence})}\right) \times 100

Actual Baye’s Theorm: Gives relationship between Post-test probability of a disease in a population (\text{PTP} = \text{PPV}) and Sensitivity, Specificity and Post-test probability of a disease in a population (\text{pTP} = \text{Prevalence})

\text{PTP} = \left(\frac{\text{Sensitivity} \times \text{pTP}}{\text{Sensitivity} \times \text{pTP} + (1 - \text{Specificity}) (1 - \text{pTP})}\right) \times 100

- Post-test probability of a disease in a population (\text{PTP}) IS SAME AS PPV
- Pre-test probability of a disease in a population (\text{pTP}) IS SAME AS Prevalence

Also Remember
- NPV is inversely proportional to Prevalence of disease in a population

NPV = \frac{\text{Specificity} \times (1 - \text{Prevalence})}{\left[\text{Specificity} \times (1 - \text{Prevalence}) + (1 - \text{Sensitivity}) \times \text{Prevalence}\right]} \times 100

25. Ans. (c) 50% [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p58]

In the given question,
Sensitivity = 0.90 = 90\%
Specificity = 0.90 = 90\%
Prevalence = 10\%
Thus,

PPV = \frac{90 \times 10}{[90 \times 10] + [100 - 90][100 - 10]} \times 100 = 50\% \times (0.50) = 50\% (0.50)

Alternate way of solving such questions: Construct a hypothetical table of screening test (FOLLOW RULES: Disease on top of table, screening test results on left side of table). Always take round values (for e.g. 100, 1000, etc as total population)

https://kat.cr/user/Blink99/
Screening of Disease

<table>
<thead>
<tr>
<th>Results of a screening test for a disease</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
</tr>
<tr>
<td>Positive</td>
<td>a (TP)</td>
</tr>
<tr>
<td>Negative</td>
<td>c (FN)</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
</tr>
</tbody>
</table>

Now taking hypothetically, \(a + b + c + d \) (total population) = 1000, Prevalence = 10% (given in question); No. of cases \(a + c \) = 100
Thus, No of healthy population \(b + d \) = Total population – cases = 1000 – 100 = 900

Since sensitivity \(\frac{a}{a+c} \times 100 = 0.90\% = 90\%; \ a = 90 \) and \(c = 10 \)

Similarly, specificity \(\frac{d}{b+d} \times 100 = 0.90\% = 90\%; \ d = 810 \) and \(b = 90 \)

Thus table will be as follows,

<table>
<thead>
<tr>
<th>Results of a screening test for a disease</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
</tr>
<tr>
<td>Positive</td>
<td>90</td>
</tr>
<tr>
<td>Negative</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Now, PPV = \(\frac{a}{a + b} \times 100 = \frac{21}{90 + 90} \times 100 = 50\% \) (0.50)

Also Remember

* **Negative predictive value [NPV]:**

\[
NPV = \frac{[\text{Specificity} \times (100 - \text{Prevalence})]}{[\text{Specificity} \times (100 - \text{Prevalence})] + [\text{(100 – Sensitivity)} \times \text{Prevalence}]} \times 100
\]

26. Ans. (b) The specificity of temperature greater than 37.5 degree Celsius as a maker for appendicitis is 42/70

[Ref. Park 21/e p128, Park 22/e p131]

- **In the given question,** disease is Acute appendicitis and screening test is temperature (Positive if \(\geq 37.5^\circ \) C)
- Taking a hypothetical total population \(a + b + c + d = 100 \), Prevalence of Acute appendicitis = 30%; cases \(a + c = 30 \)
 Healthy population (without acute appendicitis; \(b + d \)) = 100 – 30 = 70
 \(a = TP = 70\% \) of \(a + c = 21 \)
 \(b = FP = 40\% \) of \(b + d = 28 \)
 \(c = FN = 30\% \) of \(a + c = 9 \)
 \(d = TN = 60\% \) of \(b + d = 42 \)
Thus, table will be as follows,

<table>
<thead>
<tr>
<th>Results of a screening test for a disease</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
</tr>
<tr>
<td>Positive</td>
<td>a (TP)</td>
</tr>
<tr>
<td>Negative</td>
<td>c (FN)</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
</tr>
</tbody>
</table>

Therefore,

- Sensitivity = \(\frac{a}{a+c} \times 100 = \frac{21}{30} \times 100 \)
• Specificity = \(\frac{d}{b+d} \times 100 = \frac{42}{70} \times 100 \)

• Positive predictive value (PPV) = \(\frac{a}{a+b} \times 100 = \frac{21}{49} \times 100 \)

• Negative predictive value (NPV) = \(\frac{d}{c+d} \times 100 = \frac{42}{51} \times 100 \)

27. Ans. (d) True negatives [Ref. K. Park 19/e p119; 20/e p127; Park 21/e p128, Park 22/e p131]

- Specificity of a screening test is the ability of a test to detect: True negatives
- Sensitivity of a screening test is the ability of a test to detect: True positives
- ‘Usefulness of a screening test’ is given by: Sensitivity
- Statistical index of diagnostic accuracy: Sensitivity
- Diagnostic power of a screening test: Predictive accuracy
 - Diagnostic power of a screening test to correctly identify a disease: Positive predictive value (PPV)
 - Diagnostic power of a screening test to correctly exclude a disease: Negative predictive value (NPV)

28. Ans. (c) Predictive value [Ref. Park 21/e p128-29, Park 22/e p131, 132]

- Diagnostic power of a screening test: Predictive accuracy (it tells the actual no. of people having the disease or not having the disease out of those shown positive or negative by a screening test, respectively)
 - Diagnostic power of a screening test to correctly identify a disease: Positive predictive value (PPV)
 - Diagnostic power of a screening test to correctly exclude a disease: Negative predictive value (NPV)

29. Ans. (b) Net sensitivity is decreased and net specificity is increased [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p56]

SCREENING TESTS USED IN SERIES: A population is subjected to one screening test followed by a second screening test; 2nd screening test is applied on those individuals only who test positive on the 1st screening test

- Combined sensitivity of 2 tests A and B in series: Sensitivity (A) X Sensitivity (B)
- Combined specificity of 2 tests A and B in series: Specificity (A) + Specificity (B) – [Specificity (A) X Specificity (B)]

SCREENING TESTS USED IN PARALLEL: A population is subjected to two (or more) screening tests at the same time; each of the individuals is subjected to both (or all) screening tests

- Combined sensitivity of 2 tests A and B in parallel: Sensitivity (A) + Sensitivity (B) – [Sensitivity (A) X Sensitivity (B)]
- Combined specificity of 2 tests A and B in parallel: Specificity (A) X Specificity (B)
Screening of Disease

Combined sensitivity
- Decreases
- Increases

Combined specificity
- Increases
- Decreases

Combined PPV
- Increases
- Decreases

Combined NPV
- Decreases
- Increases

30. Ans. (c) The prevalence of disease is higher in population A [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p 58]

Results of a screening test for a disease

<table>
<thead>
<tr>
<th>Disease</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis C</td>
<td>180</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

Sensitivity
- \(\text{Sensitivity} = \frac{a}{a+c} \times 100 = \frac{TP}{TP+FN} \times 100 = \frac{180}{180+20} \times 100 = 90\% \)
- \(\text{Sensitivity} = \frac{d}{b+d} \times 100 = \frac{TN}{TN+FP} = \frac{150}{150+50} \times 100 = 75\% \)

Specificity
- \(\text{Specificity} = \frac{b}{a+b} \times 100 = \frac{FP}{FP+TN} \times 100 \)
Review of Preventive and Social Medicine

- Positive predictive value (PPV) = \(\frac{a}{a+b} \times 100 = \frac{TP}{TP+FP} \times 100 \)
 - PPV = \(\frac{180}{180+50} \times 100 = 78\% \)
- Negative predictive value (NPV) = \(\frac{d}{c+d} \times 100 = \frac{TN}{FN+TN} \times 100 \)
 - NPV = \(\frac{150}{20+150} \times 100 = 88\% \)

32. Ans. (c) Its negative predictive value has increased [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p58]
- PPV and NPV of a screening test depends on:
 - Sensitivity
 - Specificity
 - Prevalence of disease in the population
In this question, since a physician continues to use the same diagnostic test for the disease that she has always used, sensitivity and specificity of the test will remain same.
But predictive value of a test (PPV and NPV) depends on prevalence of a disease in a population.
 - PPV is directly proportional to prevalence of disease in the population
 - PPV \(\propto \) Prevalence of disease
 - NPV is inversely proportional to Prevalence of disease in a population
 - NPV \(\propto \frac{1}{\text{Prevalence of disease}} \)
Therefore, since the prevalence of an infectious disease in a community has been reduced by 90%, its PPV will reduce and its NPV will increase.

33. Ans. (c) Precision [Ref. Park 21/e p127, Park 22/e p130]
- Validity: Refers to what extent the test measures what it purports to measure (adequacy/accuracy of measurement)
- Validity has 2 components:
 - Sensitivity
 - Specificity
- Inherent properties of a screening test:
 - Sensitivity
 - Specificity
 - Predictive accuracy

Also Remember
- **Accuracy**: degree of closeness of a measured or calculated quantity to its actual (true) value
- **Accuracy** = [(sensitivity) (prevalence)] + [(specificity) (1 – prevalence)]
- **Efficiency/Accuracy of a Screening Test** [E], the percentage of the times that the test give the correct answer compared to the total number of tests
 \[E = \frac{TP + TN}{TP + TN + FP + FN} \times 100 = \frac{a + b}{a + b + c + d} \times 100 \]
- **Precision**: the degree to which further measurements or calculations show the same or similar results
 - Precision is also known as: Reliability, Repeatability, Consistency or Reproducibility
- **Precision versus Accuracy**:

<table>
<thead>
<tr>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Repeatability, reliability, consistency, reproducibility of a test</td>
</tr>
<tr>
<td>Test[s]</td>
<td>Range chart</td>
</tr>
<tr>
<td></td>
<td>R – chart</td>
</tr>
<tr>
<td></td>
<td>Degree of closeness of a measured or calculated quantity to its actual (true) value</td>
</tr>
<tr>
<td></td>
<td>Mean chart</td>
</tr>
<tr>
<td></td>
<td>Levy Jennings (LJ) chart</td>
</tr>
<tr>
<td></td>
<td>Shewhart control chart</td>
</tr>
</tbody>
</table>

- Reliability is precision, while validity is accuracy
- PPV is also known as ‘post-test probability of a disease’ or ‘precision rate’
- Levy Jennings (LJ) chart is a ‘test of accuracy and test of loss of precision’
34. **Ans. (a) Sensitivity of the test** [Ref. Park 21/e p128, Park 22/e p131]
 - Sensitivity of a screening test detects: true positives among all diseased
 - Specificity of a screening test detects: true negatives among all healthy
 - PPV detects: true positives among all those who are positive on a screening test
 - NPV detects: true negatives among all those who are negative on a screening test

Also Remember
- **Likelihood ratio:** Incorporates both the sensitivity and specificity of the test and provides a direct estimate of how much a test result will change the odds of having a disease
 - **Likelihood ratio for a positive result** [LR+] tells you how much the odds of the disease increase when a test is positive
 \[LR^+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}} \]
 - **Likelihood ratio for a negative result** [LR-] tells you how much the odds of the disease decrease when a test is negative
 \[LR^- = \frac{1 - \text{Sensitivity}}{\text{Specificity}} \]
 - **Post-test odds** [The chances that patient has a disease]: Once you have specified the pre-test odds (the likelihood that the patient would have a specific disease prior to testing), you multiply them by the likelihood ratio
 \[\text{Odds}_{\text{post}} = \text{Odds}_{\text{pre}} \times \text{Likelihood ratio} \]

35. **Ans. (b) Increasing the negative predictive value** [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p56]
 In the given question, 2 tests - Impedence Plethysmography and leg scanning after injecting 125I fibrinogen are done together, for the diagnosis of Deep Vein Thrombosis. Therefore these are two tests in done in parallel

 - **Accuracy:** degree of closeness of a measured or calculated quantity to its actual (true) value
 - **Precision:** the degree to which further measurements or calculations show the same or similar results
 - Precision is also known as: Reliability, Repeatability, Consistency or Reproducibility
 - **Accuracy = [(sensitivity) (prevalence)] + [(specificity) (1 – prevalence)]
 - **Accuracy = \frac{TP + TN}{TP + FP + FN + TN}**
 - **Reliability is precision, while validity is accuracy**

37. **Ans. (c) Sensitivity is inversely proportional to specificity** [Ref. Park 21/e p128, Park 22/e p131]

FEW IMPORTANT RELATIONSHIPS IN SCREENING:
- Sensitivity is inversely proportional to specificity
- False positive rate (α) = 1 - specificity
- False negative rate (β) = 1 - sensitivity
- Power of a test (sensitivity) = 1 - β = 1 - False negative rate
- **Youden’s J statistic [Youden’s index]:** Is a single statistic that captures the performance of a test
 \[Y = \text{Sensitivity} + \text{Specificity} - 1 \]
- **Predictive value and Prevalence of the disease:**
 - PPV is directly proportional to Prevalence of disease in a population
 - NPV is inversely proportional to Prevalence of disease in a population
- Reliability is inversely related to random error
- **Likelihood ratio:**
 - **Likelihood ratio for a positive result** [LR+]
 \[LR^+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}} \]
 - **Likelihood ratio for a negative result** [LR-]
 \[LR^- = \frac{1 - \text{Sensitivity}}{\text{Specificity}} \]
Review of Preventive and Social Medicine

- Post-test odds [the chances that patient has a disease]:
 \[
 \text{Odds}_{\text{post}} = \text{Odds}_{\text{pre}} \times \text{Likelihood ratio}
 \]

38. Ans. (a) Sensitivity [Ref. Epidemiology, Biostatistics and Preventive Medicine by James Jekel, p120]
39. Ans. (a) Sensitivity [Ref. Park 21/e p128, Park 22/e p131]
40. Ans. (a) Positivity in disease; (d) It depends upon positive cases having disease and negative cases having disease [Ref. Park 21/e p128, Park 22/e p131]
41. Ans. (b) True negative [Ref. Park 21/e p128, Park 22/e p131]
42. Ans. (a) 54.3% [Ref. Park 21/e p127-28, Park 22/e p130, 131]

In the given question,

Sensitivity = 95%
Specificity = 80%
Prevalence = 20%
Thus,

\[
\text{PPV} = \frac{[95 \times 20]}{[95 \times 20] + [(100 - 80)(100 - 20)]} \times 100 = 54.3%
\]

43. Ans. (a) Gives same results on repeated tests [Ref. Park 21/e p126, Park 22/e p129]

RELIABILITY OF A TEST
- Gives same results on repeated tests: Reliability
- Investigator’s knowledge is important
- Consistency and reproducibility of the test are not a problem
- Extent of variation of measurement of contained behaviour

44. Ans. (c) High sensitivity [Ref. K. Park 20/e p127]

<table>
<thead>
<tr>
<th>Results of a screening test for a disease</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Positive</td>
<td>a (TP)</td>
</tr>
<tr>
<td>Negative</td>
<td>c (FN)</td>
</tr>
</tbody>
</table>

- Total population having the disease (cases): ‘a + c’ (TP + FN)
- Total population not having the disease (healthy): ‘b + d’ (FP + TN)
- Total population: a + b + c + d = TP + FP + FN + TN

Now, both cases (a + c) and healthy (b + d) are fixed in a population.
Thus if b (FP) increase, then d (TN) will reduce.

In the given question, higher FP (b) means a lower d (TN) or low specificity. Now both sensitivity and specificity are inversely related.
Thus Sensitivity will increase, will be higher

45. Ans. (d) Identifies true –ve [Ref. K. Park 21/e p128, Park 22/e p131]

46. Ans. (a) Prior probability of SLE, sensitivity and specificity of test [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p107-08; AIIMS 2011]
- Post-test probability of a disease in a population (PTP) IS SAME AS PPV
- Pre-test probability of a disease in a population (pTP) IS SAME AS Prevalence

In the given question, a patient is clinically diagnosed as having SLE
Thus, to determine the probability of SLE at this point (Post-test probability of SLE OR PPV), one would need to know Prior probability of SLE (Pre-test probability OR Prevalence of SLE); sensitivity and specificity of each test

47. Ans. (d) False negative [Ref. K. Park 21/e p130, Park 22/e p133]

In the given graph, Persons on the right side of diagnostic point (i.e., blood sugar level > 120 mg/dl) are declared as having the disease (= A + C). Similarly, those on the left side of diagnostic point (i.e., blood sugar level < 120 mg/dl) are declared as not having the disease (= B + D).
Since $A + C = $ Declared diseased; $A = $ True positives and $C = $ False positives
AND since $B + D = $ Declared non-diseased; $B = $ True negative and $D = $ False negative

48. Ans. (d) Prior probability of each test, Sensitivity and specificity of each test [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p58]

49. Ans. (c) High validity, low reliability [Ref. Park 21/e p126-127, Park 22/e p129, 130]
 • Reliability is precision (repeatability) and Validity is accuracy (close to true/actual value)
In the given question, 10 successive readings are all different and they have a mean value of $9.4+10.4+9.6+9.1+10.8+12.1+10.1+9.8+9.2+9.5/10 = 10.0$
Thus it has low reliability (non-consistent) and high validity (close to true/actual value of 10.2)

50. Ans. (a) Increases [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p58]

51. Ans. (e) None of the above [Ref. K. Park 22/e p131-32]

52. Ans. (a) Prevalence is 5%; (b) Sensitivity is 70%; (c) Specificity is 80% [Ref. K. Park 22/e p131-32]

53. Ans. (c) PPV [Ref. K. Park 22/e p131-32]

54. Ans. (a) True positive/True positive + false negative [Ref. K. Park 22/e p131]

55. Ans. (b) High sensitivity [Ref. K. Park 22/e p131-32]

56. Ans. (a) Sensitivity [Ref. K. Park 22/e p131-32]

57. Ans. (b) Sensitivity [Ref. K. Park 22/e p131]

58. Ans. (a) Sensitivity and specificity [Ref. K. Park 22/e p130-131]

59. Ans. (c) Increase positive predictive value

60. Ans. (b) Prevalence [Ref. K. Park 22/e p132]

61. Ans. (a) It increases with prevalence [Ref. Park 22/e p132]

62. Ans. (a) Sensitivity 70% [Ref. Park 22/e p131]

63. Ans. (c) 95% [Ref. Park 22/e p131]

Review Questions

64. Ans. (c) $\frac{\text{True positive}}{\text{True positive + False negative}}$ [Ref. Park 21/e p128, Park 22/e p131]

65. Ans. (a) True positive/True positive + false negative [Ref. Park 21/e p128, Park 22/e p131]

66. Ans. (a) True positive/True positive + false negative [Ref. Park 21/e p128, Park 22/e p131]

67. Ans. (a) True positive/True positive + false negative [Ref. Park 21/e p128, Park 22/e p131]

68. Ans. (a) Persons have disease but show negative test result [Ref. Park 21/e p128, Park 22/e p131]

69. Ans. (b) True negative [Ref. Park 21/e p128, Park 22/e p131]

70. Ans. (b) Few false negative [Ref. Park 21/e p128, Park 22/e p131]

71. Ans. (b) High incidence and Low prevalence [Ref. Park 21/e p128-29, Park 22/e p131, 132]

72. Ans. (b) True negative [Ref. Park 21/e p128]

73. Ans. (c) High sensitivity [Ref. Park 21/e p128-29, Park 22/e p131, 132]

74. Ans. (d) Incidence of disease [Ref. Park 21/e p128-29, Park 22/e p131, 132]

75. Ans. (d) True positives [Ref. Park 21/e p128, Park 22/e p131]

76. Ans. (b) 0.9 [Ref. Park 21/e p128]

77. Ans. (b) Sensitivity [Ref. Park 21/e p128, Park 22/e p131]

78. Ans. (c) Number of true positives + number of false positives [Ref. Park 21/e p128, Park 22/e p131]
79. Ans. (b) True negative [Ref. Park 21/e p128, Park 22/e p131]
80. Ans. (a) Sensitivity [Ref. Park 21/e p128, Park 22/e p131]
81. Ans. (d) Decreased False – ive [Ref. Park 21/e p128, Park 22/e p131]

MISCELLANEOUS

82. Ans. All Choices [Ref. Park 21/e p356, Park 22/e p356]
 • Diabetes mellitus: Under ‘National programme for Prevention and Control of Diabetes, Cardiovascular diseases and Stroke’, screening is done by Urine for glucose (2 hours after a meal), Fasting blood sugar or random blood sugar (confirmatory testing is done by Standard Oral Glucose Test - 2 hour value after 75 grams glucose)
 • Carcinoma cervix: Under ‘National Cancer Control Programme’, Visual inspection with Acetic acid (more realistic) have been recommended
 • Refractive errors: Under ‘National Programme for Control of Blindness (school vision screening programme) screening for refractive errors is recommended once every 6 months
 • Dental caries: Under ‘National Oral Health care Programme’, components of pilot project (XI Five Year Plan) include oral health education, IEC and strengthening oral health set-up at district level/PHCs/CHCs

84. Ans. (b) CA-125 for Ovarian cancer [Ref. Holland Fries Cancer Medicine 8, Volume 8, p441]
 EXPLANATION
 • Endometrial cancer screening:
 - Pap smear (Not much useful; only recommended for Cervical cancer)
 - Ultrasonography
 - Office endometrial washings
 - Colour flow imaging
 • Ca-125 in not useful in screening ovarian cancers:
 - CA125 increases only in late stages of cancer
 - CA125 gives a lot of False positive results
 - CA125 WITH USG is a good screening test

85. Ans. (a) CA-125 [Ref. Primary Care Medicine by Goroll & Mulley, 6/e p824]
 • CA 125 as marker of carcinomas
 - Ovarian cancer (Most common use)
 - Endometrial cancer
 - Fallopian tube cancer
 - Breast cancer
 - Lung cancer
 - GIT cancer
 - Pancreatic cancer

86. Ans. (b) 1 Week after the menstruation [Ref. Health Promotion in Nursing by Huerta, 3/e p240]
87. Ans. (b) Screening [Ref. Park 21/e p126, Park 22/e p129]
88. Ans. (c) Sputum smear examination by direct microscopy [Ref. Park 20/e p164; Park 21/e p169, Park 22/e p170]
GENERAL EPIDEMIOLOGY

Period of Communicability

- Chicken pox: 1 – 2 days before to 4 – 5 days after appearance of rash
- Measles: 4 days before to 5 days after appearance of rash
- Rubella: 7 days before symptoms to 7 days after appearance of rash
- Mumps: 4 – 6 days before symptoms to 7 days thereafter
- Influenza: 1 – 2 days before to 1 – 2 days after onset of symptoms
- Diphtheria: 14 – 28 days from disease onset
- Pertussis: 7 days after exposure to 3 weeks after paroxysmal stage
- Meningococcal meningitis: Until absent from nasal and throat discharges
- Tuberculosis: As long as not treated
- Poliomyelitis: 7 – 10 days before and after onset of symptoms
- Hepatitis A: 2 weeks before to 1 week after onset of jaundice
- Hepatitis B: Till disappearance of HBsAg & appearance of anti-HBs
- Tetanus: None

Common Gestational Periods for Vertical Transmission of Diseases

- Congenital Varicella: First trimester
- Congenital Rubella: First trimester
- Congenital Parvovirus: Second Trimester
- Congenital Syphilis: Third trimester
- Congenital Toxoplasmosis: Third trimester
- Congenital Hepatitis B: Third trimester
- Congenital CMV: Third trimester
- Congenital HIV: During delivery
- Congenital Hepatitis C: During delivery
- Congenital Herpes: During delivery

Incubation Periods of Common Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causative or ganism</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small pox</td>
<td>Variola virus</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Chicken pox</td>
<td>Human (alpha) herpes virus 3</td>
<td>14 – 16 days</td>
</tr>
<tr>
<td>Measles (Rubeolla)</td>
<td>RNA paramyxovirus 10 – 14 days</td>
<td>10 – 14 days</td>
</tr>
<tr>
<td>Rubella (German Measles)</td>
<td>RNA Togavirus 14 – 21 days</td>
<td>14 – 21 days</td>
</tr>
<tr>
<td>Mumps</td>
<td>RNA Myxovirus</td>
<td>14 – 21 days</td>
</tr>
<tr>
<td>Influenza</td>
<td>Orthomyxovirus</td>
<td>18 – 72 hours</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Corynebacterium diphtheriae</td>
<td>2 – 6 days</td>
</tr>
<tr>
<td>Pertussis (Whooping cough)</td>
<td>Bordetella pertussis</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Meningococcal meningitis</td>
<td>Neisseria meningit</td>
<td>3 – 4 days</td>
</tr>
<tr>
<td>SARS</td>
<td>Corona virus</td>
<td>3 – 5 days</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
<td>Weeks – years</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Poliovirus</td>
<td>7 – 14 days</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Enterovirus 72 (Picornavirus)</td>
<td>15 – 45 days</td>
</tr>
</tbody>
</table>
Hepatitis B Hepadna virus 45 – 180 days
Hepatitis C Hepacivirus 30 – 120 days
Hepatitis D Deltavirus 30 – 90 days
Hepatitis E Calcivirus 21 – 45 days
Cholera Vibrio cholerae 1 – 2 days
Typhoid fever Salmonella typhi 10 – 14 days
Staphylococcal food poisoning Staphylococcus aureus 1 – 6 hours
Ascariasis Ascaris lumbricoides 2 months
Ancylostomiasis (Hookworm) A. duodenale 5 weeks – 9 months
Guinea worm (Dracunculiasis) Dracunculus medinensis 1 year
Dengue Arbovirus 3 – 10 days
Malaria Plasmodium vivax 8 – 17 days
 Plasmodium falciparum 9 – 14 days
 Plasmodium malariae 18 – 40 days
 Plasmodium ovale 16 – 18 days
Lymphatic filariasis Wuchereria bancrofti 8 – 16 months
Rabies Lyssavirus type 1 (Rhabdovirus) 3 – 8 weeks
Yellow fever Flavivirus 2 – 6 days
Japanese encephalitis Group B arbovirus (Flavivirus) 5 – 15 days
KFD Arbovirus (Flavivirus) 3 – 8 days
Chikungunya fever Chikungunya virus (Arbovirus A) 4 – 7 days
Leptospirosis Leptospira interrogans 4 – 20 days
Bubonic plague Yersinia pestis 2 – 7 days
Pneumonic plague Yersinia pestis 1 – 3 days
Septicemic plague Yersinia pestis 2 – 7 days
Scrub typhus Rickettsia tsutsugamushi 10 – 12 days
Q fever Coxiella burnetii 2 – 3 weeks
Taeniasis (Tapeworms) T. solium, T. saginata 8 – 14 weeks
Leishmaniasis (Kala azar) L. donovani 1 – 4 months
Trachoma Chlamydia trachomatis 5 – 12 days
Tetanus Clostridium tetani 6 – 10 days
Yaws Treponema pertenue 3 – 5 weeks
HIV/ AIDS HIV/ HTLV – III/ LAV Months – 10 years
Swine flu H1N1 Type A Influenza 1 – 4 days
Crimean Congo Fever Nairovirus 1 – 3 days
NIPAH Virus Hendra/Henapi virus 14 – 16 days
Ebola Virus Ebola virus 2 – 21 days

Important Human Parasites

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Causative organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundworm</td>
<td>Ascaris sp. Ascaris lumbricoides</td>
</tr>
<tr>
<td>Balantidiasis</td>
<td>Balantidium coli</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Taenia solium/ saginata</td>
</tr>
</tbody>
</table>

Continued...
Coccidia
Guinea worm
Amoebiasis
Pinworm
Liver fluke
Giardia
Hookworm
Head louse
Body louse
Crab louse
Scabies
Strongyloidiasis
Toxocariasis
Toxoplasmosis
Trichinosis
Whipworm

<table>
<thead>
<tr>
<th>Disease</th>
<th>Parasite</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Secondary</td>
<td></td>
</tr>
<tr>
<td>Malaria</td>
<td>Plasmodium</td>
<td>Anopheles</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Taenia solium</td>
<td>Man</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Taenia saginata</td>
<td>Man</td>
</tr>
<tr>
<td>Guinea worm</td>
<td>Dracunculus medinensis</td>
<td>Man</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Wuchereria bancrofti</td>
<td>Man</td>
</tr>
<tr>
<td>Hydatid Disease</td>
<td>Echinococcus</td>
<td>Dog</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>Trypanosomes</td>
<td>Man</td>
</tr>
</tbody>
</table>

Host of a Disease

- **HOST:** A person or other animal, including birds & arthropods, that affords subsistence or lodgement to an infectious agent under natural (as opposed to experimental) conditions
 - *Primary (definitive) host:* host in which parasite attains maturity or passes its sexual stage
 - *Secondary (intermediate) host:* host in which parasite is in larval or asexual stage

Obligate host: Only Host for a Parasite. E.g: Man in Measles, Man in Typhoid Fever

Transport host: A carrier in which the organism remains alive but does not undergo development

Paratenic host: Is similar to an intermediate host, only that it is not needed for the parasite's development cycle to progress
 - *Difference between a paratenic and reservoir host:* Latter is a primary host, whereas paratenic hosts serve as "dumps" for non-mature stages of a parasite which they can accumulate in high numbers

Dead-end host: Is an intermediate host that does generally not allow transmission to the definite host, thereby preventing the parasite from completing its development. For e.g. humans are dead-end hosts for Echinococcus canine tapeworms
Arboviral Infections in India

<table>
<thead>
<tr>
<th>Group A (Alpha viruses)</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sindbis</td>
<td>Sandfly fever</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>Umbre</td>
</tr>
<tr>
<td>Group B (Flaviviruses)</td>
<td></td>
</tr>
<tr>
<td>JE</td>
<td>Ganjam</td>
</tr>
<tr>
<td>KFD</td>
<td>Minnal</td>
</tr>
<tr>
<td>Dengue</td>
<td>Dhori</td>
</tr>
<tr>
<td>West Nile fever</td>
<td>African Horse sickness</td>
</tr>
</tbody>
</table>

SMALL POX & CHICKEN POX

Small Pox

- Epidemiological reasons/basis for Smallpox eradication:
 - No known animal reservoir
 - No long term carrier state
 - Infection provides lifelong immunity
 - Case detection simple due to characteristic rash
 - Subclinical cases did not transmit the disease
 - A highly effective vaccine was available
 - International cooperation

Chicken Pox

- Synonym: ‘Varicella’
- Causative agent: Varicella zoster virus [Human (alpha) Herpes Virus – 3]
- Incubation period: 14 – 16 days
- Source of infection: Case (person-to-person contact)
- Mode of transmission: Air droplets (respiratory)
- Period of communicability: 1-2 days before to 4-5 days after appearance of rash
- Secondary Attack rate: 90%
- Rash: Had to be differentiated from rash of Smallpox

Chicken Pox rash vs Small Pox rash

- Dew drop on rose petal appearance
- Centripetal distribution
- Pleomorphic rash
- Inflammation around vesicles present
- Affects flexor surfaces, involves axilla
- Spares palms and soles
- Rapid evolution
- Scabs form after 4 – 7 days

- Centrifugal distribution
- Non-pleomorphic
- Deep seated & Multilocular
- Affects extensor surfaces, spares axilla
- Affects palms and soles
- Slow evolution
- Scabs form after 10 – 14 days

MC late complication of chicken pox: Shingles (caused by reactivation of the virus decades after the initial episode of chickenpox)

Most rapid and sensitive means of diagnosis: Examination of vesicle fluid under electron microscope (shows round particles)

Congenital Varicella: Most threatening if transmitted in 1st trimester of pregnancy

Live attenuated Chicken pox Vaccine:
- Strain: OKA strain
- Seroconversion: >90%

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

Varicella Zoster immunoglobulin (VZIG):
- Given within 72 hours of exposure
- Dose: 1.25 – 5.0 ml intramuscularly
- Reserved for:
 - Immunosuppressed contacts of acute cases
 - Newborn contacts

MEASLES

Measles (Rubeola)

- Causative agent: RNA paramyxovirus (so for only one serotype known)
- Incubation Period: 10-14 days
- Source of Infection: cases (carriers are not known to occur)
- Mode of transmission: Air droplets (respiratory)
- Period of Communicability: 4 days before and 5 days after the appearance of rash (Rash: Retro-auricular origin)
 - Measles is highly infectious during pro-dromal period and during eruption
- Measles has no second attacks (life long immunity seen)
- Secondary attack rate of Measles: 80%
- Measles shows a cyclical trend: Increase every 2-3 years
- Pathognomonic clinical feature of Measles: Koplik spots (buccal mucosa opposite upper 2nd molar)
- MC complication of measles in young children: Otitis media
- SSPE (Subacute Sclerosing Pan Encephalitis) is a rare complication of measles: 7 per million cases of Measles (7-10 years after initial infection)

WHO Measles Elimination Strategy: ‘Catch up, Keep up, Follow up’

- Catch up: Nationwide, vaccination campaign targeting all children 9 months to 14 years of age, irrespective of history of Measles disease or vaccination status
- Keep up: Routine services aimed at vaccinating more than 95% of each successive birth cohort
- Follow up: Subsequent nationwide vaccination campaigns conducted every 2 - 4 years targeting usually all children born after the catch-up campaign.

Challenges for Measles Elimination:
- Weak immunization systems
- Highly infectious nature
- Inaccessible populations (e.g. those in conflict)
- Refusal to immunization
- Changing epidemiology (increased transmission among adolescents/ adults)
- Need to provide Catch-up campaign to >130 million children in India
- Gaps in human and financial resources at country/ regional/ global levels

Accelerated Measles Mortality Reduction Strategy (WHO-UNICEF): Two doses of Measles containing vaccine (MCV) to all children through routine and supplementary immunization activities

Global Measles Elimination Targets by 2015:
- Routine vaccine coverage >90% nationally
- Routine vaccine coverage >80% district level
- Reduction and annual maintenance of incidence <5 cases per million
- Reduction of Measles mortality by 95%

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- **Global Measles and Rubella Strategic Plan 2012-2020:**
 - High population coverage with 2 doses of Measles and Rubella containing vaccines
 - Effective surveillance
 - Outbreak preparedness
 - Generate Public confidence in vaccination
 - Research and development

RUBELLA

Rubella (German Measles)

- **Causative agent:** RNA virus of Togavirus family
- **Incubation period:** 14 – 21 days (~18 days)
- **Source of infection:** Cases or subclinical cases
 - ‘No known carrier state’ for postnatally acquired rubella
- **Mode of transmission:** Air droplets (respiratory)
- **Period of communicability:** One week prior to onset of symptoms to one week after rash appears
- **Immunity for Rubella:**
 - Single attack confers life long immunity (Second attacks rare)
 - 40% of reproductive age group females are susceptible in India
 - Infants protected till 4-6m age
- **Most widely used test for diagnosis:** Heme-agglutination Inhibition test (HAI)

Rubella Vaccine

- **Type of vaccine:** Live attenuated, ‘strain RA 27/3’ [Vaccine virus non-communicable]
- **Dose and route:** 0.5 ml, subcutaneous
- Rubella vaccine is contraindicated in pregnancy and not given to infants
 - If female vaccinated for rubella: Advice against pregnancy for next 3 months
- **Priority groups for rubella vaccination in India:**
 - 1st PRIORITY: 15 – 49 years reproductive age group females
 - 2nd priority: All children 1 – 14 years age
 - 3rd priority: Routine universal immunization of all children aged 1

Congenital Rubella Syndrome (CRS)

- **CRS is said to have occurred if:**
 - Infant has IgM rubella antibodies shortly after birth, or
 - IgG antibodies persist for more than 6 months
- **Major determinant of extent of fetal infection in CRS:** Gestational age at which fetal transmission occurs
- **Infection in I trimester:** MOST DISASTROUS TIME
 - Abortions
 - Still births
 - Skin lesions: blueberry muffin lesions
 - ‘Triad of Congenital Rubella Syndrome’ + Congenital heart defects (MC is PDA)
 - Cataracts
- **Infection in early part of II Trimester:** Deafness (only)
- **Infection after 16 weeks POG:** No major abnormalities
- **Risk of fetal damage in CRS:**

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

<table>
<thead>
<tr>
<th>Stage of gestation</th>
<th>% fetuses infected</th>
<th>% fetuses damaged among infected</th>
<th>Overall risk of damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 11 weeks</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>11 – 16 weeks</td>
<td>55</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>17 – 26 weeks</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27 – 36 weeks</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MUMPS

- Causative agent: Myxovirus parotiditis (RNA paramyxovirus)
- Incubation Period: 14-21 days
- Source of Infection: Clinical & subclinical cases
- Mode of transmission: Air droplets (respiratory)
- Period of Communicability: 4-6 days before to 7 days after onset of symptoms
- Mumps show life long immunity
- Secondary attack rate of Mumps: 86%
- Clinical features:
 - Salivary (esp. Parotid) glands involvement
 - MC complication: Aseptic meningitis
 - MC complication in adolescents: Orchitis, Oophoritis
- Mumps is prevented by: Active immunization by Mumps vaccine:
 - Type: Live attenuated vaccine
 - Strain: Jeryll Lynn strain

INFLUENZA

Influenza

- Causative agent: Orthomyxovirus, 3 types: A, B, C
 - Type A: MC cause of outbreaks/epidemics; Only cause of pandemics
 - Type B
 - Type C: Not circulating currently
- Currently circulating influenza viruses in world:
 - H1N1 (Type A) – Cause of Swineflu
 - H3N2 (Type A)
 - H5N1 (Type A) – Cause of Avian influenza (Birdflu)
 - H1N1
 - H1N1
 - Type B
- Cyclical trends in Influenza:
 - Type A epidemics every 2 – 3 years
 - Type B epidemics every 4 – 7 years
 - Type A pandemics every 10 – 15 years
- Antigenic variations in Influenza: (MC in Type A)

<table>
<thead>
<tr>
<th>Antigenic shift</th>
<th>Antigenic drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs due to</td>
<td>Genetic recombination/ reas assortment/ rearrangement</td>
</tr>
<tr>
<td>Nature</td>
<td>Sudden</td>
</tr>
<tr>
<td>May lead to</td>
<td>Epidemics/ Pandemics</td>
</tr>
</tbody>
</table>

- Incubation period: 18 – 72 hours
- Period of infectivity: 1 – 2 days before to 1 – 2 days after onset of symptoms

https://kat.cr/user/Blink99/
Avian Influenza

- Also known as ‘Bird flu’ or ‘Highly pathogenic avian influenza’
- Causative agent: H5N1 (Type A Influenza virus)
- Avian Influenza is a Pandemic: Origin from Hong Kong (1997)
- Drug of choice: Oseltamivir (Tamiflu) 75 mg BD × 5 days (contraindicated in infants)

Influenza: Pandemic (H1N1) Influenza 2009 [NEW NOMENCLATURE: Influenza A (H1N1) pdm 09]

- WHO declaration of Influenza pandemic: 11 June 2009
 - World is now post-pandemic EXCEPT: INDIA and NEW ZEALAND (locally intense transmission)
 - Problem statement India: 37000 cases, 1833 deaths [May 2009 – August 2010]
- Incubation period: 2–3 days
- Clinical features:
 - Uncomplicated influenza: Influenza like illness (Fever, cough, sorethroat, rhinorrhea, headache, muscle pain), GIT illness (diarrhoea WITHOUT dehydration)
 - Complicated/severe influenza: Pneumonia, CNS involvement, Severe diarrhoea, Secondary complications,
 - Exacerbation of chronic diseases
 - Progressive disease: Oxygen impairment/cardiopulmonary insufficiency, CNS complications, Invasive secondary bacterial infection, Severe dehydration
- Risk factors of severe disease:
 - Infants and children < 2 years
 - Pregnant females
 - COPD
 - Chronic cardiac disease
 - Metabolic disorders
 - Chronic renal/hepatic/neurological/hemoglobinopathies/immunosuppression (INCLUDING HIV) disorders
 - Children on aspirin therapy
 - Persons aged > 65 years
 - Morbid obesity
- Laboratory diagnosis:
 - Most timely and sensitive detection: RT-PCR test
 - Samples: Nasopharyngeal + throat swabs [Tracheal/bronchial aspirates in lower respiratory tract infection cases]
 - Point-of-care/Rapid diagnostic tests: Not recommended
- Duration of isolation: for 7 days after onset of illness OR 24 hours after resolution of fever/respiratory symptoms whichever is longer
- Antiviral therapy:
 - Severe/progressive clinical illness: Oseltamivir (if not available or resistance, use Zanamivir)
 - High risk of severe/complicated illness: Oseltamivir OR Zanamivir
 - Not high risk OR Uncomplicated confirmed/suspected illness: No need of treatment
 - Dosage:
 - Oseltamivir 75 mg BD × 5 days
 - Zanamivir 2 inhalations (2 × 5 mg) BD × 5 days

Avian Influenza H7N9

- Origin: China 2013
- Spread to: Hong Kong

DOC for H1N1
Oseltamivir 75 mg BD × 5 days

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

- **Disease burden:**
 - **Cases:** 141
 - **Deaths:** 45
 - **Case fatality rates:** 33%
- **MC age group affected:** Older males (>50 years age)
- **Mode of transmission:** Respiratory (Live bird markets)
 - Human to human transmission: Rare but possible
- **Treatment:** Neuraminidase inhibitors
 - Oseltamivir
 - Zanamivir

Vaccines for Influenza

- **Killed vaccines:**
 - 2 doses, 3 – 4 weeks apart, 0.5 ml (for age > 3 years), subcutaneous
 - 70 – 90% protective efficacy; duration 3 – 6 months
 - Is rarely associated with Guillain Barre Syndrome (GBS)
- **Live attenuated vaccines:**
 - Stimulate local + systemic immunity
 - Antigenic variations presents difficulties in manufacture
- **Newer vaccines:**
 - Split – virus vaccine:
 - Also known as ‘Sub-virion vaccine’
 - Highly purified
 - Lesser side effects
 - Less antigenic – multiple injections required
 - Useful for children
 - Neuraminidase – specific vaccine:
 - Sub-unit vaccine containing N-antigen
 - Permits subclinical infection – long lasting immunity
 - Reombinant vaccine:
 - Antigenic properties of virulent strain transferred to a less virulent strain
- **Contraindications to Inactivated Influenza vaccines:**
 - Severe allergy to chicken eggs
 - History of hypersensitivity/anaphylactic reactions previously
 - Development of Guillain Barre Syndrome (GBS) within 6 weeks of vaccine
 - Infants less than 6 months age
 - Moderate-to-severe illness with fever

H1N1 (Swine flu) Vaccine

- **H1N1, Inactivated vaccine: Single i/m injection**
 - **Strain:** A/California/7/2009 (H1N1) V like strain
 - **Storage temperature:** +2° to +8° C
 - **Contraindications:** History of anaphylaxis/severe reaction/Guillain Barre Syndrome, Infants < 6 months, Moderate-to severe illness with fever
 - **Protective immunity:** Develops after 14 days (NOT 100%)
- **H1N1, Live attenuated vaccine: Nasal spray**
 - **Side effects:** Rhinorrhea, nasal congestion, cough, sore throat, fever, wheezing, vomiting
- **Priority groups (in order) for Influenza vaccines:**
 - Pregnant women
 - Age > 6 months with chronic medical conditions
 - 15-49 years healthy young adults
 - Healthy young children
 - Healthy adults 49-65 years
 - Healthy adults >65 years
DIPHTHERIA

Diphtheria

- **Causative agent:** Corynebacterium diphtheriae, a gram positive non-motile organism
- Diphtheria is an endemic disease in India
- **Source of infection:** Case or carrier
 - Carriers are more important as source of infection: 95% of total disease transmission
 - Nasal carriers are more dangerous than throat carriers
 - Incidence of carriers in a community: 0.5-1%
 - Immunization does not prevent carrier state
- **Incubation Period:** 2-6 days
- **Mode of transmission:** droplet infection (main mode), directly from cutaneous lesions and fomites
- **Period of Infectivity:** 14-28 days from onset of disease; longer for carriers
 - A case/carrier may be considered non-communicable when at least 2 cultures from nose and throat, 24 hrs apart, are negative

DPT Vaccine

Refer to Chapter 3, Theory

Schick Test

- **Schick Test:** An intradermal test of immunity status and hypersensitivity to Diphtheria toxin
- **Dose:** 0.2 ml (1/50 MLD) of Schick test toxin in test arm and 0.2 ml of heat-inactivated toxin in opposite ‘control’ arm
- **Interpretations of Schick Test:**

<table>
<thead>
<tr>
<th>Observation</th>
<th>Reading</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test arm</td>
<td>Control arm</td>
<td></td>
</tr>
<tr>
<td>No reaction</td>
<td>No reaction</td>
<td>NEGATIVE</td>
</tr>
<tr>
<td>Red flush</td>
<td>No reaction</td>
<td>POSITIVE</td>
</tr>
<tr>
<td>Red flush fading by 4th day</td>
<td>Red flush fading by 4th day</td>
<td>PSEUDOPOSITIVE</td>
</tr>
<tr>
<td>Red flush fading by 4th day</td>
<td>Red flush fading by 4th day</td>
<td>PSEUDOPOSITIVE</td>
</tr>
<tr>
<td>Red flush</td>
<td>Pseudopositive</td>
<td>COMBINED</td>
</tr>
</tbody>
</table>

(Red flush=Positive reaction)

- Schick test negative if >0.03 units antitoxin per ml in blood serum
- **Schick test has been replaced by:** Hemeagglutination Test
- **Hemeagglutination Test:** Measurement of serum antitoxin level

WHOOPING COUGH

Pertussis/Whooping Cough

- **Causative agent:** Bordetella pertussis (5% cases by B. parapertussis)
- Also known as ‘Whooping Cough’ or ‘100 Day Cough’
 - Paroxysms of cough are followed by an inspiratory whoop (high pitch)
- **Incubation period:** 7 – 14 days
- **Source of Infection:** Case
 - There is no subclinical or chronic carrier state
 - Neither vaccination nor infection confers long-term immunity
Communicable and Non-communicable Diseases

- **Secondary Attack rate**: > 90%
- **Incidence and fatality**: Females > Males
- Leukocytosis does not correlate with the severity of cough
- **Chief complications**: Bronchitis, bronchopneumonia, bronchiectasis, subconjunctival hemorrhages, epistaxis, hemoptysis, punctuate cerebral hemorrhages, convulsions and coma.
- **Laboratory diagnosis**: Culturing of nasopharyngeal swabs on Bordet-Gengou medium, polymerase chain reaction (PCR), immunofluorescence (DFA), and serological methods
- **Drug of choice**: Erythromycin (40 mg/kg QID × 10 days)
- **Vaccines**: DPT [Refer to Chapter 3, Theory]

MENINGOCOCCAL MENINGITIS

Meningococcal Meningitis/ Cerebrospinal Fever

- **Causative agent**:
 - N. meningitidis, a gram negative diplococci
 - Serotypes A, B, C, D, 29E, W135, X, Y
- Meningococcal disease is endemic in India
- **Carriers are the more important source of infection than cases**
 - Mean duration of Temporary carriers: ~ 10 months
 - During epidemics, carrier rate may go up to 70-80%
- **Mode of Transmission**: Droplet infection
- **Incubation Period**: 2-10 days (average 3-4 days)
- **Case Fatality Rate (CFR) of Meningococcal meningitis**: 80%
 - With early diagnosis and treatment, CFR < 10%
- **Drugs of Choice**:

<table>
<thead>
<tr>
<th>Management</th>
<th>Drug of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of cases</td>
<td>Penicillin</td>
</tr>
<tr>
<td>Treatment of carriers</td>
<td>Rifampicin³</td>
</tr>
<tr>
<td>Chemoprophylaxis of contacts</td>
<td>Rifampicin³</td>
</tr>
</tbody>
</table>

 (For chemoprophylaxis : Rifampicin 600 mg BD X 2 days³)

- Treatment with Penicillin does not eradicate carrier state³

Meningococcal Vaccine

- **Type of Vaccine**: killed vaccine, cellular fraction
- **Dose**: 0.5 ml
- **Route**: Subcutaneous
- **Site**: Antero-lateral thigh. Middle one-third
- Booster every 3 years
- Available for group A, C, W135 and Y meningococci
 - **Vaccine is not available for Group B meningococcus**: Group B polysaccharide is non-immunogenic³
- **Contraindications³**:
 - Pregnancy
 - Infants and children < 2 years of age (due to development of immunologic tolerance)

ARI/ PNEUMONIA

No Pneumonia: Cough or Cold

- No chest indrawing, No fast breathing
Management:
- No antibiotics necessary
- Treat symptomatically
- If cough > 30 days, refer for assessment

Pneumonia (Not severe)
- No chest indrawing
- Fast breathing present (based on respiratory rate - RR)

<table>
<thead>
<tr>
<th>Age group</th>
<th>Respiratory rate cut-off for fast breathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2 months</td>
<td>RR > 60 per minute</td>
</tr>
<tr>
<td>2 – 12 months</td>
<td>RR > 50 per minute</td>
</tr>
<tr>
<td>12 months – 5 years</td>
<td>RR > 40 per minute</td>
</tr>
</tbody>
</table>

Management:
- At home
- Give antibiotics – Drug of choice Cotrimoxazole
- Reassessment after 2 days

Severe Pneumonia
- Signs:
 - Chest indrawing
 - Nasal flaring
 - Grunting
 - Cyanosis
- Management:
 - Give first dose of referral antibiotic (Ampicillin + Gentamicin)
 - REFER URGENTLY to hospital;
 - Drugs of Choice – Benzyl Penicillin (or Ampicillin or Chloramphenicol) for first 48 hours and then Procaine Penicillin (or Ampicillin or Chloramphenicol) for next 3 days
 - Antibiotics to be changed if there is no improvement after first 48 hours

Very Severe Pneumonia
- Signs:
 - Convulsions, abnormally sleepy or difficult to awake
 - Stridor when calm
 - Stopped feeding
 - Wheezing
 - Fever or low body temperature
 - Severe malnutrition
- Management:
 - Give first dose of referral antibiotic (Ampicillin + Gentamicin)
 - REFER URGENTLY to hospital
 - Drug of Choice – Chloramphenicol i/m for first 48 hours and then oral chloramphenicol till total 10 days
 - Antibiotics to be changed (to i/m Cloxacillin + Gentamicin) if there is no improvement after first 48 hours

TUBERCULOSIS

Tuberculosis Situation in India
- Country with highest TB burden in world: India
Communicable and Non-communicable Diseases

- **Infected with TB (Mantoux positive)**: Two out of five Indians (40%)
- **Annual risk of becoming infected with TB**: 1.5%
- **Lifetime risk of disease among infected**: 10%
- **Indians developing TB everyday**: 5000
- **Sputum positive every year**: 0.8 million
- **TB deaths per year**: 0.37 million

Epidemiological Indices for TB

- **Incidence of TB infection (Annual infection rate, Annual risk of infection - ARI)**: Percentage of population under study who will be newly infected with TB among non-infected in 1 year
 - Expresses attacking force of TB in community
 - In developing countries 1% ARI corresponds to: 50 SS +ve cases per 100,000 general population
 - Tuberculin conversion index is the ‘best indicator for evaluation of TB problem and its trend’ in the community
- **Prevalence of TB infection**: Percentage of individuals who show a positive reaction to standard tuberculin test
 - Represent cumulative experience of population in ‘recent as well as remote infection’ with TB
 - Tuberculin test is the ‘only way of estimating the prevalence of in infection in a population’
- **Incidence of disease**: Percentage of new TB cases per 1000 population
 - Reveals trend of problem, including impact of control measures
 - Is of utility only in countries where high proportion of new cases are detected and notification is reliable
 - Sputum smear examination (AFB) is a reliable method for estimation
- **Prevalence of disease or case rate**: Percentage of individuals whose sputum is positive for TB bacilli on microscopic examination
 - ‘Best available practical index to estimate case load’ in community
 - Age specific prevalence is most relevant index
- **Prevalence of suspect cases**: Is based on X ray examination of chest
 - No epidemiological significance is attached to this index
- **Prevalence of drug-resistant cases**: Is directly related to chemotherapy
- **Mortality rate**: Was earlier used as an index of magnitude of TB problem

Tuberculin/PPD

- **Tuberculin**: Purified protein derivative (PPD) has replaced the antigen old tuberculin (OT)
 - *Tuberculins have also been prepared from atypical mycobacterium*: PPD-Y (M. Kanssaii), PPD-B (Battey mycobacterium), Scrofula (M. scrofulaceum)
- Discovered by Von Pirquet (1907)
- PPD is a purer preparation, gives fewer non-specific reactions and is easier to standardise
 - *Standard PPD (PPD-S) contains*: 50,000 tuberculin units (TU) per mg
 - [1TU = 0.00002 mg PPD]
 - WHO advocates ‘PPD-RT-23 with Tween-80’
- **Dosage**: First strength (1TU), Intermediate strength (5TU), Second strength (250TU)
- **Tuberculin test conversion** is defined as an increase of 10 mm or more within a 2-year period, regardless of age
- **Tuberculin test in use**:
 - **Mantoux intradermal test**: More precise test of tuberculin sensitivity
 - **Hof test**: Quick, easy, reliable and cheap, preferred for testing large groups
 - **Tine multiple puncture test** unreliable, not recommended
Review of Preventive and Social Medicine

- Tuberculin test is the ‘only way of estimating the prevalence of infection in a population’
- Tuberculin test has lost its sensitivity as an indicator of the true prevalence of infection, in countries with high coverage of BCG
 - True prevalence rates are exaggerated by infection with atypical mycobacteria and boosting effect of a second dose of tuberculin

Mantoux Test

- **Dose:** 1 TU of PPD in 0.1ml injected intradermally on forearm
- **WHO advocated preparation:** PPD–RT–23 with Tween–80
- Is a test of prognostic significance
- Has limited validity due to lack of specificity
- **Readings:** Result read after 72 hrs (3d)
- **Only induration is measured:**
 - Induration >9 mm: Positive (Past OR current infection with TB)
 - Induration 6-9 mm: Doubtful (M. tuberculosis or Atypical mycobacteria)
 - Induration <6 mm: Negative
- **False Reactions:**
 - False +ve Mantoux
 - Faulty technique of injection
 - Using degraded tuberculin
 - Too deep injection
 - Infection of other mycobacterium
 - Repeated tuberculin testing
 - Prior BCG vaccine
 - False –ve Mantoux
 - High fever
 - Measles and chicken pox
 - Whooping cough
 - Malnutrition
 - HIV/AIDS
 - Use of anti-allergic drugs
 - Use of immunosuppressants

- **Results of tuberculin test must be interpreted carefully:** The person’s medical risk factors determine at which increment (5 mm, 10 mm, or 15 mm) of induration the result is considered positive
 - 5 mm or more is positive in:
 - HIV-positive person
 - Recent contacts of TB case
 - Persons with nodular or fibrotic changes on chest x-ray consistent with old healed TB
 - Patients with organ transplants
 - Other immunosuppressed patients
 - 10 mm or more is positive in:
 - Recent arrivals (less than 5 years) from high-prevalence countries
 - Injection drug users
 - Residents and employees of high-risk congregate settings (e.g., prisons, nursing homes, hospitals, homeless shelters, etc.)
 - Mycobacteriology lab personnel
 - Persons with clinical conditions that place them at high risk (diabetes, prolonged corticosteroid therapy, leukemia, end-stage renal disease, chronic malabsorption syndromes, low body weight)
 - Children less than 4 years of age, or children and adolescents exposed to adults in high-risk categories
 - 15 mm or more is positive in:
 - Persons with no known risk factors for TB
Communicable and Non-communicable Diseases

Sputum Microscopy & Culture

- **Sputum smear examination** (Z-N Staining) by direct microscopy: is the ‘method of choice as a case finding tool for tuberculosis’
- **Sputum culture examination:** is offered as a centralized service at district and regional chest clinic laboratories
 - only meant for chest symptomatic who are smear negative
 - useful for carrying out sensitivity tests and monitoring drug treatment

Mass Miniature Radiography (MMR

- Is not used now as a case finding tool
- Only useful:
 - As an additional criterion for diagnosis of Pulmonary TB, when none sputum smear is positive out of two
 - To exclude bronchiectasis/aspergilloma in frequent/severe is positive sputum smear cases
 - In suspected complication in a breathless patient needing specific treatment (e.g. pneumothorax, pericardial effusion, pleural effusion)

Guidelines for Chemoprophylaxis in Children (< 6 years)

(who come in contact with a Sputum positive TB case)

<table>
<thead>
<tr>
<th>IF</th>
<th>AND</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms of TB</td>
<td>Clinician declares TB</td>
<td>Cat I DOTS given</td>
</tr>
<tr>
<td>No symptoms of TB</td>
<td>Tuberculin test NA</td>
<td>Isoniazid 5 mg/kg X 6 months</td>
</tr>
<tr>
<td></td>
<td>Tuberculin test available</td>
<td>Isoniazid 5 mg/kg X 3 months, then do test</td>
</tr>
</tbody>
</table>

If induration < 6mm: Stop INH, Give BCG
If induration > 6 mm: Continue INH for 3 months

(INH: Isoniazid; NA: Not available)

STOP TB Strategy

- **Vision:** A world free of TB
- **Goal:** To dramatically reduce the global burden of TB by 2015, in line with Millennium Development Goals and STOP TB Partnership targets
- **Targets of strategy:**
 - 2005: Case detection rate >70% and cure rate >85%
 - 2010: Reduce prevalence of & deaths by 50% (relative to 1990)
 - 2015: Eliminate TB as a public health problem (<1 case/million)
- **Components:**
 - Pursue high quality DOTS expansion and enhancement
 - Address TB/HIV, MDR TB and other challenges
 - Contribute to health system strengthening
 - Engage all care providers
 - Empower people with TB and communities
 - Enable and promote research

The End TB Strategy (2016-2020)

- **Vision:** A world free of tuberculosis (Zero deaths, disease and suffering due to TB)
- **Goal:** End the global tuberculosis epidemic
- Milestones for 2025:

https://kat.cr/user/Blink99/
- 75% reduction in tuberculosis deaths (compared with 2015);
- 50% reduction in tuberculosis incidence rate (compared with 2015) [less than 55 tuberculosis cases per 100,000 population]
- No affected families facing catastrophic costs due to tuberculosis

Targets for 2035:
- 95% reduction in tuberculosis deaths (compared with 2015)
- 90% reduction in tuberculosis incidence rate (compared with 2015) [less than 10 tuberculosis cases per 100,000 population]
- No affected families facing catastrophic costs due to tuberculosis

Latent Tuberculosis (LATENT TB, LTBI)

- *Description:* Latent tuberculosis is where a patient is infected with *Mycobacterium tuberculosis,* but does not have active tuberculosis disease
 - Latent TB are NOT INFECTIOUS
- *Main risk:* 10% will go on to develop active TB at a later life
- *Tests used to identify patients with latent TB:*
 - Tuberculin skin tests (Montaux test, Heaf test, Tine test)
 - alpha-interferon tests
- *To give treatment for latent TB to someone with active TB is a serious error:* TB will not be adequately treated and there is a serious risk of developing drug-resistant strains of TB
- Several treatment regimens in use:
 - 9 months Isoniazid
 - 6 months Isoniazid
 - 4 months Rifampicin
 - 3 months Isoniazid + Rifampicin
 - 2 months Rifampicin + Pyrizinamide

Revised National TB Control Program

Also Refer to Chapter 6, Theory

POLIOMYELITIS

Poliomyelitis Situation 2014 WORLD [as on 01 January 2015]

- 3 endemic countries: Afghanistan, Pakistan, Nigeria
- 7 countries with re-established transmission: Cameroon, Somalia, Syria, Ethiopia, Kenya, Guinea, Iraq

Poliomyelitis Situation 2013 INDIA [as on 31st December 2014]

- *Total cases:* NIL wild virus case [No case has been reported in India from 13 January 2011 onwards]
- 3 VDPV cases (P2) reported from India
Communicable and Non-communicable Diseases

Poliomyelitis Disease

- **Causative agent:** Poliovirus (serotypes 1, 2 and 3)
 - P1 is MCC of epidemics
 - P2 is Most antigenic and Most easily eradicable
 - P3 is MCC of VAPP (Vaccine associated paralytic poliomyelitis) – 1 per 1 million chance
- **Reservoir:** Man (No chronic carriers)
- **MC clinical occurrence:** Subclinical cases
 - For every 1 clinical case of polio: there are 1000 subclinical cases in children and 75 subclinical cases in adults
- **Infectious material:** Faeces and oro-pharyngeal secretions
- **Period of communicability:** 7-10 days before and after onset of symptoms
- **Risk factors for precipitation of an attack:**
 - Fatigue
 - Trauma
 - Intramuscular injections
 - Operative procedures (Tonsillectomy) esp. in epidemics of polio
 - Administration of Alum containing DPT vaccine
- **Incubation period:** 3 – 35 days (usually 7 – 14 days)
- **Clinical presentation:**

<table>
<thead>
<tr>
<th>Clinical spectrum</th>
<th>Infections</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inapparent (Subclinical)</td>
<td>95%</td>
<td>No presenting symptoms; recognisable by isolation or rising antibody titres</td>
</tr>
<tr>
<td>Abortive polio (Minor illness)</td>
<td>4 – 8%</td>
<td>Mild or self-limiting illness; recognisable by isolation or rising antibody titres</td>
</tr>
<tr>
<td>Non-paralytic polio</td>
<td>1%</td>
<td>Synonymous with aseptic meningitis</td>
</tr>
<tr>
<td>Paralytic polio</td>
<td>< 1%</td>
<td>Descending asymmetric flaccid paralysis;</td>
</tr>
</tbody>
</table>

Available Diagnostic Tests for Poliomyelitis

- **Stool examination:**
 - Isolation of wild poliovirus from stool is ‘the recommended method for laboratory confirmation of paralytic poliomyelitis’
 - Recommended in every case of AFP
 - Virus usually can be found in the feces from onset to up to < 8 weeks after paralysis, with ‘the highest probability of detection during the first 2 weeks after paralysis onset’
- **Cerebrospinal Fluid (CSF) examination:**
 - Not recommended for purposes of surveillance
 - Not likely to yield virus, so collection is not recommended for culture
 - However, the CSF cell count, gram stain, protein, and glucose may be very useful in eliminating other conditions that cause AFP
- **Throat examination:**
 - Not recommended for purposes of surveillance
 - Not as likely as stool to yield virus and thus specimen collection from this site is not recommended
- **Blood examination:**
 - Not recommended for purposes of surveillance
 - Not likely to yield virus, and current serologic tests cannot differentiate between wild and vaccine virus strains
 - Interpretation of the serologic data can often be misleading
 - Collection of blood specimens for culture or serology not recommended

Vaccines for Poliomyelitis

Refer to Chapter 3 Theory

https://kat.cr/user/Blink99/
HEPATITIS

Types of Viral Hepatitis

<table>
<thead>
<tr>
<th>Type</th>
<th>Causative agent</th>
<th>Incubation period</th>
<th>Common mode(s) of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis A</td>
<td>Enterovirus 72<sup>o</sup> (picornavirus)</td>
<td>15 – 45 days<sup>o</sup></td>
<td>Faecal-oral<sup>o</sup>, sexual</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Hepadnavirus<sup>d</sup></td>
<td>30 – 180 days<sup>o</sup></td>
<td>Sexual, perinatal, percutaneous</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Hepacivirus (Flavivirus)</td>
<td>15 – 160 days</td>
<td>Percutaneous</td>
</tr>
<tr>
<td>Hepatitis D</td>
<td>Viriods like</td>
<td>30 – 180 days</td>
<td>Sexual, perinatal, percutaneous</td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>Calicivirus (alphavirus like)</td>
<td>15 – 60 days</td>
<td>Faecal-oral<sup>o</sup></td>
</tr>
</tbody>
</table>

Hepatitis A

- **Causative agent:** Enterovirus 72^o (Picorna virus)
- **Incubation period:** 15-45 days^o
- **Period of infectivity:** 2 weeks before to 1 week after onset of jaundice
- **Sex distribution:** Equal in both sexes
 - **Children:** More infected but mild or subclinical
- **Reservoir:** Human cases
- **Modes of transmission:**
 - Faecal oral (Most common^o)
 - Parenteral
 - Sexual
- **Disinfectant:**
 - Formalin
 - UV rays
 - Boiling for 5 min
 - Autoclaving

Hepatitis B

- Also known as ‘Serum hepatitis^o’
- **Causative agent:** Hepatitis B virus (HBV) – a Hapdnavirus
 - Is double shelled DNA virus – ’Dane’s particle^d’
 - Discovered by Bloomberg
- **Reservoir of infection:** Man (case or carrier)
- **Incubation period:** 45 – 180 days^o (6 weeks – 6 months)
 - Median IP < 100 days^o
- **Modes of transmission:** Blood borne, sexual, parenteral, perinatal^o
- **Markers of Hepatitis B infection (in order of appearance in serum^o):**
 - HBsAg (Hepatitis B surface antigen):
 - Also known as ‘Australia antigen’^o
 - First antigen to appear in serum – ‘first evidence of infection’^o
 - HBeAg (Hepatitis B core antigen):
 - ‘Indicates active viral replication’^o
 - ‘Is a marker of infectivity for Hepatitis B’^o
 - Anti-HBc (Antibody to Hepatitis B core antigen):
 - ‘Persistence beyond 3 months: Increased likelihood of chronic Hepatitis B
 - Anti-HBc (Antibody to Hepatitis B envelope antigen):
 - ‘Further antibody to appear in serum’^o
 - ‘Indicates active viral replication’^o
 - ‘Is a marker of infectivity for Hepatitis B’^o

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

- Anti-HBe (Antibody to Hepatitis B envelope antigen):
 - Signals ‘stoppage of active viral replication’
 - Indicates ‘end of period of infectivity’
- Anti-HBs (Antibody to Hepatitis B surface antigen):
 - Last antibody to appear in serum
 - Signals ‘recovery, end of period of communicability’

• Serologic patterns in Hepatitis B:

<table>
<thead>
<tr>
<th>HBsAg</th>
<th>Anti-HBs</th>
<th>Anti-HBc</th>
<th>HBeAg</th>
<th>Anti-HBe</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>–</td>
<td>IgM</td>
<td>+</td>
<td>–</td>
<td>Acute Hepatitis B</td>
</tr>
<tr>
<td>+</td>
<td>–</td>
<td>IgG</td>
<td>+</td>
<td>–</td>
<td>Chronic Hepatitis B + replication</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>IgG</td>
<td>–</td>
<td>+</td>
<td>Recovery from Hepatitis B</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Vaccinated individuals</td>
</tr>
</tbody>
</table>

• Vaccines for Hepatitis B:
 - Plasma derived vaccine:
 - Is formalin inactivated sub-unit vaccine
 - Is based on HBsAg
 - rDNA yeast derived vaccine:
 - Recombinant DNA vaccine (genetically engineered)

• Hepatitis B Immunoglobulin:
 - Required for immediate protection:
 - Surgeons, nurse, laboratory workers
 - Newborn infants of carrier mothers
 - Sexual contacts of acute Hepatitis B patients
 - Ideally administered within 6 hours (not later than 48 hours)
 - Dose: 0.05 – 0.07 ml/kg, 2 doses 30 days apart

Hepatitis E

• Synonym: Enterically transmitted hepatitis non-A, non-B [HNANB]
• Description: HEV is essentially a waterborne disease, transmitted through water or food supplies, contaminated by faeces
• Incubation Period: 2 – 9 weeks
• HEV in pregnancy: Fulminant form is common in Hepatitis E infection during Pregnancy (up to 20% cases) with a high case fatality rate (up to 80%)

DIARRHOEAL DISEASES (CHOLERA & TYPHOID)

Oral Rehydration Solution (ORS)

• ReSoMal (Rehydration Solution for Malnourished): Is recommended for severely malnourished children

<table>
<thead>
<tr>
<th>Composition³ (grams)</th>
<th>Osmolar concentration (mmol/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 WHO ORS packet +</td>
<td>Sodium 45</td>
</tr>
<tr>
<td>2 litres water +</td>
<td>Potassium 40</td>
</tr>
<tr>
<td>50 grams sugar +</td>
<td>Chloride 70</td>
</tr>
<tr>
<td>40 grams electrolyte/ mineral solution</td>
<td>Citrate 7</td>
</tr>
<tr>
<td></td>
<td>Glucose 125</td>
</tr>
<tr>
<td></td>
<td>Mg++ Zn++ Cu++ 4</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
NEW WHO RECOMMENDED Reduced Osmolarity Oral Rehydration Solution (Low Na ORS):1,2

<table>
<thead>
<tr>
<th>Composition6 (grams)</th>
<th>Osmolar concentration6 (mmol/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride</td>
<td>2.6</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>1.5</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>2.9</td>
</tr>
<tr>
<td>Glucose</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20.5</td>
</tr>
</tbody>
</table>

Cholera

- Cholera is an acute diarrhoeal disease caused by Vibrio cholerae
- Vibrio cholerae: ‘Gram-negative bacterium’ that produces cholera toxin (enterotoxin), which act on c-AMP system of mucosal cells of epithelium lining of the small intestine (to cause massive diarrhea)
 - Classical biotype
 - El Tor biotype [Serotypes: Ogawa (MC in India6), Inaba and Hikojima]
 - Recently El Tor Hybrid subtype has become MC in India
- Incubation period8: 1 – 2 days (Few hours – 5 days)
- Reservoir: Human beings only
- Rice-watery diarrhoea9
- Essentials for treatment of cholera: Water and electrolyte replacement (ORS)
- Laboratory diagnosis of Cholera: Stool and swab samples collected in the acute stage of the disease, before antibiotics have been administered, are the most useful specimens for laboratory diagnosis
 - Holding or transport media:
 - Venkataraman-ramakrishnan (VR) medium9
 - Cary-Blair medium: Mostly widely used medium
 - Autoclaved sea water
 - Enrichment media:
 - Alkaline peptone water
 - Monsur’s taurocholate tellurite peptone water
 - Plating media:
 - Alkaline bile salt agar (BSA)
 - Monsur’s gelatin Tauro cholate trypticase tellurite agar (GTTA) medium
 - TCBS medium: Mostly widely used medium

Guidelines for Cholera Control (WHO)

- Verification of diagnosis:
 - Identifying Vibrio cholerae 01 in stools OF FEW PATIENTS is sufficient
 - It is ‘not necessary to culture stools of all cases or contacts’
- Notification:
 - Cholera is a notifiable disease locally, nationally and internationally9
 - Under International Health Regulations, Cholera is notifiable to WHO by national govt WITHIN 24 HOURS (no. of cases & deaths to be reported daily and weekly)
 - An area is declared free of Cholera when TWICE the IP has elapsed since last case9
- Early case finding: through aggressive case search
- Establishment of treatment centres
- Rehydration therapy: through ORS
- Adjuncts to therapy: Only antibiotics may be used when vomiting stops
Communicable and Non-communicable Diseases

<table>
<thead>
<tr>
<th>Group</th>
<th>Antibiotic of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Children</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Chemoprophylaxis</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>

- **Epidemiological investigations:** General sanitation measures, epidemiological studies
- **Sanitation measures:** Water control, excreta disposal, food sanitation, disinfection
- **Chemoprophylaxis:**
 - Mass chemoprophylaxis IS NOT ADVISED for total community; is only advisable for household contacts or a closed community
 - **Drug of choice for chemoprophylaxis:** Tetracycline
 - To prevent one case of cholera, 10,000 persons need to be given chemoprophylaxis
- **Vaccination**
- **Health education:** MOST EFFECTIVE prophylactic measure

Typhoid Fever

- **Causative agent:** Salmonella typhi
- **Reservoir of infection:** Man (cases and carriers)
 - Cases
 - Carriers
 - Incubatory carriers
 - Convalescent carriers: excrete bacilli for 6 – 8 weeks
 - Chronic carrier: excrete bacilli for > 1 year after clinical attack
- **Source of infection:** faeces, urine of cases/carriers (primary source) and water, food fingers, flies (secondary source)
- **IP:** 10-14 days
- **Mode of transmission:** Faeco-oral route, urine-oral route
- **Clinical features:**
 - ‘Pea Soup diarrhoea’
 - Splenomegaly, relative bradycardia, dicrotic pulse, abdominal distension and tenderness
 - Rose spots (2nd week)
 - Intestinal perforation (3rd week) may be one of the complications
- **Laboratory Diagnosis:** ‘BASU’ Mnemonic

<table>
<thead>
<tr>
<th>Test of diagnosis</th>
<th>Time of diagnosis</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood culture</td>
<td>1st week</td>
<td>Mainstay of diagnosis</td>
</tr>
<tr>
<td>Antibodies (Widal test)</td>
<td>2nd week</td>
<td>Moderate sensitivity & specificity</td>
</tr>
<tr>
<td>Stool culture</td>
<td>3rd week</td>
<td></td>
</tr>
<tr>
<td>Urine test</td>
<td>4th week</td>
<td></td>
</tr>
</tbody>
</table>

- **Newer tests**
 - IDL Tubex test
 - TYPHI DOT
 - TYPHI DOT-M
 - DIPSTICK TEST

- **Drug of choice:**
 - **Cases:** Cephalosporins (Ceftriaxone), Quinolones
 - **Carriers:** Ampicillin/Amoxycillin + Probenecid × 6 weeks
Review of Preventive and Social Medicine

- **Immunisation for Typhoid:**
 - **TYPHORAL** (Live oral Ty21a\(^9\)) vaccine:
 - Contains \(>10^9 \) viable organism of attenuated S. typhi\(^9\)
 - **Schedule:** One capsule each on days 1, 3, 5 (booster of 3 doses, once every 3 yrs)
 - **Protection duration:** 3 years
 - **TYPHIM Vi Vaccine:**
 - Vi- Polysaccharide containing single dose i.m. or subcutaneous
 - Not given in age < 2 yrs
 - **TAB vaccine:**
 - Contains S.typhi, S.paratyphi A and S.paratyphi B

WORM INFESTATIONS

Guineaworm (Dracunculiasis)

- **Causative agent:** Dracunculus medinensis (nematode)
- **Guineaworm disease in India:**
 - Last case in India: July 1996 (Jodhpur, Rajasthan)
 - India certified for Elimination of Guineaworm (WHO): Feb 2000\(^9\)
 - India certified Guineaworm disease free: Feb 2001\(^9\)
 - **Reservoir of infection:** An infected person (no animal reservoir)
 - **Type of biological transmission:** Cyclo-developmental transmission\(^9\)
 - **Type of disease:** Water based disease\(^9\) (Cyclops play a role in transmission)
 - **Mode of transmission:** Consumption of water containing Cyclops harbouring infective stage of parasite\(^9\)
 - **Guineaworm is amenable to eradication:**
 - Provision of safe drinking water
 - Control of Cyclops
 - Health education
 - Active surveillance for cases
 - **Treatment of cases:** Niridazole\(^9\), Mebendazole and Metronidazole
 - No drug is effective for preventing disease transmission
 - No drug is suitable for mass treatment

Roundworm (Ascariasis)

- **Importance:**
 - Is MC helminthic infection\(^9\)
 - Is MC worm infestation in India\(^9\)
- **Causative agent:** Ascaris lumbricoides
- **Reservoir of Infection:** Man\(^9\)
- **Mode of transmission:** Faecal-oral route\(^9\)
- **Incubation Period:** 2 months
- **Drugs of choice:**
 - Albendazole\(^9\)
 - Mebendazole
 - Pyrantel

Hookworm (Ancylostomiasis)

- **Causative agent:**
 - Ancylostoma duodenale
 - Necator americanus
- **Reservoir of Infection:** Man
- **Mode of transmission:** Direct penetration of skin of foot and by oral route\(^9\)
Communicable and Non-communicable Diseases

• **Incubation Period:**
 - 5 weeks - 9 months (A. duodenale)
 - 7 weeks (Necator americanus)

• **Hookworm infection is also known as:** miners’ anaemia, tunnel disease, brickmaker’s anaemia, Egyptian chlorosis
 - Average blood loss in hookworm infection: 0.03-0.2 ml/ worm/day

• **Hookworm infection is associated with:**
 - Iron Deficiency Anemia
 - Hypoalbuminemia

• **Cutaneous larva migrans:** a skin disease in humans, caused by the larvae of various nematode parasites, the most common of which is Ancylostoma braziliense

• **Drugs of choice:**
 - Albendazole (A. duodenale)
 - Mebendazole (N. americanus)

• **Endemic Index (Chandler’s Index):**
 - CI is average no of hookworm eggs per gram of faeces for the ‘entire community’
 - Interpretation of CI: Kato-katz Technique is employed

<table>
<thead>
<tr>
<th>Average no of eggs/gm stools</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td><200</td>
<td>Not much significance</td>
</tr>
<tr>
<td>200-250</td>
<td>Potential danger</td>
</tr>
<tr>
<td>250-300</td>
<td>Minor public health problem</td>
</tr>
<tr>
<td>> 300Q</td>
<td>Important public health problem</td>
</tr>
</tbody>
</table>

Tapeworm (Taeniasis)

• **Causative agent:**
 - Taenia solium
 - Taenia saginata

• **Hosts of Infection:**

<table>
<thead>
<tr>
<th></th>
<th>Definitive host</th>
<th>Intermediate host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taenia solium</td>
<td>Man</td>
<td>Pig</td>
</tr>
<tr>
<td>Taenia saginata</td>
<td>Man</td>
<td>Cattle</td>
</tr>
</tbody>
</table>

• **Mode of transmission:**
 - Ingestion of infective cysticerci in beef (T. saginata) or pork (T. solium)
 - Ingestion of food/ water/ vegetables contaminated with eggs

• **Incubation Period:** 8-14 weeks

• **Drugs of choice:**
 - Praziquantel
 - Niclosamide
 - Albendazole (Cysticercosis)

DENGUE & YELLOW FEVER

Dengue Fever and related Syndromes

• Dengue viruses are arboviruses (Flavivirus) which may result in:
 - Asymptomatic infection
 - Dengue
 - Dengue hemorrhagic fever (DHF)
 - Dengue shock syndrome (DSS)

• Dengue viruses have 4 serotypes (Den 1, 2, 3, 4)

• Hookworm infection is associated with: Iron Deficiency Anemia

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

- **Vector for dengue:** Aedes aegypti
- **Reservoir:** Man, Mosquito
- **Incubation period:** 5 – 6 days
- **Classical dengue fever (DF):**
 - Also known as 'breakbone fever'
 - Clinical features: High grade fever (biphasic curve) with chills, intense headache, muscle and joint pains, retro-orbital pain, photophobia, colicky pain, abdominal tenderness, skin rash
- **Dengue hemorrhagic fever (DHF):** Severe form of DF, caused by infection with more than one dengue virus type
 - Incubation period: 4 – 6 days
 - Clinical features:
 - Rash less common
 - Rising hematocrit value (> 20% of baseline)
 - Moderate-to-marked thrombocytopenia (< 1 lac/mm³)
 - Hepatomegaly
 - Positive tourniquet test: > 20 petechiae per sq. inch
 - Diagnosis of DHF: Fever + hemorrhagic manifestations + thrombocytopenia + hemoconcentration or rising hematocrit
- **Dengue shock syndrome (DSS):**
 - Diagnosis of DSS: Fever + shock [rapid and weak pulse, narrow pulse pressure (< 20 mm Hg)/ hypotension, cold clammy skin, restlessness]

Yellow Fever (Yellow jack/ Black vomit/ American plague)

- **Causative agent:** Flavivirus fribucus (Togavirus Family, Gp B Arbovirus)
- **Reservoir of Infection:**
 - Forest (Sylvian) Cycle: Monkeys and Forest mosquitoes
 - Urban Cycle: Man (Sub clinical and clinical cases) and Aedes aegypti
- **Period of Communicability:**
 - Man: first 3 – 4 days of illness
 - Mosquitoes: Lifelong (after extrinsic IP of 8-12 days)
- **Immunity:** Single attack provides life long immunity
 - Infants born of Immune mothers have antibodies up to: 6 months of life
- **Incubation Period:** 3-6 days
 - IP of 6 days recognized under International Health Regulations
- **Case fatality rate:** 80%
- **Yellow Fever Vaccine:**
 - Live attenuated, lyophilized (Freeze dried) vaccine
 - Strain: 17D strain in YF vaccine
 - Cold chain Temperature: – 30° to + 5°C
 - Reconstitution with Diluent: Cold physiological saline
 - After reconstitution, use within: ½ hour
 - Dose: 0.5 ml (irrespective of age)
 - Route: Subcutaneous
 - Site: At insertion of Deltoid
 - Immunity lasts: From 7 days of Vaccination till 35 years
 - WHO recommended validity of Vaccination Certificate for International travel: from 10 days to 10 years
 - YF vaccine is the only Live vaccine that can be administered in Pregnancy (if there is risk of exposure)
 - Yellow Fever Vaccine and Cholera Vaccine cannot be given together: Maintain a gap of 3 weeks or more between them
- **Indices of Surveillance of Aedes Mosquitoes**

\[
\text{Container Index} = \frac{\text{No of containers showing breeding of Aedes larvae}}{\text{Total no of containers surveyed}} \times 100
\]

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

House index

\[
\text{House index} = \frac{\text{No of Houses showing breeding of Aedes Larvae H+}}{\text{Total no of Houses surveyed H}}
\]

Breteau Index

\[
\text{Breteau Index} = \frac{\text{No of containers showing breeding of Aedes Larvae C+}}{\text{Total no of houses surveyed H}} \times 100
\]

- **YF Control measures:**
 - Distance around airports to be kept free of aedes breeding: 400 m
 - Breteau Index (Aedes aegypti index) should be < 1% in towns and seaports

MALARIA

Anopheles Mosquito

There are over 55 species of anopheline mosquitoes in India:

- *An. culicifacies*: Vector of rural malaria
- *An. stephensi*: Vector of urban malaria; breed in overhead tanks
- *An. fluviatilis*: Efficient vector; highly anthropophilic; breed in moving water
- *An. sundicus*: Breed in brackish water
- *An. dirus*
- *An. minimus*
- *An. philippinensis*
- *An. maculates*

Epidemiology of Malaria in India

- **Incubation period:**

<table>
<thead>
<tr>
<th>Type</th>
<th>Incubation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmodium vivax</td>
<td>8 – 17 days (14 days)</td>
</tr>
<tr>
<td>Plasmodium falciparum</td>
<td>9 – 14 days (12 days)</td>
</tr>
<tr>
<td>Plasmodium malariae</td>
<td>18 – 40 days (28 days)</td>
</tr>
<tr>
<td>Plasmodium ovale</td>
<td>16 – 18 days (17 days)</td>
</tr>
</tbody>
</table>

- **Season:** Most common in July – November
- **Definitive host:** Anopheles mosquito (Intermediate host: Man)
 - Is seen in both rural as well as urban areas
- **Vector:** *An. culicifacies* (rural) and *An. stephensi* (urban)

Modes of Malaria Transmission

- **Bite of female anopheline mosquitoes:**
 - Infective forms: Sporozoites
- **Injection of blood of a malaria patient containing asexual forms:** ‘Trophozoite induced malaria’
 - Transfusion malaria
 - Congenital malaria
 - Malaria in drug addicts

Life Cycle of Mosquito

- **Hosts involved in transmission of malaria:**

<table>
<thead>
<tr>
<th>Man</th>
<th>Female anopheles mosquito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary host</td>
<td>Primary host</td>
</tr>
<tr>
<td>Intermediate host</td>
<td>Definitive host</td>
</tr>
<tr>
<td>Asexual cycle</td>
<td>Sexual cycle</td>
</tr>
<tr>
<td>Schizogony</td>
<td>Sporogony</td>
</tr>
</tbody>
</table>
Review of Preventive and Social Medicine

- **Human cycle of Plasmodium:**
 - **Pre-erythrocytic schizogony:**
 - Development of sporozoites in liver parenchyma
 - Liberated merozoites are called as ‘Cryptozoites’
 - No clinical manifestation; No pathological change
 - Blood is sterile
 - **Erythrocytic schizogony:**
 - Parasite resides inside RBCs; passes through stages of Trophozoite, Schizont, Merozoite
 - Parasitic multiplication brings clinical attack of malaria
 - **Gametogony:**
 - Some merozoites develop in RBCs of spleen and bone marrow to form ‘Gametocytes’
 - **Exo-erythrocytic schizogony:**
 - Persistence of late tissue phase in liver
 - Seen in P.vivax and P. ovale
 - Cause relapses in Vivax and Ovale malaria
 - Liberated merozoites are known as ‘Phanerozoites’

- **Mosquito cycle of Plasmodium:**
 - Completion of gametogony:
 - Exflagellation of microgamete and maturation of gametes
 - Fusion of gametes form ‘Zygote’; zygote matures to ‘Ookinite’
 - **Sporogony:**
 - Ookinite develops into ‘Oocyst’
 - On 10th day of infection, oocyst ruptures, releasing sporozoites; sporozoites reach salivary glands
 - Mosquito at this stage is capable of transmitting infection

Malariometric Measures in Pre-eradication Era

- **Spleen rate:** Percentage children 2–10 years age showing enlargement of spleen
 - Index used for measuring endemicity of malaria in a community
- **Parasite rate:** Percentage children 2–10 years age showing parasites in blood films
- **Parasite density index**
- **Infant parasite rate:** Percentage infants showing parasites in blood films
 - Is ‘most sensitive index of recent malaria transmission’ in a locality
 - If IFR is zero for 3 consecutive years, it is regarded as absence of malaria transmission (even though anopheleline may remain)
- **Proportional case rate:** Is no. of clinical malaria cases diagnosed per 100 patients attending hospitals and dispensaries

Malariometric Measures in Eradication Era

- **Annual parasitic incidence (API):** Sophisticated measure of malaria incidence in a community
 \[
 \text{API} = \frac{\text{Confirmed cases during one year}}{\text{Population under surveillance}} \times 1000
 \]
- **Annual blood examination rate (ABER):** (Index of operational efficiency)
 \[
 \text{ABER} = \frac{\text{Number of slides examined}}{\text{Population}} \times 100
 \]
- **Annual falciparum incidence (AFI)**
- **Slide positivity rate (SPR)**

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

\[\text{SPR} = \frac{\text{No. of blood smears + ve for parasite}}{\text{No. of blood smears examined}} \times 100 \]

- Slide falciparum rate (SFR)

New Malaria Treatment Guidelines in India (2013 onwards)
See Annexure 12

LYMPHATIC FILARIASIS

Problem Statement of Lymphatic Filariasis

- Global: Affects 120 million people in 120 countries; 1.1 billion people live in areas with risk of infection
- SEAR: 600 million live in endemic areas; 60 million infected
- India: Lymphatic filariasis is a major public health problem in India with 553 million people at risk in 233 districts; heavily endemic in UP, Bihar, Jharkhand, Andhra Pradesh, Orissa, Tamil Nadu, Kerala, Gujarat

Lymphatic Filariasis

- Description: Lymphatic Filariasis covers infection with 3 closely related nematode worms
- Causative Agents:
 - Wuchereria bancrofti
 - Brugia malayi
 - Brugia timori
- Definitive Host: Man
- Intermediate Host: Mosquito
- Vectors of Lymphatic filariasis:
 - Bancroftian filariasis: Culex, Anopheles, Aedes
 - Brugian filariasis: Mansonia, Anopheles, Coquillettidia
- Main Vectors of Lymphatic filariasis in India:
 - Bancroftian Filariasis: Culex quinquefasciatus (C. fatigans)
 - Brugian Filariasis: Mansonia annulifers, Mansonia uniformis

Mode of Transmission:
- Bite of Infected Vector mosquito

Stages of filariasis:
- Pre-Patent Period: Time interval between inoculation of infective larvae and first appearance of detectable microfilariae (Mf)
- Clinical Incubation Period: Time interval between invasion of infective larvae to development of clinical manifestations (~8-16 months)
- Mosquito becomes infective: When third stage larvae migrates to Proboscis of mosquito vector
- Asymptomatic microfilaraemia stage: Absence of Mf or clinical manifestations
- Asymptomatic microfilaremia: Blood positive for Mf but no clinical manifestations; act as carriers and an important source of infection
- Occult Filariasis (cryptic filariasis): No clinical manifestations or Mf in blood
- Due to a hypersensitivity reaction to Filarial Antigens
- Example: Tropical pulmonary eosinophilia

Filaria Detection Tests

- MC method used for epidemiological assessment of Lymphatic Filariasis (through mass blood survey): Thick film using 20 cu. mm. of capillary blood (collected between 830pm upto 12 midnight)
- Most sensitive method for detecting low density microfilaraemia: Membrane Filter Concentration Method
- DEC Provocation test (100 mg DEC oral): Mf can be induced to appear in blood during daytime
 - Blood is examined 1 hour after DEC administration

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- **Good method to detect low density microfilariaemia, when other methods fail:** Xenodiagnosis
 - Mosquitoes allowed to feed on patients, then dissected 2 weeks later

Treatment of Filariasis

- **Chemotherapy of Filariasis**: Diethylcarbamazine (DEC)
 - **Bancroftian filariasis**: 6 mg/kg/day X 12 days (Total 72 mg/kg)
 - **Brugian filariasis**: 3-6 mg/kg/day X 6-12 days (Total 18-72 mg/kg)
 - DEC is effective in killing Mf
 - No effect on Infective (stage III) larvae
 - Uncertain effect on adult worm

- **Filaria never causes explosive epidemics.** Favourable factors for success of control programme are:
 - Parasite does not multiply in Insect vector
 - Infective larvae do not multiply in Human Host
 - Life cycle of parasite is quite long (15 years or more)

- **DEC medicated salt:**
 - Dose: 1.4 gm DEC/kg of salt
 - Is a type of Mass Treatment (using very low dose of drug)
 - Treatment duration: 6-9 months

- National Filaria Control Programme (NFPCP), 1955 is now a component of National Vector Borne Diseases Control Programme (NVBDCP), 2003-04
 - NVBDCP covers Malaria, Filariasis, Japanese Encephalitis, Kala Azar, Chikungunya fever and Dengue

Assessment of Filaria Control Programmes

<table>
<thead>
<tr>
<th>Methods</th>
<th>Parameters</th>
<th>Inclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Incidence of acute manifestations</td>
<td>Adenolymphangitis, epididymoorchitis, Lymphoedema, Hydrocoele, Chyluria</td>
</tr>
<tr>
<td></td>
<td>Prevalence of Chronic Manifestations</td>
<td></td>
</tr>
<tr>
<td>Parasitological</td>
<td>Mf rate (species specific)</td>
<td>% showing Mf in blood in population</td>
</tr>
<tr>
<td></td>
<td>Filarial Endemicity Rate</td>
<td>Mf in blood and/or disease manifestations</td>
</tr>
<tr>
<td></td>
<td>Microfilarial density (Intensity of infc)n</td>
<td>No Mf per unit volume (20 mm3) blood</td>
</tr>
<tr>
<td></td>
<td>Average infestation rate (Prevalence of Mf)</td>
<td>Average no of Mf per positive slide.</td>
</tr>
<tr>
<td>Entomological</td>
<td>Vector density per 10 hour man catch % mosquito with Infective stage III Larvae Annual biting rate</td>
<td>Types of larval breeding places</td>
</tr>
</tbody>
</table>

Rabies

Rabies (Hydrophobia)

- Hydrophobia is pathognomic (though few consider Aerophobia as pathognomic)
 - Causative agent: Lyssavirus Type 1 (Bullet shaped neurotropic RNA virus)
 - Types of rabies virus: Street virus and Fixed virus

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Street Virus (SV)</th>
<th>Fixed Virus (FV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Naturally occurring cases</td>
<td>Serial brain passage of SV</td>
</tr>
<tr>
<td>Incubation period</td>
<td>20 – 60 days</td>
<td>4 – 6 days</td>
</tr>
</tbody>
</table>
Communicable and Non-communicable Diseases

Pathogenicity
- For all mammals
- Sometimes pathogenic

Negri Bodies
- Formed
- Not formed

Importance
- Cause rabies
- Used for vaccine preparation

- **Incubation period**: Variable [4 days to many years; ~ 3 to 8 weeks]
- Rabies is a dead-end infection in man
- **Negri bodies** (Pathognomic of Rabies): Intracytoplasmic eosinophilic inclusion bodies with basophilic granules in neurons
- **Mode of transmission**:
 - Animal bites (dogs, cats, monkeys, cow, goat, sheep, buffalo, horses EXCEPT RAT BITE and HUMAN BITE)
 - Licks (on abraded skin or abraded/unabraded mucosa)
 - Aerosols (Rabies infected bats)
 - Person to person: Rare but possible
 - Corneal and organ transplantation

Water: An Effective Natural Barrier against Rabies
- Rabies-free area: No case of Rabies in man or animals for past 2 years
- Rabies is not found in:
 - Australia
 - Cyprus
 - Ireland
 - Japan
 - Britain
 - Lakshadweep (India)
 - China (Taiwan)
 - Iceland
 - Malta
 - New Zealand
 - Andaman and Nicobar Islands (India)

Local Wound Treatment
- **Cleansing**: Flush and wash wound area with plenty of soap and running water for minimum 5-10 minutes
- **Suturing**: Not recommended; if necessary, do 24–48 hours later
- **Anti-rabies serum**: Local application with prior sensitivity testing
- **Observe animal**: For 10 days

Type of contact, exposure and recommended post-exposure prophylaxis (PEP)

<table>
<thead>
<tr>
<th>Category</th>
<th>Type of contact</th>
<th>Recommended PEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Touching or feeding of animals</td>
<td>None, if reliable case history is available</td>
</tr>
<tr>
<td></td>
<td>Licks on intact skin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact of intact skin with secretions/excretions of rabid animal/human case</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Nibbling of uncovered skin</td>
<td>Wound management</td>
</tr>
<tr>
<td></td>
<td>Minor scratches or abrasions without bleeding</td>
<td>Anti-rabies vaccine</td>
</tr>
<tr>
<td>III</td>
<td>Single or multiple transdermal bites or scratches, licks on broken skin</td>
<td>Wound management</td>
</tr>
<tr>
<td></td>
<td>Contamination of mucous membrane with saliva (i.e. licks)</td>
<td>Rabies immunoglobulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anti-rabies vaccine</td>
</tr>
</tbody>
</table>

Available vaccines in India
- **Cell Culture Vaccines**
 - Human Diploid Cell Vaccine (HDCV), Liquid (Adsorbed)
 - Purified Chick Embryo Cell Vaccine (PCECV)
 - Purified Vero Cell Rabies Vaccine (PVRV)
- Purified Duck Embryo Vaccine (PDEV)
New Recommended Regimens/ Schedules [NEW GUIDELINES]

<table>
<thead>
<tr>
<th>Type of prophylaxis</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST EXPOSURE INTRAMUSCULAR</td>
<td></td>
</tr>
<tr>
<td>Essen Regimen (1-1-1-1-1)</td>
<td>Day 0, 3, 7, 14, 28</td>
</tr>
<tr>
<td>POST EXPOSURE INTRADERMAL</td>
<td></td>
</tr>
<tr>
<td>Updated Thai Red Cross Regimen (2-2-2-0-2)</td>
<td>Day 0, 3, 7, 28</td>
</tr>
<tr>
<td>Post-exposure in vaccinated individuals</td>
<td>Day 0, 3</td>
</tr>
<tr>
<td>Pre-exposure prophylaxis</td>
<td>Day 0, 7, 21/28</td>
</tr>
</tbody>
</table>

- **Minimum potency**: 2.5 IU per i/m dose

Other Management Guidelines

- **Anti Rabies serum**:
 - Horse Antirabies Serum: 40 IU/ kg on Day 0 (50% in Wound, 50% i.m)
 - Human Rabies Immune Globulin: 20 IU/kg (maximum in wound, rest i.m glutal) (Concentration 150 IU/mL)
 - Serum Sickness with Horse Serum: 15 - 45%

- **Persons under Antirabic treatment should avoid**:
 - Alcohol (during and 1 month after treatment)
 - Undue physical and mental strain and late nights
 - Corticosteroids and other immunosuppressive agents

- **Intramuscular injections of Cell Culture and Purified Duck Embryo Vaccines**: Deltoid (not in Buttocks)
 - Volume of intradermal dose of Rabies Vaccine is 1/5th of intramuscular dose
 - Sites for intraderal rabies vaccines: Deltoid, Lateral thigh, Suprascapular region, Lower quadrant of abdomen
 - Booster injections in Pre-exposure prophylaxis: at intervals of 2 years

- **Immunisation of Dogs**:
 - Primary Immunisation at 3-4 months and boosters at regular intervals
 - BPL inactivated NTV: Single dose 5ml for dogs (3ml for cats), revaccination after 6 months, subsequently every year
 - Modified Live Virus Vaccine: Single dose 3ml, boosters every 3 years
 - Most logical and cost effective approach for control of Urban Rabies: Elimination of stray dogs and swift mass immunisation

- Atleast 80% of entire dog Population of the area must be immunized

JAPANESE ENCEPHALITIS

Japanese Encephalitis (JE)

- **Causative agent**: Group B arbovirus (Flavivirus)
- **Host factors**:
 - Pigs are ‘Amplifier Hosts’
 - Cattle and buffaloes are ‘Mosquito attractants’
 - Horses are only domestic animals which show signs of encephalitis due to JE virus
 - Birds are also involved in Natural History: pond herons, cattle egrets, poultry and ducks
 - Man is an ‘Incidental Dead end Host’

- 85% cases occur in Children < 15 years of age
- **Vectors of JE**: Culicine mosquitoes and some Anophelines
- Culex tritaeniorhynchus (most important vector), Culex vishnuii and Culex gelidus
 - IP of JE in man: 5 – 15 days (9 – 12 days in mosquitoes)
 - Case fatality rate: 20 – 40% (may reach up to 58%)
 - Epidemiology in India:
 - JE has been reported by 26 states and UT’s in India
 - Gorakhpur District of UP contribute the largest no of cases
 - 85% of cases of JE are reported in age below 15 years BUT JE IS INFREQUENT IN INFANCY
 - Not all humans bitten by mosquitoes develop the disease: Ratio of JE overt disease to inapparent infection varies from 1:300 to 1:1000
 - Endemicity of JE in India: 1-2 cases per village

JE Vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Strain(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse brain derived, purified & inactivated vaccine</td>
<td>Nakayama Strain Beijing Strain</td>
</tr>
<tr>
<td>Cell culture derived, inactivated vaccine</td>
<td>Beijing P3 Strain</td>
</tr>
<tr>
<td>Cell culture derived, live attenuated vaccine</td>
<td>SA 14-14-2 Strain (in India)</td>
</tr>
</tbody>
</table>

- Mouse brain derived inactivated vaccine:
 - 2 primary doses 4 weeks apart, booster after 1 year and subsequently at 3 yearly intervals until the age of 10-15 years
 - Dose: 0.5 ml for children aged < 3 years (1 ml for age > 3 years)
 - Route: Subcutaneous
 - Vaccine is most useful in interepidemic period
 - Pre-exposure prophylaxis: 3 primary doses on day 0, 7, 28 (or 2 primary doses 4 weeks apart)
 - Booster after 1 year and then every 3 years

KFD

Kyasanur Forest Disease (KFD)

- KFD is also known as ‘Monkey Disease’
- Causative agent: Group B Togavirus (Flavivirus)
- Reservoir: Rats and squirrels
- Amplifier hosts: Pigs
- Man is ‘incidental dead-end host’
- Vectors of KFD:
 - In India: Hemaphysalis spinigera (Hard Tick)
 - Outside India: Soft Tick
- IP: 3 – 8 days
- Control measures:
 - Control of ticks
 - Restriction of cattle movement
 - Vaccination: Killed KFD vaccine
 - Personal protection: through repellants

PLAGUE

Plague

- Synonyms: Black Death, Mahamari, The great death
- Causative agent: *Yersinia pestis* (Gram negative, non-motile cocco-bacillus)
 - Bipolar staining with Wayson’s stain

Vector of Plague: Rat flea (Xenopsylla cheopis)
Communicable and Non-communicable Diseases

- **Reservoir of Infection:** Wild rodents (Tatera indica in India)
- **Source of Infection:** Infected rodents, fleas and cases of pneumonic plague
- **Commonest and most efficient vector of Plague:** Rat flea (Xenopsylla cheopsis)
 - Both sexes of fleas bite and transmit the disease
- **Mode of transmission:** Bite of an infected flea, direct contact with tissues of infected animal or droplet infection (pneumonic plague)
- **Types of Plague:**

<table>
<thead>
<tr>
<th>Type</th>
<th>IP</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pneumonic Plague</td>
<td>1-3 days</td>
<td>Complication of Bubonic-Septicemic plague</td>
</tr>
<tr>
<td>Bubonic Plague</td>
<td>2-7 days</td>
<td>MC type of Plague</td>
</tr>
<tr>
<td>Septicemic Plague</td>
<td>2-7 days</td>
<td>Occurs of Accidental laboratory infections</td>
</tr>
</tbody>
</table>

- **Drug of choice for treatment:** Streptomycin 30 mg/kg i.m. × 7-10 days
- **Drug of choice for chemoprophylaxis:** Tetracycline 500 mg QID × 5 days

Flea Indices in Plague

- **Total flea index:** Is average no. of fleas of all species per rat
- **Cheopsis index:** Is average no. of X. cheopsis per rat; Is an ‘indicator of potential explosiveness’ if outbreak occurs
- **Specific percentage of fleas:** Percentage of different fleas
- **Burrow index:** Average no. of fleas per species per rodent burrow

RICKETTSIAL DISEASES

Rickettsial Zoonoses

Description: Are a group of specific communicable diseases caused by Rickettsial organisms and transmitted to man by Arthropod vectors (Q fever excepted)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Agent</th>
<th>Vector</th>
<th>Reservoir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhus Group²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidemic typhus</td>
<td>R. prowazekii²</td>
<td>Louse²</td>
<td>Humans²</td>
</tr>
<tr>
<td>Murine typhus</td>
<td>R. typhi</td>
<td>Flea</td>
<td>Rodents</td>
</tr>
<tr>
<td>Scrub typhus</td>
<td>R. tsutsugamushi²</td>
<td>Trombiculid mite</td>
<td>Rodents</td>
</tr>
<tr>
<td>Spotted Fever Gp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian Tick typhus</td>
<td>R. conori</td>
<td>Tick</td>
<td>Rodents, dogs</td>
</tr>
<tr>
<td>RMSF</td>
<td>R. rickettsii</td>
<td>Tick</td>
<td>Rodents, dogs</td>
</tr>
<tr>
<td>Rickettsial pox</td>
<td>R. akari</td>
<td>Mite</td>
<td>Mice</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q Fever</td>
<td>Coxiella burnetii²</td>
<td>NIL²</td>
<td>Cattle, sheep, goat</td>
</tr>
<tr>
<td>Trench Fever</td>
<td>Bartonella quintana</td>
<td>Louse²</td>
<td>Humans²</td>
</tr>
</tbody>
</table>

Epidemic Typhus

- *Is a type of rickettsial disease of typhus group:*
 - *Recurrent form of Epidemic typhus: Brill Zinsser Disease²*
 - Was the ‘most formidable rickettsial disease in past’
- **Causative agent:** R. prowazekii²
- **Vector:** Louse (P. capitis, P. corporis)
- **Mode of transmission:** (IS NOT BY LOUSE-BITE)
 - Scratching and inoculation with infected louse faeces
Communicable and Non-communicable Diseases

- Crushing infected louse on body
- Inhalation of infected louse faeces or dust

- **Clinical picture:** Prolonged febrile illness, vasculitis
- **Drug of choice:** Tetracycline
- **Under International Health Regulations (IHRs), ‘Louse borne typhus is a disease under surveillance’**

Endemic Typhus

- Is also known as ‘Flea borne typhus’ or ‘Murine typhus’
- **Causative agent:** Rickettsia typhi (R. mooseri)
- **Reservoir:** Rats
- **Mode of transmission:** Rat flea (Xenopsylla cheopsis) – BUT NOT THROUGH BITE, rather through faeces inoculation on skin or inhalation of dried infective faeces
- **Incubation period:** 1 – 2 weeks
- **Weil-felix reaction:** Becomes positive with Proteus OX-19 in 2nd week
- **Drug of choice:** Tetracycline

Scrub Typhus

- Most widespread Rickettsial Disease
- **Causative agent:** Rickettsia tsutsugamushi
- **Vector:** Trombiculid Mite (Leptotrombidium delinese and L. akamushi)
- **IP:** 10-12 days
- **Typical clinical features:** Eschar (punched out ulcer covered with a blackened scar, indicates location of mite bite)
- **Weil Felix Reaction** is strongly positive with Proteus strain OXK

Q Fever

- **Causative agent:** Coxiella burnetii
 - Only Rickettsial disease without any vector (soft tick in few animal cases)
 - Only Rickettsial disease without any skin lesion
- **Mode of Transmission:** Inhalation of Infected dust, Aerosol transmission, direct contact, Contaminated food like meat, milk and milk products
- **IP:** 2-3 weeks
- **Clinical features:**
 - Acute onset with fever, chills, general malaise and headache
 - ‘Pneumonia like picture’
 - Absence of rash/local lesion
 - Inapparent infections
- **Treatment:**
 - Tetracycline
 - Pasteurization/Boiling of milk

LEISHMANIASIS

Leishmaniasis

Causative agent of Leishmaniasis:

<table>
<thead>
<tr>
<th>Types of Leishmaniasis</th>
<th>Causative agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral Leishmaniasis (Kala Azar)</td>
<td>Leishmania donovani²</td>
</tr>
<tr>
<td>Cutaneous Leishmaniasis (Oriental Sore)</td>
<td>Leishmania tropica²</td>
</tr>
<tr>
<td>Muco-Cutaneous Leishmaniasis</td>
<td>Leishmania braziliensis</td>
</tr>
</tbody>
</table>

- **Reservoir of Infection:** Dogs, jackals, foxes, rodents and other mammals
- **Indian Kala Azar is a non-zoomotic infection:** Man as reservoir

https://kat.cr/user/Blink99/
Peak age of Kala Azar in India: 5 – 9 years

Vectors: Female phlebotamine sandflies

<table>
<thead>
<tr>
<th>Types of Leishmaniasis</th>
<th>Vector(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral Leishmaniasis (Kala Azar)</td>
<td>Phlebotamus argentipes</td>
</tr>
<tr>
<td>Cutaneous Leishmaniasis (Oriental Sore)</td>
<td>Phlebotamus papatasi, Phlebotamus sergenti</td>
</tr>
</tbody>
</table>

Habitat of Sandfly: Cracks and crevices of walls, tree holes, caves

Insecticide of choice for sandfly: DDT (sprayed only up to a height of 6 feet from floor) 1 – 2 gm/sq. metre

Mode of transmission:
- Bite of female phlebotamine sandflies
- Contamination of bite wound
- Contact (crushing of insects while feeding)
- Blood transfusion

IP: 10 days to 2 years (average 1 – 4 months)

Aldehyde Test of Napier:
- Becomes Positive after 2-3 months of disease onset and reverts to negative 6 months after cure
- Useful Test for surveillance (not for diagnosis)
- Non-specific test: Positive in many chronic infections where albumin: globulin ratio is reversed

Serological tests:
- ELISA: for diagnosis as well as epidemiological field survey
- rk 39 dipstick test
- Indirect Fluorescent Antibody Test (IFAT)
- Direct Agglutination Test (DAT)

Leishmanin (Montenegro) test:
- Procedure: Intradermal injection of 0.1ml leishmanin (a preparation of 10 6/ml washed promastigotes suspended in 0.5% phenol saline) on flexor surface of forearm
- Examine after 48-72 hrs:
 - Induration > 5 mm: positive
 - Induration < 5 mm: negative
- Useful Test for:
 - Immunity status
 - Inferring endemicity or epidemicity of infection
 - Identifying groups at risk of infection

Test results in Leishmaniasis:

<table>
<thead>
<tr>
<th>Type of Leishmaniasis</th>
<th>Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral Leishmaniasis (Kala Azar)</td>
<td></td>
</tr>
<tr>
<td>Active Phase</td>
<td>Negative</td>
</tr>
<tr>
<td>Within 1 yr of recovery</td>
<td>Positive</td>
</tr>
<tr>
<td>Cutaneous Leishmaniasis</td>
<td>Positive</td>
</tr>
<tr>
<td>Mucocutaneous Leishmaniasis</td>
<td></td>
</tr>
<tr>
<td>4-6 weeks after onset</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Prophylaxis & Treatment

- There are no drugs available for personal prophylaxis of Kala azar

Treatment of Leishmaniasis:
- Sodium stibogluconate (DOC in Kala Azar control Program)
- Miltefosine
- Pentamidine
- Ketoconazole
- Sitamaquine
- Mepacrine
- Amphotericin B
- Allopurinol
- Urea stibamine
TRACHOMA

Trachoma (Rough Eye)

- **Causative agent:** Chlamydia trachomatis (immune types A, B, C)
 - Sexually transmitted
 - Chlamydia trachomatis (serotypes D, E, F, G, H, I, J, K) may cause a milder infection 'Inclusion Conjunctivitis'
- **IP:** 5-12 days
- **Mode of transmission:**
 - Direct or indirect contact with ocular discharges or fomites
 - Eye seeking flies
 - Venereal transmission
- **MC infected age group:** 2-5 yrs aged children
- **Communicability:** Trachoma is a disease of low infectivity
- **Reservoir of infection:** Children with active disease, chronically infected older children and adults
- **Predisposing factors:** Direct sunlight, dust, smoke and irritants (such as kajal or surma)
- **Field diagnosis of Trachoma:** At least 2 of following diagnostic criteria in children 0-10 years age:
 - Follicles on upper Tarsal conjunctiva
 - Limbal follicles or their sequelae (Herbert’s Pits)
 - Conjunctival scarring (Trichiasis, Entropion)
 - Vascular pannus
- **WHO classification of Trachoma:**
 - TIF (Trachomatous Inflammation Follicular): Presence of > 5 large follicles on upper tarsal conjunctiva
 - TII (Trachomatous Inflammation Intense): Obscuration of > 50% of deep tarsal vessels of upper tarsal conjunctiva

Trachoma Treatment

- **Treatment of choice for Trachoma:** Azithromycin 20 mg/ kg oral stat
- **Current WHO recommendations for antibiotic treatment of trachoma:**
 - **District level prevalence is > 10% in 1-9 years old children:** Mass treatment with Azithromycin
 - **District level prevalence is 5-10% in 1-9 years old children:** Targeted treatment with Azithromycin (the identification and treatment of all members of any family in whom one or more members have follicular trachoma)
 - **District level prevalence is < 5% in 1-9 years old children:** Azithromycin distribution may not be necessary
- **Mass treatment for Trachoma:** [NEW GUIDELINES–WHO]
 - **Indication of mass treatment in Trachoma:** > 10 % prevalence of severe and moderate Trachoma in children < 10 yrs of age [NEW GUIDELINES–WHO]
 - **Treatment:** 1% tetracycline ointment BD for 5 consecutive days each month or OD for 10 days each month for 6 consecutive months, or for 60 consecutive days

SAFE Strategy (WHO)

- **Surgery:** for Trichiasis and Entropion
- **Antibiotic use:** Azithromycin is Drug of choice
- **Facial cleanliness**
- **Environmental improvement**
TETANUS

Tetanus

- **Causative agent:** Clostridium tetani (Gram +ve, anaerobic, drumstick appearance)
- **Reservoir:** Natural habitat is soil and dust
- **IP:** 6-10 days (1 day to several months)
- **Period of communicability:** None (no person to person transmission)
- **Mode of transmission:** Contamination of Wounds with spores
- **Tetanus toxin:** Second most lethal toxin (Most lethal toxin is Botulinum toxin)
 - Lethal dose for a 70 kg man: 0.1mg
 - Acts on 4 areas of nervous system:
 - Motor End Plates in Skeletal System
 - Spinal Cord
 - Brain
 - Sympathetic System
 - **Principal action:** Blocks inhibition of Spinal reflexes
 - Sensitivity to toxin is more in males
- **Herd Immunity in Tetanus:** Does not protect the individual
- **Tetanus is best prevented by:** Active immunisation with Tetanus toxoid (TT)
- **Aim of active Immunisation with TT:**
 - Vaccinate the entire community
 - Ensure protective level of antitoxin ~ 0.01 IU/ml serum throughout life

Tetanus Toxoid in Pregnancy

Refer to Chapter 3, Theory

Prevention of Tetanus in Wounded

<table>
<thead>
<tr>
<th>Immunity Category</th>
<th>Treatment by type of wound</th>
<th>Other Wounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wounds < 6hrs old, clean, non-penetrating, with negligible tissue damage</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Nothing more required</td>
<td>Nothing more required</td>
</tr>
<tr>
<td>B</td>
<td>Toxoid 1 dose</td>
<td>Toxoid 1 dose</td>
</tr>
<tr>
<td>C</td>
<td>Toxoid 1 dose</td>
<td>Toxoid 1 dose + Human Tetanus Immunoglobulin</td>
</tr>
<tr>
<td>D</td>
<td>Toxoid complete course</td>
<td>Toxoid complete course + Human Tetanus Immunoglobulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where,
A. Complete course of toxoid or booster dose in previous 5 years
B. Complete course of toxoid or booster dose in previous 5-10 years
C. Complete course of toxoid or booster dose in >10 years ago
D. Has not had a complete course of toxoid or status is unknown

Neonatal Tetanus/ 8th Day Disease

- **NNT has a marked seasonal incidence in India:** > 50% of total annual cases occur in months of July, August and September
- **Cleans for safe delivery for prevention of NNT:**

<table>
<thead>
<tr>
<th>3 Cleans</th>
<th>5 Cleans</th>
<th>7 Cleans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Hands</td>
<td>Clean Hands</td>
<td>Clean Hands</td>
</tr>
<tr>
<td>Clean delivery surface</td>
<td>Clean delivery surface</td>
<td>Clean delivery surface</td>
</tr>
<tr>
<td>Clean Cord care</td>
<td>Clean Cord cut/blade</td>
<td>Clean Cord cut/blade</td>
</tr>
<tr>
<td>Clean cord tie</td>
<td>Clean cord tie</td>
<td>Clean Cord cut/blade</td>
</tr>
</tbody>
</table>
Communicable and Non-communicable Diseases

- 7 Cleans are proposed under RCH-III
- Clean cord stump implies ‘No Applicant’
- Clean towel and clean water are for hands washing

• **NNT Elimination** (Classification of districts, India is based on 3 parameters: incidence rate, TT-2 or booster coverage and % attended deliveries)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Rate</th>
<th>TT-2 coverage</th>
<th>Attended deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNT High Risk</td>
<td>> 1/1000 LB</td>
<td>< 70%</td>
<td>< 50%</td>
</tr>
<tr>
<td>NNT Control</td>
<td>< 1/1000 LB</td>
<td>> 70%</td>
<td>> 50%</td>
</tr>
<tr>
<td>NNT Elimination<sup>2</sup></td>
<td>< 0.1/1000 LB</td>
<td>> 90%</td>
<td>> 75%</td>
</tr>
</tbody>
</table>

LEPROSY/HANSEN’S DISEASE

Leprosy Situation in India [2013]

• Prevalence: 0.68 per 10000 population²
• Annual new case detection rate: 1.0 per 10,000 population
• % children: 9.7%
• % MBL: 49%
• 33 states/UTs achieved elimination
• Cure rate: 90-95%

Classification in Leprosy

Classifications of Leprosy:

<table>
<thead>
<tr>
<th>Ridley Jopling classification<sup>2</sup></th>
<th>Indian classification</th>
<th>Madrid classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT (Tuberculoid)</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>BT (Borderline Tuberculoid)</td>
<td>Tuberculoid</td>
<td>Tuberculoid</td>
</tr>
<tr>
<td>BB (Borderline borderline)</td>
<td>Borderline</td>
<td>Borderline</td>
</tr>
<tr>
<td>BL (Borderline Lepromatous)</td>
<td>Lepromatous</td>
<td>Lepromatous</td>
</tr>
<tr>
<td>LL (Lepromatous Leprosy)</td>
<td>Pure Neuritic<sup>2</sup></td>
<td>Pure Neuritic<sup>2</sup></td>
</tr>
</tbody>
</table>

(Pure neuritic type Leprosy (Indian classification): No skin lesions)

• Operational Classification of Leprosy (according to skin smear positivity) to serve as a basis for Chemotherapy:

<table>
<thead>
<tr>
<th>Paucibacillary Leprosy (PBL)</th>
<th>Multibacillary Leprosy (MBL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI < 2</td>
<td>BI ≥ 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Included types</th>
<th>Treatment duration<sup>2</sup></th>
<th>Follow up<sup>2</sup> (after treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indeterminate</td>
<td>6 months</td>
<td>Annually for 2 yrs</td>
</tr>
<tr>
<td>Polar tuberculoid (TT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Border tuberculoid (BT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multidrug therapy<sup>2</sup> (MDT) in NLEP (Drugs)</td>
<td>12 months</td>
<td>Annually for 5 yrs</td>
</tr>
<tr>
<td>Rifampicin 600 mg OAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dapsone 100 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rifampicin 600 mg OAMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dapsone 100 mg daily</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clofazimine 300 mg OAMS,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50mg daily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(BI: Bacteriological Index; OAMS: Once a month supervised)
Epidemiology of Leprosy

• Description: Chronic infectious disease caused by Mycobacterium leprae and affecting mainly peripheral nerves
 - Leprosy is a disease of ‘high infectivity but low pathogenicity’
 - Attack rate of Leprosy among house-hold contacts: 4.4 - 12%
 - Youngest case of Leprosy in India: 2 ½ month infant
 - Leprosy is often known as a ‘Social disease’
 - Is probably the oldest disease known to mankind

• Mode of transmission of Leprosy:
 - Droplet infection (MCQ)
 - Contact transmission (Direct skin to skin or indirect with soil/fomites)
 - Breast milk from lepromatous mothers
 - Transplacental
 - Insect vectors
 - Tattooing needles

• Diagnosis of leprosy under NLEP is currently based on clinical grounds
 - PBL: 1 – 5 skin lesions
 - MBL: > 5 skin lesions

Important Points of Leprosy

• Level of Leprosy for declaring it as a Public Health Problem: >1/10,000
• Elimination Level of Leprosy: <1/10,000
 - India eliminated Leprosy in December 2005
• Goal for Leprosy under National Health Policy 2002: Elimination by 2005
• Leprosy exhibits ‘both cell mediated immunity (CMI) and humoral immunity’

Tests for Detecting Immunity in Leprosy

Tests of Cell Mediated Immunity

<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepromin test</td>
</tr>
<tr>
<td>Lymphocyte transformation test</td>
</tr>
<tr>
<td>Leucocyte migration inhibition test</td>
</tr>
</tbody>
</table>

Tests of Humoral Immunity

<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLA – ABS Test</td>
</tr>
<tr>
<td>Monoclonal antibodies test</td>
</tr>
<tr>
<td>ELISA tests</td>
</tr>
<tr>
<td>Radioimmuneassay</td>
</tr>
</tbody>
</table>

Lepromin Test

• Test of CMI in Leprosy
• Test: 0.1 ml Lepromin intradermal on inner aspect of forearm
• Antigens used in Lepromin test:
 - Dhamendra antigen (extensively used in India)
 - Mitsuda antigen
• WHO recommended concentration of Dhamendra Antigen: 1/16
• Readings: After 48 hours and after 21 days
• Reactions in Lepromin test:
 - Early Reaction (FERNANDEZ REACTION):
 - Read at 48 hours
 - Redness ≥ 10 mm indicates +ve test
 - Indicates prior exposure or infection
 - Delayed type of hypersensitivity
 - Induced by soluble components of leprosy bacilli
 - Superior to late reaction
 - Corresponds to Mantoux Reaction (TB)
 - Late Reaction (LATE Mitsuda Reaction):
 - Read at 21 days
 - Nodule ≥ 5 mm diameter is +ve
- Indicates cell mediated immunity
- Induced by bacillary component of antigen
- BCG vaccine can convert it from -ve to +ve

Value of Lepromin test:
- Is not a diagnostic test
- Evaluation of CMI status of patients
- Aid to confirm the classification of Leprosy
- Estimation of prognosis of cases

Drawbacks of Lepromin test as a diagnostic test:
- Positive in non-cases
- Negative in lepromatous and near-lepromatous cases

Interpretation of Lepromin Test:
- ++ to +++: Tuberculoid Leprosy (TT)
- ++: Maculo-anaesthetic Leprosy (MA)
- + or +: Intermediate Leprosy (I)
- + to ++: Borderline Tuberculoid Leprosy (BT)
- + or +: Borderline Borderline Leprosy (BB)
- – or +: Borderline Lepromatous Leprosy (BL)
- –: Lepromatous Leprosy (LL)

Definitions under National Leprosy Elimination Program (NLEP):
- **Paucibacillary Leprosy (PBL):** 1 - 5 skin lesions and/or only one nerve involvement
- **Multibacillary Leprosy (MBL):** 6 or more skin lesions and/or more than one nerve involvement
- **Adequate treatment:** Patient has received 6 months of therapy in 9 months (for PBL) or 12 months of therapy within 18 months (for MBL)
- **Regular treatment:** Received MDT for two-thirds of total duration of therapy, i.e. 4 months for PBL (out of 6 months of duration of therapy) and 8 months for MBL (out of 12 months of duration of therapy)
- **Case:** Clinical signs of leprosy (with or without bacteriological confirmation of diagnosis) and who has not yet completed a full course of treatment with Multi-Drug Therapy (MDT)
- **Newly diagnosed case:** Diagnosed case who has not taken MDT in past
- **Defaulter:** A leprosy patient on MDT, who has not collected treatment for 12 consecutive months
- **Relapsed case:** A patient whose therapy was terminated successfully, completed adequately, who subsequently develops new signs and symptoms of disease, either during surveillance period or thereafter

Leprosy is Not Amenable to Eradication:
- Long and variable incubation period (Most important reason)
- Disputed modes of transmission
- Presence of sub-clinical cases and our inability to detect them
- Complicated spectrum of disease manifestations
- Failure of cell mediated immunity in lepromatous cases
- Bacterial resistance and persistence in the human body
- Absence of a vaccine
- Social and cultural taboos leading to concealment of disease
- Discovery of extra-human reservoir

- Uses of Lepromin test:
 - Evaluation of CMI status
 - Aid to confirm the classification
 - Estimation of prognosis

- Defaulter: A leprosy patient on MDT, who has not collected treatment for 12 consecutive months
HIV/ AIDS

HIV Epidemiology

<table>
<thead>
<tr>
<th>Route of transmission</th>
<th>% of total cases (India)</th>
<th>Efficiency of route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual</td>
<td>87°</td>
<td>0.01 – 1%°</td>
</tr>
<tr>
<td>Blood and blood products</td>
<td>1°</td>
<td>> 90%°</td>
</tr>
<tr>
<td>Sharing needles/ syringes</td>
<td>2</td>
<td>0.3%</td>
</tr>
<tr>
<td>Mother to child transmission</td>
<td>5</td>
<td>3%</td>
</tr>
</tbody>
</table>

- **Causative organism:** Human immunodeficiency virus (HIV) [Human T-Lymphotropic virus - III (HTLV-III); Lymphadenopathy virus (LAP)]
 - *Chances of HIV transmission in presence of STDs:* Increases 8 - 10 times°
 - AIDS (Acquired Immunodeficiency Syndrome) is also known as ‘Slim Disease’
- **Reservoir:** Cases and carriers
 - *Source:* Virus is in greatest concentration in blood, semen and CSF (lower concentrations in tear, saliva, breast milk, urine, cervical and vaginal secretions)
- **Basic modes of transmission**:
 - Sexual (MC)
 - Blood and blood products
 - Needles/ syringes
 - Mother to Child transmission (MTCT)
- **IP:** Few months to 10 years
- **MC Opportunistic Infection (OI) in AIDS**
 - *World:* Pneumocystis carinii pneumonia (PCP)
 - *India:* Tuberculosis (> Candida > PCP)
- **Epidemiological pattern of HIV epidemic in India:** Type 4 pattern [Epidemic starts from highest risk group (commercial sex workers, homosexuals, drug users) to bridge population (clients of sex workers, STD patients, migrant population, partners of drug users), and then to general population]

HIV Situation in India [2012]

- **Total no. of HIV cases:** Less than 2 million (Rank 3)
- **Prevalence of HIV:** 0.27%
- **Classification of states:**

<table>
<thead>
<tr>
<th>Groups with states/ UTs</th>
<th>Criteria of prevalence in</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk groups</td>
<td>Antenatal clinics</td>
</tr>
<tr>
<td>Group I (High Prevalence): Maharashtra, Tamil Nadu, Andhra Pradesh, Karnataka, Manipur, Nagaland</td>
<td>> 5%</td>
</tr>
<tr>
<td>Group II (Moderate Prevalence): Gujarat, Goa, Pondicherry</td>
<td>> 5%</td>
</tr>
<tr>
<td>Group III (Low Prevalence): Remaining states & UTs</td>
<td>< 5%</td>
</tr>
</tbody>
</table>
Communicable and Non-communicable Diseases

- Categorization of Districts:

<table>
<thead>
<tr>
<th>District</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>>1% ANC/ PTCT prevalence anytime anywhere in last 3 years</td>
</tr>
<tr>
<td>B</td>
<td><1% ANC/ PTCT prevalence everywhere in last 3 years PLUS >5% prevalence in any HRG (CSW/MSM/IDU/STD)</td>
</tr>
<tr>
<td>C</td>
<td><1% ANC/ PTCT prevalence everywhere in last 3 years PLUS <5% in all STD clinic attendees/ HRG with known hotspots (Migrants/Truckers/Factory workers/ Tourists)</td>
</tr>
<tr>
<td>D</td>
<td><1% ANC/ PTCT prevalence everywhere in last 3 years PLUS <5% in all STD clinic attendees/ HRG OR Poor HIV data with no known hotspots</td>
</tr>
</tbody>
</table>

(ANC Antenatal clinic; PTCT Parent to Child Transmission)

Age and Sex distribution of HIV/AIDS in India [2006]:

<table>
<thead>
<tr>
<th>Distribution of HIV/AIDS cases</th>
<th>Cumulative cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age distribution</td>
<td></td>
</tr>
<tr>
<td>0 – 14 years</td>
<td>5%</td>
</tr>
<tr>
<td>15 – 29 years</td>
<td>32%</td>
</tr>
<tr>
<td>30 – 44 years</td>
<td>56%</td>
</tr>
<tr>
<td>> 45 years</td>
<td>7%</td>
</tr>
<tr>
<td>Sex distribution</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71%</td>
</tr>
<tr>
<td>Female</td>
<td>29%</td>
</tr>
</tbody>
</table>

- First case of HIV/AIDS: 1986 (Chennai, Tamil Nadu)
- National AIDS Control Programme (NACP) launched: 1987

Mother to Child Transmission (MTCT) of HIV

- MTCT in developing countries (India): 30%
- MTCT in developed countries: 20%
- Prevention of MTCT in India:

<table>
<thead>
<tr>
<th>Modality</th>
<th>Dose/ type</th>
<th>Reduction in MTCT by</th>
<th>Post-modality MTCT in India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine</td>
<td>Mother: 300 mg BD from 36 wks POG + 300 mg 3h during delivery Child: 2mg /kg 6h x 6 wks</td>
<td>66%<sup>a</sup></td>
<td>10%</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>Single oral dose Mother: 200 mg at labor onset Child: 2mg /kg<sup>b</sup> within 72 hrs of birth</td>
<td>50%<sup>a</sup></td>
<td>15%<sup>a</sup></td>
</tr>
<tr>
<td>Caesarean section</td>
<td>Elective CS</td>
<td>50%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Triple ARV Prophylaxis for PMTCT of HIV (3TC+TDF+EFV) Q

- Description: New modality introduced under NACP for Prevention of Mother to Child Transmission of HIV in India
- Three drugs used in combination:

<table>
<thead>
<tr>
<th>Clinical scenario</th>
<th>Regimen for prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Those requiring ARV prophylaxis</td>
<td>TDF+3TC+EFV (FDC Single pill) Q</td>
</tr>
<tr>
<td></td>
<td>Tenofovir 300 mg once daily plus</td>
</tr>
<tr>
<td></td>
<td>Lamivudine 300 mg once daily plus</td>
</tr>
<tr>
<td></td>
<td>Efavirenz 600mg once daily</td>
</tr>
</tbody>
</table>

Cont...
Those with prior exposure of NNRTI (NVP/EFV) TDF+3TC+LPV/r
Tenofovir 300 mg once daily plus
Lamivudine 300 mg once daily plus
Lopinavir/ Ritonavir 400/100 mg twice daily

• Duration of prophylaxis:
 - Start at 14 weeks POG
 - Continue throughout pregnancy, delivery, lactation
 - End after 1 week of breast feeding cessation
• Breast feeding in Triple ARV prophylaxis:
 - Exclusive breast feeding: Continue for 0-6 months age
 - Breast feeding with complimentary feeding: Continue for 1 year or 2 years
 (those who had received Pediatric ART) age
• Infant diagnosis:
 - Repeat testing at 6 weeks age, 6 months, 12 months and 6 weeks after cessation of breast feeding
 - Confirmation of HIV status of all at 18 months age
• Post-partum Infant ARV prophylaxis: Nevirapine till 6 weeks age

HIV/AIDS Situation in World [2012]
• Total no. of People Living with HIV/AIDS (PLHA): 34 million
• HIV prevalence: 0.8%
• MC opportunistic Infection: Pneumocystis carinii pneumonia
• Antiretroviral (ARV) treatment started in AIDS if: CD4 count < 350

National AIDS Control Programme, India
• National AIDS Control Programme (NACP) launched: 1987
• Screening tests used: ELISA/ RAPID/ SIMPLE (ERS)
• Confirmatory diagnostic test used: Western Blot Assay (WBA)
For further details Refer to Chapter 6, Theory

WHO Clinical Staging For HIV Infection (13 years or older)
• Stage 1: (Performance scale 1: Asymptomatic, normal activity)
 - Asymptomatic
 - Persistent generalized lymphadenopathy
• Stage 2: (Performance scale 2: Symptomatic, normal activity)
 - Weight loss <10% of body weight
 - Minor muco-cutaeous manifestations
 - Herpes zoster in last 5 years
 - Recurrent URTIs
• Stage 3: (Performance scale 3: Bed-ridden <50% days in last month)
 - Weight loss > 10% of body weight
 - Unexplained chronic diarrhea > 1 month
 - Unexplained prolonged fever > 1 month
 - Oral candidiasis (Thrush)
 - Oral hairy leucoplakia
 - Pulmonary TB
 - Severe bacterial infection
• Stage 4: (Performance scale: Bed-ridden > 50% days in last month)
 - HIV wasting syndrome (Weight loss > 10% + Chronic diarrhea + prolonged fever)
 - Pneumocystis carinii pneumonia
 - Toxoplasmosis of brain
 - Cryptosporidiosis with diarrhea, > 1 month
 - Cryptococcosis, extrapulmonary
 - CMV of organ (except liver, spleen, lymphnodes)
Communicable and Non-communicable Diseases

- Herpes virus (mucocutaneous > 1 month or visceral)
- Progressive multifocal leucoencephalopathy (PML)
- Any disseminated endemic fungal infection
- Candidiasis (Oesophagus, trachea, bronchi or lungs)
- Atypical mycobacteria (disseminated)
- Non-typhoid salmonella septicaemia
- Extrapulmonary TB
- Lymphoma
- Kaposi’s sarcoma
- HIV encephalopathy

WHO Clinical Staging For HIV Infection (For children)

- **Stage 1:**
 - Asymptomatic
 - Persistent generalized lymphadenopathy
- **Stage 2**
 - Unexplained chronic diarrhea
 - Severe persistent or recurrent candidiasis (outside neonatal period)
 - Weight loss or failure to thrive
 - Persistent fever
 - Recurrent severe bacterial infections
- **Stage 3**
 - AIDS-defining opportunistic infections
 - Severe failure to thrive
 - Progressive encephalopathy
 - Malignancy
 - Recurrent septicaemia or meningitis

3 by 5 Initiative

- Launched by WHO and UNAIDS on 1st Dec 2003
- **Target:** To provide antiretroviral treatment (ART) to 3 million people living with HIV/AIDS (PLHA) in developing countries by end of 2005
- **Ultimate goal:** To provide universal access to treatment for HIV/AIDS to all those who need it
- **Focus on:**
 - Simplified, standardized tool to deliver ART
 - New service to ensure an effective/reliable supply of medicines and diagnostics
 - Rapid identification, dissemination and application of new knowledge and successful strategy
 - Urgent sustained support to countries
 - Global leadership
 - Backed by strong partnership

Sexually Transmitted Infections (STIs)

Common sexually transmitted infections (STIs)

<table>
<thead>
<tr>
<th>STI</th>
<th>Causative agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Classical STD’s</td>
<td>Treponema pallidum</td>
</tr>
<tr>
<td>Syphilis</td>
<td>Neisseria gonorrhoeae</td>
</tr>
<tr>
<td>Gonorrhoea</td>
<td>Hemophilus ducreyi</td>
</tr>
<tr>
<td>Chanchroid</td>
<td>Chlamydia trachomatis</td>
</tr>
<tr>
<td>LGV</td>
<td>Calymmatobacterium granulomatis</td>
</tr>
<tr>
<td>Donovanosis</td>
<td></td>
</tr>
</tbody>
</table>

5 Classical STD’s —

- Syphilis
- Gonorrhoea
- Chanchroid
- LGV
- Donovanosis

Cont...
Review of Preventive and Social Medicine

Cont...

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causative agent</th>
<th>Mode of transmission</th>
<th>DOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>Human immunodeficiency virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Enterovirus 72 (Picornavirus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Hepadnavirus (Dane’s particle)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Hepacivirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis D</td>
<td>HDV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genital and anal warts</td>
<td>Human Papilloma Virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scabies</td>
<td>Sarcoptes scabei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pubic louse</td>
<td>Phthirus pubis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichomoniasis</td>
<td>Trichomonas vaginalis (MC in World)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Other sexually transmitted agents include:**
 - Streptococcus group B
 - Campylobacter
 - Ureaplasma urealyticum
 - Entamoeba histolytica
 - Shigella
 - Human (beta) herpes virus 5

- **Incubation periods of STIs:**

<table>
<thead>
<tr>
<th>STI</th>
<th>Incubation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syphilis</td>
<td>9 – 90 days</td>
</tr>
<tr>
<td>LGV</td>
<td>3 – 12 days</td>
</tr>
<tr>
<td>Donovanosis</td>
<td>3 – 21 days</td>
</tr>
<tr>
<td>Chancroid</td>
<td>3 – 5 days</td>
</tr>
<tr>
<td>Gonorrhoea</td>
<td>1 – 5 days</td>
</tr>
<tr>
<td>Molluscum contagosum</td>
<td>14 – 50 days</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Months – 10 years</td>
</tr>
</tbody>
</table>

Endemic Treponematoses

<table>
<thead>
<tr>
<th>Disease</th>
<th>Causative agent</th>
<th>Mode of transmission</th>
<th>DOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinta</td>
<td>Treponema carateum</td>
<td>Non venereal (direct contact)</td>
<td>Benzathine Penicillin G</td>
</tr>
<tr>
<td>Yaws</td>
<td>Treponema pertenue</td>
<td>Non venereal (direct contact with secretions from infectious lesions, fomites, insect vectors)</td>
<td>Benzathine Penicillin G</td>
</tr>
<tr>
<td>Endemic syphilis</td>
<td>Treponema pallidum</td>
<td>Non venereal</td>
<td>Benzathaine Penicillin G</td>
</tr>
<tr>
<td>Syphilis</td>
<td>Treponema pallidum</td>
<td>Venereal</td>
<td>Benzathaine Penicillin G</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yaws/ Pian/ Bubas/ Framboesia</th>
</tr>
</thead>
</table>

- **Causative agent:** Treponema pertenue
- **IP:** 3-5 days
- **Clinical features:**
 - Early Yaws: Mother Yaws followed by generalized eruption
 - Late Yaws: by end of 5 yrs
 - Crab Yaws: Lesions of soles and palms
 - Gangosa: Destructive lesions of soft palate, hard palate and nose
 - Gounda: osteo-periostitis of Superior maxillary bone

- Yaws has been declared eliminated from India in September 2006
- Man is the only known reservoir of Yaws (but no natural immunity)
- Yaws provide partial immunity to venereal syphilis
- WHO recommended treatment policies for Yaws:

[https://kat.cr/user/Blink99/]
Communicable and Non-communicable Diseases

<table>
<thead>
<tr>
<th>Treatment policy</th>
<th>Recommended for type of area</th>
<th>Prevalence</th>
<th>Treatment given to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass treatment</td>
<td>Hyperendemic</td>
<td>> 10 %</td>
<td>Entire population with cases</td>
</tr>
<tr>
<td>Juvenile mass treatment</td>
<td>Mesoendemic</td>
<td>5-10 %</td>
<td>All cases, all 0-15 yr children contacts</td>
</tr>
<tr>
<td>Selective mass treatment</td>
<td>Hypoendemic</td>
<td>< 5%</td>
<td>Cases, contacts of infectious cases</td>
</tr>
</tbody>
</table>

- With decline of Yaws, emphasis of control strategy has shifted to ‘surveillance & containment’
- Epidemiologically Yaws is not vulnerable to eradication:
 - cases are contagious for months or years after onset of symptoms
 - latent cases occur frequently (treponemes persist in CSF & lymph nodes even after cure)
 - immunity acquired is only partial
 - disease is not fatal
 - accurate diagnosis by non-medical personnel is a problem
 - no vaccine available for Yaws

Syndromic Approach (Simplified STD Treatment)

- Concept: The traditional method of diagnosing STDs is by laboratory tests, which are very often unavailable or too expensive
 - Syndromic Management of STDs has been recommended by WHO since 1990 which is ‘based on symptoms and clinical signs’
- Importance of Syndromic Approach: Through this approach, a health worker at the most peripheral level without using laboratory support, can diagnose reproductive infections and accordingly prescribe treatment or advise referral of the patient.
- Main features of Syndromic Approach:
 - classification of the main causative pathogens by the clinical syndromes they produce
 - use of flow charts to manage a particular syndrome
 - treatment for all important causes of the syndrome
 - notification and treatment of sex partners
 - no expensive laboratory procedures required
- Advantages of Syndromic Approach:
 - permits STD treatment without costly laboratory tests
 - offers accessibility, immediate, effective and efficient treatment
- Disadvantage of Syndromic Approach:
 - over-treatment in some patients (esp. in vaginal discharge)
- Syndromes in Syndromic Approach:
 - Urethral discharge: Is usually due to gonococcal or non-gonococcal (chlamydial) urethritis
 - Vaginal discharge: Is usually due to gonococcal or non-gonococcal cervicitis or vaginitis (trichomoniasis, candidiasis or bacterial vaginosis). Speculum examination for establishing diagnosis
 - Genital ulcer: Due to syphilis, chancroid, LGV, granuloma inguinale or herpes infection
 - Inguinal swelling (Bubo): Usually due to LGV
 - Lower abdominal pain/PID

STD Colour coded kits

<table>
<thead>
<tr>
<th>Kit</th>
<th>Colour</th>
<th>Syndrome</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grey</td>
<td>Urethral/Anorectal/ Cervical discharge/ SS#</td>
<td>Azithromycin, Cefixime</td>
</tr>
<tr>
<td>2</td>
<td>Green</td>
<td>Vaginal discharge</td>
<td>Secnidazole, Fluconazole</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>Genito-ulcerative disease (Non-herpetic)</td>
<td>Azithromycin, Benzathain penicillin</td>
</tr>
</tbody>
</table>

Yaws has been declared eliminated from India in September 2006

Syndromic Management of STDs has been ‘based on symptoms and clinical signs’
Review of Preventive and Social Medicine

Continued...

<table>
<thead>
<tr>
<th>No.</th>
<th>Color</th>
<th>Disease Description</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Blue</td>
<td>Genito-ulcerative disease (Non-herpetic)*</td>
<td>Azithromycin, Doxycycline</td>
</tr>
<tr>
<td>5</td>
<td>Red</td>
<td>Genito-ulcerative disease (Herpetic)</td>
<td>Acyclovir</td>
</tr>
<tr>
<td>6</td>
<td>Yellow</td>
<td>Lower abdominal pain</td>
<td>Cefixime, Metronidazole, Doxycycline</td>
</tr>
<tr>
<td>7</td>
<td>Black</td>
<td>Inguinal bubo</td>
<td>Azithromycin, Doxycycline</td>
</tr>
</tbody>
</table>

(*For patients allergic to penicillin, #SS Scrotal swelling)

Case Detection in a STD Control Programme

- Screening
- **Contact tracing**: Sexual partners of diagnosed patients are identified, located, investigated and treated
 - Is one of the best methods of controlling the spread of infection
 - Is relatively expensive (in low prevalence)
 - Key to success is patient himself (who must disclose all sexual contacts voluntarily)
- **Cluster testing**: Screening of all persons of either sex, who move in the same socio-sexual environment of the patient
 - It almost doubles the number of cases found

Suraksha Clinic

- **Description**: Chain of RTI/STI clinics to provide reproductive and sexual health services
- **Established by**: National AIDS Control Program, NACO
- **Purpose**: Control of STI/RTIs viz., HIV, Syphilis, Gonorrhea, Herpes, Chlamydia, Genital warts
- **Facilities**:
 - Blood sample testing
 - Counseling
 - Syndromic case management (RTI/STI/RPR kits)

MISCELLANEOUS (COMMUNICABLE DISEASES)

Zoonoses

- **Zoonoses**: An infection or infectious disease transmissible under natural conditions from vertebrate animals to man
- Classification of Zoonoses based on direction of transmission:
 - **Anthropozoonoses**: Infections transmitted from animals (zoo) to man (anthro):
 - Rabies
 - Plague
 - Anthrax
 - Trichinosis
 - **Zooanthroponoses**: Infections transmitted from man (anthro) to animals (zoo):
 - Human TB in cattle
 - **Amphixenosis**: Infections transmitted in either direction between animals and man:
 - Trypanosoma cruzi
 - Schistosoma japonicum

Food Poisoning

Incubation period of food poisoning:
Communicable and Non-communicable Diseases

<table>
<thead>
<tr>
<th>Food poisoning</th>
<th>Incubation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella²</td>
<td>12 – 24 hours</td>
</tr>
<tr>
<td>Staphylococcal⁰</td>
<td>1 – 6 hours</td>
</tr>
<tr>
<td>Botulism</td>
<td>12 – 36 hours</td>
</tr>
<tr>
<td>Cl. perfirengens</td>
<td>6 – 24 hours</td>
</tr>
<tr>
<td>B. cereus (emetic form)</td>
<td>1 – 6 hours</td>
</tr>
<tr>
<td>B. cereus (diarrhoeal form)</td>
<td>12 – 24 hours</td>
</tr>
</tbody>
</table>

- **Staphylococcal Food Poisoning:**
 - **Agent:** Enterotoxins of *Staphylococcus aureus*
 - **Toxins formed at** 35º – 37º C
 - **Toxins are relatively heat stable and resist boiling for 30 min or more**
 - **Incubation period:** 1 – 6 hours
 - **IP is short because of ‘preformed toxin’**
 - **Mechanism of food poisoning:** Intra-dietetic toxins (ingestion of toxins preformed in food, in which bacteria have grown)

- **Botulism food poisoning:**
 - **Agent:** *Clostridium botulinum* type A, B, E
 - **IP:** 12 – 36 hours
 - **Mechanism of food poisoning:** Intra-dietetic toxins
 - **Prominent symptoms:** GIT SYMPTOMS ARE SLIGHT
 - Dysphagia
 - Diplopia
 - Dysarthria
 - **Prophylaxis:** 50,000 – 100,000 units anti-toxin
 - **Treatment:** Guanidine hydrochloride

- **Clostridium perfirengens food poisoning:**
 - **Agent:** *Clostridium perfirengens* (welchii)
 - **IP:** 6 – 24 hours
 - **Rapid recovery with no deaths**

- **Bacillus cereus food poisoning:**
 - **Agent:** *Bacillus cereus*
 - **IP:** 1 – 6 hours (emetic form), 12 – 24 hours (diarrhoeal form)

Brucellosis

- **Also known as:** Undulant fever, Malta fever, Mediterranean fever
- **Causative agent:** *Brucella* species
 - *Brucella melitensis:* Most virulent and invasive species
 - *Brucella abortus:* Less virulent, primarily affect cattle
 - *Brucella suis:* Intermediate virulence, infects pigs
 - *Brucella canis:* Parasite of dogs
- **Reservoir:** Cattle, sheep, goats, swine, buffaloes, horses, dogs
- **Modes of transmission:**
 - **Contact infection:** Direct contact with infected tissues, blood, urine, vaginal discharge, aborted fetuses and ESPECIALLY placenta
 - **Food-borne infections:** Raw milk/ dairy products, fresh raw vegetables, water
 - **Air-borne infection:** aerosol
- **Incubation period:** usually 1 – 3 weeks
- **Most striking feature:** Severity of illness and absence of clinical illness
- **Most rational approach for prevention:** Control and eradication of infection from animal reservoirs
- **Only satisfactory solution aimed at eradication:** Slaughter of infected animals, with full compensation paid to farmers
- **Antibiotic of choice:** Tetracycline 500 mg QID X 3 weeks

*Footnotes:
²: https://kat.cr/user/Blink99/
⁰: https://kat.cr/user/Blink99/*
Crimean Congo Fever (CCF)

- Type of disease: Zoonosis of domestic/wild animals which may affect human beings
- Causative agent: Nairovirus (Bunyavirus)
- Vector: Hyalomma ticks (Hard ticks)
- Incubation period: 1-13 days (Median 5-6 days)
- Case fatality rate: 30%
- Drug of choice: Ribavirin
- Situation in India: Exotic-Epidemic in India (Gujarat, December 2010)

Amoebiasis

- Causative agent: Entamoeba histolytica (7 pathogenic + 11 non-pathogenic zymodymes)
- Amoebiasis affects 15% of Indian population
- Source of infection: Cysts (NOT trophozoites)
- Reservoir: Man
- Period of communicability: Upto years (till cysts excreted)
- Modes of transmission:
 - Faecal-oral
 - Sexual (Oro-rectal in homosexuals)
 - Vectors (Flies, Cockroaches, rodents)
- Incubation period: 2-4 weeks
- Diagnosis:
 - Readily diagnostic test: Trophozoites containing RBCs in freshly passed mucus per rectum
 - Most sensitive serological test: Indirect hemagglutination test
- Treatment:
 - Symptomatic: Metronidazole
 - Asymptomatic: Diodohydroxyquin

EMERGING AND RE-EMERGING DISEASES

NIPAH Virus

- Genus: Henapi virus
- Transmission in India:
 - Occurrence: West Bengal
 - Route: Consumption of fruits contaminated with bats (Pteropus: ‘Flying foxes’) secretions
- Clinical presentation: Encephalitis
- Case fatality rate: 50%
- Vaccine: NONE for humans
- Treatment: Intensive supportive care

SARS Severe Acute Respiratory Syndrome

- Causative agent: Coronavirus
- Origin: China, 2002
 - Total cases: 8094
 - Total deaths: 774
- Route of transmission: Air droplets
- Vaccine: None
- Treatment:
 - Antipyretics
 - Supplemental Oxygen
 - Mechanical ventilation
Communicable and Non-communicable Diseases

H7N9 Avian Influenza
- **Occurrence:** First time among humans
- **Origin:** March 2013, China
- **Incubation period:** 3.1 days
- **Route of transmission:** Air droplets
- **Case fatality rate:** 33%
- **Vaccine:** NONE
- **Treatment:** Neuraminidase inhibitors
 - Oseltamivir
 - Zanamivir

MERS-CoV Middle East Respiratory Syndrome - Corona Virus
- **Cause:** Betacoronavirus (lineage C)
- **Origin:** Saudi Arabia, 2012
- **Incubation period:** 2-14 days
- **Route of transmission:**
 - Air droplets
 - Camel milk
 - Camel meat
- **Source:** Camels
- **Reservoir:** Bats
- **Case fatality rate:** 30%
- **Treatment:** None

Ebola Virus Disease
- **Current outbreak:** South Africa (Sierra Leone, Guinea, Liberia, Nigeria)
- **Incubation period:** 2-21 days
- **Route of transmission:**
 - Body fluids (including semen, breast milk)
- **Source:** Cases
- **Reservoir:** Bats
- **Case fatality rate:** 40%
- **Treatment:**
 - Rehydration
 - Symptomatic

CORONARY HEART DISEASE

Prudent Diet (Dietary Goals)
- **Description:** Dietary modification is the principal preventive strategy for prevention of CHD
- **WHO recommended changes:** [GOAL: Cholesterol/HDL Ratio < 3.5]
 - Reduction of fat intake to < 20 – 30 % of total energy intake
 - Consumption of saturated fats < 10 % of total energy intake [<7% NEW GUIDELINE]
 - Reduction in dietary cholesterol to < 200 mg per day
 - Increase in complex carbohydrate consumption
 - Reduction of salt intake to < 5 gms per day
 - Avoidance of alcohol consumption

Coronary Heart Disease
- **Coronary Heart Disease (CHD) or Ischemic Heart Disease (IHD):** Impairment of heart function due to inadequate flow to heart as compared to its needs, caused by obstructive changes in coronary circulation to heart
CHD manifests as:
- Angina pectoris
- Myocardial infarction
- Irregularities of the heart
- Cardiac failure
- Sudden death

Pattern of CHD in India:
- Occurs a decade earlier than with age incidence in developed nations
- Peak period is 51 – 60 years age
- Males affected more than females
- Hypertension and Diabetes mellitus account for > 40% cases
- Heavy smoking is responsible for a large no. of cases

Risk factors of CHD:

<table>
<thead>
<tr>
<th>Non-modifiable risk factors</th>
<th>Modifiable risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Cigarette smoking</td>
</tr>
<tr>
<td>Sex</td>
<td>High blood pressure</td>
</tr>
<tr>
<td>Family history</td>
<td>Elevated serum cholesterol</td>
</tr>
<tr>
<td>Genetic factors</td>
<td>Diabetes</td>
</tr>
<tr>
<td>Personality (Type A) (?)</td>
<td>Obesity</td>
</tr>
<tr>
<td>Sedentary habits</td>
<td></td>
</tr>
<tr>
<td>Stress</td>
<td></td>
</tr>
</tbody>
</table>

Smoking as a Risk Factor for CHD

- Modifiable major risk factor
- 25% of CHD deaths under 65 years age
- Causes Sudden death from CHD, especially in men < 50 years age
- Degree of risk of developing CHD is directly related to no. of cigarettes smoked per day
- Filter cigarettes are probably not protective
- Synergistic with other risk factors like hypertension and hypercholesterolemia
- Risk of death from CHD decreases on cessation of smoking
 - Risk declines substantially within 1 year of cessation
 - After 10 – 20 years, it is same as that of non-smokers
- Those with history of myocardial infarction – risk of fatal occurrence reduced by 50%

Important Facts of CHD

- Single most useful test for identifying individuals at high risk of CHD: Blood pressure
 - Systolic BP better predictor of CHD than Diastolic BP
- Most direct association with CHD: LDL cholesterol – Cholesterol/ HDL ratio < 3.5
 - HDL cholesterol > 30 mg/ dl
- Better predictors of CHD: Apolipoprotein A-I and Apolipoprotein B
- Alcohol intake as an independent risk factor for CHD: > 75 grams per day
- Mean serum cholesterol level associated with high risk of CHD: >200 mg/dl
 - Threshold level: 220 mg/dl is protective
Communicable and Non-communicable Diseases

- Protective for CHD: HDL cholesterol (>30 mg/dl)
- Clinical goal of CHD prevention: Cholesterol/HDL ratio <3.5

HYPERTENSION

- Hypertension (HT) is the MC cardiovascular disorder
- Single most useful test to identify high risk of CHD: Blood Pressure
- Systolic BP is a better predictor of CHD than diastolic BP
- Prevalence of HT in India (1977-78):

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>59.9 per 1000</td>
<td>69.9 per 1000</td>
</tr>
<tr>
<td>Rural</td>
<td>35.5 per 1000</td>
<td>35.9 per 1000</td>
</tr>
</tbody>
</table>

- Population strategy for prevention of Hypertension: Is primary level of prevention
 - Nutrition (Reduction of salt intake to < 5 grams a day, moderate fat intake, avoidance of alcohol intake, restriction of energy intake as per body needs)
 - Weight reduction (BMI <25)
 - Exercise promotion
 - Behavioural changes (reduction of stress and smoking, doing yoga and meditation)
 - Health education
 - Self care

- Rule of Halves: Hypertension is an ‘Iceberg disease’. Only about half of hypertensive subjects in general population of most of the developed countries are aware of condition, only half of those aware of the problem were being treated and only half of those treated were considered adequately treated

Figure: Rule of Halves

- Tracking of Blood Pressure: If BP of individuals were followed up over a period of years from early childhood into adult life, then those having high BP would continue into same ‘track’ as adults
 - Low BP tends to remain low and high BP tends to become higher as individuals grow older
• **Goal of population strategy (Primary prevention) for HT control:** To shift the community distribution of BP towards lower levels or ‘biological normality’

• **Recommended salt intake to prevent HT:** <5 gm per day

DIABETES MELLITUS

Evidence of Life style factors and risk of Diabetes:

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Decreased risk</th>
<th>Increased risk</th>
</tr>
</thead>
</table>
| **Convincing** | Voluntary weight loss
 | Physical activity | Overweight, obesity
 | | Abdominal obesity |
| | | Physical inactivity
 | | Maternal diabetes |
| **Probable** | Non-starch polysaccharide
 | | Saturated fats |
| | | IUGR |
| **Possible** | n-3 fatty acids
 | | Total fat intake |
| | Low glycemic index foods
 | | Trans fatty acids |
| | Exclusive breast feeding
 | | |
| **Insufficient** | Vitamin E
 | | Excess alcohol | |
| | Chromium | |
| | Magnesium | |
| | Moderate alcohol | |

WHO Diagnostic Criteria:

<table>
<thead>
<tr>
<th></th>
<th>Fasting plasma glucose</th>
<th>2-hour plasma glucose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>> 7.0 mmol/L (126 mg/dL)</td>
<td>> 11.1 mmol/L (200 mg/dL)</td>
</tr>
<tr>
<td>Impaired Glucose Tolerance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose</td>
<td>< 7.0 mmol/L (126 mg/dL)</td>
<td></td>
</tr>
<tr>
<td>2-hour plasma glucose</td>
<td>7.8-11.1 mmol/L (140-200 mg/dL)</td>
<td></td>
</tr>
<tr>
<td>Impaired Fasting Glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose</td>
<td>6.1-6.9 mmol/L (110-125 mg/dL)</td>
<td></td>
</tr>
<tr>
<td>2-hour plasma glucose</td>
<td>< 7.8 mmol/L (140 mg/dL)</td>
<td></td>
</tr>
</tbody>
</table>
RHEUMATIC FEVER (RF)

- **Causative agent:** Group A beta hemolytic streptococci①
 - Serotype M type 5 has highest ‘rheumatogenic potential’①
 - Recently Coxsackie virus B4 has been suggested as a ‘causative factor’ & Streptococcus acting as a ‘conditioning agent’
- **RF is a disease of childhood & adolescence (5 – 15 yrs) affecting both sexes equally**
- **RF is not a communicable disease:** but it results from a communicable disease (streptococcal pharyngitis)
- **MC cause of Heart disease in 5-30 yrs age group (globally)①: RF**
- **Prevalence of RHD in India: 5-7 per 1000 in 5 – 15 yrs age group①:**
 - RF occurs in 1 – 3 % of Streptococcal infection
- **Eradication of Grp A Streptococcus is not possible:** Due to high carrier rate
- **MC cardiac lesion seen in RF:**
 - In children: Mitral regurgitation①
 - In adults: Mitral stenosis①
- **MC ECG finding in RF:** First degree AV block①
- **Diagnosis of RF is by employing Revised Jones criteria①:**

<table>
<thead>
<tr>
<th>Diagnostic categories</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary episode of RF</td>
<td>2M or 1M + 2m plus evidence of preceding group A Streptococcal infection</td>
</tr>
<tr>
<td>Recurrent attack of RF (in a patient without established RHD)</td>
<td>2M or 1M + 2m plus evidence of preceding group A Streptococcal infection</td>
</tr>
<tr>
<td>Recurrent attack of RF (in a patient with established RHD)</td>
<td>2M plus evidence of preceding group A Streptococcal infection</td>
</tr>
<tr>
<td>Rheumatic Chorea</td>
<td>Other M manifestations or evidence of Streptococcal infection not required</td>
</tr>
<tr>
<td>Insidious onset rheumatic carditis</td>
<td>Do not require any other criteria</td>
</tr>
<tr>
<td>Chronic valvular lesions of RHD</td>
<td></td>
</tr>
<tr>
<td>Major manifestations (M)①</td>
<td>Joints: Migratory polyarthritis</td>
</tr>
<tr>
<td>(Pneumonic : JONES or CANCER)</td>
<td>O shape of heart: Carditis</td>
</tr>
<tr>
<td></td>
<td>Nodules (Subcutaneous)</td>
</tr>
<tr>
<td></td>
<td>Erythema marginatum</td>
</tr>
<tr>
<td></td>
<td>Syndenham’s Chorea</td>
</tr>
<tr>
<td>Minor manifestations (m)</td>
<td>Clinical: Fever, polyarthralgia</td>
</tr>
<tr>
<td></td>
<td>Laboratory: elevated acute phase reactants (ESR, CRP, TLC)</td>
</tr>
<tr>
<td>Supporting evidence of a preceding streptococcal infection within the last 45 days</td>
<td>ECG: Prolonged PR interval①</td>
</tr>
<tr>
<td></td>
<td>Elevated or rising ASO</td>
</tr>
<tr>
<td></td>
<td>Positive throat culture</td>
</tr>
<tr>
<td></td>
<td>Rapid antigen test for Grp A Streptococci</td>
</tr>
<tr>
<td></td>
<td>Recent Scarlet fever</td>
</tr>
</tbody>
</table>

- Prevention of RF with Benzathine benzyl penicillin①:

<table>
<thead>
<tr>
<th>Type of prevention</th>
<th>Adults</th>
<th>Children</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>1.2 million units</td>
<td>600,000 units</td>
<td>Single dose intramuscular</td>
</tr>
<tr>
<td>Secondary</td>
<td>1.2 million units</td>
<td>600,000 units</td>
<td>3 weekly intervals for 5 yrs or till 18 yrs age (whichever is later)</td>
</tr>
</tbody>
</table>

- Oral penicillin (Penicillin V or G) X 10 days is the ‘least expensive method’ of giving penicillin to eradicate Streptococci from throat
- Secondary prevention for patients with carditis: Continue for 10 yrs after the last attack or atleast until 25 yrs age (whichever is longer)
CANCERS

- **Incidence of Total Cancers in World:** (in Reducing order)

<table>
<thead>
<tr>
<th>Total cancers</th>
<th>Total cancers - Males</th>
<th>Total cancers - Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung cancer</td>
<td>Lung cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Prostate cancer</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Colorectal cancer</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>Stomach cancer</td>
<td>Cervix-uteri cancer</td>
</tr>
<tr>
<td>Stomach cancer</td>
<td>Liver cancer</td>
<td>Stomach cancer</td>
</tr>
</tbody>
</table>

- **Mortality of Total Cancers in World:** (in Reducing order)

<table>
<thead>
<tr>
<th>Total cancers</th>
<th>Total cancers - Males</th>
<th>Total cancers - Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung cancer</td>
<td>Lung cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Liver cancer</td>
<td>Liver cancer</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>Stomach cancer</td>
<td>Stomach cancer</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Colorectal cancer</td>
<td>Cervix-uteri cancer</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Prostate cancer</td>
<td>Stomach cancer</td>
</tr>
</tbody>
</table>

- **Incidence of Total Cancers in India:** (in Reducing order)

<table>
<thead>
<tr>
<th>Total cancers</th>
<th>Total cancers - Males</th>
<th>Total cancers - Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>Lip, Oral cavity cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Cervix-uteri cancer</td>
<td>Lung cancer</td>
<td>Cervix-uteri</td>
</tr>
<tr>
<td>Lip, Oral cavity cancer</td>
<td>Stomach cancer</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Colorectal cancer</td>
<td>Ovary cancer</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>Other pharynx cancer</td>
<td>Lip, Oral cavity cancer</td>
</tr>
</tbody>
</table>

- **Mortality of Total Cancers in India:** (in Reducing order)

<table>
<thead>
<tr>
<th>Total cancers</th>
<th>Total cancers - Males</th>
<th>Total cancers - Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>Lip, Oral cavity cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Cervix-uteri cancer</td>
<td>Lung cancer</td>
<td>Cervix-uteri</td>
</tr>
<tr>
<td>Lip, Oral cavity cancer</td>
<td>Stomach cancer</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Lip, Oral cavity cancer</td>
<td>Colorectal cancer</td>
</tr>
<tr>
<td>Stomach cancer</td>
<td>Colorectal cancer</td>
<td>Ovary cancer</td>
</tr>
<tr>
<td>Lip, Oral cavity cancer</td>
<td>Other pharynx cancer</td>
<td>Stomach cancer</td>
</tr>
</tbody>
</table>

- **Age standardized rate of new cancer cases in World:** 182 per 100,000 persons per year
- **Age standardized death rate of cancer cases in World:** 102 per 100,000 persons per year
- **Age standardized rate of new cancer cases in India:** 94 per 100,000 persons per year
- **Age standardized death rate of cancer cases in India:** 64 per 100,000 persons per year

OBESITY

Criteria for Assessment of Obesity

- Body Mass Index (Quetelet’s Index²):

\[
BMI = \frac{\text{Weight (Kg)}}{\text{Height}^2 (m)}
\]
Communicable and Non-communicable Diseases

Classification of adults according to BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Global population</th>
<th>Asian population</th>
<th>Indian population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 18.5</td>
<td>< 18.5</td>
<td>< 18.5</td>
</tr>
<tr>
<td>Normal BMI</td>
<td>18.5-24.99</td>
<td>18.5-22.99</td>
<td>18.5-22.99</td>
</tr>
<tr>
<td>Obesity</td>
<td>≥ 30.0</td>
<td>≥ 27.0</td>
<td>≥ 25.0</td>
</tr>
</tbody>
</table>

Classification of obesity based on BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-obese (overweight)</td>
<td>25.0-29.99</td>
</tr>
<tr>
<td>Obesity Grade I</td>
<td>30.0-34.99</td>
</tr>
<tr>
<td>Obesity Grade II</td>
<td>35.0-39.99</td>
</tr>
<tr>
<td>Obesity Grade III</td>
<td>≥ 40.0</td>
</tr>
</tbody>
</table>

Classification of underweight based on BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I Underweight</td>
<td>17.0-18.49</td>
</tr>
<tr>
<td>Grade II Underweight</td>
<td>16.0-16.99</td>
</tr>
<tr>
<td>Grade III Underweight</td>
<td>< 16.0</td>
</tr>
</tbody>
</table>

- **Ponderal index**:\[PI = \frac{\text{height (cm)}}{3\sqrt{\text{body weight (kg)}}} \]
- **Broca index**: Ideal weight = Height (cm) - 100
- **Lorentz formula**: \[LF = Ht (cm) - 100 - \frac{Ht (cm) - 150}{2 \text{ (women)} \text{ or } 4 \text{ (men)}} \]
- **Corpulence index** (normal ≤ 1.2):\[CI = \frac{\text{Actual weight}}{\text{Desirable weight}} \]
- **Skin fold thickness (SFT)**:
 - Rapid & non-invasive method of fat assessment
 - ‘Herpenden skin callipers’ are good for estimation of SFT
 - **Main drawback**: Poor repeatability (Poor precision)
 - **Measurement at 4 sites**: Mid-triceps, biceps, sub-scapular, supra-iliac regions
 - Sum ≥ 50 mm in girls indicate obesity
 - Sum ≥ 40 mm in boys indicate obesity
 - **Single best measurement site of skin fold thickness**: Mid triceps
 - 18 mm in boys indicate obesity
 - 32 mm in girls indicate obesity
- **Waist circumference (WC) & waist: hip ratio (WHR)**:
 - Good predictor of risk of cardiovascular diseases
 - High WHR indicates abdominal fat accumulation
 - WHR > 1.0 in men indicate obesity
 - WHR > 0.85 in women indicate obesity
 - Cut-offs for waist circumference in India:
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Populations</th>
<th>Cut-off for WC³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>90 cms</td>
</tr>
<tr>
<td>Females</td>
<td>80 cms</td>
</tr>
<tr>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>102 cm</td>
</tr>
<tr>
<td>Females</td>
<td>88 cms</td>
</tr>
</tbody>
</table>

- **Waist: Height Ratio (WHtR)³:**
 - WHO has declared WHtR as ‘best indicator of cardiovascular risk’
 - WHtR is ‘age and sex independent’
 - Cut-off for WHtR: 0.5

- **Other indicators:**
 - Total body water
 - Total body potassium
 - Body density

- **Waist Height ratio (WHtR) [NEW INDICATOR OF CV RISK by WHO]**
 - BEST indicator of cardiovascular risk
 - Age-independent
 - Sex independent
 - CV risk increase if WHtR >0.5

Weight Control Measures

- **Dietary changes:**
 - Reduce proportions of carbohydrates and fats (energy dense foods)
 - Increase fibre consumption
 - Ensure adequate levels of essential nutrients

- **Increased physical activity**

- **Others:**
 - Drugs
 - Surgical treatment
 - Health education

BLINDNESS

Blindness Situation

<table>
<thead>
<tr>
<th>World</th>
<th>India (NPCB, India)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindness</td>
<td>'visual acuity of <3/60 in better eye with best possible correction'</td>
</tr>
<tr>
<td>Prevalence: 0.6% [2002]</td>
<td>1.05% [2006 – 07]</td>
</tr>
<tr>
<td>Causes</td>
<td>Cataract – MCC³ Refractive Error Glaucoma Posterior segment pathology Corneal opacity Other causes</td>
</tr>
<tr>
<td></td>
<td>Cataract (48%) – MCC³ Glaucoma (12%) Uveitis (10%) ARMD Trachoma Corneal opacity Corneal opacity Others</td>
</tr>
</tbody>
</table>
Trends of Blindness in India

<table>
<thead>
<tr>
<th>Year of survey</th>
<th>Prevalence of blindness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 – 74 (ICMR)</td>
<td>1.38%</td>
</tr>
<tr>
<td>1986 – 89 (NPCB)</td>
<td>1.49%</td>
</tr>
<tr>
<td>2006 – 07</td>
<td>1.05%</td>
</tr>
<tr>
<td>Goal by 2010</td>
<td>0.5%</td>
</tr>
<tr>
<td>Goal by 2020</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Definitions of Blindness

- WHO defines Blindness as ‘visual acuity of <3/60 in better eye with best possible correction’
- National Programme for Control of Blindness (NPCB), India defines Blindness as ‘visual acuity of <6/60 in better eye with best possible correction’
- American Medical Association definition of blindness: ‘Central visual acuity of 20/200 or less in the better eye with corrective glasses (or central visual acuity of more than 20/200 if there is a visual field defect in which the peripheral field is contracted to such an extent that the widest diameter of the visual field subtends an angular distance less than 20 degrees in the better eye)

WHO and NPCB Definitions

<table>
<thead>
<tr>
<th>WHO – ICD</th>
<th>Visual Acuity</th>
<th>NPCB, India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 1</td>
<td><6/18 – 6/60</td>
<td>Low Vision</td>
</tr>
<tr>
<td>Category 2</td>
<td><6/60 – 3/60</td>
<td>Economic Blindness</td>
</tr>
<tr>
<td>Blindness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 3</td>
<td><3/60 – 1/60</td>
<td>Social Blindness</td>
</tr>
<tr>
<td>Category 4</td>
<td><1/60 – PL+</td>
<td>Manifest Blindness</td>
</tr>
<tr>
<td>Category 5</td>
<td>PL–</td>
<td>Absolute Blindness</td>
</tr>
</tbody>
</table>

(PL+: Perception of Light; PL–: No perception of light)

Revised Categories of Visual Impairment:

<table>
<thead>
<tr>
<th>Category</th>
<th>VA less than</th>
<th>VA equal or better than</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Mild/ No visual impairment</td>
<td>6/18</td>
<td>6/18</td>
</tr>
<tr>
<td>1: Moderate visual impairment</td>
<td>6/18</td>
<td>6/60</td>
</tr>
<tr>
<td>2: Severe visual impairment</td>
<td>6/60</td>
<td>3/60</td>
</tr>
<tr>
<td>3: Blindness</td>
<td>3/60</td>
<td>1/60</td>
</tr>
<tr>
<td>4: Blindness</td>
<td>No light perception</td>
<td>No light perception</td>
</tr>
<tr>
<td>5: Blindness</td>
<td>Undetermined/ Unspecified</td>
<td>Undetermined/ Unspecified</td>
</tr>
</tbody>
</table>

Low Vision

- Major causes of Low Vision in India: (are similar to causes of blindness)
 - Cataract (77%) – MCC of Low Vision in India
 - Refractive Error (19%)
 - Central corneal opacity
 - Pterygium
 - Peripheral corneal opacity
 - Other causes

Cataract (77%) – MCC of Low Vision in India
Vision 2020

- **Vision 2020 – The Right To Sight**: A global initiative by WHO and International NGOs to reduce avoidable (preventable and curable) blindness by 2020.
- **Aim of Vision 2020**: To reduce the current projection of 75 million blind people by the year 2020 to a target of 25 million.
- Vision 2020 will be implemented as ‘4 five-year plans’, starting in 2000, 2005, 2010 and 2015 respectively.

Figure: Proposed structure for vision 2020: The right to sight

<table>
<thead>
<tr>
<th>Global Vision 2020 (5 diseases)</th>
<th>Indian Vision 2020 (7 diseases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract</td>
<td>Cataract</td>
</tr>
<tr>
<td>Refractive errors and low vision</td>
<td>Refractive errors and low vision</td>
</tr>
<tr>
<td>Childhood blindness</td>
<td>Childhood blindness</td>
</tr>
<tr>
<td>Trachoma</td>
<td>Trachoma (Focal)</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>Glaucoma</td>
</tr>
<tr>
<td></td>
<td>Diabetic retinopathy</td>
</tr>
<tr>
<td></td>
<td>Corneal blindness</td>
</tr>
</tbody>
</table>
Communicable and Non-communicable Diseases

• Basic Strategies Under Vision 2020:
 - Disease prevention and control
 - Training of personnel
 - Strengthening the existing eye care infrastructure
 - Use of appropriate and affordable technology
 - Mobilization of resources

• Recommended human resources and service facilities for Indian Vision 2020:

STROKE (APOPLEXY)

• WHO definition: Rapidly developing clinical signs of local (or global) cerebral dysfunction, lasting more than 24 hours or leading to death, with no apparent cause other than vascular origin
 - 24 hour threshold EXCLUDES transient ischemic attacks (TIA)

• Causes of stroke:
 - Cerebral thrombosis (MCC of stroke or apoplexy)
 - Cerebral hemorrhage
 - Subarachnoid hemorrhage
 - Cerebral embolism

MISCELLANEOUS (NON COMMUNICABLE DISEASES)

Prevention and Control of Non-Communicable Diseases (NCDs)

• Population strategy:
 - Focus on control of underlying causes (risk factors) in whole populations, ‘not merely by individuals’
 - Principle: Small changes in risk factor levels in total populations can achieve the biggest reduction in mortality, thus aim should be ‘to shift the whole curve or risk factors towards biological normality’
 - Specific interventions/ Dietary changes: Dietary modification is the principal preventive strategy in the prevention of CHD; WHO recommended changes (PRUDENT DIET- DIETARY GOALS):
 - Reduction of fat intake to < 20 – 30 % of total energy intake
 - Consumption of saturated fats < 10 % of total energy intake [<7% NEW GUIDELINE]
 - Reduction in dietary cholesterol to < 200 mg/ day
 - Increase in complex carbohydrate consumption
 - Reduction of salt intake to < 5 gms per day
 - Avoidance of alcohol consumption
 - Primordial prevention

• High risk strategy:
 - Identifying risk: By using simple tests for blood pressure, serum cholesterol measurement
 - Specific advice: To those identified at high risk

• Secondary prevention:
 - Aim: to prevent reoccurrence and progression of NCDs

WHO STEPwise Approach

• STEP wise approach to Surveillance (STEPS): Is a simple, standardized method by WHO for surveillance
• Is of two types:
 - STEP wise approach to chronic disease risk factor surveillance
 - STEP wise approach to Stroke surveillance

https://kat.cr/user/Blink99/
Comprises of 3 steps:

<table>
<thead>
<tr>
<th>STEPS</th>
<th>Core</th>
<th>Expanded</th>
</tr>
</thead>
</table>
| STEP 1¹ Behavioural measurements | Tobacco use
Alcohol consumption
Diet
Physical activity
History of raised BP
History of diabetes | Tobacco use
Alcohol consumption
Diet
Physical activity
History of raised BP
History of diabetes |
| STEP 2² Physical measurements | Waist
BP | Height & weight
Hip circumference & Heart rate |
| STEP 3³ Biochemical measurements | Blood glucose | Triglycerides & HDL cholesterol |

Accidents and Injuries in India (in order of decreasing numbers)
- Road traffic accidents²
- Work related injuries
- Burns
- Violence, Suicide
- Poisoning
- Drowning

Accidents and Injuries: Burns
- **Description:** Injury to skin and other organic tissue due to heat/radiation_RADIOACTIVITY/electricity/friction/chemicals
- **Problem statement:**
 - Global: 11 million severe burns, 195,000 deaths per year
 - India: 1 million moderate/severe burn cases per year
- **Risk factors:**
 - Children, Young women more commonly affected in houses
 - Low, middle income countries
 - Hazardous occupations
 - Poverty, overcrowding, lack of proper safety measures
 - Young girls placement in household works
 - Underlying medical conditions (Epilepsy, peripheral neuropathy, disabilities)
 - Alcohol abuse, smoking
 - Easy access to chemicals used for assault
 - Kerosene use as a fuel source
 - Inadequate safety measures for LPG, electricity
- **Prevention strategy - First aid:**
 - **DO's:**
 - Remove clothing, irrigate burns
 - Use cool running water
 - Extinguish flames (roll on ground, blanket/water/extinguisher use)
 - Dilute chemicals (in chemical burns)
 - Wrap patient in clean cloth, transfer to health facility
 - **DON'Ts:**
 - Don’t start first-aid before ensuring your won safety
 - Don’t apply paste/oil/turmeric/raw cotton
 - Don’t apply ice
 - Avoid prolonged cooling with water (to prevent hypothermia)
 - Don’t open blisters without availability of topical antibiotics

https://kat.cr/user/Blink99/
- Don’t apply any material directly to wound
- Avoid topical medication until patient is in appropriate medical care

Accidents and Injuries: Snake Bite

- **Problem statement:**
 - 5 million snake bites per year
 - 2.5 million snake bite poisonings per year
 - 0.1 million deaths per year
 - 0.3 million amputations and permanent disabilities

- **Clues of severe envenoming:**
 - Snake identified as dangerous
 - Rapid early extension of local swelling from site of bite
 - Early tender enlargement of local lymph nodes
 - Early systemic symptoms: Hypotension, shock, nausea, vomiting, diarrhoea, severe headache, heaviness of eyelids, excessive drowsiness, ptosis/ ophthalmoplegia

- **National Snake-bite First-Aid Protocol (Government of India, 2007):**
 - Reassure the patient: 70% bites are non-poisonous; 50% bites from poisonous snakes actually envenomate patient
 - Immobilise like a fractured limb: Don’t apply tight ligatures
 - Don’t give alcoholic beverages, stimulants
 - Remove constricting items/ clothings
 - Don’t incise or manipulate bite site (No ice application)
 - Transport patient to a medical facility

- **Anti-venom:**
 - First developed by: Albert Calmete
 - Description: Polyvalent nature, intravenous route
SMALLPOX AND CHICKENPOX

1. The infectivity of chickenpox lasts for:
 (a) Till the last scab falls off [AIPGME 2002]
 (b) 6 days after onset of rash
 (c) 3 days after onset of rash
 (d) Till the fever subsides

2. Chickenpox is characterised by all except:
 (a) Scabs are infective [AIIMS May 1995]
 (b) Pleomorphic stages
 (c) Rashes symmetrical centripetal dew-drop like
 (d) Palms and soles not affected by rash

3. Smallpox eradication was successful due to all of the following reasons except:
 [AIIMS Nov 2010]
 (a) Subclinical cases did not transmit the disease
 (b) A highly effective vaccine was available
 (c) Infection provided lifelong immunity
 (d) Cross-resistance existed with animal pox

4. All of the following are true about Varicella virus except:
 [AIIMS Nov 2010]
 (a) 10-30% chances of occurrence
 (b) All stages of rash are seen at the same time
 (c) Secondary attack rate is 90%
 (d) Rash commonly seen in flexor area

5. Smallpox eradication was successful due to all of the following reasons except:
 [AIPGME 2011]
 (a) Subclinical cases did not transmit the disease
 (b) A highly effective vaccine was available
 (c) Infection provided lifelong immunity
 (d) Cross-resistance existed with animal pox

6. WHO declared global eradication of Smallpox on:
 [NUPGET 2013]
 (a) 26th October 1977
 (b) 5th July 1975
 (c) 17th May 1975
 (d) 8th May 1980

7. Secondary attack rate of chickenpox is:
 [Recent Question 2013]
 (a) 60
 (b) 50
 (c) 90
 (d) 40

8. Chickenpox vaccine is:
 [Recent Question 2012]
 (a) Live vaccine
 (b) Killed vaccine
 (c) Conjugated vaccine
 (d) Toxoid vaccine

9. Chickenpox is infective [Recent Question 2014]
 (a) 2 days before and 2 days after rash appearance
 (b) 2 days before and 5 days after rash appearance
 (c) 4 days before and 4 days after rash appearance
 (d) 4 days before and 5 days after rash appearance

REVIEW QUESTIONS

10. Infectivity of Chickenpox lasts up to:
 [UP 2002]
 (a) 3 days after rash
 (b) All the scabs fall off
 (c) 6 days after rash
 (d) Eruption of rash

11. All are true about chickenpox except:
 [MP 2001]
 (a) Crusts contain live virus
 (b) Centripetal in distribution
 (c) Pleomorphic rashes seen
 (d) Rapid progression from macule to vesicle

12. About chickenpox all are true except:
 [MP 2002]
 (a) Lesions appear in crops
 (b) Centripetal distribution of rashes
 (c) Rashes shows rapid progression from macule to vesicle
 (d) Crusts contain live virus

MEASLES

13. Which of the following is not true of Measles?
 [AIPGME 2008]
 (a) High secondary attack rate
 (b) Only one strain causes infection
 (c) Not infectious in pro-dromal stage
 (d) Infection confers lifelong immunity

14. Which of the following is the ‘Least common’ complication of measles?
 [AIIMS May 2006, May 2007]
 (a) Diarrhea [Recent Question 2014]
 (b) Pneumonia
 (c) Otitis media
 (d) SSPE

15. Which of the following statements is true about the epidemiological determinants of measles?
 [AIIMS Nov 2005]
 (a) Measles virus survives outside the human body for 5 days
 (b) Carriers are important sources of infection
 (c) Secondary attack rate is less than that of rubella
 (d) Incidence of measles is more in males than females
16. True about measles is all except: [AIPGME 1996]
 (a) Koplik’s spots appear as rash disappears
 (b) It is prevented by both active and passive immunization
 (c) Otitis media and meningitis are the most common complications
 (d) TB is aggravated in post measles

17. All are true regarding measles vaccine except: [AIPGME 1996]
 (a) Freeze dried live attenuated vaccine
 (b) Single intramuscular dose of 0.5 ml
 (c) Is occasionally associated with TSS
 (d) Contraindicated in pregnancy

18. Which of the following is the reservoir for measles? [DPG 2007]
 (a) Man
 (b) Soil
 (c) Fomites
 (d) Monkey

19. True about measles: [PGI June 04]
 (a) Koplik’s spots appear in Prodromal stage
 (b) Fever stops after onset of rash
 (c) Vaccine given at 9 months
 (d) It is not diagnosed when coryza and rhinitis is absent
 (e) Incubation period is 6 days

20. Measles vaccination campaign between 9-14 years age for elimination is: [AIIMS PGMEE November 2013]
 (a) Keep up
 (b) Follow up
 (c) Mop up
 (d) Catch up

21. Koplik spots are seen in: [DNB December 2011]
 (a) Prodromal stage
 (b) Incubation
 (c) Eruptive
 (d) Convalescent stage

22. Most serious complication of Measles is: [NUPGET 2013]
 (a) Koplik spots
 (b) Parotitis
 (c) Meningoencephalitis
 (d) Nephritis

23. Most common cause of death due to measles is [AP 2014]
 (a) Pneumonia
 (b) Secondary bacterial infection
 (c) Measles encephalitis
 (d) Otitis media

Review Questions

24. To eradicate measles the percentage of infant population to be vaccinated is at least ____%: [DNB 2001]
 (a) 70
 (b) 80
 (c) 85
 (d) 95

25. Measles vaccine is not given before: [DNB 2003]
 (a) 9 months
 (b) 12 months
 (c) 15 months
 (d) 18 months

26. To eradicate measles the percentage of population to be vaccinated is at least ____%: [DNB 2005]
 (a) 70
 (b) 80
 (c) 85
 (d) 95

27. For measles: [Bihar 2003]
 (a) Incubation period is 10 days
 (b) Infectious 4 days before the rash
 (c) Koplik’s spots are seen
 (d) All

28. In measles Koplik spot is seen in: [Bihar 2006]
 (a) Prodromal stage
 (b) Postmeasles stage
 (c) Eruptive stage
 (d) None of the above

29. Most common cause of post measles death: [Bihar 2006]
 (a) Diarrhea
 (b) RTI
 (c) Weakness
 (d) SSPE

30. In Measles, infective period is: [UP 2008]
 (a) 3 days before and 4 days after the appearance of rash
 (b) 4 days before and 3 days after the appearance of rash
 (c) 4 days before and 5 days after the appearance of rash
 (d) 5 days before and 4 days after the appearance of rash

31. The incubation period of Measles is: [AP 2001]
 (a) 3 days
 (b) 10 days
 (c) 21 days
 (d) 30 days

32. All are true about measles except: [MP 2000]
 (a) Both active and passive immunization are given simultaneously
 (b) Flaring up of TB
 (c) Most infectious during rashes
 (d) Causes pneumonia and otitis media

33. A baby was given a dose measles vaccine at 6 months of age due to epidemic of measles/malnutrition. Correct regarding giving subsequent dose will be: [MH 2007]
 (a) Give one more dose as soon as possible
 (b) Give after 14-16 months with booster dose
 (c) Give after 9 months age
 (d) No dose required
34. Recommended vaccination strategy for rubella is to vaccinate first and foremost: [AIPGME 2007]
 (a) Women 15-49yrs
 (b) Infants
 (c) Adolescent girls
 (d) Children 1-14yrs

35. Risk of the damage of fetus by maternal rubella is maximum if mother gets infected in: [AIIMS Nov 2005]
 (a) 6-12 weeks of pregnancy
 (b) 20-24 weeks of pregnancy
 (c) 24-28 weeks of pregnancy
 (d) 32-36 weeks of pregnancy

36. Risk of the damage of fetus by maternal rubella is maximum if mother gets infected in: [AIIMS June 1997]
 (a) 6-12 weeks of pregnancy
 (b) 20-24 weeks of pregnancy
 (c) 24-28 weeks of pregnancy
 (d) 32-36 weeks of pregnancy

37. All of the following statements are true about Congenital Rubella except: [AIPGME 2005]
 (a) It is diagnosed when the infant has IgM antibodies at birth
 (b) It is diagnosed when IgG antibodies persist for more than 6 months
 (c) Most common congenital defects are deafness, cardiac malformations and cataract
 (d) Infection after 16 weeks of gestation results in major congenital defects

38. MMR vaccine is recommended at the age of: [Recent Question 2013]
 (a) 9-12 months
 (b) 15-18 months
 (c) 2-3 years
 (d) 10-19 years

Review Questions

39. Rubella features include all except: [AP 2003]
 (a) Tender lymphnodes in the neck
 (b) Congenital infection with cataract
 (c) Incubation period < 10 days
 (d) Caused by RNA virus

40. Under eradication of congenital rubella syndrome program the first priority group for rubella vaccination is:
 (a) All nonpregnant women of age 15-44 years
 (b) All adolescent nonpregnant girls 15 to 24 of age
 (c) All female children at one year
 (d) All nonpregnant women

41. False about congenital rubella syndrome:
 (a) IgG is diagnostic
 (b) Most commonly associated with CVS anomalies, cataract and hearing loss
 (c) High risk if infected after 16 weeks
 (d) IgM antibodies may be seen shortly after birth

42. M.C. complication of mumps in children is: [RJ 2004]
 (a) Pneumonia
 (b) Pancreatitis
 (c) Aseptic meningitis
 (d) Encephalitis

43. Incubation period of Mumps is: [Recent Question 2013]
 (a) 7 days
 (b) 10 days
 (c) 14 days
 (d) 18 days

44. Which of the following is not true about influenza virus? [AIIMS June 1999]
 (a) Influenza virus A is subject to frequent antigenic variations
 (b) Antigenic drift is a gradual antigenic change over a period of time
 (c) Antigenic shift is due to genetic recombination of virus
 (d) Major epidemics are due to antigenic drift

45. Newer Influenza vaccine include: [PGI June 08]
 (a) split – virus vaccine
 (b) neuraminidase
 (c) live attenuated vaccine
 (d) killed vaccine
 (e) Recombinant vaccine

46. True about epidemiology of influenza: [PGI June 05]
 (a) Asymptomatic seen rarely
 (b) Incubation period 10-12 hrs
 (c) Pandemic rare
 (d) Extra human reservoir not seen
 (e) All ages and sex equally affected

47. Which of the following is true about influenza:
 (a) Affects all ages and sexes [PGI June 06]
 (b) L. P 18 – 72 hrs
 (c) Pandemics rare
 (d) Asymptomatics rare
 (e) No animal reservoir

48. Which of the following lead to an outbreak of Influenza in China in 2013? [PGI May 2013]
 (a) H1N1
 (b) H3N2
 (c) H2N2
 (d) H7N9
 (e) H5N1

49. Incubation period of swine flu: [Recent Question 2013]
 (a) 1-3 days
 (b) 2-3 weeks
 (c) 10-15 days
 (d) 5 weeks
Communicable and Non-communicable Diseases

50. Pig in H1N1 influenza acts as:
 (a) Carrier
 (b) Amplifying host
 (c) Reservoir
 (d) Vector

51. Major reason for H5N1 not to become a global pandemic is
 (a) Route of transmission is not respiratory
 (b) Man to man transmission is rare
 (c) Does not cause serious disease among humans
 (d) Restricted to few countries only

DIPHTHERIA

52. True about Diphtheria are all except:
 (a) Carriers are more common sources of infection than cases
 (b) Incubation period is 2-6 days
 (c) 25Lf of diphtheria toxoid are present per ml in DPT vaccina
 (d) Diphtheria is an endemic disease in India

53. Positive Schick test indicates:
 (a) Immunity to diphtheria
 (b) Susceptibility to diphtheria
 (c) Hypersensitivity to diphtheria
 (d) Infection with diphtheria

54. A herd immunity of over % is considered necessary to prevent epidemic spread of diphtheria:
 (a) 50%
 (b) 55%
 (c) 60%
 (d) 70%

55. Management of non immunized diphtheria contacts include all except
 (a) Prophylactic penicillin
 (b) Single dose of toxoid
 (c) Daily throat examination
 (d) Daily throat swab culture
 (e) Weekly throat swabs examination

Review Questions

56. A herd immunity of over% is considered necessary to prevent epidemic spread of diphtheria:
 (a) 50%
 (b) 55%
 (c) 60%
 (d) 65%
 (e) 70%

57. Treatment of choice for diphtheria carriers is:
 (a) Erythromycin
 (b) Tetracycline

WHOOPING COUGH

61. The usual incubation period for pertussis is:
 (a) 7-14 days
 (b) 3-5 days
 (c) 21-25 days
 (d) Less then 3 days

62. Which of the following statements is true regarding pertussis?
 (a) Neurological complication rate of DPT is 1 in 50000
 (b) Vaccine efficacy is more than 95%
 (c) Erythromycin prevents spread of disease between children
 (d) Leukocytosis correlates with the severity of cough

63. True regarding pertussis is all except:
 (a) It is associated with an inspiratory whoop
 (b) It is a droplet infection
 (c) Parapertusis causes more severe disease then pertussis
 (d) Pneumonia is most common complication

64. True about Pertussis is/are:
 (a) Incubation period is 7-14 days
 (b) Main source of infection is chronic carriers
 (c) Can affect any age
 (d) Secondary attack rate in unimmunised persons is 90%
 (e) More common in Summers

Review Questions

65. Treatment for pertussis contacts children for:
 (a) Prophylactic antibiotic for 10 days
 (b) Prophylactic antibiotic for 14 days
 (c) Prophylactic antibiotic for 12 days
 (d) Prophylactic antibiotic for 11 days
66. A child with pertussis should be isolated for:
 (a) 1-2 weeks
 (b) 2-4 weeks
 (c) 3-4 weeks
 (d) 4-6 weeks

[Kolkata 2003]

67. About pertussis true is:
 (a) Secondary attack rate 90%
 (b) No cross immunity with parapertussis
 (c) Most infectious during paroxysmal stage
 (d) Affects only humans

[MP 2000]

MENINGOCOCCAL MENINGITIS

68. True about meningococcal meningitis is:
 (a) Causative agent is a gram –ve diplococci
 (b) Cases are the most important source of infection
 (c) Treatment with penicillin eradicates carrier state
 (d) Vaccine can be given in pregnancy

[AIIMS May 1994]

69. The following statements about meningococcal meningitis are true, except:
 (a) The source of infection is mainly clinical cases
 (b) The disease is more common in dry and cold months of the year
 (c) Chemoprophylaxis of close contacts of cases is recommended
 (d) The vaccine is not effective in children below 2 years of age

70. Xavier and Yogender stay in the same hostel of the same university. Xavier develops infection with Group B meningococcus. After a few days, Yogender develops infection due to Group C meningococcus. All the following are true statements except:
 (a) Educate students about meningococcal transmission and take preventive measures
 (b) Chemoprophylaxis against both Group B and Group C
 (c) Vaccine prophylaxis of contacts of Xavier
 (d) Vaccine prophylaxis of contacts of Yogender

[AIPGME 2002]

71. Vaccine for meningococcal meningitis should be routinely given to:
 (a) Laboratory workers
 (b) Young adolescents
 (c) 4-8 years old children
 (d) Elderly population

[AIIMS PGMEE May 2013]

72. Prophylaxis of meningococcal meningitis is:
 (a) Ciprofloxacin
 (b) Rifampicin
 (c) Penicillin
 (d) Gentamycin

[DNB December 2009]

73. WHO criteria for High endemicity for Meningococcal disease include:
 (a) 0.1%
 (b) 0.01%
 (c) 0.001%
 (d) 1.0%

[AIIMS PGMEE May 2013]

74. Meningococcal vaccine available is:
 (a) ACW135Y
 (b) ABCW135
 (c) CYW135B
 (d) ABCY

[Recent Question 2013]

Review Questions

75. The neurological complications of DPT are due to:
 (a) Pertussis component
 (b) Diphtheria
 (c) Tetanus
 (d) All

[Bihar 2003]

76. Chemoprophylaxis for meningococcal meningitis:
 (a) Ampicillin
 (b) Tetracycline
 (c) Rifampicin
 (d) Erythromycin

[Kolkata 2008]

ARI

77. A 2-year-old female child was brought to a PHC with a history of cough and fever for 4 days with inability to drink for last 12 hours. On examination, the child was having weight of 5 kg and respiratory rate of 45/minute with fever. The child will be classified as suffering from:
 (a) Very severe disease
 (b) Severe Pneumonia
 (c) Pneumonia
 (d) No Pneumonia

78. A child aged 24 months was brought to the Primary Health Centre with complaints of cough and fever for the past 2 days. On examination, the child weighed 11 Kg. respiratory rate was 38 per minute, chest indrawing was present. The most appropriate line of management for this patient is?
 (a) Classify as pneumonia and refer urgently to secondary level hospital
 (b) Classify as pneumonia, start antibiotic and advise to report after 2 days
 (c) Classify as severe pneumonia, start antibiotics and refer urgently
 (d) Classify as severe pneumonia and refer urgently

[AIPGME 2002, IPGME 2003]

79. Most important feature to diagnose severe pneumonia:
 (a) Cyanosis
 (b) Chest indrawing
 (c) Nasal flaring
 (d) Fast breathing

[Recent Question 2013]

80. A 10 month old child is brought to a PHC with history of cough and cold. On examination, he has respiratory rate of 48 breaths per minute and there is absence of chest indrawing. His weight is 5 kg. He is probably suffering from:
 (a) No pneumonia
 (b) Pneumonia
 (c) Severe pneumonia
 (d) Very severe pneumonia

[AIIMS November 2014]
81. Not evaluated in Clinical evaluation pneumonia at PHC
 (a) Respiratory rate
 (b) Inability to feed
 (c) Oxygen saturation
 (d) Chest in drawing

Review Questions

82. Respiratory rate can be diagnosed as fast breathing in a less than 2-month-old infant, if respiratory rate/minute is more than:
 (a) 29
 (b) 39
 (c) 49
 (d) 59

TUBERCULOSIS

83. All of the following are the targets of STOP TB STRATEGY partnership except:
 (a) Achieve a diagnosis rate > 70% and cure rate > 85% (by 2005)
 (b) Reduce prevalence to < 150 per 100,000 population per year (by 2010)
 (c) Lower deaths to < 1 per 100,000 population per year (by 2010)
 (d) Global incidence of TB disease ≤ 1 case per million population per year

84. If the objective of the investigator is to assess the incidence of tuberculosis infection in a community, the most appropriate methodology would be:
 (a) Identify all individuals with positive tuberculin test
 (b) Perform sputum examination of chest symptomatics
 (c) Identify new converters to Tuberculin test
 (d) Screen all under-five children with Tuberculin test

85. Point of control in tuberculosis the infection is:
 (a) < 1% in 0-14 group of children
 (b) > 1% is all children 0-5 yrs age group
 (c) < 1% in 15-49 of age group
 (d) < 2% in 0-14 group

86. Which of the following is true about tuberculin test?
 (a) It gives the immune status of patient
 (b) It may be negative in dissociated tuberculosis
 (c) It tells about prior exposure to Mycobacterium tuberculosis only
 (d) It is highly positive in a post measles case

87. The most appropriate test to assess the prevalence of tuberculosis infection in a community is:
 (a) Mass Miniature Radiography
 (b) Sputum examination
 (c) Tuberculin Test
 (d) Clinical examination

88. National Tuberculosis Institute is located at:
 (a) New Delhi
 (b) Chingelput
 (c) Bangalore
 (d) Chennai

89. Decrease in which of the following parameters indicate the decrease in tuberculosis problem in India?
 (a) Incidence of infection
 (b) Prevalence of infection
 (c) Incidence of disease
 (d) Prevalence of disease

90. The overall prevalence of tuberculosis infection in India as per 4th round of longitudinal survey was:
 (a) 20%
 (b) 30%
 (c) 40%
 (d) 50%

91. The percentage of positive Mantoux test in Indian if 20-40 yrs age group is:
 (a) < 5%
 (b) 5 – 10%
 (c) 20 – 30%
 (d) > 50%
 (e) > 80%

92. Population of a village on 1st June 2007 is 16,500. Since 1st January 2007, 22 new cases of TB were detected. Total registered cases were 220. What is the incidence of TB?
 (a) 133 per 100, 000
 (b) 121 per 100, 000
 (c) 111 per 100, 000
 (d) 100 per 100, 000

93. Which of the following is not false about annual risk of TB?
 (a) ARI of 1% = 75 new cases
 (b) Current ARI in India is 1.7%
 (c) It represents new cases of TB.
 (d) It is assessed by tuberculin conversion in previously non-vaccinated children

94. McKneown’s Theory states that reduced prevalence of Tuberculosis occurs due to:
 (a) Enhanced knowledge and awareness
 (b) Medical advancements
 (c) Behavioural modification
 (d) Social and environmental factors

95. A lactating woman has sputum positive Tuber-culosis and her neonate child is 3 months old. What is the recommended chemoprophylaxis?
 (a) INH 3mg/kg for 3 months
 (b) INH 5mg/kg for 3 months
 (c) INH 3mg/kg for 6 months
 (d) INH 5mg/kg for 6 months

96. Antitubercular drug which causes Optic neuritis is:
 (a) Ethambutol
 (b) Rifampicin
 (c) Isoniazid
 (d) Pyrizinamide

https://kat.cr/user/Blink99/
97. Number of (+) for tubercle bacilli if count in AFB sample is > 10 per oil immersion fields?
 (a) + (b) ++ (c) +++ (d) Scanty
 [Recent Question 2013]

98. One TB infected person can infect how many people in 1 year?
 (a) 20 (b) 30 (c) 10 (d) 5
 [Recent Question 2013]

99. Incidence of TB in a community measured by:
 (a) Sputum smear + (b) Tuberculin test + (c) Sputum culture (d) Mantoux test +
 [DNB December 2011]

100. The most appropriate test to assess the prevalence of tuberculosis infection in a community is: [DNB 2007]
 (a) Mass miniature radiography (b) Sputum examination (c) Tuberculin test (d) Clinical examination

101. Mycobacterium tuberculosis infection in humans is most common because of:
 [Recent Question 2013]
 (a) Contact (b) Inhalation (c) Infiltration (d) Inoculation

102. One of the following is known as Tuberculin Conversion Index: [NUPGET 2013]
 (a) Incidence of infection (b) Prevalence of infection (c) Incidence of disease (d) Prevalence of disease

103. Xpert MTB/RIF test is used to detect: [PGI May 2013]
 (a) For assessing resistance to isoniazid (b) For assessing multi drug resistant TB (c) For assessing rifampicin resistance (d) Monitoring drug response in MDR TB (e) Diagnosis of TB

104. TB multidrug regimen is given to: [Recent Question 2013]
 (a) Prevent resistance (b) Broad spectrum (c) Prevent side effects (d) None

105. Sputum positive TB is: [DNB June 2009]
 (a) 1 out of 2 sputum sample +ve (b) 2 out of 3 sputum sample +ve (c) BACTEC +ve (d) Mantoux test positive

106. Tuberculin positive means: [DNB June 2011]
 (a) Immunodeficient patient (b) Resistance to tuberculin protein (c) Patient is infected with mycobacterium (d) Patient is suffering from disease

107. Sputum positive TB patients on chemotherapy should be isolated at least for [Recent Question 2014]
 (a) 2 weeks (b) 3 weeks (c) 4 weeks (d) 6 weeks

108. Contacts of Sputum positive tuberculosis patient who should be given preventive chemotherapy
 (a) Pregnant women (b) Old people (c) Children above 6 years (d) Children below 6 years

Review Questions

109. In T.B/a ‘case’ is:
 [DNB 2001]
 (a) Cough (b) Sputum positive (c) Mantoux positive (d) X-ray positive

110. National tuberculosis institute is situated at:
 [DNB 2003]
 (a) Bombay (b) Calcutta (c) Bangalore (d) Delhi

111. Tuberculin unit is:
 [DNB 2003]
 (a) 0.0001 mg (b) 1 unit of PPD RT3 (c) 0.1 mg BCG (d) None of the above

112. The most appropriate test to assess the prevalence of tuberculosis infection in a community is?
 [DNB 2007]
 (a) Mass miniature radiography (b) Sputum examination (c) Tuberculin test (d) Clinical examination

113. By WHO best criteria for TB diagnosis is:
 [Bihar 2005]
 (a) Sputum + ve (b) Chest pain (c) Cough – 3 weeks (d) X-ray finding

114. A case of TB a/c to WHO is detected by:
 [Bihar 2005]
 (a) Sputum exam (b) Mass Miniature radiography (c) Montoux test (d) Elisa

115. True about tuberculosis-:
 [MP 2000]
 (a) >10^6 bacilli are required in sputum for detection (b) Mantoux test can differentiate between BCG and infection (c) Can be grown on ordinary culture media (d) Drug sensitivity is tested by schick test

116. In tuberculosis combination of Antimicrobials is used:
 (a) To delay the development of resistance (b) To reduce toxicity
Communicable and Non-communicable Diseases

(c) To Broaden anti-bacterial spectrum
(d) To prevent Liberation of toxins from organisms

117. Number of sputum positive cases of tuberculosis per lakh in India is: [MH 2000]
(a) 75
(b) 50
(c) 40
(d) 10

118. BCG is: [MH 2002]
(a) Live attenuated vaccine
(b) Killed vaccine
(c) Toxoid
(d) Immunosuppressant agent

119. 1 mL of expectoration contains what number of TB bacilli in an active case of TB? [MH 2002]
(a) 100
(b) 1,000
(c) 10,000
(d) 1,00,000

120. In India, a tubercular mother is advised for all except: [RJ 2003]
(a) Give baby BCG
(b) ATT to mother
(c) With hold Breastfeeding
(d) None of these

Poliomyelitis

121. Which type of sample can be used to isolate poliovirus earliest? [AIIMS Nov 2004]
(a) Stool
(b) Blood
(C) Throat
(d) CSF

122. True about oral polio vaccine: [PGI June 03]
(a) Poliomyelitis in recipients
(b) Poliomyelitis in contact of recipient
(c) Guillein Barre syndrome
(d) Vomiting and fever

123. True about complete eradication of poliomyelitis from India is: [AIIMS PGMEE November 2013]
(a) From 2012 onwards, no vaccine associated polio case has been detected
(b) Last polio case in India was reported in 13 January 2011
(c) Mostly IPV is used currently
(d) India is the only country which is not able to eliminate it completely

124. Regarding poliovirus responsible for poliomyelitis all are true except: [DNB June 2010]
(a) Type 3 is most common in India
(b) Type 1 is most common in India
(c) Type 1 is responsible for most epidemics
(d) Type 2 is eradicated worldwide

125. For every clinical case of poliomyelitis subclinical cases are: [Recent Question 2013]
(a) 500 in children and 75 in adults
(b) 500 in children and 25 in adults

126. Which of the following is not a type of Vaccine derived polio virus? [AIIMS November 2014]
(a) cVDPV
(b) iVDPV
(c) aVDPV
(d) mVDPV

127. Polio virus is shed maximum in stool up to [Recent Question 2014]
(a) 6 weeks
(b) 8 weeks
(c) 10 weeks
(d) 12 weeks

128. Wild poliomyelitis is still endemic in [PGI November 2014]
(a) Sri Lanka
(b) Pakistan
(c) India
(d) Afghanistan
(e) Nigeria

Review Questions

129. Zero dose of Polio vaccine is which is given: [DNB 2006]
(a) Before giving DPT
(b) At birth
(c) When child is having Diarrhea
(d) When child is having Polio

130. Polio is due to: [Bihar 2006]
(a) Virus
(b) Bacteria
(c) Protozoa
(d) Fungus

131. For every case of poliomyelitis the subclinical cases of poliomyelitis to be estimated: [UP 2005]
(a) 500 children and 50 adults
(b) 750 children and 75 adults
(c) 1000 children and 75 adults
(d) 1000 children and 50 adult

132. Mg++ is used in vaccine as: [Kolkata 2008]
(a) Stabilizer
(b) Adjuvant
(c) Preservative
(d) Vehicle

133. True about polio is: [MP 2002]
(a) Eliminated from India
(b) Less than 300 confirmed cases remaining
(c) Only Known in UP, MP and Bihar
(d) Clinical cases are more than subclinical cases

134. Killed Vaccine of polio is: [RJ 2000]
(a) Salk
(b) Sabin
(c) Both
(d) None

135. Wrong about polio patient who had paralysis:
(a) Most predominant polio virus during epidemic is type I [RJ 2006]
(b) Sub clinical infection common
136. All are true about SALK vaccine except:
(a) It prevents paralysis [RJ 2009]
(b) Oral polio can be given as booster
(c) It is contraindicated in immunocompromised patients
(d) Easily transported

137. Which of the following is not transmitted through sexual route? [AIPGME 2003]
(a) Hepatitis A
(b) Hepatitis E
(c) Both Hepatitis A and Hepatitis E
(d) Hepatitis D

138. Marker for infectivity of serum in Hepatitis B is: [AIIMS Nov 1993]
(a) HBsAg
(b) HBeAg
(c) Anti-HBs
(d) HBeAg

139. Which of the Hepatitis B Virus serological marker indicates the first evidence of Hepatitis B infection? [Karnataka 2009]
(a) Anti-HBs
(b) Anti-HBc
(c) HBeAg
(d) HBsAg

140. Which of the following is true about HCV screening? [PGI Dec 04]
(a) Medical students are screened before their joining
(b) IV drug abuser are prone to infection
(c) Blood products taken before 1997 should be screened
(d) Long term hemodialysis
(e) Interferon is treatment

141. Hepatitis A true is: [PGI June 06]
(a) Causes mild illness in children
(b) 3% incidence of carrier state
(c) Sexual route common
(d) 10% transform into HCC
(e) Vertical Transmission never seen

142. Which of the following is/are seen in Acute Hepatitis-B? [PGI May 2011]
(a) HBsAg
(b) Anti-HBs
(c) Anti-HBc
(d) HBeAg
(e) Anti-HBe

143. Both HBsAg and HBeAg are positive in: [AIIMS PGME May 2013]
(a) Acute infectious hepatitis B [AIIMS Nov 2014]
(b) Chronic Hepatitis B
(c) Recovery phase of Hepatitis B
(d) Individuals vaccinated with Hepatitis B

144. 1955 Hepatitis outbreak is Delhi was: [Recent Question 2013]

145. Isolation period of Hepatitis A: [DNB December 2011]
(a) 1 weeks
(b) 2 weeks
(c) 3 weeks
(d) 4 weeks

146. Acute Hepatitis B marker(s) is/ are: [PGI May 2012]
(a) HBsAg [b] Anti HBs
(c) Anti HBc [d] HBeAg
(e) Anti HBe

147. A mother is HBsAg positive at 32 weeks of pregnancy. What should be given to the newborn to prevent neonatal infection? [Recent Question 2013]
(a) Hepatitis B vaccine + Immunoglobulin
(b) Immunoglobulin only
(c) Hepatitis B vaccine only
(d) Immunoglobulin followed by vaccine 1 month later

148. Most important in diagnosing Acute Hepatitis B is [AIIMS Nov 2014]
(a) IgG Anti-HBc
(b) IgM Anti-HBc
(c) Anti HBs
(d) HBsAg

149. A nurse was diagnosed to have HBeAg and HBsAg in serum. Most likely she is having [AIIMS November 2014]
(a) Chronic hepatitis B
(b) HBV + HBE coinfection
(c) Active and infectious Hepatitis B disease
(d) Recovery from Hepatitis B

150. Hepatitis A virus shedding in faeces is: [UP 2004]
(a) One week before the symptoms appear
(b) Two weeks after the symptoms appear
(c) Two weeks before the symptoms and two week thereafter
(d) One week before the symptoms and one week thereafter

151. Epidemiological marker of Hepatitis – B is: [UP 2008]
(a) HBs Ag
(b) Anti - HBs
(c) Anti HBc
(d) HBe Ag

152. Chances of Viral Hepatitis Type C becoming a chronic infection are: [MP 2009]
(a) 10%
(b) 20%
(c) 30%
(d) 50% or more

153. The freshly prepared ORS (Oral Rehydration Solution) should not be used after: [AIPGME 1993]
154. A 5 year old boy passed 18 loose stools in last 24 hours and vomited twice in last 4 hours. He is irritable but drinking fluids. The optimal therapy for this child is:
(a) Intravenous fluids [AIPGME 2003]
(b) Oral rehydration therapy
(c) Intravenous fluid initially for 4 hours followed by oral fluids
(d) Plain water add libitum

155. The best approach to prevent cholera epidemic in a community is: [AIPGME 1992]
(a) Mass chemoprophylaxis with tetracycline
(b) Vaccination of all individuals
(c) Health education
(d) safe water and sanitation

156. Which of the following is the drug of choice for chemoprophylaxis of cholera?
(a) Tetracycline [AIIMS May 2005]
(b) Doxycycline
(c) Furazolidone
(d) Co-trimoxazole

157. The usual incubation period for typhoid fever is:
(a) 10-14 days [AIIMS May 1994]
(b) 3-5 days [Recent Question 2012]
(c) 21-25 days
(d) less then 3 days

158. The drug of choice for treating cholera in pregnant women is: [AIIMS Nov 2005]
(a) Tetracycline
(b) Doxycycline
(c) Furazolidone
(d) Cotrimoxazole

159. The drug of choice for treating cholera in children is: [AIIMS Nov 2005]
(a) Tetracycline
(b) Doxycycline
(c) Furazolidone
(d) Cotrimoxazole

160. True about citrate in ORS: [AIIMS June 1997]
(a) Increases shelf life
(b) Nutritious
(c) Cheaper
(d) Tastier

161. The sodium content of ReSoMal (rehydration solution for malnourished children) is: [AIPGME 2006]
(a) 90 mmol/L
(b) 60 mmol/L
(c) 45 mmol/L
(d) 30 mmol/L

162. For controlling an outbreak of cholera, all of the following measures are recommended except: [AIIMS Feb 1997 and May 1991]
(a) Mass chemoprophylaxis
(b) Proper disposal of excreta
(c) Chlorination of water
(d) Early detection and management of cases

163. Which one of the following gives strong evidence of Typhoid Fever carrier status:
(a) Isolation of Core antigen [AIIMS Nov 2008]
(b) Isolation of Vi antigen
(c) Persistence of Vi antibodies
(d) Demonstration of Typhoid bacilli in stools

164. For controlling an outbreak of cholera, all of the following measures are recommended except:
(a) Mass chemoprophylaxis [AIPGME-1992 and 2003]
(b) Proper disposal of excreta
(c) Chlorination of water
(d) Early detection and management of cases

165. Antibiotic treatment of choice for treating cholera in an adult is a single dose of: [AIPGME 2005]
(a) Tetracycline
(b) Co-trimoxazole
(c) Doxycycline
(d) Furazolidone

166. A convalescent case of cholera remains infective for:
(a) < 7 days [DPG 2005]
(b) 7-14 days
(c) 14-21 days
(d) 21-28 days

167. In WHO-ORS, concentration of sodium is: [DPG 2007]
(a) 60 mEq/L
(b) 50 mEq/L
(c) 40 mEq/L
(d) 90 mEq/L

168. True about ORS: [PGI Dec 2K]
(a) Na+ = 90 meq/L
(b) K+ = 30 meq/L
(c) Cl- = 20 meq/L
(d) Hco3- = 40 meq/L
(e) Glucose = 110 meq/L

169. The composition of ORS recommended by WHO is:
(a) 3.5 g NaCl [PGI Dec 01]
(b) 4.5 g NaCl
(c) 2.9 g sodium-potassium citrate
(d) 2.8 g sodium bicarbonate
(e) 1.5 g potassium chloride

170. WHO ORS contains:
(a) Sodium chloride 2.5 g
(b) Potassium chloride 1.5 g
(c) Glucose 20 g
(d) Sucrose 10 g
(e) Potassium bicarbonate 2.5 g

171. Composition of ORS which of the following is correct: [PGI Dec 04]
(a) Na+ 90 meq/L
(b) HCO3- 10 meq/L
(c) K+ + 20 meq/L
(d) Cl- - 30 meq/L

172. WHO ORS, composition are (mmol):
(a) Glucose ~ 111 [PGI June 04]
(b) K+ 80
(c) Na+ - 20
(d) Cl- - 30
(e) Total millimoles-311

173. Ringer lactate true is:
(a) Cl- - 111
(b) Na+ - 45
(c) K+ - 5
Review of Preventive and Social Medicine

174. WHO ORS has:
- (a) K+ → 20 mmol/l
- (b) Na+ → 90 mmol/l
- (c) HCO3– → 10 mmol/l
- (d) Osmolality → 150 mmol/l

175. A 12 kg child with diarrhoea, fluid to be replaced in first 4 hours:
- (a) 0-400 ml
- (b) 400-800 ml
- (c) 800-1200 ml
- (d) 1200-1600 ml

176. Incubation period of typhoid is:
- (a) 1-2 days
- (b) 10-14 days
- (c) 1 month
- (d) 4-6 hours

177. Which is true of typhoid?
- (a) Female carriers are less common
- (b) Male carriers though less are more dangerous
- (c) Gall bladder usually not involved in carrier state
- (d) Tetracycline is the DOC for carriers

178. Persistent diarrhoea in infants:
- (a) 7 days
- (b) 14 days
- (c) 21 days
- (d) 1 month

179. ORS should be discarded after:
- (a) 54 hours
- (b) 6 hours
- (c) 12 hours
- (d) 24 hours

180. ORS contains 75 mmol/litre of:
- (a) Sodium
- (b) Potassium
- (c) Glucose
- (d) Chloride

181. Dehydration in a child with diarrhoea, thirst present, tears absent is:
- (a) Mild
- (b) Moderate
- (c) Severe
- (d) None

182. Concentration of sodium in mMol/L in low osmolar ORS is:
- (a) 45
- (b) 75
- (c) 90
- (d) 60

183. New WHO ORS osmolarity is:
- (a) 270
- (b) 245
- (c) 290
- (d) 310

184. ORS amount required in first 4 hours in a 1 year old case of dehydration is:
- (a) 200-400 ml
- (b) 400-600 ml
- (c) 600-800 ml
- (d) 800-1200 ml

185. Which of the following about the composition of new ORS is wrong?
- (a) NaCl – 2.6 grams/litre
- (b) KC1 – 1.5 grams/litre
- (c) Glucose – 13.5 grams/litre
- (d) Total osmolarity – 300mmol/l

Review Questions

186. True of 8th Pandemic of Cholera
- (a) Started in Bangladesh
- (b) Originated in 2012
- (c) Due to O139 El Tor
- (d) Low attack rate
- (e) Low proportion of adults in endemic regions

187. A village affected with epidemic of cholera, what is the 1st step which should be taken in village to decrease the death from cholera?
- (a) Safe water supply and sanitation
- (b) Cholera vaccination to all individuals
- (c) Primary Chemoprophylaxis
- (d) Treat everyone in the village’ with tetracycline

188. Ratio of Sodium : Glucose in WHO Reduced Osmolarity ORS is
- (a) 1:4
- (b) 1:3
- (c) 1:2
- (d) 1:1
- (e) 4:1

Pharmacology

189. Drug of choice for carriers of typhoid is:
- (a) Ampicillin
- (b) Chloramphenicol
- (c) Co-trimoxazole
- (d) Clindamycin
- (e) Ciprofloxacin

190. Which is true of typhoid?
- (a) Female carriers are less common
- (b) Male carriers though less are more dangerous
- (c) Gall bladder usually not involved in carrier state
- (d) Tetracycline is the DOC for carriers

191. In salmonellosis disease, isolation is done till:
- (a) Fever subsides
- (b) Blood culture negative
- (c) Spleen subsides
- (d) Stool culture negative for three times

192. In ORS, the concentration of sodium chloride is:
- (a) 3.5 gm
- (b) 2.5 gm
- (c) 2.9 gm
- (d) 1.5 gm

193. Drug of choice for cholera chemoprophylaxis is:
- (a) Erythromycin
- (b) Ampicilline
- (c) Ciprofloxacin
- (d) Tetracyclines

194. Typhoid oral vaccine is given:
- (a) 1, 3, 5 days
- (b) 1, 2, 3 days
- (c) 1, 2, 4 days
- (d) 1, 7, 14 days

195. Isolation in patient with Salmonellosis is done:
- (a) Till fever subsides

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

Review Questions

205. Guinea worm infestation is common in workers of:
(a) Step wells
(b) Ponds
(c) Fields
(d) Cotton mills

206. Chandler's index is used for:
(a) Ankylostoma duodenale
(b) Ascaris lumbricoides
(c) Strongyloides
(d) Trichuris trichiura

207. According to Chandler's index water containing 200-250 eggs should be considered as:
(a) Safe
(b) Mild pollution
(c) Dangerous
(d) Public health problem

208. Chandler's index:
(a) No of hookworm eggs per gram of stool
(b) No of hookworm larva per gram of stool
(c) No of failures of contraception for 100 woman years of exposure
(d) No of E-coli in a water sample

209. Dracunculiasis was more common in which of the following state?
(a) Orissa
(b) Rajasthan
(c) Tamil Nadu
(d) U.P.

210. Cysticercosis cellulosae causes infection with:
(a) Taenia saginata
(b) Taenia solium
(c) Echinococcus granulosus
(d) Diphyllobothrium latum

211. Chandler's index:
(a) No. of eggs of hook worm in 100 gram soil
(b) No. of eggs of hookworm in per gram soil
(c) No. of eggs of hookworm in per gram stool
(d) Percentage of stool specimens positive for hookworms

212. Highest level of health care is:
(a) Primary health care
(b) Tertiary care
(c) Child care
(d) Secondary level care

DENGUE

213. Dengue shock syndrome is characterized by the following except:
(a) Hepatomegaly
(b) Pleural effusion
(c) Thrombocytopenia
(d) Decreased hemoglobin
214. All are true about Yellow Fever except:
(a) Incubation period is 3-6 days
(b) Validity of Int’l certificate of Vaccination lasts up to 10 years
(c) Urban form is controlled by 17 D vaccine
(d) Aedes aegypti index should not be more than 10% to ensure freedom from yellow Fever

215. Classical dengue fever is transmitted by:
(a) Aedes mosquito
(b) Anopheles mosquito
(c) Mansoonoides mosquito
(d) Culex mosquito

216. Which of the following statement is/are true about Dengue fever is:
(a) Caused by 3 serotypes of dengue virus
(b) It is endemic in India
(c) Aspirin is used for treatment
(d) Clinical course of dengue is more fulminant in children than adults

217. Dengue virus appears to have a direct man-mosquito-man cycle in India. The mechanism of dengue virus survival in the inter-epidemic period is:
(a) Non-human reservoir
(b) Dormant or latent phase in man
(c) Transovarian transmission of the virus
(d) Poor housekeeping by the public

218. True about Dengue fever is:
(a) Is the most common arboviral infection
(b) Can be both epidemic as well as endemic
(c) Can survive in ambient temperature
(d) Incidence decreasing in India in last 2-3 decades
(e) Vector is Aedes aegypti

219. The main vector of Dengue fever is:
(a) Aedes aegypti
(b) Aedes albopictus
(c) Aedes polynesiensis
(d) Aedes scutellaris

220. Which is not true of Dengue fever?
(a) Aedes aegypti is the principal vector
(b) Break bone fever is characteristic
(c) Serotype 4 is more dangerous than other serotypes
(d) Torniquet test is positive

221. All are true about Dengue hemorrhagic fever except:
(a) Lamivudine is drug of choice
(b) Malnutrition is protective
(c) Transmitted by Aedes
(d) causative agent belongs to flaviviradae group

Review Questions

222. Which is not true about Dengue hemorrhagic fever:
(a) Thrombocytopenia

223. Dengue fever is transmitted by:
(e) Cluex fatigans
(f) Cluex vishnuii
(g) Aedes aegypti
(h) Glossina palpalis

224. Infective period of Aedes mosquito for Classical Dengue fever (break-bone fever) is:
(a) 10-20 days
(b) 20-30 days
(c) 30-40 days
(d) Lifelong

225. Which of the following statement regarding dengue is correct:
(a) Caused by 3 serotypes of dengue virus
(b) It is endemic in India
(c) Aspirin is used for treatment
(d) Clinical course of dengue is more fulminant in children than adults

MALARIA

226. API is:
(a) Annual parasitic index
(b) Average parasitic index
(c) Animal parasite interval
(d) Annual parasitic incidence

227. The infective form of malarial parasite through a blood transfusion is:
(a) Trophozoite
(b) merozoite
(c) sporozoite
(d) schizont

228. The drug preferred for chloroquine resistant malaria in pregnancy is:
(a) Mefloquine
(b) primaquine
(c) cloxacilin
(d) quinine

229. In a Chloroquine resistant zone the presumptive treatment of malaria to be given is:
(a) Chloroquine + primaquine 45 mg
(b) Chloroquine + pyrimethamine
(c) Sulphadene 1000 mg
(d) Sulphoxide + pyrimethamine

230. In high-risk areas the radical treatment for Plasmodium vivax infection after microscopic confirmation is administration of tablets primaquine in the daily dosage of:
(a) 0.25 mg/ kg body weight
(b) 0.50 mg/ kg body weight
(c) 0.75 mg/ kg body weight
(d) 1.00 mg/ kg body weight

https://kat.cr/user/Blink99/
231. The most sensitive index of recent transmission of malaria in a community is:
 (a) Spleen rate
 (b) Infant parasite rate
 (c) Annual parasite incidence
 (d) Slide positivity rate

232. In endemic area, most sensitive indicator of recent transmission of malaria is:
 [DPG 2005]
 (a) API
 (b) Spleen rate
 (c) ABER
 (d) Infant parasite rate

233. Best indicator for malaria prevalence in a community is:
 [DPG 2005]
 (a) Adult parasite rate
 (b) New Cases in a community
 (c) Infant parasite rate
 (d) Spleen rate

234. Which of the following is used for radical cure of malaria?
 [DPG 2006]
 (a) Primaquine
 (b) Chloroquine
 (c) Quinine
 (d) Pyrimethamine

235. Species of Anopheles transmitting malaria in urban areas is:
 [DPG 2007]
 (a) Stephensi
 (b) Culcifacies
 (c) Minimus
 (d) Fluviatilis

236. The peaks of fever in malaria coincide with the release of successive broods of into the blood stream:
 [Karnataka 2008]
 (a) Sporozoites
 (b) Trophozoites
 (c) Merozoites
 (d) Hypnozoites

237. Urban malaria is due to:
 [PGI Dec 2K]
 (a) Anopheles stephensi
 (b) Anopheles culicifacies
 (c) Phlebotomus
 (d) Aedes
 (e) Culex vishnau

238. True about epidemiology of malaria:
 [PGI Dec 06]
 (a) Extrinsic incubation period 0-14 days
 (b) In India common during January to June
 (c) Man act as definitive host
 (d) Rare in urban areas
 (e) Mosquito acts as definitive host

239. Malaria is transmitted by:
 [PGI Dec 07]
 (a) Anopheles stephensi
 (b) Anopheles Dirus
 (c) Culex
 (d) Phlebotomus

240. All of the following factors are responsible for resurgence of Malaria except:
 [AIPGME 2011]
 (a) Drug resistance
 (b) Use of bed-nets
 (c) Vector resistance
 (d) Mutation in parasite

241. Plasmodium ovale in India has been reported from:
 [PGI May 2011]
 (a) Maharashatra
 (b) Madhya Pradesh
 (c) Manipur
 (d) Gujarat
 (e) Orissa

242. True about Malaria in India is/are:
 [PGI November 2012]
 (a) 1.5 million cases annually
 (b) Quinine drug of choice in severe malaria in pregnancy
 (c) Anopheles culicifacies is vector in Urban malaria
 (d) Plasmodium ovale is not seen in India
 (e) Falciparum malaria is most common type

243. Prophylaxis for malaria not used:
 [Recent Question 2013]
 (a) Doxycycline
 (b) Artesunate
 (c) Chloroquine
 (d) Mefloquine

244. Chemoprophylaxis of Malaria can be done by all except:
 [Recent Question 2012, Recent Question 2013]
 (a) Chloroquine
 (b) Mefloquine
 (c) Proguanil
 (d) Primaquine

245. Malaria recrudescence is:
 [AIIMS May 2014]
 (a) Resistant to treatment
 (b) Relapse of infection
 (c) Relapse in vivax and ovale
 (d) reappearance of sexual stage parasitemia after treatment

246. Cycle that is seen in RBCs in malaria:
 [Recent Question 2014]
 (a) Sexual
 (b) Sporogony
 (c) Exogenous
 (d) Endogenous

Review Questions

247. Malarial parasite in India are all except:
 [DNB 2003]
 (a) P. vivax
 (b) P. falciparum
 (c) P. ovale
 (d) P. malariae

248. Incubation period of plasmodium vivax is:
 [DNB 2004]
 (a) 5-7 days
 (b) 7-10 days
 (c) 10-14 days
 (d) 15-30 days

249. Anti malaria month:
 [UP 2005]
 (a) April
 (b) May
 (c) June
 (d) September

250. If API>2, the vector is resistant to DDT, the malathion spray should be done every:
 [UP 2006]
 (a) One round of malathion every month
 (b) 2 round or malathion every months
 (c) 1 - 2 round of malathion every 3 months
 (d) 3 round of malathion every 3 months
251. A malarial survey is conducted in 50 villages having a population of 1 lakh. Out of 20000 slides examined, 500 turned out to be malaria positive. The annual parasite incidence is:
(a) 20
(b) 5
(c) 0.5
(d) 0.4

252. Most sensitive index of recent transmission of malaria is:
(a) Infant parasite rate
(b) Parasite density
(c) proportional case rate
(d) Spleen rate

253. What is causative organism for Malaria?
(a) Plasmodium
(b) Anopheles
(c) Culex
(d) Yersinia

254. Goal of reduction in morbidity and mortality due to malaria by 2010 is:
(a) 25% reduction
(b) 50% reduction
(c) 75% reduction
(d) 100% reduction

255. Malaria is transmitted by:
(a) Female anopheles mosquito
(b) Male anopheles mosquito
(c) Culex mosquito
(d) Aedes mosquito

256. Among various species of mosquitoes belonging to anopheles genus, one that is highly anthropophilic and transmits even at low density is:
(a) Anopheles sundicans
(b) Anopheles fluvitalis
(c) Anopheles stephensi
(d) Anopheles culicifacies

257. Best determinant index of recent transmission of malaria:
(a) Infant parasite rate
(b) ABER
(c) Spleen rate
(d) Annual parasite index

258. DEC is used extensively in the chemotherapy of Filariasis. It is most effective against:
(a) Microfilariae
(b) Adult worm
(c) Infective stage larvae
(d) All of the above

259. The organism most commonly causing genital filariasis in most parts of Bihar and Eastern U.P. is:
(a) Wuchereria bancrofti
(b) Brugia malayi
(c) Onchocerca volvulus
(d) Dirofilaria

260. The currently given regimen for Bancroftian filariasis is:
(a) DEC - 6 mg/Kg / day × 21 days
(b) DEC - 6 mg/Kg / day × 12 days
(c) DEC - 100 mg/ day × 21 days
(d) DEC - 100 mg/ day × 12 days

261. The vector for transmission of Bancroftian filaria is:
(a) Culex fatigans
(b) Aedes aegypti
(c) Mansonoides annulifers
(d) Anopheles stephensi

262. The DEC-medicated salt for mass treatment in lymphatic filariasis was shown to be safe, cheap and effective in:
(a) Goa
(b) Daman and Diu
(c) Andaman and Nicobar islands
(d) Lakshadweep islands

263. All of the following are helpful for elimination of filariasis, except:
(a) Microfilariae do not multiply in vectors
(b) They multiply in humans
(c) Larvae are deposited on skin surface where they can’t survive
(d) Mass drug administration

264. All of the following are true about filariasis except:
(a) It is sheathed
(b) Tail end is free from nuclei and unsheathed
(c) Has nocturnal activity
(d) Day time resides inside the lymphatics

Review Questions

265. Life cycle of filarial in the mosquito is described as:
(a) Cyclopropagative
(b) Cyclodevelopmental
(c) Propagative
(d) None

266. The Clinical incubation period of Filariasis is:
(a) 10 to 20 days
(b) 3 to 6 months
(c) 6 to 12 months
(d) 8 to 16 months

267. Target year for elimination of lymphatic filariasis:
(a) 2010
(b) 2015
(c) 2020
(d) 2012
268. Pre-exposure prophylaxis for Rabies is given on:
(a) Days 0, 3, 7, 14, 28, 90
(b) Days 0, 3, 7, 28, 90
(c) Days 0, 3
(d) Days 0, 7, 28
[Recent Questions 2014]

269. Class II exposure in animal bites includes the following:
(a) Scratches without oozing of blood
(b) Licks on a fresh wound
(c) Scratch with oozing of blood on palm
(d) Bites from wild animals
[AIPGME 2003]

270. For the treatment of case of class III dog bite, all of the following are correct except:
(a) Give Immunoglobulins for passive immunity
(b) Give ARV
(c) Immediately stitch wound under antibiotic coverage
(d) Immediately wash wound with soap and water
[Recent Question 2013]

271. Which of the following statements about rabies is true?
(a) Convulsions are generally not seen in a patient with rabies
(b) Presence of meningitis suggests against the diagnosis of rabies
(c) Intracytoplasmic basophilic inclusion bodies are seen in brain cells
(d) Incubation period is approximately 20 to 80 days
[DPG 2004]

272. Which of the following should be injected in and around the wound in class III rabies bite?
(a) Tetanus toxoid
(b) Antibiotic solution
(c) Anti rabies serum
(d) None of the above
[DPG 2006]

273. Rabies in not found in:
(a) Lakshadweep Islands
(b) Rajasthan
(c) Meghalaya
(d) Orrisa
[DPG 2006]

274. Bite of which of the following animals do not result in human rabies?
(a) Dog
(b) Mouse
(c) Horse
(d) Cat
[DPG 2007]

275. Characteristic features of Rabies include all except:
(a) Can manifest as ascending paralysis
(b) Hematogenous spread to brain
(c) Can be transmitted by bites other than dogs also
(d) In invariably fatal
[NUPGET 2013]

276. Schedule of intradermal rabies vaccine is?
(a) 2-2-0-1-0-1
(b) 8-0-4-0-1-1
(c) 2-2-0-2-0-1-1
[Recent Question 2013]

277. Number of does of Rabies HDCV vaccine required for pre-exposure prophylaxis:
(a) 5
(b) 2
(c) 3
(d) 1
[Recent Question 2013]

278. Which virus is used to produce rabies vaccine?
(a) Wild
(b) Street
(c) Fixed
(d) Live Attenuated
[Recent Question 2013]

279. Intermediate host of Rabies is:
(a) Man
(b) Dog
(c) Cow
(d) Rat
[Recent Question 2014]

280. Rabies free country is:
(a) China
(b) Russia
(c) Australia
(d) France
[DNB 2000]

281. Rabies free country is:
(a) China
(b) Russia
(c) Britain
(d) France
[DNB 2004, 05]

282. All these Rabies vaccines are commercially available except:
(a) Killed sheep brain
(b) Human diploid vaccine
(c) Vero-continuous cell vaccine
(d) Recombinant glycoprotein vaccine
[UP 2000]

283. A patients present with dogs bite in the palm fingers and oozing of blood on the neck regions, belongs to which class of the exposures:
(a) Class I
(b) Class II
(c) Class III
(d) None
[UP 2008]

284. All are true about rabies except:
(a) It is a DNA virus
(b) Vaccine virus has fixed incubation period
(c) Incubation period depends upon site of bite
(d) All bites on fingers with laceration are class III injuries
[MP 2000]

285. Nervous tissue Rabies vaccines are usually manufactured from:
(a) Sheep
(b) Human diploid cell
(c) Duck embryos
(d) Chick embryos
[MP 2007]

286. Rabies does not occur in which of the following parts of India?
(a) Daman and Diu
(b) Andaman and Nicobar Islands
(c) Dadra and Nagar Havelli
(d) Pondicherry
[MH 2003]
Review Questions

287. In the case of dog bite the biting animal should be observed for at least: [R] 2007
(a) 5 days
(b) 10 days
(c) 15 days
(d) 3 weeks

288. In India “Rabies free” zone is: [R] 2008
(a) Goa
(b) Lakshadweep
(c) Skkim
(d) Nagaland

289. The incubation period of yellow fever is: [AIIMS May 04]
(a) 3 to 6 days
(b) 3-4 weeks
(c) 1 to 2 weeks
(d) 8-10 weeks

290. All are features of yellow fever except: [AIIMS June 1997]
(a) Sub clinical cases present
(b) Fatality rate > 90%
(c) One attack gives life long immunity
(d) Hepatic and renal involvement in severe cases

291. According to International Health Regulations, there is no risk of spread of yellow Fever if the Aedes aegypti index remains below: [AIPGME 2004]
(a) 1%
(b) 5%
(c) 10%
(d) 20%

292. All are true for Yellow Fever except: [AIPGME 2003]
(a) Causative agent is Flavivirus fibricus
(b) Case fatality is up to 80 %
(c) Validation of Vaccination Certificate begins after 10 days and lasts till 10 years
(d) Incubation period is 16-46 days

293. Vaccine of yellow fever is: [DPG 2006]
(a) 4D
(b) 5D
(c) 17D
(d) 2D

294. True about yellow fever: [PGI June 04]
(a) I.P. is 10-14 days
(b) Transmitted by Aedes
(c) It is found in Asia
(d) Incidence is increased by humidity
(e) It is a flavivirus

295. Yellow fever certificate of vaccination is valid for: [Recent Question 2012]
(a) 1 year
(b) 10 years
(c) 35 years
(d) Lifelong

296. Yellow fever vaccination starts protection after how many days of injection: [DNB 2007]
(a) 5 day
(b) 10 days
(c) 15 days
(d) 20 days

297. Which is not true about Yellow fever? [Recent Question 2013]
(a) Exotic
(b) Incubation period 2-6 days
(c) Validity of vaccine 6 years
(d) Live Attenuated 17 D strain vaccine

298. To prevent yellow fever Aedes aegypti index should be less than……. [DNB December 2010, DNB December 2011]
(a) 0.5%
(b) 1%
(c) 2%
(d) 5%

299. Yellow fever certificate of vaccination is valid for: [DNB December 2010]
(a) 6 years, starting from 6 days after vaccination
(b) 10 years, starting from 10 days after vaccination
(c) 10 years, starting from 6 days after vaccination
(d) 6 years, starting from 10 days after vaccination

300. Yellow fever vaccination starts protection after how many days of injection: [DNB 2001]
(a) 5 days
(b) 10 days
(c) 15 days
(d) 20 days

301. Yellow fever vaccine is valid till: [UP 2001]
(a) 10 years
(b) 20 years
(c) 30 years
(d) 40 years

302. Which act was passed in 20th century: [MP 2004]
(a) Birth and death registration act
(b) Drug act
(c) Epidemic disease act
(d) Quarantine act

303. Which if the following is the ‘YELLOW FEVER’ reference centre? [MH 2008]
(a) Haffkin’s institute, Mumbai
(b) Central institute, kasauli
(c) NIN, Hyderabad
(d) AIIMS, Delhi

JAPANESE ENCEPHALITIS

304. All are true about Japanese Encephalitis except: [AIPGME 1996, Dec 98, AIIMS May 97]
(a) Man is incidental dead-end host
(b) Culicines and anophelines are vectors involved
(c) Case fatality rate is over 90%
(d) 85% of cases occur in children <15 years age

305. True statement regarding Japanese Encephalitis is: [AIPGME 2011]
(a) 70% of cases are reported from infants
(b) Ratio of clinical apparent to non-apparent infections is 1:100
(c) Mosquito bite is always associated with the disease
(d) Epidemic is declared if there are 2-3 cases in a village
306. JE virus life cycle in nature run between?
(a) Pigs-Mosquito (b) Cattle-Birds
(c) Pigs-human (d) Bird-Pigs
[Recent Question 2013]
307. Amplifier for Japanese encephalitis:
(a) Horse (b) Pigs
(c) Dogs (d) Monkey
[Recent Question 2013]
308. Japanese encephalitis is transmitted by:
(a) Culex (b) Aedes
(c) Mansonia (d) Anopheles
[DNB December 2010] [DNB June 2011] [Recent Question 2012]
309. Not true about Japanese’s encephalitis is:
(a) Man to man transmission (b) Vector is culex. tritaeiorhynchus
(c) Rice field (d) Horse shows symptom
[Bihar 2006]
310. Vector of Japanese Encephalitis is:
(a) Culex (b) Anopheles
(c) Aedes (d) Waucheria
[UP 2001]
311. Major determinant to eradication of Japanese encephalitis is:
(a) No effective vaccine (b) Breeding place of vector
(c) Large no. of in apparent infections (d) Numerous animal hosts
[K 2007]
312. Which of these is NOT useful in the prevention of KFD?
(a) Vaccination (b) Deforestation
(c) Prevention of roaming cattle (d) Personal protection
[AIIMS May 2001]
313. The vector for KFD is:
(a) Aedes aegypti (b) Haemaphysalis
(c) Culex (d) Xenopsylla
[AIIMS May 1993]
314. Kyasanur forest disease in transmitted by:
(a) Mosquito (b) Housefly
(c) Rat flea (d) Hard tick
[DPG 2006]
315. Kyasanur Forest Disease (KFD) is transmitted by:
(a) Mite
[Kolkata 2008]
[PLAGUE]
316. KFD in India is transmitted by:
(a) Louse (b) Flea
(c) Ticks (d) Culex
[MP 2000]
317. All are true about Plague except
(a) Domestic rat “Rattus rattus” has been incriminated as main reservoir
(b) Both sexes of rat flea bite to transmit the disease
(c) IP for bubonic plague is 1-3 days
(d) Infants under 6 months are not given the killed vaccine
[AIPGME 1997]
318. The most effective method to break transmission chain in plague is:
(a) Early diagnosis and treatment (b) Control of fleas
(c) Control of rodents (d) Vaccination
[AIIMS May 2002]
319. All of the following statements about plague is wrong, except:
(a) Domestic rat is the main reservoir
(b) Bubonic is the most common variety
(c) The causative bacillus can survive up to 10 years in the soil of rodent burrows
(d) The incubation period for pneumonic plague is one to two weeks
[AIIMS May 2004]
320. Plague epidemic in Surat in 1995 has occurred after a silence period of:
(a) 18 years (b) 20 years
(c) 28 years (d) 30 years
[DPG 2005]
321. Maximum Explosiveness of Plague is determined by:
(a) Total flea index (b) Cheopsis index
(c) Borrow index (d) Specific percentage of fleas
[DPG 2006] [Recent Question 2013]
322. Severity of spreading of plague detected by:
(a) Burrow’s index (b) Cheopsis index
(c) Specific flea index (d) Total flea index
[DNB December 2011]
323. Cheopsis index is the:
(a) Average number of cheopis per rat
(b) Average number of fleas per rat
(c) Average number of fleas per burrow
(d) Average number of cheopis per burrow
[AP 2003]
324. The highly infectious clinical form of plague is:
(a) Bubonic plague
(b) Pneumonic plague
(c) Septicaemic plague
(d) All of the above

325. Dose of equine anti-rabies immunoglobulin (ERIG) is:
(a) 20 IU per kg of body weight
(b) 10 IU per kg of body weight
(c) 40 IU per kg of body weight
(d) 30 IU per kg of body weight

326. Plague is transmitted by:
(a) Hard tick
(b) Soft tick
(c) Rat flea
(d) Louse

RICKETTSIAL DISEASES

327. Which of the following pairs of ‘Rickettsial Diseases-Insect vectors’ is wrongly matched?
(a) Epidemic typhus – Louse
(b) Scrub typhus - Flea
(c) Rocky Mountain spotted fever - Tick
(d) Rickettsial pox - Mite

328. A patient complained of chills and fever following a louse bite 2 weeks before. He had rashes all over the body and was delirious at the time of presentation to the hospital and subsequently went into coma. A provisional diagnosis of vasculitis due to Rickettsial infection was made. Which one of the following can be the causative agent?
(a) Rickettsia typhi
(b) Rickettsia rickettsiae
(c) Rickettsia prowazekii
(d) Rickettsia akari

329. It is true regarding endemic typhus that:
(a) Man is the only reservoir of infection
(b) Flea is a vector of the disease
(c) The rash developing into eschar is a characteristic presentation
(d) Culture of the aetiological agent in tissue culture is diagnostic modality

330. Mode of transmission of Q fever is:
(a) Bite of infected louse
(b) Bite of infected tick
(c) Inhalation of aerosol
(d) Bite of infected mite

331. A man presents with fever and chills 2 weeks after a louse bite. There was a maculo-papular rash on the trunk which spread peripherally. The cause of this infection can be:
(a) Scrub typhus

332. All of following statements are true regarding Q fever except:
(a) It is a zoonotic infection
(b) Human disease is characterized by an interstitial pneumonia
(c) No rash is seen
(d) Weil Felix reaction is very useful for diagnosis

333. R. Rickettsii causes:
(a) Indian tick typhus
(b) Rocky mountain spotted fever
(c) Rickettsial pox
(d) Trench fever

334. All are true about Scrub typhus except:
(a) Mite is a vector
(b) Adult mite feeds on vertebral host
(c) Caused by R. tsutsugamushi
(d) Tetracycline is treatment

335. Rickettsiae are transmitted by:
(a) Flea
(b) Louse
(c) Mosquito
(d) Mite
(e) Fly

336. Epidemic typhus causes & vector:
(a) Rickettessia prowazki & louse
(b) R. typhi & mite
(c) R. conori & tick
(d) R. akari & mite

337. Vagabond disease transmitted by:
(a) Louse
(b) Mite
(c) Tick
(d) Black Fly

338. Epidemic typhus is transmitted by:
(a) Louse
(b) Soft tick
(c) Hard tick
(d) Rat flea

339. Rickettsial pox is caused by:
(a) Rickettsia rickettsiae
(b) Rickettsia akari
(c) R. typhi
(d) Rickettsia conri

340. Endemic typhus is transmitted by:
(a) Flea
(b) Tick
(c) Mite
(d) Mosquito

Review Questions

341. Scrub typhus is transmitted by:
(a) Flea
(b) Mite
(c) Tick
(d) Mosquito
Communicable and Non-communicable Diseases

342. **Mode of transmission of Q fever?** [DNB 2008]
(a) Ticks (b) Mites (c) Aerosols (d) Mosquito

343. **R. prowazekii is transmitted by:** [UP 2001]
(a) Flea (b) Louse (c) Mite (d) Tick

344. **R. prowazekii is transmitted by:** [UP 2005]
(a) Flea (b) Louse (c) Mite (d) Tick

345. **Reservoir of Indian Kala-azar is:** [AIIMS May 03]
(a) Man (b) Rodent (c) Canine (d) Equine

346. **All are used in treatment of Visceral Leishmaniasis except:** [AIIMS Nov 2009]
(a) Sitamaquine (b) Paramomycin (c) Hydroxychloroquine (d) Miltefosine

347. **Trombiculid mite can transmit:** [MP 2004]
(a) Indian tick typhus (b) Scrub typhus (c) Relapsing fever (d) Q. fever

348. **Arthropods are vector for all Except:** [MH 2007]
(a) Scrub typhus (b) Epidemic typhus (c) Q-fever (d) Rocky mountain sportted fever

349. **Scrub typhus is transmitted by:** [RJ 2000]
(a) Mite (b) Tick (c) Louse (d) Flea

350. **Rash starting peripherally is a feature of:** [RJ 2007]
(a) Epidemic types (b) Endemic Typhus (c) Scrub typhus (d) Indian tick typhus

351. **Rash is absent in:** [RJ 2008]
(a) Epidemic types (b) Endemic typhus (c) Scrub typhus (d) Q-fever

LEISHMANIASIS

352. **False about Leishmaniasis is:** [AIPGME 2003]
(a) Co-infection with AIDS is now emerging (b) Indian Leishmaniasis is a non-zoonotic infection

353. False about Leishmaniasis is: [AIPGME 2003]
(a) Co-infection with AIDS is now emerging (b) Indian Leishmaniasis is a non-zoonotic infection

354. **Mode of transmission of Q fever?**
(a) Ticks (b) Mites (c) Aerosols (d) Mosquito

342. **Communicable and Non-communicable Diseases**

343. **R. prowazekii is transmitted by:** [UP 2001]
(a) Flea (b) Louse (c) Mite (d) Tick

344. **Rickettsial agent of Epidemic typhus is:** [UP 2005]
(a) R. prowazekii (b) R. typhi (c) R. tsutsugamushi (d) R. canorii

345. **Endemic typhus is transmitted by:** [UP 2006] [Recent Question 2012]
(a) Louse (b) Flea (c) Mite (d) Tick

346. **Organism that does not need vector for transmission:** [Kolkata 2005]
(a) Rickettsia prowazekii- (b) Rickettsia rickettsii- (c) Coxiella burnetti- (d) Borrelia recurrentis-

347. **Trombiculid mite can transmit:** [MP 2004]
(a) Indian tick typhus (b) Scrub typhus (c) Relapsing fever (d) Q. fever

348. **Arthropods are vector for all Except:** [MH 2007]
(a) Scrub typhus (b) Epidemic typhus (c) Q-fever (d) Rocky mountain sportted fever

349. **Scrub typhus is transmitted by:** [RJ 2000]
(a) Mite (b) Tick (c) Louse (d) Flea

350. **Rash starting peripherally is a feature of:** [RJ 2007]
(a) Epidemic types (b) Endemic Typhus (c) Scrub typhus (d) Indian tick typhus

351. **Rash is absent in:** [RJ 2008]
(a) Epidemic types (b) Endemic typhus (c) Scrub typhus (d) Q-fever

352. **LEISHMANIASIS**

353. **False about Leishmaniasis is:** [AIPGME 2003]
(a) Co-infection with AIDS is now emerging (b) Indian Leishmaniasis is a non-zoonotic infection

354. **Reservoir of Indian Kala-azar is:** [AIIMS May 03]
(a) Man (b) Rodent (c) Canine (d) Equine

355. **All are used in treatment of Visceral Leishmaniasis except:** [AIIMS Nov 2009]
(a) Sitamaquine (b) Paramomycin (c) Hydroxychloroquine (d) Miltefosine

356. **Kala-azar is transmitted by:** [TN 2005]
(a) Phlebotomus Sergenti (b) Phlebotomus papatasii (c) Phlebotomus argentipes (d) All of the above

357. **Not true about Kala-Azar is:** [RJ 2007]
(a) Sandfly is the vector (b) Man is the only reservoir host in India (c) Aldehyde test is positive (d) Man has flagellar stage of organism

358. **SAFE strategy include all the following EXCEPT:** [AIIMS Nov 2006]
(a) Screening (b) Antibiotics (c) Face washing (d) Environmental improvement

359. **True about Trachoma is:** [AIPGME 1996]
(a) Is a disease of high infectivity (b) Prevalence of severe and moderate trachoma in > 1 % in children less than 10 yrs is indication for mass treatment (c) Irritants like kajal or surma also predispose (d) Is a non-avoidable cause of blindness in India

360. **For the field diagnosis of trachoma, the WHO recommends that follicular and intense trachoma inflammation should be assessed in:** [AIIMS May 2003]
(a) Women aged 15-45 years (b) Population of 10 to 28 year range (c) Children aged 0-10 years (d) Population above 25 years of age irrespective of sex
361. In the grading of Trachoma, Trachomatous Inflammation-follicular is defined as the presence of:
(a) Five or more follicles in the lower tarsal conjunctiva
(b) Three or more follicles in the lower tarsal conjunctiva
(c) Five or more follicles in the upper tarsal conjunctiva
(d) Three or more follicles in the upper tarsal conjunctiva

362. Mass treatment of trachoma is undertaken, when the prevalence is more than:
(a) 3%
(b) 5%
(c) 6%
(d) 10%

363. Lowest incidence of trachoma is in:
(a) Punjab
(b) Rajasthan
(c) Uttar Pradesh
(d) Orissa

364. Azithromycin mass treatment is given in community when prevalence of Trachoma is more than:
(a) 4%
(b) 6%
(c) 8%
(d) 10%

365. Trachoma screening is done on which of the following age-groups?
(a) <5 years
(b) 5-10 years
(c) 5-15 years
(d) 1-9 years

366. Single drug treatment recommended for Trachoma control in India is:
(a) Azithromycin
(b) Tetracycline
(c) Erythromycin
(d) Penicillin

367. A person has received complete immunization against tetanus 10 years ago, now he presents with a clean wound without any lacerations from an injury sustained 3 hours ago. He should now be given:
(a) Full course of tetanus toxoid
(b) Single dose of tetanus toxoid
(c) Human tetanus globulin
(d) Human tetanus globulin and single dose of toxoid

369. All the following are done to prevent tetanus neonatum except:
(a) Two TT doses to all pregnant women
(b) TT to all females in reproductive age group
(c) TT to all newborns
(d) Injection penicillin to all neonates

370. Three doses of tetanus vaccine provides immunity for:
(a) 1 year
(b) 5 years
(c) 10 years
(d) 15 years

371. All of the following statements are true about Clostridium tetani infection except:
(a) Main reservoir is soil, animal intestine and human intestine
(b) Main mode of transmission is through trauma and contaminated wound
(c) Herd immunity does not have much value
(d) Seen commonly in winter and dry climate

372. All are true regarding Clostridium tetani infection except:
(a) Incubation period 6-10 days
(b) 3 primary doses of vaccine required for full protection
(c) Man-to-man transmission
(d) Produces heat-resistant spores

373. An adult, previously unimmunized against Tetanus presents with a clean non-penetrating wound sustained 2 hours previously. What tetanus prophylaxis is advised?
(a) Only through cleaning of wound
(b) Tetanus toxoid 1 dose
(c) Tetanus toxoid complete course
(d) Tetanus toxoid complete course + human tetanus immunoglobulin

374. True about Tetanus is all except:
(a) Tetanus protection 5 years if previously immunized
(b) Herd immunity present
(c) Can’t be eradicated
(d) Elimination is less than 1 case per 1000 births

375. To achieve neonatal tetanus elimination, incidence of neonatal tetanus per 1000 live births should be reduced to less than:
(a) 0.1
(b) 0.5
(c) 10
(d) 1

376. To achieve neonatal tetanus elimination, incidence of neonatal tetanus per 1000 live births should be reduced to less than:
(a) 0.1
(b) 0.5
(c) 10
(d) 1

Review Questions

377. The period of communicability of Tetanus is:
(a) 7 days
(b) 14 days
(c) 21 days
(d) None
378. A person had clean non-penetrating wound four hours back. He had a complete course of toxoid eleven years ago. What treatment is recommended? [MP 2009]
 (a) No toxoid is required
 (b) Toxoid one dose
 (c) Toxoid complete course
 (d) Toxoid complete course + Human tetanus Ig

379. Indicators of the Elimination of NEONATAL TETNUS includes the following Except? [AIIMS May 2001]
 (a) Incidence rate < 0.1/1000 live births
 (b) > 90% coverage of 3 antenatal visits
 (c) TT2 injection coverage in pregnant mothers > 90%
 (d) None

 (a) 7 days
 (b) 10 days
 (c) 14 days
 (d) None

381. False about Leprosy is: [AIPGME 1991]
 (a) It has been eliminated from India
 (b) It can be transmitted through breast milk
 (c) Lepromin Test is not a diagnostic test
 (d) MDT is contraindicated during pregnancy

382. Leprosy can be transmitted through all except: [AIPGME 2004]
 (a) Mother to child
 (b) Breast milk
 (c) Insect vectors
 (d) Tattooing needles

383. Leprosy is considered a public health problem if the prevalence of leprosy is more than: [AIIMS Sep 1996, May 2006]
 (a) 1 per 10,000
 (b) 2 per 10,000
 (c) 5 per 10,000
 (d) 10 per 10,000

384. In the management of leprosy, Lepromin test is most useful for: [AIPGME 2003]
 (a) Herd Immunity
 (b) Prognosis
 (c) Treatment
 (d) Epidemiological investigations

385. Which of the following statements about lepromin test is not true? [AIIMS Sep 1996, May 2006]
 (a) It is negative in most children in first 6 months of life
 (b) It is a diagnostic test
 (c) It is an important aid to classify type of leprosy disease
 (d) Bacillus vaccination may convert lepromin reaction from negative to positive

386. A patient with leprosy had slightly erythematous, anesthetic plaques on the trunk and upper limbs. He was treated with paucibacillary multidrug therapy (PB-MDT) for 6 months. At the end of 6 months, he had persistent erythema and induration in the plaque. The next step of action recommended by the World Health Organization (WHO) in such a patient is:
 (a) Stop antileprosy treatment
 (b) Continue PB-MDT till erythema subsides
 (c) Biopsy the lesion to document activity
 (d) Continue Dapsone alone for another 6 months

387. All of the following are the mode of transmission of leprosy except: [AIIMS May 1991]
 (a) Breast milk
 (b) Insect bite
 (c) Transplacental spread
 (d) Droplet infection

388. In the management of leprosy, Lepromin test is not useful for: [AIIMS Nov 2008, AIPGME 1991]
 (a) Diagnosis
 (b) Prognosis
 (c) Confirmation of classification
 (d) Evaluation of cell-mediated immunity

389. All of the following statements about leprosy are true except: [AIPGME 2004]
 (a) Multibacillary leprosy is diagnosed when there are more than 5 skin patches
 (b) New case detection rate is an indicator for incidence of leprosy
 (c) A defaulter is defined as a patient who has not taken treatment for 6 months or more
 (d) The target for elimination of leprosy is to reduce the prevalence to less than 1 per 10,000 population

390. All of the following are tests used to detect Cell mediated immunity in Leprosy except: [AIIMS Feb 1997]
 (a) Lepromin Test
 (b) Lymphocyte Transformation Test
 (c) Leucocyte Migration Inhibition Test
 (d) FLA-ABS Test

391. Erythema Nodosum Leprosum (ENL) occurs: [Karnataka 2007]
 (a) Due to Lepromin test reaction
 (b) In those with tuberculoid leprosy
 (c) As a reaction to multi drug therapy
 (d) In those with lepromatous leprosy

392. True about leprosy in India is/are: [PGI June 04]
 (a) Prevalence decreased in Orissa
 (b) Prevalence is 3.7/thousand
 (c) Vaccine is tried in Bihar
 (d) None

393. True about leprosy in India: [PGI June 05]
 (a) Prevalence decreasing in past decade
 (b) Incidence highest in 1-5 yrs age group
 (c) Highly pathogenic
 (d) Highly communicable

394. True about epidemiology of leprosy: [PGI Dec 08]
 (a) If high prevalence of cases seen in childhood, it means disease is under control
 (b) Lepra bacilli cannot survive outside human body
 (c) Bacterial load is high in tuberculoid variety
 (d) Insect can transmit the disease
 (e) Relapse rate is indicator of efficacy of the drug
395. Which of the following about lepromin test is not true?
(a) It is negative in most children in first six months
(b) It is a diagnostic test
(c) It is an important aid to classify type of leprosy disease
(d) BCG vaccination may convert lepra reaction from negative to positive

396. Elimination of leprosy is defined as prevalence:
(a) < 1 per 1000
(b) < 1 per 10000
(c) < 1 per 100,000
(d) < 1 per 100

397. Leprosy is not yet eradicated because:
(a) No effective vaccine
(b) Highly infectious but low pathogenicity
(c) Only humans are reservoir
(d) Long incubation period

398. As per WHO, leprosy is a public health problem if prevalence is more than:
(a) 0.1%
(b) 0.01%
(c) 0.5%
(d) 1%

399. Prevalence of leprosy in India per 10,000 is?
(a) >1
(b) 0.88
(c) 0.71
(d) 0.69

400. Generation time for leprosy bacillus is:
(a) 8–10 days
(b) 10–12 days
(c) 12–15 days
(d) 15–20 days

401. Erythema nodosum is seen in treatment of which type of leprosy?
(a) Borderline leprosy
(b) Lepromatous leprosy
(c) Tuberculoid leprosy
(d) None of the above

402. “Multibacillary” is a spectrum of disease, seen in:
(a) Leprosy
(b) TB
(c) Tetanus
(d) Trachoma

403. Ridley Jopling Leprosy classification is a type of:
(a) Clinical, bacteriological, Immunological, epidemiological classification
(b) Clinical, bacteriological, Immunological, therapeutic classification
(c) Clinical, bacteriological, Immunological, histological classification
(d) Operational classification

404. Lepromin test is used for all of the following except:
(a) Classify the lesions of leprosy patients
(b) Determine the prognosis of disease
(c) Assess the resistance of individuals to leprosy
(d) Diagnosis of leprosy

405. True regarding Leprosy
(a) Clofazime included in treatment regimen
(b) Any positive smear 1+ is MBL
(c) Grenz zone in Lepromatous spectrum
(d) All deformity cases are MBL
(e) MBL recommended treatment for 12 months duration

Review Questions

406. Mistuba reaction is read at:
(a) 3rd day
(b) 10th day
(c) 21st day
(d) 45th day

407. Leprosy commonly spreads by:
(a) Milk
(b) Droplet
(c) Water
(d) Mosquitoes

408. In multibacillary leprosy, the follow up examination after adequate Rx should be done yearly for:
(a) 3 years
(b) 5 yrs
(c) 10 years
(d) 2 years

409. As per WHO, leprosy is a public health problem if prevalence is:
(a) 0.1%
(b) 0.01%
(c) 0.5%
(d) 1%

410. Most common nerve involved in leprosy:
(a) Ulnar N
(b) Common peroneal N
(c) Median N
(d) Radial N

411. Treatment of leprosy a/c to WHO is done by all drugs, except:
(a) Dapsone
(b) Clofazime
(c) Ciprofloxacin
(d) Rifampicin

412. Which of the following is true statement about leprosy:
(a) Two plus (2+) indicates 2 different site
(b) 7 sites are needed
(c) Paucibacillary leprosy bacterial index is less than 2
(d) Various sites needed

413. In paucibacillary leprosy the single drug dapsone is continue for:
(a) 9 days
(b) 90 days
(c) 180 days
(d) 10 days

414. Lepromin test is valuable for:
(a) Diagnosis of disease
(b) Prognosis of disease
(c) Repsonse to treatment
(d) To test humoral immunity

415. In Leprosy 1+ bacterial index indicates:
(a) <100 bacilli per high power field
(b) No bacilli in 100 high power fields
(c) 1 or less than one bacillus in each hpf
(d) Bacilli in all fields

https://kat.cr/user/Blink99/
416. Live attenuated yellow fever vaccine is:
(a) RA27/3
(b) 17-D
(c) OKA Strain
(d) HbsAg derived

417. Only objective way of monitoring the benefits of treatment of leprosy is:
(a) Lepromin test
(b) Morphology index
(c) Histamine test
(d) Bacteriological index

418. Lepromin test is used for all the following Except:
(a) It determines the type of leprosy
(b) It confirms diagnosis of leprosy
(c) It monitors leprosy patients is treatment with chemotherapy
(d) It evaluates host resistance to leprosy

419. Which of the following types of leprosy by Indian classification of Leprosy is not included in Madrid classification?
(a) Indeterminate leprosy
(b) Borderline type
(c) Tuberculoid leprosy
(d) Pure neuritic type

420. In multi bacillary leprosy, bacterial index is more than:
(a) 1
(b) 2
(c) 5
(d) 10

421. Which of the following measurements indicates whether leprosy cases are being detected early or not?
(a) New case detection rate
(b) Proportion of children among new cases
(c) Proportion of new cases with disability
(d) Prevalence rate of disease

422. Duration of MDT (Multidrug Therapy) to resolve paucibacillary leprosy is:
(a) 6 month
(b) 8 month
(c) 9 month
(d) 12 month

425. World AIDS day is on:
(a) 1st May
(b) 31st October
(c) 1st December
(d) 29th May

426. The first country in the South East Asian Region (SEAR) to report AIDS was:
(a) Sri Lanka
(b) India
(c) Thailand
(d) Bangladesh

427. The most common mode of HIV transmission in India is:
(a) Blood transfusion
(b) Mother to child transmission
(c) Sexual transmission
(d) Use of unsterile syringes and needles

428. The highest number of AIDS cases in India have occurred in the age group of:
(a) 0-14 years
(b) 15-29 years
(c) 30-44 years
(d) Above 45 years

429. WHO Stage IV HIV includes all except:
(a) Toxoplasmosis
(b) Pneumocystis carinii
(c) HIV wasting syndrome
(d) Oral thrush

430. Major signs for AIDS case definition according to WHO are:
(a) Generalised lymphadenopathy
(b) Prolong fever more than 1 month
(c) Prolong cough for > 1 month
(d) Chronic diarrhoea > 1 month
(e) Weight loss > 10%

431. Regarding Epidemiology of HIV True is:
(a) Mother to Child Transmission is 25%
(b) Seminal Secretion are highly Infectious than vaginal Secretion
(c) Infectious in window Period
(d) Southern Africa have 72% of total global burden
(e) Children rarely affected

432. Which of the following is used to prevent transmission of HIV from an infected pregnant mother to newborn child?
(a) Lamivudine
(b) Nevirapine
(c) Stavudine
(d) Didanosine

433. Risk of mother to child HIV transmission in pregnant woman at the time of delivery, and after delivery in non breast feeding woman is:
(a) 5-10%
(b) 10-15%
(c) 15-30%
(d) More than 50%

434. HIV post exposure prophylaxis should be started within:
(a) 24 hours
(b) 48 hours
(c) 72 hours
(d) 6 hours
Review of Preventive and Social Medicine

435. Criteria included in AIDS Surveillance definition include:

(a) Extrapulmonary TB (b) Cryptococcosis
(c) Candidiasis (d) Leptospirosis
(e) Kaposi sarcoma

436. HIV transmission Mother to child can be stopped by all except:

(a) Caesarean section
(b) Vitamin A supplementation
(c) Stopping Breast feeding
(d) Zidovudine to mother antenatal and newborn after delivery

437. MC subtype of HIV in India is:

(a) HIV-A (b) HIV-B
(c) HIV-C (d) None of the above

438. HIV sentinel surveillance is used to identify/calculate:

(a) High risk population
(b) Prevalence of HIV
(c) Trend finding among populations
(d) All of the above

439. Antiretroviral prophylaxis decrease the chance of transmission of HIV to fetus during pregnancy by

(a) 35%
(b) 45%
(c) 50%
(d) 65%

440. HIV virus was discovered in the year:

(a) 1981
(b) 1983
(c) 1986
(d) 1996

Review Questions

441. In a HIV infected child which vaccine should not be given:

(a) DPT (b) OPV
(c) Hepatitis B (d) Typhoid vaccine

442. About epidemiology of AIDS all are true except:

(a) In India it is mainly caused by HIV-1
(b) Maternofetal transmission is the most common mode of transmission
(c) I.V. drug abuse increases the risk
(d) Medical personnel are at higher risk of getting infection with HIV

443. First case of AIDS was reported in:

(a) 1984 (b) 1986
(c) 1981 (d) 1988

444. All the following statements are true for the viral genome in HIV, Except:

(a) They are diploid
(b) They consist of DNA dependent DNA polymerase activity
(c) They consist of three major genes-gag, pol and env-characteristic of all retroviruses
(d) They are most complex of human retroviruses

445. From epidemiological point of view of AIDS, which of the following states in India is put in Group I (i.e. general epidemiological cases of HIV > 5% high risk and HIV > 1% ANC)?

(a) Assam (b) Mizoram
(c) Nagaland (d) Tripura

446. Detailed plan titled “3 by 5” implemented by WHO in 2003 for AIDS means:

(a) Treating at least 3 to 5 AIDS infections
(b) Controlling 3 chances of infection out of known 5
(c) Providing treatment to 3 million sufferers by year 2005
(d) All of the above

447. Window period for HIV infection is:

(a) 3-12 weeks
(b) 8-20 weeks
(c) 6-24 weeks
(d) None

448. Most common mode of HIV transmission from mother to child:

(a) 1st trimester
(b) 2nd trimester
(c) Perinatal
(d) Breastfeeding

STIS (OTHER THAN HIV)

449. Lymphogranuloma venereum is caused by:

(a) Haemophilus ducreyi
(b) Calymmotabacterium granulomatis
(c) Treponema pertenue
(d) Chlamydia trachomatis

450. All the following are causative agents of sexually transmitted infections except:

(a) Candida
(b) Group B streptococcus
(c) Hepatitis B
(d) Echinococcus

451. Which of the following is not a STD agent?

(a) Ureaplasma urealyticum
(b) Gp. B Streptococcus
(c) Candida albicans
(d) Chlamydia psittaci

452. Match the treponemal disease and their causative agents:

(a) Pinta
(b) Endemic Syphilis
(c) Yaws

A-Pinta I-T. pertenue
B- Endemic Syphilis II-T. carateum
C-Yaws III-T. pallidum
Communicable and Non-communicable Diseases

453. The syndromic management of urethral discharge includes treatment of [AIIMS Dec 1992]
(a) Neisseria gonorrhoeae and herpes genitalis
(b) Chlamydia trachomatis and herpes genitalis
(c) Neisseria gonorrhoeae and Chlamydia trachomatis
(d) Syphilis and chancroid

454. In India, syndromic approach is used for management of: [AIIMS November 2011]
(a) Chancroid and Chancre
(b) Chancroid and Herpes genitalis
(c) Chancroid, Chancre and Herpes genitalis
(d) Chancre and Herpes genitalis

455. True about incubation periods of STDs: [PGI May 2011]
(a) Syphilis 10-90 days
(b) LGV 3-10 days
(c) Donovanosis 3-20 days
(d) Chancroid 21-28 days
(e) Gonorrhoea 2-14 days

456. A sexually active, long distance truck driver’s wife comes with vaginal discharge. Under Syndromic approach, which drug should be given? [AIIMS PGMEE May 2012]
(a) Metronidazole, Azithromycin, Fluconazole
(b) Metronidazole
(c) Azithromycin
(d) Metronidazole and fluconazole

457. Case detection in STDs is done by all except: [NIPGGET 2013]
(a) Screening (b) Contact tracing (c) Cluster testing (d) Notification

458. Drug of choice for Scabies in Pregnancy is
(a) Ivermectin [Recent Question 2014]
(b) Crotamintin
(c) Benzyl benzoate
(d) Permethrin

Review Questions

459. Cluster testing is useful in detecting cases of:
(a) STD [DNB 2005]
(b) Cancer
(c) Diabetes
(d) Measles

460. Cluster testing technique is useful in: [DNB 2006]
(a) STD (b) Poliomyelitis
(c) Measles (d) Smallpox

461. Scabies is caused by: [Bihar 2005]
(a) Trichophyton (b) Dermatophyten
(c) Mycobacterium (d) Sarcoptes scabei

462. Incubation period of chancroid is: [Kolkata 2005]
(a) Less than 7 days
(b) 10-15 days
(c) 2-3 weeks
(d) 3-4 weeks

463. Incubation period of syphilis: [MH 2002]
(a) 9-90 days (b) 9-18 days
(c) 80-90 days (d) 10 days

464. Method of case detection in control of sexually transmitted diseases in which person names the persons moving in same socio-sexual environment? [MH 2007]
(a) Contact tracing
(b) High risk screening
(c) Selective screening
(d) Cluster testing

465. Contact tracing used in the detection of:
(a) STD [R] 2007
(b) Diabetes
(c) Measles
(d) Cancer

MISCELLANEOUS (COMM. DISEASES)

466. All of the following are zoonoses except:
(a) Plague [AIPGME 1995 and 08]
(b) Japanese encephalitis
(c) HIV
(d) Tuberculosis

467. Which of the following statements about Yaws is not true? [AIPGME 2008]
(a) Spread by sexual transmission
(b) Caused by Treponema pertenue
(c) Has cross immunity with Syphilis
(d) Cannot be differentiated serologically from Treponema pallidum

468. Dhamendra’s Index and Jopling’s classification deals with: [AIPGME 2008]
(a) TB
(b) Leprosy
(c) Syphilis
(d) Polio

469. The following are characteristic features of staphylococcal food poisoning, except: [AIPGME 2004]
(a) Optimum temperature for toxin formation is 37°C
(b) Intra-dietetic toxins are responsible for intestinal symptoms
(c) Toxins can be destroyed by boiling for 30 minutes
(d) Incubation period is 1-6 hours

470. Cluster testing is useful in detecting cases of:
(a) Measles [AIPGME 2002]
(b) Sexually transmitted infections
(c) Unimmunized children
(d) Completely immunized children in the age group 12-23 months
471. Iceberg phenomenon is not seen in:
 (a) AIDS [AIIMS Nov 1993]
 (b) TB
 (c) Poliomyelitis
 (d) Measles

472. All of the following diseases can be transmitted during the incubation period except: [AIIMS June 1997]
 (a) Measles
 (b) Tuberculosis
 (c) Hepatitis A
 (d) Pertussis

473. In all of the following diseases chronic carriers are found except: [AIIMS Sep 96, May-2006]
 (a) Measles [AIIMS June 1998]
 (b) Typhoid
 (c) Hepatitis B
 (d) Gonorrhea

474. Brucellosis can be transmitted by all of the following modes, except: [AIIMS May 2006-2007, Nov 2006]
 (a) Contact with infected placenta
 (b) Ingestion of raw vegetables from infected farms
 (c) Person to person transmission
 (d) Inhalation of infected dust or aerosol

475. Which one of the following arbo-viral diseases has not been reported in India? [AIIMS Nov 2004, AIPGME 1997]
 (a) Japanese encephalitis
 (b) Yellow fever
 (c) Chikungunya fever [Recent Question 2012]
 (d) Kyasanur forest disease

476. In which of these conditions is post exposure prophylaxis NOT useful? [AIIMS May 2001, Nov 2004]
 (a) Measles
 (b) Rabies
 (c) Pertussis
 (d) Hepatitis B

477. Chandler index measure: [AIPGME 1991]
 (a) Hookworm
 (b) Transmission of disease
 (c) IMR
 (d) GNP of nation

478. “Hundred day cough” is the name of: [AIIMS Feb 1997]
 (a) Cough due to Bordetella pertussis
 (b) Cough due to haemophylus influenza
 (c) Cough due to adenovirus
 (d) Cough due to respiratory syncytial virus

479. Which one of the following diseases CANNOT be eradicated: [AIPGME 1992, 2003]
 (a) Leprosy
 (b) Tuberculosis
 (c) Measles
 (d) Pertussis

480. ‘3 by 5 Initiative’ was launched in developing countries to combat: [AIIMS May 2005]
 (a) Tuberculosis
 (b) Malaria
 (c) SARS
 (d) HIV/ AIDS

481. Intermediate host for Taenia saginata is:
 (a) Man [AIIMS May 1994]
 (b) Cattle
 (c) Pig
 (d) Fish

482. A synthetic “cocktail” vaccine SPf66 has shown potential for the protection against:
 (a) Dengue/ DHF [AIIMS June 1997]
 (b) Japanese encephalitis
 (c) Falciparum Malaria
 (d) Lymphatic filariasis

483. All of the following are blood-borne infections except:
 (a) Hepatitis B [AIIMS Nov 2003]
 (b) Hepatitis C
 (c) Hepatitis E
 (d) Hepatitis G

484. WHO vaccination strategy of catch-up, keep-up and follow-up has been designed for:
 (a) Measles [AIIMS May 2003]
 (b) Chickenpox
 (c) Polio
 (d) Diphtheria

485. Carriers are important in all the following except:
 (a) Polio [AIPGME 2002, AIPGME 2007]
 (b) Typhoid [AIIMS Dec 98]
 (c) Measles
 (d) Diphtheria

486. Chandler’s index is based on: [DPG 2004]
 (a) Hookworm eggs in soil
 (b) Hookworm eggs per gram faeces
 (c) Giardia cysts in soil
 (d) Ascaris larva in water

487. Man in the only host for:
 (a) Trichuris trichura
 (b) Dracunculus medinensis
 (c) Onchocerca volvolus
 (d) Wuchereria bancrofti

488. Which of the following is not administered by intradermal route? [DPG 2007, 2008]
 (a) BCG
 (b) Insulin
 (c) Mantoux
 (d) Drug sensitivity injection

489. Disease caused by arboviruses include:
 (a) Yellow fever [PGI June 02]
 (b) Japanese encephalitis
 (c) Trench fever
 (d) Epidemic typhus
 (e) Dengue
490. Cluster testing is the term used during:
 (a) UIP Survey for polio [Karnataka 2007]
 (b) Screening for STD's
 (c) Exposing the body for hypopigmented patches
 (d) Testing contacts of typhoid cases

491. Incubation period less than few hours:
 (a) Hepatitis – A [PGI Dec 2K]
 (b) Food poisoning
 (c) Influenza
 (d) Rabies

492. Arboviral disease are:
 (a) Yellow fever [PGI Dec 2K]
 (b) Epidemic typhus
 (c) Japanese encephalitis
 (d) Kalaazazar
 (e) HIV

493. Zoonosis is/are:
 (a) Anthrax
 (b) Brucellosis
 (c) Leptospirosis
 (d) Caga’s disease
 (e) Tularaemia

494. Post exposure prophylaxis in health care professional is indicated in infections with:
 (a) HBV (b) Rabies [PGI Dec 08]
 (c) Diphtheria (d) Measles
 (e) Tetanus

495. Epidemic caused by type A arbovirus in India is:
 (a) Chikungunya [DPG 2008]
 (b) KFD
 (c) Yellow Fever
 (d) Dengue

496. Subacute sclerosing pan-encephalitis is associated with:
 (a) Mumps (b) Measles [PGI June 02]
 (c) Rubella (d) Typhoid
 (e) Diphtheria

497. Karatomalacia is seen in which of the following diseases:
 (a) Measles
 (b) Diarrhea
 (c) Mumps
 (d) Rubella
 (e) Chickenpox

498. Keratomalacia is seen which of the following infection:
 (a) Chickenpox
 (b) HIV
 (c) Diarrhea
 (d) Measles
 (e) Tuberculosis

499. Pandemics are caused by:
 (a) Hepatitis-B [PGI June 05]
 (b) Influenza-A
 (c) Influenza-B
 (d) Influenza-C

500. Animal to man transmission seen in:
 (a) Rabies [PGI Dec 08]
 (b) Japanese encephalitis
 (c) HIV
 (d) Mumps
 (e) Tetanus

501. Vector borne diseases are:
 (a) Epidemic typhus [PGI Dec 08]
 (b) Japanese encephalitis
 (c) Tetanus
 (d) Hanta virus disease
 (e) KFD

502. Viruses documented to cause fetal damage:
 (a) Hepatitis B [PGI June 05]
 (b) Varicella
 (c) Measles
 (d) Parvovirus

503. Which of the following is not transmitted by lice?
 (a) Trench fever [AIIMS May 2009]
 (b) Relapsing fever
 (c) Q fever
 (d) Epidemic typhus

504. False about Japanese Encephalitis is:
 (a) Pigs are amplifiers for flavivirus
 (b) Overhead tanks severe as breeding sites
 (c) Transmitted by culex mosquitoes
 (d) Primary doses of vaccine consists of two doses

505. Mass prophylaxis is given for all except:
 (a) Lymphatic filariasis [AIIMS Nov 2010]
 (b) Vitamin A deficiency
 (c) Scabies
 (d) Worm infestation

506. Modes of transmission of amoebiasis are all except:
 (a) Faecal-oral [AIIMS Nov 2010]
 (b) Oro-rectal
 (c) Vertical transmission
 (d) Through cockroaches

507. Arthropod borne disease not seen in India is:
 (a) West Nile Fever [AIPGME 2011]
 (b) Dengue infection
 (c) Kyasanur Forest Disease
 (d) Yellow Fever

508. Carrier state is not important in transmission of:
 (a) Typhoid [AIPGME 2011]
 (b) Poliomyelitis
 (c) Measles
 (d) Diphtheria

509. All are true about Yaws except:
 (a) Caused by Treponema pertenue
 (b) Transmitted non-venerally
 (c) Secondary Yaws can involve bones
 (d) Later stages involve heart and nerves
510. Tetracycline is used in the prophylaxis of:
(a) Cholera
(b) Brucellosis
(c) Leptospirosis
(d) Meningitis

511. Maternal antibodies do not occur for:
(a) Polio
(b) Diphtheria
(c) Whooping cough
(d) Tetanus

512. Brucellosis is transmitted by:
(a) Cattle
(b) Camel
(c) Sheep
(d) Goat
(e) Dogs

513. Arboviral infection(s) include:
(a) Chikungunya fever
(b) West Nile fever
(c) JE
(d) Sandfly fever
(e) Malaria

514. Which is not transmitted by Aedes aegypti?
(a) Yellow fever
(b) Dengue
(c) Japanese encephalitis
(d) Filariasis

515. Maternal antibodies are present in the newborn against all of the following disease except:
(a) Diphtheria
(b) Tetanus
(c) Pertussis
(d) Measles

516. Mass prophylaxis not done in:
(a) Scabies
(b) Lymphatic filariasis
(c) Vitamin A deficiency
(d) Worm infestation

517. Rat is associated with:
(a) Leptospirosis
(b) Measles
(c) Tetanus
(d) Influenza

518. Incubation period of which disease is less than 7 days:
(a) Cholera
(b) Measles
(c) Leishmaniasis
(d) Mumps

519. Dome shaped centrally umbilicated papules seen in:
(a) Chicken pox
(b) Small pox
(c) Measles
(d) Molluscum contagiosum

520. Which of the following is a zoonotic disease?
(a) Hydatid cyst
(b) Malaria
(c) Filariasis
(d) Dengue fever

521. Subclinical infection is seen in all except:
(a) Mumps
(b) Poliomyelitis
(c) Measles
(d) Rubella

522. Zoonotic disease(s) transmitted by arthropods is/ are:
(a) Plague
(b) Melidiose
(c) Rabies
(d) Leishmaniasis
(e) Anthrax

523. Second attack rate is minimum in:
(a) TB
(b) Diphtheria
(c) Measles
(d) Whooping cough

524. Post-exposure prophylaxis exist for all except:
(a) Measles
(b) Hepatitis C
(c) Varicella Zoster
(d) HIV

525. Scabies treatment(s) include:
(a) Gammexene
(b) Crotamiton
(c) 5% Permethrin
(d) Isoniazid
(e) Sulphur ointment

526. Zoonotic disease of viral etiology include:
(a) Q fever
(b) Rickettsiae disease
(c) Rabies
(d) Rubella

527. Prophylaxis for anthrax:
(a) Erythromycin
(b) Doxycycline
(c) Penicillin
(d) Vancomycin

528. Isolation period, false is:
(a) Chicken pox – 6 days after onset of rash
(b) Herpes zoster – 6 days after onset of rash
(c) Measles – up to 3 days after onset of rash
(d) German measles – 7 days after onset of rash

529. Lyme disease is transmitted by:
(a) Rat flea
(b) Tick
(c) Mite
(d) Mosquito
530. True about Leptospirosis is/ are:
(a) It is a Zoonosis
(b) Incubation period is 2-3 months
(c) Transmission occurs through direct skin contact
(d) Drug of choice is Penicillin
(e) Is a Spirochaetal disease

531. Following are examples of human “dead end” disease except:
(a) Bubonic plague
(b) Japanese encephalitis
(c) Hydatid disease
(d) Leishmaniasis

532. Chemoprophylaxis is not required in is:
(a) Typhoid
(b) Meningococcal meningitis
(c) Bacterial conjunctivitis
(d) Malaria

533. Which disease does not occur as seasonal variation?
(a) Measles
(b) Rubella
(c) Gastroenteritis
(d) Cerebral meningitis

534. The following fall under the category of enzootic except:
(a) Influenza
(b) Anthrax
(c) Brucellosis
(d) Endemic typhus

535. Tick borne relapsing fever is caused by?
(a) Borrelia recurrentis
(b) Borrelia burgdorferi
(c) Rickettsia prowazeki
(d) Borellia hermsii

536. Viral hemorrhagic fever(s) seen in India is/ are:
(a) KFD
(b) Dengue fever
(c) Crimean Congo fever
(d) Yellow fever
(e) Hanta fever

537. Saddleback fever is known as
(a) Brucellosis
(b) Dengue fever
(c) Malaria fever
(d) Typhoid fever

538. Chemoprophylaxis is not required in
(a) Conjunctivitis
(b) Meningitis
(c) Measles
(d) Plague

539. Following is NOT caused by virus
(a) Rocky mountain spotted fever
(b) KFD
(c) Dengue
(d) Yellow fever

540. Transplacental transmission is not seen in
(a) Hepatitis A
(b) Hepatitis B
(c) HIV
(d) Varicella

541. Regarding Non-industrial anthrax, true is/ are
(a) Common in veterinarians
(b) Seasonal pattern
(c) Common in butchers
(d) Cutaneous form most common
(e) More commonly inhalational than industrial form

542. Not true about Ebola virus is
(a) Caused by ss Negative strand RNA virus
(b) Bats most likely reservoir
(c) Incubation period is less than 48 hours
(d) Sexual transmission possible
(e) Oseltamivir is quite effective in treatment

543. Zoonoses include
(a) Plague
(b) Rabies
(c) Anthrax
(d) Tetanus
(e) Brucellosis

544. Incubation period less than 5 days is
(a) Influenza
(b) Salmonella typhi
(c) Vibrio parahemolyticus
(d) Yersinia
(e) Swine flu

545. Metazoonoses include
(a) Plague
(b) Rabies
(c) Schistosomiasis
(d) Brucellosis
(e) Yellow fever

Review Questions
546. Cluster testing is useful in detecting cases of:
(a) STD
(b) Cancer
(c) Diabetes
(d) Measles

547. Staphylococcus food poisoning causes all except:
(a) Due to enterotoxin
(b) IP below 6 hours
(c) Sudden onset
(d) Fever common

548. Inclusion body in neuron is seen in:
(a) Rabies
(b) Diphtheria
(c) Yellow fever
(d) Japanese encephalitis
549. Man is dead end for:
 (a) Tetanus, measles
 (b) Measles, yellow fever
 (c) Tetanus, yellow fever
 (d) Rabies, tetanus

550. Carrier state is seen in following except:
 (a) Diphtheria
 (b) Measles
 (c) Typhoid
 (d) Polio

551. Agent can be used in bioterrorism:
 (a) Plague
 (b) Typhoid
 (c) Streptococcus
 (d) Staph. aureus

552. Incubation period is less than one week in:
 (a) Cholera
 (b) Enteric fever
 (c) Hepatitis B
 (d) Chickenpox

553. Sub acute-Sclerosing pan – encephalitis (SSP(E)) is caused by:
 (a) Measles
 (b) Mumps
 (c) Rubella
 (d) Smallpox

554. Clinical features of Botulism are all Except:
 (a) Diarrhea
 (b) Dysarthria
 (c) Ocular nerve paralysis
 (d) Blurring of vision

555. Pleomorphism is seen in:
 (a) Chickenpox
 (b) Rubella
 (c) Smallpox
 (d) Toxocara

556. Amphixenosis is:
 (a) Ascaris lumbricoidis
 (b) Entebotus - vermicularis
 (c) Anthrax
 (d) T. cruzi

557. Following are examples of human “dead end” disease Except:
 (a) Bubonic plague
 (b) Japanese encephalitis
 (c) Hydatid disease
 (d) Leishmaniasis

558. All are zoonotic disease Except:
 (a) Brucellosis
 (b) Leptospirosis
 (c) Scabies
 (d) Rabies

559. Shortest Incubation period is associated with:
 (a) Influenza
 (b) Cholera
 (c) Syphilis
 (d) AIDS

560. Disease transmitted by water is:
 (a) Hepatitis B
 (b) Polio
 (c) Japanese encephalitis
 (d) Dengue fever

561. Which of the following flavivirus is closely related to Russian spring summer encephalitis causing virus:
 (a) Dengue
 (b) Chikungunya
 (c) KFD
 (d) Yellow fever

562. Which statement is not true in arboviral disease?
 (a) Japanese encephalitis is transmitted by culex
 (b) KFD is transmitted by Ticks
 (c) Filariasis is transmitted by Aedes mosquito
 (d) Dengue is transmitted by Aedes mosquito

563. All of the following are Anthropozoonotic Diseases except:
 (a) Plague
 (b) Rabies
 (c) Hydatid cyst
 (d) Dracunculosis

564. Leptospira icterohaemorrhagiae infection is transmitted by the following animals:
 (a) Rats
 (b) Dogs
 (c) Birds
 (d) Bats

565. Patients are to be isolated in all of the following diseases except:
 (a) AIDS
 (b) Smallpox
 (c) Anthrax
 (d) Plague

566. Cyclops is an intermediate host for:
 (a) Guinea worm
 (b) Malaria
 (c) Rabies
 (d) Salmonella

567. Tick-borne disease is:
 (a) Tularemia
 (b) Q fever
 (c) Relapsing fever
 (d) Rocky mountain spotted fever

568. Aedes transmit which of the following disease in India:
 (a) Dengue
 (b) Chikungunya fever
 (c) Malaria/Filaria
 (d) Japanese encephalitis
569. Cyclopropogative cycle is seen in \textit{[Kolkata 2009]}
(a) Malaria \textit{[Recent Question 2012]}
(b) Filaria
(c) Yellow fever
(d) Plague

570. Food poisoning is caused by all except: \textit{[MP 2000]}
(a) Staphylococcus aureus
(b) Clostridium difficile
(c) Vibrio parahaemolyticus
(d) Bacillus cereus

571. Incubation period in staphylococcal food poisoning: \textit{[MP 2001]}
(a) 1-6 hours
(b) 6-12 hours
(c) 16-18 hours
(d) 24 hours

572. Isolation is not useful in: \textit{[MP 2002]}
(a) Polio
(b) Cholera
(c) Measles
(d) Diphtheria

573. Which of the following is most prevalent presently in India: \textit{[MP 2002]}
(a) Polio
(b) Dracunculiasis
(c) Plague
(d) Kala-azar

574. Man is a dead end host in all of the following infections except: \textit{[MP 2002]}
(a) Teniasis
(b) Rabies
(c) Japanese encephalitis
(d) Tetanus

575. Iceberg phenomena is seen in all except: \textit{[MP 2003]}
(a) Leprosy
(b) Rabies
(c) Hypertension
(d) Tuberculosis

576. Antigenic shift and drift occurs in: \textit{[MP 2005]}
(a) Measles
(b) Mumps
(c) Influenza
(d) Rubella

577. Yaws is a disease caused by: \textit{[MP 2007]}
(a) Treponema Pertenu
e
(b) Treponema Pallidum
(c) Treponema Carateum
(d) Trypanosoma Cruzi

578. Due to epidemiological reasons chemoprophylaxis is most impractical in the control of: \textit{[MH 2003]}
(a) Measles
(b) Cholera
(c) Diphtheria
(d) Tuberculosis

579. Plague is what type of zoonosis? \textit{[MH 2005]}
(a) Cyclozoanosis
(b) Direct zoonosis
(c) Sapro-zoonosis
(d) Meta Zoonosis

580. Which is not a zoonotic disease? \textit{[R] 2002}
(a) Brucellosis
(b) Malaria
(c) Rabies
(d) Trichinosis

581. Which is not a zoonotic disease? \textit{[R] 2003}
(a) Tetanus
(b) Rabies
(c) Brucellosis
(d) Hydatid disease

582. Shortest incubation period is of: \textit{[R] 2004}
(a) Diphtheria
(b) Rubella
(c) Smallpox
(d) Chickenpox

583. Which one of the following is an Index of communicability of an Infection? \textit{[R] 2009}
(a) Carrier rate
(b) Prevalence rate
(c) Secondary attack rate
(d) Primary attack rate

[Coronary Heart Disease]

584. Following dietary changes are advised to reduce prevalence of coronary heart disease except: \textit{[AIPGME 1997, 04]}
(a) Increased complex carbohydrate intake
(b) Saturated fat intake less than 10% of total energy intake
(c) Salt intake less than 20g/day
(d) Reduce fat intake to 20-30% of total energy intake

585. Which one of the following statements about influence of smoking on risk of coronary heart disease (CHD) is not true? \textit{[AIIPGME 2005] [AIPGME 1999]}
(a) Risk of death from CHD decreases from cessation of smoking
(b) Filters provide a protective effect for CHD
(c) Influence of smoking is synergistic to other risk factors for CHD
(d) Influence of smoking is directly related to number of cigarettes smoked per day

586. Which of the following is maximally associated with Coronary heart disease? \textit{[AIIMS Nov 2010]}
(a) HDL
(b) VLDL
(c) LDL
(d) Chylomicrons
587. Which of the following is not a dietary modification recommended in high risk cardiovascular group?
(a) LDL cholesterol less than 100 mg/dL
(b) Avoid alcohol [AIPGME 2011]
(c) Saturated fat intake 7% of total calories
(d) Salt intake less than 5 grams

588. Inability to perform any work without discomfort is
(a) NYHA 1 [AIIMS November 2014]
(b) NYHA 2
(c) NYHA 3
(d) NYHA 4

589. All are true for coronary heart disease in India compared to west except: [DNB 2001]
(a) Increasing
(b) Decreasing
(c) Common in younger age
(d) None

590. False about coronary heart disease: [AP 2007]
(a) Indian CHD occurs 1 decade later than Western CHD
(b) Heavy cigarette smoking is a risk factor
(c) Males are affected more than females
(d) None

591. All of the following are true about coronary heart diseases in India except: [MP 2000]
(a) Smoking predisposition seen
(b) Mean age of patient is 10-20 years more than that of western
(c) Seen more in males
(d) DM predisposition to MI is seen

592. Best-know large sample study programme for coronary heart disease is: [MHI 2003]
(a) Framingham study [Recent Question 2013]
(b) North kerelia study
(c) Standford study
(d) Oxford study

593. Modifiable risk factors in coronary artery disease are all except: [MH 2005]
(a) Personality
(b) Smoking
(c) Obesity
(d) Hypertension

594. True about hypertension, the primary prevention includes: [PGI June 06]
(a) Weight reduction
(b) Exercise promotion
(c) Reduction of salt intake
(d) Early diagnosis of hypertension
(e) Self care

595. Modifiable risk factors for hypertension is? [Recent Question 2013]
(a) Ethnicity
(b) Age
(c) Sex
(d) Obesity

596. Tracking of BP implies [Recent Question 2014]
(a) BP increase with age
(b) BP decreases with age
(c) BP of hyptensive become hypertensive
(d) BP of hyptensive remain hypotensive

597. All of the following statements about rheumatic fever/heart disease epidemiology in India are true except: [AIIMS Nov 2002]
(a) Its prevalence varies between 2 to 11 per 1000 children aged 5-16 years
(b) Mitral regurgitation is the commonest cardiac lesion seen
(c) It occurs equally in females and males
(d) Rheumatic fever occurs in about 2% of streptococcal sore throats

598. All are true about Rheumatic Fever in India except: [AIIMS Dec 1994]
(a) RF is reported in 1-3 % of streptococcal infections
(b) More commonly seen in 5-15 years age group
(c) Except carditis, other manifestations do not cause permanent damage
(d) In Revised Jones’ Criteria, evidence of preceding streptococcal infection is taken for last 21 days

599. All of the following are Major criteria of Jones in Rheumatic fever except: [AIIMS Nov 2010]
(a) Pancarditis
(b) Arthritis
(c) Chorea
(d) Elevated ESR

600. Not included among major criteria in acute rheumatic fever is: [AIIMS PGME May 2013]
(a) Erythema marginatum
(b) Polyarthritis
(c) Chorea
(d) Pancarditis

601. The most common cancer affecting Indian urban women in Delhi, Mumbai and Chennai is: [AIPGME 2005]
(a) Cervical cancer
(b) Ovarian cancer
(c) Breast cancer
(d) Uterine cancer
602. The most common cancer, affecting both males and females of the world, is: [AIIMS May 2005, Dec 1994]
(a) Cancer of the pancreas [Recent Question 2013]
(b) Buccal mucosa cancer
(c) Lung cancer
(d) Colo-rectal cancer
603. The most common malignant tumor of adult males in India is: [AIPGME 2004]
(a) Oropharyngeal carcinoma
(b) Gastric carcinoma
(c) Colo-rectal carcinoma
(d) Lung cancer
604. The most common type of cancer among females in India is: [Karnataka 2005]
(a) Cervical cancer
(b) Breast cancer
(c) Ovarian cancer
(d) Colonic cancer
605. Habits and customs are conducive to cancer as evident below except: [Karnataka 2006]
(a) Kangri cancer in Kashmir due to hot pot in winter
(b) Oral cancer due to pan chewing in India
(c) Penile cancer and cervical cancer following circumcision
(d) Lung cancer due to smoking
606. HPV Vaccination True A/E: [PGI June 02]
(a) Protects from Ca Cx in >70% cases
(b) 2 primary doses req for immunization
(c) Protects against HSV 16 and 18
(d) Mixed vaccine, needs refrigeration
(e) Recommended for age group 20-40yrs
607. Which of the following can be prevented by screening: [PGI June 08]
(a) Ca cervix
(b) Ca Breast
(c) Ca Prostate
(d) Ca Lung
(e) Ca colon
608. Highest increase in survival rate is seen after screening of: [AIIMS May 2011]
(a) Carcinaoma cervix
(b) Carcinaoma lungs
(c) Carcinaoma colon
(d) Carcinaoma breast
609. Current cancer patients in India reported annually: [AIIMS PGMEE November 2012]
(a) 0.5 million
(b) 1 million
(c) 5 millions
(d) 10 millions
610. Globally most common cancer is: [NUPGET 2013]
(a) Colorectal cancer
(b) Bladder cancer
611. The most common cancer, affecting Indian urban women in Delhi, Mumbai and Chennai is: [DNB 2007]
(a) Cervical cancer
(b) Ovarian cancer
(c) Breast cancer
(d) Uterine cancer
612. Tobacco responsible for oral cancer is [Recent Question 2014]
(a) 100%
(b) 40%
(c) 90%
(d) 60%

Review Questions

613. The most common cancer, affecting Indian urban women in Delhi, Mumbai and Chennai is: [DNB 2007]
(a) Cervical Cancer
(b) Ovarian Cancer
(c) Breast Cancer
(d) Uterine Cancer
614. Best method of screening for early detection of carcinoma breast in young woman is: [Bihar 2004]
(a) Regular X-rays
(b) Self examination
(c) Mammography
(d) Regular biopsies
615. “Field carcinogenesis” is seen in: [UP 2000]
(a) Head and neck carcinoma
(b) Colon carcinoma
(c) Brain tumour
(d) Breast carcinoma
616. Most common cancer worldwide is: [MP 2005]
(a) Lung
(b) Oral
(c) Stomach
(d) Breast
617. Risk factors for Cancer cervix are increased by the following: [MP 2007]
(a) Less than 20 years of age
(b) Late marriage
(c) Upper socio-economic class
(d) Early marriage
618. Which is not a predisposing factor for carcinoma cervix? [R] 2001
(a) Early marriage
(b) Early coitus
(c) Early child bearing
(d) Single child birth
OBESITY

619. For Asian populations, the normal BMI (Body Mass Index) range is: [AIIMS Nov 2008]
 (a) 18.5 - 24.99
 (b) 18.5 - 22.99
 (c) 20.5 - 24.99
 (d) 20.5 - 22.99

620. What will be the BMI of a male whose weight is 89 kg and height is 172 cms? [AIPGME 2005]
 (a) 27
 (b) 30
 (c) 33
 (d) 36

621. All of the following sites are used for measuring skin fold thickness to assess obesity except:
 (a) Mid-triceps [AIPGME 2004]
 (b) Biceps
 (c) Subscapular
 (d) Anterior abdominal wall

622. Which of the following indices of obesity is height-independent? [AIPGME 1991]
 (a) Quetelet’s Index
 (b) Ponderal Index
 (c) Broca’s Index
 (d) Corpulence Index

623. A patient is called obese if BMI is: [AIPGME 2007]
 (a) 20-30 [Recent Question 2013]
 (b) > 25
 (c) > 30
 (d) > 40

624. Internationally accepted method of measuring obesity is: [DPG 2006]
 (a) BMI
 (b) Ponderal index
 (c) Lorentz index
 (d) Corpulence index

625. Body mass index is calculated as: [DPG 2006]
 (a) Weight/Height 2
 (b) Weight/Height
 (c) Weight × Height
 (d) Height/Weight

626. Which of the following should be done to reduce obesity? [DPG 2006]
 (a) Regular exercise with same amount of food
 (b) Decrease fat intake but have stomach full
 (c) Reduce the amount of fat in diet only
 (d) Reduce intake of fats, carbohydrates and protein

627. An adult is considered to be overweight if he/she has the BMI: [Karnataka 2009]
 (a) >18.5
 (b) > 20
 (c) > 25
 (d) None of the above

628. Obesity indices are: [PGI June 02]
 (a) Broca’s index
 (b) Ponderal index
 (c) Quetelet index
 (d) Corpulence index

629. Overweight BMI: [Recent Question 2013]
 (a) 25-29.99
 (b) 15-18.5
 (c) 18.5-24.99
 (d) 30-34.99

630. Calculate BMI if weight in kilograms is 98 and height in centimeters is 175:
 (a) 28
 (b) 32
 (c) 36
 (d) 40

631. What will be the BMI of a male whose weight is 89 kg and height is 172 cm:
 (a) 27
 (b) 30
 (c) 33
 (d) 36

632. Which index of obesity does not include height? [DNB June 2010]
 (a) BMI
 (b) Ponderal’s index
 (c) Broca’s index
 (d) Corpulence index

633. Normal range of BMI Asian individual is:
 (a) 18.5 to 24.99 [DNB December 2010]
 (b) 18.5 to 22.5
 (c) 18.5 to 27.99
 (d) > 30

634. Height in centimetres by cube root of body weight is also known as: [DNB December 2011]
 (a) Quetelet index
 (b) Broca index
 (c) Ponderal’s index
 (d) Corpulence index

635. BMI for normal weight: [Recent Question 2013]
 (a) 18.5 – 27.99
 (b) 18.5 – 24.99
 (c) 23.0 – 24.99
 (d) > 30

636. Which index of obesity does not include height? [Recent Question 2013]
 (a) BMI
 (b) Ponderal’s index
 (c) Broca’s index
 (d) Corpulence index

637. Corpulence index means: [DNB 2008]
 (a) Measurement of obesity
 (b) Measurement of copper level in serum
 (c) Measurement of iron losses in faeces
 (d) Pressure difference b/w chambers of heart
Review Questions

638. What will be the BMI of a male whose weight is 89 kg and height is 172 cm: [DNB 2007]
(a) 27
(b) 30
(c) 33
(d) 36
[Recent Question 2013]

639. Corpulence index means: [DNB 2008]
(a) Measurement of obesity
(b) Measurement of copper level in serum
(c) Measurement of iron losses in faeces
(d) Pressure difference b/w chambers of heart

640. Assessment of obesity by following measurement Except: [UP 2006]
(a) Quetelet’s index
(b) Broca index
(c) Corpulence index
(d) Sullivan’s index

641. Body mass index is also known as: [UP 2007]
(a) Broca’s index
(b) Corpulence index
(c) Quetelet’s index
(d) Lorentz’s formula

642. Abdominal fat accumulation is assessed by: [MP 2005]
(a) Corpulence index
(b) Broca’s index
(c) Ponderal index
(d) Waist to hip ratio

643. BMI (body mass index) is defined as: [JIPMER 2000]
[a] [All India 2005] [MH 2005]
(a) \(\frac{\text{Weight (kg)}}{\text{Height}^2 (\text{meters})} \)
(b) \(\frac{\text{Weight (Kg)}}{\text{Height}^2 (\text{cm})} \)
(c) \(\frac{\text{Midarm circumference (cm)}}{\text{Head circumstance (cm)}} \)
(d) Midarm circumference (cm) between ages of 1-5 years

644. Taking the definition of blindness as visual acuity less than 3/60 in the better eye, the number of blind persons per 100,000 population in India is estimated to be: [AIIMS Nov 2003]
(a) 500
(b) 700
(c) 1000
(d) 1500

645. The most common cause of blindness in India is: [AIIMS May 1995]
(a) Cataract
(b) Trachoma
(c) Refractive errors
(d) Vitamin A deficiency

646. Under NPCB in India, cutoff for blindness is defined as having a vision of: [AIPGME 2000]
(a) < 3/60 in worse eye
(b) < 6/60 in better eye
(c) < 3/60 in better eye
(d) < 6/60 in worse eye

647. Disease not included in Vision 2020, India is: [AIPGME 2005]
(a) Cataract
(b) Glaucoma
(c) Diabetic retinopathy
(d) Onchocerciasis

648. The most common cause of blindness in India is: [AIIMS Nov 05]
(a) Cataract
(b) Trachoma
(c) Refractive errors
(d) Vitamin A deficiency

649. The commonest cause of low vision in India is: [AIPGME 2004]
(a) Uncorrected refractive errors
(b) Cataract
(c) Glaucoma
(d) Squint

650. According to the National Programme for Control of Blindness (NPC(B) survey (1986-89), the highest prevalence of blindness in India is in: [AIIMS Dec 1991]
(a) Jammu and Kashmir
(b) Orissa
(c) Bihar
(d) Uttar Pradesh

651. The commonest cause of low vision in India is: [AIPGME 2003]
(a) Cataract
(b) Trachoma
(c) Glaucoma
(d) Squint

652. Blindness can be seen in: [PGI Dec 2K]
(a) Measles
(b) Mumps
(c) Rubella
(d) Coxsackie

653. If Blindness is surveyed using Schools as compared to Population Surveys, then estimation of prevalence of blindness will have? [AIIMS PGMEE May 2013]
(a) Overestimation
(b) Underestimation
(c) Remains same
(d) None of them is used for evaluation

654. Disability certificate is given for poor vision if visual acuity is 4/60, in tune of visual impairment as a percentage: [AIIMS PGMEE November 2012]
(a) 1
(b) 0.4
(c) 0.3
(d) 0.75
Review Questions

655. Blindness rate in India due to refractive errors
 (a) 62.6%
 (b) 19.7%
 (c) .8%
 (d) 6.2%
 [Recent Question 2014]

656. Commonest cause of blindness in India is:
 (a) Cataract
 (b) Trachoma
 (c) Injury
 (d) Glaucoma
 [DNB 2001]

657. MCC of blindness in India is:
 (a) Cataract
 (b) Trachoma
 (c) Injury
 (d) Glaucoma
 [DNB 2004]

658. WHO defines blindness if the visual acuity is less than:
 (a) 3/60
 (b) 18/38
 (c) 9/60
 (d) 6/6
 [Bihar 2004]

659. Prevalence of blindness in India is:
 (a) 0.1%
 (b) 0.2%
 (c) 0.5%
 (d) 0.7%
 [Bihar 2004]

660. Most common cause of ocular morbidity in India is:
 (a) Cataract
 (b) Xerophthalmia
 (c) Trachoma
 (d) Refraction error
 [UP 2000]

661. Blindness is defined at:
 (a) 3/18
 (b) 1/60
 (c) 6/60
 (d) 3/60
 [UP 2006]

662. The Most common cause of blindness in India is:
 (a) Glaucoma
 (b) Xerophthalmia
 (c) Trachoma
 (d) Cataract

663. Most common cause of blindness due to easily preventable cause in children:
 (a) Diabetes
 (b) Trachoma
 (c) Vit. A deficiency
 (d) Cataract
 [R] 2001

664. Stanford-three-community study, The North Kerelia project and Lipid Research Clinics study are types of:
 (a) Cohort studies
 (b) Nested case control studies
 (c) Case series report studies
 (d) Risk factor intervention trials
 [AIPGME 2004][AIPGME 2004]

665. Most common cause of stroke in India is:
 (a) Cerebral thrombosis
 (b) Cerebral embolism
 (c) Cerebral hemorrhage
 (d) Subarachnoid haemorrhage
 [AIIMS Dec 1994]

666. Which one of the following is NOT a characteristic of non-communicable disease:
 (a) Well-defined etiological agent
 (b) Multifactorial causation
 (c) Long latent period
 (d) Variable onset
 [AIPGME 1993]

667. ‘Rule of Halves’ is seen in:
 (a) CHD
 (b) Hypertension
 (c) Blindness
 (d) Accidents and Injuries
 [AIIMS Nov 1993]

668. The preferred public health approach to control non-communicable diseases is:
 (a) Shift the population curve of risk factors by a population based approach
 (b) Focus on high risk individuals for reduction of risk
 (c) Early diagnosis and treatment of indentified cases
 (d) Individual disease based vertical Programmes
 [AIIMS Nov 02]

669. WHO STEPS is used for:
 (a) Communicable diseases
 (b) Non-communicable diseases
 (c) Immuno- deficient diseases
 (d) Auto-immune diseases.
 [AIIMS May 2009]

670. Rural and urban population differ in incidence in all diseases except:
 (a) Bronchitis
 (b) TB
 (c) Lung Cancer
 (d) Mental illness
 [AIPGME 2010]

671. Diabetes mellitus is best diagnosed by:
 (a) Fasting blood sugar (FBS) > 100 mg/dl and Post-prandial blood sugar (PPBS) > 140
 (b) FBS >125 mg/dl and PPBS >199 mg/dl
 (c) HbA1c = 5.5% [AIIMS November 2011]
 (d) FBS > 70 md/dl

672. True about Road traffic accidents:
 (a) Most common cause of accidental deaths in India
 (b) More in USA in motor-car users than pedestrians
 (c) More in number than self-inflicted injuries in India
 (d) More in number than railway accidents in India
 (e) Contribute 50% of all injury related deaths in India
 [PGI May 2011]
Communicable and Non-communicable Diseases

673. In India causing maximum death among the following is:
 [Recent Question 2013]
 (a) Drowning
 (b) Road traffic accident
 (c) Burns
 (d) Poisoning

674. Most reliable test for screening of diabetes mellitus
 [Recent Question 2012]
 (a) Random blood sugar
 (b) Fasting blood sugar
 (c) Glucose tolerance test
 (d) Urine sugar

679. Ischemic heart disease is associated with:
 [AP 2003]
 (a) LDL
 (b) VLDL
 (c) HDL
 (d) Chylomicrons

680. ‘Smoking’ is not associated with the following respiratory lesion:
 [AP 2003]
 (a) Chronic bronchitis
 (b) Sarcoïdosis
 (c) Emphysema
 (d) Lung carcinoma

Review Questions

676. Which is the least common cause of heart disease in India?
 [Bihar 2004]
 (a) Rheumatic
 (b) Hypertensive
 (c) Ischemic
 (d) Congenital

677. Primordial prevention in myocardial infarction are all except:
 [Bihar 2004]
 (a) Maintenance of normal body weight
 (b) Change in life style
 (c) Change in nutritional habits
 (d) Screening for hypertension

678. Corpulence index measure:
 [AIPGME 2004]
 (a) Hypertension
 (b) Obesity

682. The North Kerelia project evaluate risk factors of:
 [MP 2005]
 (a) Diabetes
 (b) Coronary heart disease
 (c) Cancers
 (d) Obesity

683. Glycosylated haemoglobin reflects the mean blood glucose level of previous:
 [AP 2003]
 (a) 15 days
 (b) 1 month
 (c) 3 months
 (d) 6 months

684. Ideal cholesterol level should be below:
 [RJ 2005]
 (a) 200
 (b) 220
 (c) 300
 (d) 350
SMALLPOX AND CHICKENPOX

1. Ans. (b) 6 days after onset of rash [Ref. Park 21/e p134, Park 22/e p136]
 • Period of communicability:
 - Chickenpox: 1 – 2 days before to 4 – 5 days after appearance of rash
 - Measles: 4 days before to 5 days after appearance of rash
 - Diphtheria: 14 – 28 days from disease onset
 - Poliomyelitis: 7 – 10 days before and after onset of symptoms

Also Remember

CHICKENPOX:
• Also known as ‘Varicella’
• Causative agent: Varicella zoster virus [Human (alpha) Herpes Virus – 3]
• Secondary Attack rate: 90%
• Incubation period: 14 – 16 days
• Rash:
 - Chickenpox rash
 - Smallpox rash
 - Dew drop on rose petal appearance
 - Centripetal distribution
 - Pleomorphic rash
 - Centrifugal distribution
 - Non-pleomorphic

• MC late complication of Chickenpox: Shingles (caused by reactivation of the virus decades after the initial episode of chickenpox)
• Aspirin must not be given to children with chickenpox: Risk of Reye’s Syndrome
• Strain of Live attenuated Chickenpox Vaccine: OKA strain
• Congenital Varicella: Most threatening if transmitted in 1st trimester of pregnancy

2. Ans. (a) Scabs are infective [Ref. Park 21/e p134-36, Park 22/e p136-37-38]

3. Ans. (d) Cross-resistance existed with animal pox [Ref. Park 21/e p132, Park 22/e p135]

Epidemiological Reasons/Basis For Smallpox Eradication:
• No known animal reservoir
• No long term carrier state
• Infection provides lifelong immunity
• Case detection simple due to characteristic rash
• Subclinical cases did not transmit the disease
• A highly effective vaccine was available
• International cooperation

4. Ans. (a) 10-30% chances of occurrence [Ref. Park 21/e p134-36, Park 22/e p136-37-38]
 • Single attack of Varicella gives durable (lifelong) immunity

5. Ans. (d) Cross-resistance existed with animal pox [Ref. Park 21/e p132, Park 22/e p135]

6. Ans. (d) 8th May 1980 [Ref. K. Park 22/e p135]

7. Ans. (c) 90 [Ref. K. Park 22/e p136]

8. Ans. (a) Live vaccine [Ref. K. Park 22/e p137]

9. Ans. (b) 2 days before and 5 days after rash appearance [Ref. Park 22/e p136]
Review Questions

10. Ans. (c) 6 days after rash [Ref. Park 21/e p134, Park 22/e p136]
11. Ans. (a) Crusts contain live virus [Ref. Park 21/e p134-36, Park 22/e p136-37-38]
12. Ans. (d) Crusts contain live virus [Ref. Park 21/e p134-36, Park 22/e p136-37-38]

MEASLES

13. Ans. (c) Not infectious in pro-dromal stage [Ref. Park 21/e p136-40, Park 22/e p137-39]

MEASLES (RUBEOLA):
- **Period of Communicability:** 4 days before and 5 days after the appearance of rash (Rash: Retro-auricular origin)
 - Measles is highly infectious during pro-dromal period and during eruption
 - Period of communicability declines rapidly after appearance of rash
- Measles has no second attacks (life long immunity seen)

Also Remember
- WHO Measles elimination strategy comprises a 3-Part Vaccination strategy, ‘Catch up, Keep up, Follow up’
 - **Catch up:** One time nationwide, vaccination campaign targeting all children 9 months to 14 years of age, irrespective of history of Measles disease or vaccination status
 - **Keep up:** Routine services aimed at vaccinating more than 95% of each successive birth cohort
 - **Follow up:** Subsequent nationwide vaccination campaigns conducted every 2 – 4 years targeting usually all children born after the catch-up campaign
- **Accelerated Measles Mortality Reduction Strategy (WHO-UNICEF):** Two doses of Measles containing vaccine (MCV) to all children through routine and supplementary immunization activities.

14. Ans. (d) SSPE [Ref. Park 20/e p137, Park 21/e p138]
- Measles is not an unimportant infection: It does lead to several complications
- **Common complications of Measles:**
 - Diarrhoea
 - Pneumonia and other respiratory complications
 - Otitis media: MC complication of Measles in children
- **Serious complications of Measles:**
 - Febrile convulsions
 - Encephalitis
 - Sub-acute sclerosing pan-encephalitis (SSPE)
- **Sub-acute sclerosing pan-encephalitis (SSPE):**
 - Also known as ‘Dawson’s disease’, ‘Dawson’s encephalitis’
 - Rare complication of Measles developing 7 – 10 years after Measles infection (Fatality 10–20%)
 - Characterised by progressive mental deterioration leading to paralysis (persisting virus in brain)
 - Frequency: 7 cases per million cases of natural Measles

Also Remember
- **MC complication of Mumps:** Aseptic meningitis

15. Ans. (c) Secondary attack rate is less than that of rubella [Ref. Park 21/e p137, 140, Park 22/e p138-39, 142]

SAR of measles = 80% and Rubella = 90%

16. Ans. (a) Koplik’s spots appear as rash disappears [Ref. Park 21/e p136-40, Park 22/e p137-38-42]

MEASLES (RUBEOLA):
- **Incubation Period:** 10-14 days
- **Causative agent:** RNA paramyxovirus (so for only one serotype known)
- **Source of Infection:** cases (carriers are not known to occur)
- **Period of Communicability:** 4 days before and 5 days after the appearance of rash (Rash: Retro-auricular origin)
- Measles has no second attacks (life long immunity seen)
- **Secondary attack rate of Measles:** 80%
Review of Preventive and Social Medicine

- Measles shows a cyclical trend: Increase every 2-3 years
- Blood cell type predominantly infected in Measles: Monocyte
- Pathognomonic clinical feature of Measles: Koplik spots (on buccal mucosa opposite upper 2nd molar)
- Pathognomonic microscopic feature of Measles: Warthin-Finkeldey cells (multinucleated giant cells)
- MC complication of measles in young children: Otitis media
- SSPE (Subacute Sclerosing Pan Encephalitis) is a rare complication of measles: 7 per million cases of Measles (7-10 years after initial infection)
- Epidemic of measles occur: If proportion of susceptible children is >40%
- If Measles is introduced in a virgin community: it infects >90% children
- Eradication of Measles: Requires a vaccination coverage >96%
- Baby measles (Exanthem subitum-roseola infantum): Sixth disease (three day fever)
- German Measles: Rubella

Also Remember

- Measles is prevented by:
 - Active immunization by measles vaccine:
 - Passive immunization by measles immunoglobulin

17. Ans. (b) Single intramuscular dose of 0.5 ml [Ref. Park 21/e p138-39, Park 22/e p140-41]
18. Ans. (a) Man [Ref. Park 21/e p137, Park 22/e p137-39]
19. Ans. (a) Koplik spots appear in Prodromal stage; (b) Fever stops after onset of Rash; (c) Vaccine given at 9 months [Ref. Park 21/e p136-40, Park 22/e p137-39]
20. Ans. (d) Catch up [Ref. K Park 20/e p135-138]
21. Ans. (a) Prodromal stage [Ref. K. Park 22/e p139]
22. Ans. (c) Meningoencephalitis [Ref. K. Park 22/e p139]
23. Ans. (b) Secondary bacterial infection [Ref. Infections of Central Nervous System by Scheld, 4/e p126]

Review Questions

24. Ans. (d) 95 [Ref. Park 21/e p139, Park 22/e p141]
25. Ans. (a) 9 months [Ref. Park 21/e p139, Park 22/e p141]
26. Ans. (d) 95 [Ref. Park 21/e p139, Park 22/e p141]
27. Ans. (d) All [Ref. Park 21/e p137-40, Park 22/e p138-39-42]
28. Ans. (a) Prodromal stage [Ref. Park 21/e p138, Park 22/e p140]
29. Ans. (a) Diarrhea [Ref. Park 21/e p138, Park 22/e p140]
30. Ans. (c) 4 days before and 5 days after the appearance of rash [Ref. Park 21/e p137, Park 22/e p138-39]
31. Ans. (b) 10 days [Ref. Park 21/e p137, Park 22/e p138-39]
32. Ans. (a) Both active and passive immunization are given simultaneously [Ref. Park 21/e p136-40, Park 22/e p137-38]
33. Ans. (c) Give after 9 months age [Ref. Park 21/e p139, Park 22/e p141]

RUBELLA

34. Ans. (a) Women 15-49 yrs [Ref. Park 21/e p141, Park 22/e p142]

Also Remember

- ‘Forchheimer’s sign’ occurs in 20% of cases, and is characterized by small, red papules on the area of the soft palate
35. Ans. (a) 6-12 weeks of pregnancy [Ref. Park 21/e p141, Park 22/e p142]

Congenital Rubella Syndrome (CRS):
- CRS is said to have occurred if:
 - Infant has IgM rubella antibodies shortly after birth, or
 - IgG antibodies persist for more than 6 months
- Major determinant of extent of fetal infection in CRS: Gestational age at which fetal transmission occurs,
 - Infection in I trimester: MOST DISASTROUS TIME
 1. Abortions
 2. Still births
 3. Skin lesions: blueberry muffin lesions
 4. ‘Triad of Congenital Rubella Syndrome’
 i. Sensori-neural deafness
 ii. Congenital heart defects (MC is PDA)
 iii. Cataracts
 - Infection in early part of II Trimester: Deafness (only)
 - Infection after 16 weeks POG: No major abnormalities
- Risk of fetal damage in CRS:

<table>
<thead>
<tr>
<th>Stage of gestation</th>
<th>% fetuses infected</th>
<th>% fetuses damaged among infected</th>
<th>Overall risk of damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 11 weeks</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>11 – 16 weeks</td>
<td>55</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>17 – 26 weeks</td>
<td>33</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>27 – 36 weeks</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

36. Ans. (a) 6-12 weeks of pregnancy [Ref. Park 21/e p141, Park 22/e p142]
- Other manifestations of CRS may include: spleen, liver or bone marrow problems, mental retardation, microcephaly, low birth weight, thrombocytopenic purpura (characteristic ‘blueberry muffin’ rash), hepatomegaly, micrognathia

37. Ans. (d) Infection after 16 weeks of gestation results in major congenital defects [Ref. Park 21/e p141, Park 22/e p142]

38. Ans. (b) 15-18 months [Ref. K. Park 22/e p143]

Review Questions

39. Ans. (c) Incubation period < 10 days [Ref. Park 21/e p140-41, Park 22/e p142-42]

40. Ans. (a) All nonpregnant women of age 15-44 [Ref. Park 21/e p141, Park 22/e p142]

41. Ans. (c) High risk if infected after 16 weeks [Ref. K. Park 21/e p141, Park 22/e p142]

MUMPS

42. Ans. (c) Aseptic meningitis [Ref. Park 21/e p142, Park 22/e p143]

43. (d) 18 days [Ref. K. Park 22/e p143]

INFLUENZA

44. Ans. (d) Major epidemics are due to antigenic drift [Ref. Park 21/e p142-49, Park 22/e p143, 51]

- Antigenic variations in Influenza: (MC in Type A)

<table>
<thead>
<tr>
<th>Antigenic shift</th>
<th>Antigenic drift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurs due to Nature</td>
<td>Genetic recombination/ re-assortment/ rearrangement</td>
</tr>
<tr>
<td>May lead to Sudden</td>
<td>Point mutation</td>
</tr>
<tr>
<td>Epidemics/ Pandemics</td>
<td>Gradual/insidious</td>
</tr>
<tr>
<td></td>
<td>Sporadic cases</td>
</tr>
</tbody>
</table>

- Incubation period: 18 – 72 hours
- Vaccines for Influenza:
 - Killed vaccines:
Review of Preventive and Social Medicine

- 2 doses, 3 – 4 weeks apart, 0.5 ml (for age > 3 years), subcutaneous
- 70 – 90% protective efficacy; duration 3 – 6 months
- Is rarely associated with Guillain Barre Syndrome (GBS)
 - Live attenuated vaccines:
 - Stimulate local + systemic immunity
 - Antigenic variations presents difficulties in manufacture
 - Newer vaccines:
 - *Split virus vaccine*; ‘Sub-virion vaccine’, lower antigenicity, fewer side effects
 - *Neuraminidase specific vaccine*; ‘Subunit vaccine’
 - Recombinant vaccine

45. Ans. (a) split – virus vaccine; (b) neuraminidase; (e) recombinant vaccine [Ref. K. Park 20/e p144]
 - **Newer Influenza Vaccines:**
 - *Split – virus vaccine*:
 - Also known as ‘Sub-virion vaccine’
 - Lesser side effects
 - Useful for children
 - *Neuraminidase – specific vaccine*:
 - Sub-unit vaccine containing N-antigen
 - Permits subclinical infection – long lasting immunity
 - *Recombiant vaccine*:
 - Antigenic properties of virulent strain transferred to a less virulent strain

Also Remember

H1N1 (Swine flu) Vaccine:
- **H1N1 Inactivated vaccine**: Single i/m injection
 - *Strain*: A/California/7/2009 (H1N1) V like strain
 - *Storage temperature*: +2° to +8° C
 - *Contraindications*: History of anaphylaxis/severe reaction/Guillain Barre Syndrome, Infants <6months, Moderate-to-severe illness with fever
 - Protective immunity: Develops after 14 days (NOT 100%)
- H1N1 Live attenuated vaccine: Nasal spray
 - Side effects: Rhinorrhea, nasal congestion, cough, sore throat, fever, wheezing, vomiting
- Priority groups (in order) for Influenza vaccines:
 - Pregnant women
 - Age > 6months with chronic medical conditions
 - 15-49 years healthy young adults
 - Healthy young children
 - Healthy adults 49-65 years
 - Healthy adults >65 years

46. Ans. (e) All ages and sex equally affected [Ref. Park 21/e p143-44, Park 22/e p144-45]
47. Ans. (a) Affects all ages and sexes; (b) I.P. 18 – 72 hours [Ref. Park 21/e p142-49, Park 22/e p143-51]
48. Ans. (d) H7N9 [Ref. WHO H7N9 Avian Influenza 2013 document]
49. Ans. (a) 1-3 days [Ref. K. Park 22/e p147]
50. Ans. Not of the Choices [Ref. K. Park 22/e p147]
51. Ans. (b) Man to man transmission is rare [Ref. Park 22/e p147]

Reasons for H5N1 not becoming Global pandemic
- Absence of efficient human to human mode of transmission (Major reason)
- Absence of replication in humans
- Absence of serious disease in humans

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

DIPHTHERIA

52. Ans. (c) 25 Lf of diphtheria toxoid are present per ml in DPT vaccine [Ref. Park 21/e p149-52, Park 22/e p151-54]

- DPT VACCINE:
 Refer to Chapter 3, Theory

Also Remember

- Tests of immunity status:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Tests of immunity status</th>
<th>Antigen used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphtheria</td>
<td>Schick test</td>
<td>Schick toxin</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Montaux test</td>
<td>PPD</td>
</tr>
<tr>
<td>Leprosy</td>
<td>Lepromin test</td>
<td>Dhamendra Antigen</td>
</tr>
<tr>
<td>Kala azar</td>
<td>Montenegro (Leishmanin) test</td>
<td>Leishmanin Antigen</td>
</tr>
</tbody>
</table>

53. Ans. (b) Susceptibility to diphtheria [Ref. K. Park 19/e p137]

SCHICK TEST:

- Intradermal test to test:
 - Presence of antitoxin (Immunity status)
 - Hypersensitivity to diphtheria toxin
- Test: 0.2 ml (1/50 MLD) of schick test toxin intradermal in forearm and heat-inactivated toxin (control) in opposite forearm

- Interpretation of results of Schick Test:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No reaction</td>
<td>Immune to diphtheria</td>
</tr>
<tr>
<td>Red flush</td>
<td>Susceptible to diphtheria</td>
</tr>
<tr>
<td>Red flush fading by 4th day</td>
<td>Hypersensitivity</td>
</tr>
<tr>
<td>Red flush fading by 4th day</td>
<td>Susceptibility and Hypersensitivity</td>
</tr>
</tbody>
</table>

- Schick test is Negative: Serum antitoxin level > 0.03 units antitoxin per ml
- Schick test has been replaced by: Hemeagglutination Test
- Hemeagglutination Test: Measurement of serum antitoxin level

54. Ans. (d) 70% [Ref. K. Park 22/e p151]

55. Ans. (b) Single dose of toxoid; (d) Daily throat swab culture [Ref. Park 22/e p152]

Management of diphtheria contacts

- Immunisation:
 - If primary immunization or booster was received in previous 2 years: No further action
 - If primary immunization or booster was received more than 2 years ago: 1 booster dose
 - If unimmunized contact: Active immunization + 1000-2000 units Antitoxin + Prophylactic penicillin/erythromycin
- Examination:
 - Physical examination: Daily for 1 week after exposure
 - Throat swabbing: Weekly for several weeks

Review Questions

56. Ans. (e) 70% [Ref. Park 21/e p150, Park 22/e p152]

57. Ans. (a) Erythromycin [Ref. Park 21/e p151, Park 22/e p153]

58. Ans. (d) Carrier of diphtheria [Ref. Park 22/e p147]
59. Ans. (a) Throat culture [Ref. Park 21/e p150, Park 22/e p152]
60. Ans. (a) Immunity to diphtheria [Ref. Park 20/e p145]

WHOOPING COUGH

61. Ans. (a) 7-14 days [Ref. Park 21/e p153, Park 22/e p155]

Also Remember

- Incubation period: Is the time interval between invasion by an infectious agent and appearance of first sign or symptom of disease
- Median IP: Is time required for 50% of cases to occur following exposure
- Latent period: Is the period from disease initiation to disease detection in non-infectious diseases
- Serial interval: Is gap in time between the onset of primary case and secondary case
- Generation time: Is the time during which an infectious agent may be transferred directly or indirectly from an infected organism to others
- Incubation period of Vaccine induced Measles: 7 days
- Quarantinable period for a disease: Maximum incubation period
 - Healthy contact of Yellow fever is quarantined for 6 days (IP: 2 – 6 days)

62. Ans. (c) Erythromycin prevents spread of disease between children [Ref. Park 21/e p152-54, Park 22/e p154-56]

Pertussis (Whooping Cough):
- Leukocytosis does not correlates with the severity of cough
- Drug of choice: Erythromycin (40 mg/kg QID X 10 days)
- Vaccines:
 - DPT:
 - Killed acellular bacilli 20,000 million per dose (0.5 ml)
 - Pertussis component leads to neurological complications after 2 years of age (@ 1 per 170,000 vaccinees)
 - Vaccine efficacy is 50 – 60 % (2 doses) and 70% (3 doses)
 - Pertussis killed whole cell vaccine
- DOC for cases and contacts: Erythromycin (for 10 days)

63. Ans. (c) Parapertussis causes more severe disease then pertussis [Ref. Park 21/e p152-54, Park 22/e p154-56]
64. Ans. (a) Incubation period is 7-14 days; (c) Can affect any age; (d) Secondary attack rate in unimmunised persons is 90% [Ref. K. Park 22/e p154-57]

Review Questions

65. Ans. (a) Prophylactic antibiotic for 10 days [Ref. Park 21/e p154, Park 22/e p156]
66. Ans. (c) 3-4 weeks [Ref. Park 21/e p111, Park 22/e p112]
67. Ans. (a) Secondary attack rate 90%; (b); (d) [Ref. Park 21/e p152-54, Park 22/e p154-56]

MENINGOCOCCAL MENINGITIS

68. Ans. (a) Causative agent is a gram –ve diplococci [Ref. Park 21/e p154-55]

Also Remember

- Case Fatality Rate (CFR) of Meningococcal meningitis : 80%
 - With early diagnosis and treatment, CFR declines to < 10%
- Meningococcal disease is endemic in India
- Treatment with Penicillin doesn’t eradicate the carrier state in meningococcal meningitis
- Isolation of cases is not useful in epidemics of meningococcal meningitis as carriers outnumber case
69. Ans. (a) The source of infection is mainly clinical cases [Ref. Park 21/e p154-55, Park 22/e p156-57]
 • Carriers are the most important source of infection in meningococcal meningitis
 – Clinical cases present only a negligible source of infection
 Refer to Theory
 • Carriers are more important source of infection than cases in:
 – Meningococcal meningitis
 – Diphtheria

70. Ans. (c) Vaccine prophylaxis of contacts of Xavier [Ref. Park 21/e p155, Park 22/e p157]
 • No vaccine prophylaxis can be given to contacts of Xavier as there is no effective vaccine available for Group B Meningococcus.

Also Remember

MENINGOCOCCAL MENINGITIS:
 • Causative agent: Neisseria meningitidis
 – Most lethal form: B
 – Epidemics: A, C > B > W-135, Y
 • Reservoir: Human beings (only)
 • Waterhouse-Friderichsen syndrome: A massive, usually bilateral, hemorrhage into the adrenal glands caused by fulminant meningococcemia
 • Case fatality rate: 80% (10% in early diagnosis and treatment)
 • Diagnosis: Culturing the organism on a chocolate agar plate (Specimen: CSF)

71. Ans. (b) Young adolescents [Ref. CDC Meningococcal Vaccine Guidelines 2014]
Meningococcal Vaccine Recommendations:
 • Routinely:
 – All adolescents 11-12 years age (1st dose at 11-12 years age, followed by Booster dose at 16 years age)
 • Other groups:
 – Adolescents 13-18 years
 – Young people 19-21 years
 – 2 years and above (Splenectomized/ Chronic diseases/ Lab workers/ Travelers to endemic areas)

72. Ans. (b) Rifampicin [Ref. K. Park 22/e p157]

73. Ans. (b) 0.01% [Ref. K Park 22/e p156]
WHO Classification of Meningococcal areas:
 • Low endemicity: < 2 cases per 100,000 population per year
 • Moderate endemicity: 2-10 cases per 100,000 population per year
 • High endemicity: > 10 cases per 100,000 population per year (0.01%)
 • Epidemic: > 100 cases per 100,000 population per year (0.1%)

74. Ans. (a) ACW135Y [Ref. K. Park 22/e p157]

Review Questions

75. Ans. (a) Pertussis component [Ref. Park 21/e p154, Park 22/e p156]
76. Ans. (c) Rifampicin [Ref. Park 21/e p155, Park 22/e p157]

ARI

77. Ans. (a) Very severe disease [Ref. Park 21/e p159, Park 22/e p161]
 • Inability to feed and severe malnutrition (weight 5 kg at 2 years age) makes the child as having Very Severe Pneumonia.
78. Ans. (c) Classify as severe pneumonia, start antibiotics and refer urgently [Ref. Park 21/e p159, Park 22/e p161]
 • In the given question, a child aged 24 months weighed 11 Kg., respiratory rate was 38 per minute, chest indrawing was present,
Review of Preventive and Social Medicine

- Chest indrawing makes the child severe pneumonia, thus child will be referred immediately after giving first dose of referral antibiotic

Also Remember

- **Acute Respiratory Tract Infections (ARI) Control Programme:**
 - Started as a pilot project in 1990
 - Currently is a part of RCH Programme – II (2004 – 09)

79. Ans. (b) Chest indrawing [Ref. K. Park 22/e p161]

80. Ans. (d) Very severe pneumonia [Ref. Park 22/e p160]

In the question, child 10 month has respiratory rate 48/minute (normal), and absence of chest indrawing (a feature of Severe pneumonia).

But, child has weight 5 kg (Expected weight at 10 months age is 9-9.5 kg). So this child is Severe malnutrition according to Gomez classification

Hence, it is a case of Very severe pneumonia

81. Ans. (c) Oxygen saturation [Ref. Park 22/e p161]

Review Questions

82. Ans. (d) 59 [Ref. Park 21/e p159, Park 22/e p161]

TUBERCULOSIS

83. Ans. (c) Lower deaths to < 1 per 100,000 population per year (by 2010) [Ref. Park 21/e p179-80, Park 22/e p181-82]

Stop TB Strategy

- Targets of strategy:
 - By 2005: Case detection rate >70% and cure rate >85%.
 - By 2010: Reduce prevalence of and deaths due to TB by 50% (relative to 1990)
 - By 2015: Eliminate TB as a public health problem (less than 1 case per million population)

Also Remember

- 3 by 5 Initiative: Launched by WHO and UNAIDS on 1st Dec 2003
 - Target: To provide antiretroviral treatment (ART) to 3 million people living with HIV/AIDS (PLHA) in developing countries by end of 2005
 - Ultimate goal: To provide universal access to treatment for HIV/AIDS to all those who need it
- Catch up – Keep up – Follow up strategy: WHO Measles elimination strategy comprises a 3-Part Vaccination strategy:
 - Catch up: One time nationwide, vaccination campaign targeting all children 9 months to 14 years of age, irrespective of history of Measles disease or vaccination status
 - Keep up: Routine services aimed at vaccinating more than 95% of each successive birth cohort
 - Follow up: Subsequent nationwide vaccination campaigns conducted every 2 – 4 years targeting usually all children born after the catch-up campaign.
- WHO Intensive PULSE strategy: Is for prevention and control of Poliomyelitis
 - Strengthen health system
 - Ensure proper and expanded use of insecticide treated bed nets (ITBN)
 - Ensure adequate access to basic healthcare and training of healthcare workers
 - Encourage simpler and effective means of administering medicines
 - Encourage development of more effective drugs and vaccines
- SAFE Strategy: Recommended by WHO for global elimination of blinding trachoma
 - Surgery
 - Antibiotic use

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

- Facial cleanliness
- Environmental improvement
 - 12 by 12 initiative: Hb level of girls aged 12 years above 12 gm% by 2012.
 - Accelerated Measles Mortality Reduction Strategy (WHO-LINICEF): Two doses of Measles containing vaccine (MCV) to all children through routine and supplementary immunization activities
 - Right to Sight Initiative (VISION 2020): To eliminate all causes of avoidable blindness by 2020
 - GET Initiative: Alliance for Global Elimination of Trachoma by 2020

84. Ans. (c) Identify new converters to Tuberculin test [Ref. Park 21/e p166, Park 22/e p168]

Also Remember

- **Tuberculin**: Purified protein derivative (PPD) has replaced the antigen old tuberculin (OT)
 - WHO advocates 'PPD-RT-23 with Tween-80'
 - **Dosage**: First strength (ITU), Intermediate strength (STU), Second strength (250TU)
 - **Tuberculin test in use**:
 - **Mantoux intradermal test**: More precise test of tuberculin sensitivity
 - **Induration**:
 - > 9 mm: Positive
 - 6 – 9 mm: Doubtful (M. tuberculosis or Atypical mycobacteria)
 - < 6 mm: Negative
 - Is a test of prognostic significance
 - **Sputum smear examination (Z-N Staining) by direct microscopy**: It is the ‘method of choice as a case finding tool for tuberculosis’
 - **Sputum culture examination**: Is offered as a centralized service at district and regional chest clinic laboratories
 - only meant for chest symptomatic who are smear negative
 - useful for carrying out sensitivity tests and monitoring drug treatment
 - **Mass Miniature Radiography (MMR)**: Is not used now as a case finding tool.
 - only useful as an additional criterion for diagnosis of Pulmonary TB, when only one sputum smear is positive out of three to exclude bronchiectasis/ aspergilloma in frequent/ severe is positive sputum smear cases and in suspected complication in a breathless patient needing specific treatment (e.g. pneumothorax, pericardial effusion, pleural effusion)

85. Ans. (a) <1% in 0-14 group of children [Ref. Park 21/e p169, Park 22/e p170]

Also Remember

- **Control of a disease includes**:
 - Reducing incidence of disease
 - Reducing duration of disease (and risk of transmission)
 - Reducing the effects of infection (including physical and psychological complications)
 - Reducing financial burden to the community
- **WHO definition of TB control**: Prevalence of natural infection in the age group 0 – 14 years is of the order of 1%

86. Ans. (b) It may be negative in dissociated tuberculosis [Ref. Park 21/e p168-69, Park 22/e p172-170]

Also Remember

- **Mantoux Test**:
 - 1 Tuberculin Unit (TU) in 0.1 ml
 - **False Reactions**:

https://kat.cr/user/Blink99/
False +ve Mantoux	False –ve Mantoux
Faulty technique of injection | Pre-allergic phase
Using degraded tuberculin | High fever
Too deep injection | High fever
Infection of other mycobacterium | Measles and Chickenpox
Repeated tuberculin testing | Whooping cough
Prior BCG vaccine | Malnutrition
HIV/AIDS | Use of anti-allergic drugs
Use of immunosuppressants

87. Ans. (c) Tuberculin Test [Ref. Park 21/e p166, Park 22/e p168]

TUBERCULIN TEST:
- Discovered by Von Pirquet (1907)
- Tuberculin test is the ‘only way of estimating the prevalence of infection in a population’
- Positive reaction to the test: evidence of past or present infection by M. tuberculosis
- Tuberculin test has lost its sensitivity as an indicator of the true prevalence of infection, in countries with high coverage of BCG; True prevalence rates are exaggerated by:
 - Infection with atypical mycobacteria
 - Boosting effect of a second dose of tuberculin

88. Ans. (c) Bangalore [Ref. K. Park 19/e p151, 20/e p161]

Also Remember
- NEERI is credited with ‘Nalgonda Technique’ for defluoridation of water
- CDRI is credited with development of ‘Centchroman’, a non-hormonal non-steroidal oral contraceptive pill
- Location of headquarters of International health agencies.

<table>
<thead>
<tr>
<th>International Health Agency</th>
<th>Location of Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>UNICEF</td>
<td>New York, USA</td>
</tr>
<tr>
<td>FAO</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>ILO</td>
<td>Geneva, Switzerland</td>
</tr>
</tbody>
</table>

89. Ans. (a) Incidence of infection [Ref. Park 21/e p166, Park 22/e p168]

90. Ans. (c) 40% [Ref. K. Park 20/e p160]
- Prevalence of TB infection in India: 40%

91. Ans. (c) 20 – 30% [Ref. Park 21/e p165, Park 22/e p167]

Tuberculosis Situation In India:
- Country with highest TB burden in world: India
- Infected with TB (Mantoux positive): Two out of five Indians (40%)
- Annual risk of becoming infected with TB: 1.5%
- Lifetime risk of disease among infected: 10%
- Indians developing TB everyday: 5000
- Sputum positive every year: 0.8 million
- TB deaths per year: 0.37 million

92. Ans. (a) 133 per 100,000 [Ref. Park 21/e p166, Park 22/e p168]
- Incidence of TB: Is percentage of new cases (confirmed by bacteriological examination) per 1000 population Incidence of TB = New cases / Total population x 1000

In the given question: New cases of TB are 22, and total population is 16, 500.
Thus, Incidence of TB = 22 / 16500 x 1000 = 1.33 per 1000 population
Or Incidence of TB = 133 per 100, 000 population

93. Ans. (d) It is assessed by tuberculin conversion in previously non-vaccinated children [Ref. Park 22/e p168]
- Incidence of TB infection (Annual infection rate, Annual risk of infection ARI): Percentage of population under study who will be newly infected (not diseased or cases) with TB among non-infected in 1 year
Communicable and Non-communicable Diseases

- Expresses attacking force of TB in community
- In developing countries 1% ARI corresponds to: 50 SS +ve cases per 100, 000 general population
- Tuberculin conversion index is the ‘best indicator for evaluation of TB problem and its tentd’ in the community
- Current ARI in India: 1.5%

94. Ans. (d) Social and environmental factors
- Thomas McKeown attributed the modern rise in the world population, AND DECLINE OF TB from the 1700sto the present to broad economic and social changes (especially diet and nutrition – “Nutritional Determinism”) rather than to targeted public health or medical interventions

95. Ans. (d) INH 5mg/kg for 6 months [Ref. Park 21/e p176, Park 22/e p178]
- Guidelines for Chemoprophylaxis in children (< 6 years) who come in contact with a Sputum positive TB case:

<table>
<thead>
<tr>
<th>IF</th>
<th>AND</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms of TB</td>
<td>Clinician declares TB</td>
<td>Cat I DOTS given</td>
</tr>
<tr>
<td>No symptoms of TB</td>
<td>Tuberculin test NA</td>
<td>Isoniazid 5 mg/kg × 6 months</td>
</tr>
<tr>
<td></td>
<td>Tuberculin test</td>
<td>Isoniazid 5 mg/kg × 3 months, then do test</td>
</tr>
</tbody>
</table>

(INH: Isoniazid; NA: Not available)

96. Ans. (a) Ethambutol [Ref. K. Park 22/e p173]
97. Ans. (c) +++ [Ref. K. Park 22/e p170]
98. Ans. (c) 10 [Ref. K. Park 22/e p169]
99. Ans. (a) Sputum smear + [Ref. K. Park 22/e p168]
100. Ans. (c) Tuberculin test [Ref. K. Park 22/e p168]
101. Ans. (b) Inhalation [Ref. K. Park 22/e p169]
102. Ans. (a) Incidence of infection [Ref. K. Park 22/e p168]
103. Ans. (c) For assessing rifampicin resistance; (e) Diagnosis of TB [Ref. Tuberculosis: Diagnosis and Treatment by Timothy, 23/e p490]
104. Ans. (a) Prevent resistance [Ref. K. Park 22/e p173]
105. Ans. (a) 1 out of 2 sputum sample +ve [CURRENT GUIDELINES] [Ref. K. Park 22/e p170]
106. Ans. (c) Patient is infected with mycobacterium [Ref. K. Park 22/e p172]
107. Ans. (b) 3 weeks [Ref. Park 22/e p112]
108. Ans. (d) Children below 6 years [Ref. Park 22/e p178]

Review Questions

109. Abs. (b) Sputum positive [Ref. Park 21/e p169, Park 22/e p170]
110. Ans. (c) Bangalore [Ref. Park 20/e p161]
111. Ans. (b) 1 unit of PPD RT3 [Ref. Park 21/e p168, Park 22/e p172]
112. Ans. (c) Tuberculin test [Ref. Park 21/e p166, Park 22/e p168]
113. Ans. (a) Sputum + ve [Ref. Park 21/e p169, Park 22/e p170]
114. Ans. (a) Sputum exam [Ref. Park 21/e p169, Park 22/e p170]
115. Ans. (a) >10⁴ bacilli are required in sputum for detection [Ref. Park 21/e p170, Park 22/e p171]
116. Ans. (a) To delay the development of resistance [Ref. Park 21/e p171-72, Park 22/e p173-74]
117. Ans. (a) 75 [Ref. Park 20/e p161]
118. Ans. (a) Live attenuated vaccine [Ref. Park 21/e p176, Park 22/e p178]
119. Ans. (c) 10,000 [Ref. Park 21/e p170, Park 22/e p171]
120. Ans. (c) With hold breast feeding [Ref. Park PSM 20/e p161]
121. Ans. (a) Stool [Ref. Park 21/e p187, Park 22/e p188]

- Stool examination:
 - Isolation of wild poliovirus from stool is ‘the recommended method for laboratory confirmation of paralytic poliomyelitis’
 - Recommended in every case of AFP
 - Virus usually can be found in the feces from onset to up to < 8 weeks after paralysis, with ‘the highest probability of detection during the first 2 weeks after paralysis onset’

122. Ans. (a) Poliomyelitis in recipients; (b) Poliomyelitis in contacts of recipients [Ref. Park 22/e p187-88]

- OPV has a rare complication of Vaccine associated paralytic Poliomyelitis (VAPP)
 - In vaccines: 1 in 1 million
 - In Close contacts of vaccines: 1 in 5 million

Also Remember

- Poliomyelitis situation 2013 WORLD [as on 01 March 2013]:
 - 3 endemic countries:
 - Afghanistan
 - Pakistan
 - Nigeria
 - 7 countries with re-established transmission:
 - Cameroon
 - Syria
 - Ethiopia
 - Chad
 - Somalia
 - Niger
 - Kenya

- Poliomyelitis situation 2013 INDIA
 - Total cases: NIL wild virus case [No case has been reported in India from 13 January 2011 onwards] + 5 (all P2) VDPV case

123. Ans. (b) Last polio case in India was reported in 13 January 2011 [Ref. NPSP GOI Website]

CURRENT POLIO SITUATION 2013

- Current situation in India:
 - No wild case of Polio in India currently
 - Last case was reported on 13 January 2013
 - VDPV in India: 5 cases all P2
 - OPV is mostly used in India (Routine immunizations, as well as Pulse Polio Immunization)

- Countries which have reported Polio in 2013:
 - Nigeria
 - Pakistan
 - Afghanistan
 - Somalia
 - Kenya
 - Ethiopia
 - Syria
 - Cameroon

124. Ans. (a) Type 3 is most common is India [Ref. K. Park 22/e p185]

125. Ans. (d) 1000 in children and 75 in adults [Ref. K. Park 22/e p185]

126. Ans. (d) mVDPV [Ref. Park, 22/e p185]

Vaccine derived polio virus (VDPV)

- Properties of VDPV:
 - Occurs due to Sabin (OPV) vaccine: P3 (60% of all cases) > P2 > P1
 - Clinical presentation indistinguishable from Wild polio virus (WPV)
 - cVDPV present similar public health threat like WPV
 - iVDPV prolonged infection may transmit virus to others

- Incidence of VDPV: 4 cases per million birth cohort per year

- Types of VDPV:
- cVDPV: Person-to-person transmission in community
- iVDPV: Isolates from immunodeficient persons
- aVDPV: Ambiguous from healthy person or sewage isolates

- Key risk factors for cVDPV emergence:
 - Development of immunity gaps (due to low OPV coverage)
 - Prior elimination of WPV types
 - Low routine immunization coverage with trivalent OPV
 - Insensitive AFP surveillance

- Diagnosis:
 - Real time Reverse transcription
 - PCR nucleic acid amplification

127. Ans. (d) 12 weeks [Ref. Park 22/e p185]
128. Ans. (b) Pakistan; (d) Afghanistan; (e) Nigeria [Ref. Polio Global Update, WHO International Website]

Review Questions

129. Ans. (b) At birth [Ref. Park 21/e p113, Park 22/e p114-15]
130. Ans. (a) Virus [Ref. Park 21/e p184]
131. Ans. (c) 1000 children and 75 adults [Ref. Park 21/e p184, Park 22/e p185]
132. Ans. (a) Stabilizer [Ref. Park 20/e p180, 81, Park 21/e p187]
133. Ans. (b) Less than 300 confirmed cases remaining [NOW 6 cases in 2011] [Ref. Park 21/e p182-89, Park 22/e p184-90]
134. Ans. (a) Salk [Ref. Park 21/e p185, Park 22/e p186]
135. Ans. (c) Can transmit it by nasal discharge [Ref. Park 21/e p184-85, Park 22/e p185-86]
136. Ans. (c) It is contraindicated in immunocompromised patients [Ref. Park 21/e p185-86, Park 22/e p186-87]

HEPATITIS

137. Ans. (b) Hepatitis E [Ref. Park 21/e p197, Park 22/e p198]

- Types of Viral Hepatitis:

<table>
<thead>
<tr>
<th>Type</th>
<th>Causative agent</th>
<th>Incubation period</th>
<th>Common mode(s) of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis A</td>
<td>Enterovirus 72 (picornavirus)</td>
<td>15 – 45 days</td>
<td>Faecal-oral, sexual</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Hepadnavirus</td>
<td>30 – 180 days</td>
<td>Sexual, perinatal, percutaneous</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>Hepacivirus (Flavivirus)</td>
<td>15 – 160 days</td>
<td>Percutaneous</td>
</tr>
<tr>
<td>Hepatitis D</td>
<td>Viriods like</td>
<td>30 – 180 days</td>
<td>Sexual, perinatal, percutaneous</td>
</tr>
<tr>
<td>Hepatitis E</td>
<td>Calcivirus (alphavirus like)</td>
<td>15 – 60 days</td>
<td>Faecal-oral</td>
</tr>
</tbody>
</table>

- Also Remember

- MC cause of fulminancy in viral hepatitis: Hepatitis D
- MC cause of chronicity in viral hepatitis: Hepatitis C
- MC cause of carriers in viral hepatitis: Hepatitis B
- MC cause of cancers in viral hepatitis: Hepatitis C
- Prognosis in viral hepatitis: Hepatitis A > Hepatitis E > Hepatitis D (acute) > Hepatitis C > Hepatitis D (chronic) > Hepatitis B
- Hepatitis caused by a DNA virus: Hepatitis B
- World Hepatitis Day: May 19 (2008); July 28 (2011-14)

138. Ans. (c) HBeAg [Ref. Park 21/e p193, Park 22/e p194]

- Markers of Hepatitis B infection (in order of appearance in serum):
 - HBsAg (Hepatitis B surface antigen):
 - Also known as ‘Australia antigen’
 - First antigen to appear in serum – ‘first evidence of infection’
 - ‘Epidemiological marker of Hepatitis B infection’
HBcAg (Hepatitis B core antigen):
- Alone does not appear in serum
- HBeAg (Hepatitis B envelope antigen):
 - Is a secretory form of HBcAg
 - ‘Indicates active viral replication’
 - ‘Is a marker of infectivity for Hepatitis B’
 - Persistence beyond 3 months: Increased likelihood of chronic Hepatitis B
- Anti-HBc (Antibody to Hepatitis B core antigen):
 - First antibody to appear in serum
 - IgM Anti-HBc indicates a diagnosis of acute Hepatitis B
 - IgG Anti-HBc persists indefinitely
- Anti-HBe (Antibody to Hepatitis B envelope antigen):
 - Signals ‘stoppage of active viral replication’
 - Indicates ‘end of period of infectivity’
- Anti-HBs (Antibody to Hepatitis B surface antigen):
 - Last antibody to appear in serum
 - Signals ‘recovery, end of period of communicability’

Also Remember

Persistent carrier state in Hepatitis B: Presence of HBsAg for > 6 months
- Carrier rate of HBsAg in Indian population: 5% (general population) – 10% (hospital staff)
- Mother to child transmission (MTCT) of HBV:
 - In presence of HBeAg: 90%
 - In presence of HBsAg: 20%
- Antibody in serum after successful vaccination against HBV: Anti-HBs
- Most sensitive marker of HBV viral replication and infectivity: HBV DNA

139. Ans. (d) HBsAg [Ref. Park 21/e p193, Park 22/e p194]
140. Ans. (a) Medical students screened before joining; (b) IV drug abuser are prone to infection; (d) Long term hemodialysis; (e) Interferon is treatment [Ref. Park 21/e p196-97, Park 22/e p197-98]

Hepatitis C:
- Is major cause of parenterally transmitted non-A, non-B hepatitis (PT-NANB)
- Infection in world: 3% (Infection in blood donors in India: 2%)
- Is a leading reason for liver transplantation
- Risk of maternal-neonatal transmission is small
- IP: 6 – 7 weeks
- Chronicity: 50%

141. Ans. (a) Cause mild illness in children [Ref. Park 21/e p190-92, Park 22/e p191-93]
 - Key facts about Epidemiology of hepatitis A infection:
 - Causative agent: Enterovirus 72 (Picorna virus)
 - Disinfectant:
 - Formalin
 - UV rays
 - Boiling for 5 min
 - Autoclaving
 - Reservoir: Human cases
 - Period of infectivity: 2 weeks before to 1 week after onset of jaundice
 - Children: More infected but mild or subclinical
 - Sex distribution: Equal in both sexes
 - Modes of transmission:
 - Faecal oral (Most common)
 - Parenteral
 - Sexual
Communicable and Non-communicable Diseases

- **Carrier stage and carcinoma (HCC):** Generally not seen in Hepatitis A

142. Ans. (a) HbsAg; (c) Anti-HBc; (d) HBeAg [Ref. K. Park 21/e p194, Park 22/e p195]

- Serologic patterns in Hepatitis B:

<table>
<thead>
<tr>
<th>HBsAg</th>
<th>Anti-HBs</th>
<th>Anti-HBc</th>
<th>HBeAg</th>
<th>Anti-HBe</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>–</td>
<td>IgM</td>
<td>+</td>
<td>–</td>
<td>Acute Hepatitis B</td>
</tr>
<tr>
<td>+</td>
<td>–</td>
<td>IgG</td>
<td>+</td>
<td>–</td>
<td>Chronic Hepatitis B + replication</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>IgG</td>
<td>–</td>
<td>+</td>
<td>Recovery from Hepatitis B</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Vaccinated individuals</td>
</tr>
</tbody>
</table>

143. Ans. (a) Acute infectious hepatitis B [Ref. K Park 22/e p195]

SEROLOGIC PATTERNS IN HEPATITIS B

<table>
<thead>
<tr>
<th>HBsAg</th>
<th>Anti-HBs</th>
<th>Anti-HBc</th>
<th>HBeAg</th>
<th>Anti-HBe</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>–</td>
<td>IgM</td>
<td>+</td>
<td>–</td>
<td>Acute Hepatitis B</td>
</tr>
<tr>
<td>+</td>
<td>–</td>
<td>IgG</td>
<td>+</td>
<td>–</td>
<td>Chronic Hepatitis B + replication</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>IgG</td>
<td>–</td>
<td>+</td>
<td>Recovery from Hepatitis B</td>
</tr>
<tr>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Vaccinated individuals</td>
</tr>
</tbody>
</table>

144. Ans. (d) E [Ref. Wastewater Microbiology by Bitton, 4/e p189]

145. Ans. (c) 3 weeks [Ref. K. Park 22/e p112]

146. Ans. (a) HBsAg; (c) Anti HBc; (d) HBeAg [Ref. K. Park 22/e p195]

147. Ans. (a) Hepatitis B vaccine + Immunoglobulin [Ref. K. Park 22/e p196]

148. Ans. (b) IgM Anti-HBc [Ref. Park, 22/e p194]

Acute Hepatitis B

- IgM Anti-HBc:
 - Diagnosis of Acute hepatitis B
 - Fills serologic gap between clearance of HBsAg and appearance of Anti HBs
 - Generally persist for 3-6 months
 - May also appear during flares of previously inactive Chronic hepatitis B
- IgG Anti-HBc:
 - Also appear during acute hepatitis B
 - Persist indefinitely

149. Ans. (c) Active and infectious Hepatitis B disease [Ref. Park 22/e p195]

HBsAg plus HBeAg in serum

- Acute hepatitis B
- Active and Infectious hepatitis B
- Chronic hepatitis B with Active viral replication (high infectivity)

Review Questions

150. Ans. (c) Two weeks before the symptoms and two week thereafter [Ref. Park 21/e p190, Park 22/e p191]

151. Ans. (a) HBs Ag [Ref. Park 21/e p193, Park 22/e p194]

152. Ans. (d) 50% or more [Ref. Park 21/e p196-97, Park 22/e p197-98]

DIARRHOEAL DISEASES (CHOLERA AND TYPHOID)

153. Ans. (d) 24 hours [Ref. Park 19/e p185-87, 20/e p198]

Oral Rehydration Solution ORS:
Review of Preventive and Social Medicine

- Reduced Osmolarity Oral Rehydration Solution (Low Na ORS): WHO NEW ORS

<table>
<thead>
<tr>
<th>Composition (grams)</th>
<th>Osmolar concentration (mmol/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride</td>
<td>2.6</td>
</tr>
<tr>
<td>Potassium chloride</td>
<td>1.5</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>2.9</td>
</tr>
<tr>
<td>Glucose</td>
<td>13.5</td>
</tr>
<tr>
<td>Total</td>
<td>20.5</td>
</tr>
<tr>
<td>Total</td>
<td>245</td>
</tr>
</tbody>
</table>

Also Remember

- ORS is the ‘most important discovery of 20th century’
- As many as 90-95% of all cases of cholera and acute diarrhoea can be treated by oral fluids alone
- Inclusion of trisodium citrate instead of sodium bicarbonate in WHO ORS: Makes the product more stable and results in less stool output
- Low Osmolarity ORS: Reduces stool output by 20%, vomiting by 30% and need for unscheduled intravenous therapy
- WHO/UNICEF recommended oral rehydration formulation: Reduced Osmolarity Oral Rehydration Solution (Low Na ORS)
- Initial amount of ORS required for dehydration: 75 ml per kg
- Intravenous rehydration:
 - Ringer’s lactate solution (Hartmann’s solution): Best commercially available solution
 - Diarrhoea treatment solution (DTS): WHO recommended ideal polyelectrolyte solution for intravenous solution
 - Normal saline: Poorest solution

154. Ans. (b) Oral rehydration therapy [Ref. Park 21/e p202-04, Park 22/e p203-05]

- Intravenous rehydration infusion is usually required ONLY for initial rehydration of severely dehydrated patients who are in shock or unable to drink
 - In the given question, a 5 year old boy passed 18 loose stools in last 24 hours and vomited twice in last 4 hours, He is irritable BUT DRINKING FLUIDS,
 - Thus intravenous therapy is not indicated
 - Also plain water will not replace the salts lost in stools and vomiting
 - So, ideal treatment is Oral rehydration therapy

155. Ans. (d) safe water and sanitation [Ref. Park 21/e p210-11, Park 22/e p210-211]

- Pattenkoffer advocated for improving local sanitary conditions as ‘the best way to prevent or stop cholera epidemics’
- Robert Koch believed that quarantine and disinfection can only prevent cholera

156. Ans. (a) Tetracycline [Ref. Park 21/e p211, Park 22/e p2111]

<table>
<thead>
<tr>
<th>Group</th>
<th>Antibiotic of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Children</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Chemoprophylaxis</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>

157. Ans. (a) 10-14 days [Ref. Park 21/e p213, Park 22/e p214]

158. Ans. NONE [NOW Azithromycin, Earlier Furazolidone] [Ref. Park 19/e p193, 20/e p205]

159. Ans. NONE (NOW Azithromycin, earlier Furazolidone) [Ref. Park 19/e p193, 20/e p205]

- Cholera is an acute diarrhoeal disease caused by Vibrio cholerae
 - Classical biotype
 - El Tor biotype [Serotypes: Ogawa (MC in India), Inaba and Hikojima]
- Vibrio cholerae: ‘Gram-negative bacterium’ that produces cholera toxin (enterotoxin), which act on c-AMP system of mucosal cells of epithelium lining of the small intestine (to cause massive diarrhoea)
Incubation period: 1 – 2 days (Few hours – 5 days)
Reservoir: Human beings only
Essentials for treatment of cholera: Water and electrolyte replacement (ORS)

Also Remember
- *Cholera stools appearance:* ‘RICE WATERY diarrhoea’
- *Father of Public Health:* Cholera (although some regard John Snow as the same)
- *Most susceptible blood group to cholera:* Blood group O (> B > A > AB)
- *Recent most cholera outbreak:* Iraq (UN 2007)
- *History of cholera:*
 - **John Snow (1813-1858):** Found the link between cholera and contaminated drinking water (1854 using Spot maps)
 - **Robert Koch** identified *V. cholerae* with a microscope as the bacillus causing the disease (1885)
 - **Cholera morbus:** Used in 19th and early 20th centuries for both non-epidemic cholera and other gastrointestinal diseases (sometimes epidemic) that resembled cholera

160. Ans. (a) Increases shelf life [Ref. Park 21/e p202, Park 22/e p203]
- In WHO ORS, sodium bicarbonate has been replaced by trisodium citrate:
 - Makes the product more stable
 - Results in less stool output (especially in high-output diarrhoea like cholera) as it increases intestinal absorption of sodium and water

161. Ans. (c) 45 mmol/L [Ref. OP Ghai 7/e p71-72, Park 21/e p203, Park 22/e p204]

162. Ans. (a) Mass chemoprophylaxis [Ref. Park 21/e p211, Park 22/e p211]
- *Laboratory diagnosis of Cholera:* Stool and swab samples collected in the acute stage of the disease, before antibiotics have been administered, are the most useful specimens for laboratory diagnosis
 - **Holding or transport media:**
 - Venkataraman-ramakrishnan (VR) medium
 - Cary-Blair medium: Mostly widely used medium
 - Autoclaved sea water
 - **Enrichment media:**
 - Alkaline peptone water
 - Monsur’s taurocholate tellurite peptone water
 - **Plating media:**
 - Alkaline bile salt agar (BSA)
 - Monsur’s gelatin Tauro cholate trypticase tellurite agar (GTTA) medium
 - TCBS medium: Mostly widely used medium

163. Ans. (b) Isolation of Vi antigen [Ref. Park 21/e p215, Park 22/e p216]
- *Laboratory Diagnosis: ‘BASU’ Mnemonic*

<table>
<thead>
<tr>
<th>Test of diagnosis</th>
<th>Time of diagnosis</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood culture</td>
<td>1st week</td>
<td>Mainstay of diagnosis</td>
</tr>
<tr>
<td>Antibodies (Widal test)</td>
<td>2nd week</td>
<td>Moderate sensitivity and specificity</td>
</tr>
<tr>
<td>Stool culture</td>
<td>3rd week</td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>Urine test</td>
<td>4th week</td>
<td>Detects IgG antibodies</td>
</tr>
<tr>
<td>Newer tests</td>
<td></td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>IDL Tubex test</td>
<td></td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>TYPHI DOT</td>
<td></td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>TYPHI DOT-M</td>
<td></td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>DIPSTICK TEST</td>
<td></td>
<td>Detects IgM antibodies</td>
</tr>
<tr>
<td>Isolation of Vi Antigen</td>
<td></td>
<td>Detects carriers</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Also Remember

- In chronic cases of Typhoid, organisms persist in: Gall Bladder and Biliary tract
 - Typhoid Mary, who gave rise to 1300 cases, was a chronic carrier
 - Vi antibodies are in 80%
 - Most Successful approach to treatment: Cholecystectomy + Ampicillin therapy
- Immunization doesn’t give 100% protection

164. Ans. (a) Mass chemoprophylaxis [Ref. Park 21/e p211, Park 22/e p211]

Also Remember

- Drugs for chemoprophylaxis:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Chemoprophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholera</td>
<td>Tetracycline/ Furazolidone</td>
</tr>
<tr>
<td>Bacterial conjunctivitis</td>
<td>Erythromycin ointment</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Erythromycin and 1st dose of vaccine</td>
</tr>
<tr>
<td>Influenza</td>
<td>Amantadine</td>
</tr>
<tr>
<td>Malaria</td>
<td>Doxycycline</td>
</tr>
<tr>
<td>< 6 WK</td>
<td>Mefloquine</td>
</tr>
<tr>
<td>> 6WK</td>
<td>Rifampicin</td>
</tr>
<tr>
<td>Meningococcal meningitis</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Plague</td>
<td>NONE</td>
</tr>
<tr>
<td>Typhoid</td>
<td></td>
</tr>
</tbody>
</table>

- Chemoprophylaxis is Primary level of prevention (Mode of Intervention: Specific protection) as risk factors are present but disease has not yet taken place

165. Ans. (c) Doxycycline [Ref. Park 19/e p193, 20/e p205]

166. Ans. (c) 14-21 days [Ref. Park 21/e p208, Park 22/e p209]
- Types of carriers in Cholera:

<table>
<thead>
<tr>
<th>Type of carrier</th>
<th>Duration</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preclinical (incubatory)</td>
<td>1 – 5 days</td>
<td>Are potential patients</td>
</tr>
<tr>
<td>Convalescent</td>
<td>2 – 3 weeks</td>
<td>Not received effective antibiotic treatment</td>
</tr>
<tr>
<td>Contact (Healthy)</td>
<td>< 10 days</td>
<td>Due to subclinical infection; cause spread</td>
</tr>
<tr>
<td>Chronic</td>
<td>Up to 10 years</td>
<td>Gall bladder infected</td>
</tr>
</tbody>
</table>

167. Ans. (d) 90 mEq/L [Ref. Park 21/e p202, Park 22/e p203]

168. Ans. (a) Na+ = 90 meq/L; (e) Glucose = 110 meq/L [Ref. Park 21/e p202, Park 22/e p203]

169. Ans. (a) 3.5 g NaCl; (c) 2.9 g Sodium-Potassium Citrate; (e) 1.5 g Potassium Chloride [Ref. Park 22/e p203]

170. Ans. (b) Potassium chloride 1.5 g; (c) Glucose 20 g; (e) Potassium bicarbonate 2.5 g [Ref. Park 22/e p203]

171. Ans. (a) Na+ 90 meq/L; (c) K+ 20 meq/L [Ref. Park 21/e p202, Park 22/e p203]

172. Ans. (a) Glucose-111; (e) Total millimoles-311 [Ref. Park 21/e p202, Park 22/e p203]

173. Ans. (a) Cl- 111; (d) Lactate-29 [Ref. Internet, Park 21/e p203, Park 22/e p204]
- Composition of Ringer Lactate:
 - Sodium ion: 130 mmol/L
 - Potassium ion: 4 mmol/L
 - Chloride ion: 109 mmol/L
 - Calcium ion: 1.5 mmol/L
 - Lactate ion: 28 mmol/L
Communicable and Non-communicable Diseases

174. Ans. (a) K+ 20 mmol/l; (b) Na+ 90 mmol/l [Ref. Park 21/e p202, Park 22/e p203]
175. Ans. (c) 800-1200 ml [Ref. K. Park 22/e p204]
176. Ans. (b) 10-14 days [Ref. K. Park 22/e p214]
177. Ans. (b) Male carriers though less are more dangerous [Ref. K. Park 22/e p213]
178. Ans. (b) 14 days [Ref. Diarrhoeal Diseases Research, Volume 8, Number 4, p143]
179. Ans. (d) 24 hours [Ref. K. Park 22/e p204]
180. Ans. (a) Sodium; (c) Glucose [Ref. K. Park 22/e p203]
181. Ans. (b) 10-14 days [Ref. K. Park 22/e p214]
182. Ans. (b) 75 [Ref. K. Park 22/e p203]
183. Ans. (c) 600-800 ml [Ref. K. Park 22/e p204]
184. Ans. (d) Total osmolarity – 300 mmol/l [Ref. K. Park 22/e p203]
185. Ans. (a) Started in Bangladesh; (c) Due to O139 El Tor; (e) Low proportion of adults in endemic regions [Ref. Medical Microbiology, Samuel Baron, 4/e chapter24]
186. Ans. (a) Safe water supply and sanitation [Ref. Park 22/e p211]
187. Ans. (b) Potassium chloride [Ref. Park 22/e p203]

Review Questions

189. Ans. (a) Ampicillin [Ref. Park 21/e p215, Park 22/e p216]
190. Ans. (b) Male carriers though less are more dangerous [Ref. Park 21/e p212-15, Park 22/e p213-16]
191. Ans. (d) Stool culture negative for three times [Ref. Park 21/e p214, Park 22/e p215]
192. Ans. (a) 3.5 gm [Ref. Park 21/e p202, Park 22/e p203]
193. Ans. (d) Tetacyclines [Ref. Park 21/e p211, Park 22/e p211]
194. Ans. (a) 1, 3, 5 days [Ref. Park 21/e p215, Park 22/e p216]
195. Ans. (c) Till 3 stool test are negative [Ref. Park 21/e p214, Park 22/e p215]
196. Ans. (b) Cresol [Ref. Park 21/e p214, Park 22/e p215]
197. Ans. (b) Potassium chlori [Ref. Park 21/e p202, Park 22/e p203]

WORM INFESTATIONS

198. Ans. (b) Niridazole prevents transmission of the disease [Ref. Park 21/e p223, Park 22/e p223]

Also Remember

- Guineaworm is also known as ‘medina worm’
- Most effective larvicide for Guineaworm control: Abate (Temephos)
- India was the first country to establish the National Guineaworm Eradication Programme (1983-84), as a centrally sponsored scheme (50 : 50 cost-sharing basis centre : state)

199. Ans. (b) Hook worms [Ref. Park 21/e p221, Park 22/e p221]
- Endemic Index (Chandler’s Index):
 - CI is average no of hookworm eggs per gram of faeces for the ‘entire community’
 - Interpretation of CI:
Review Questions

200. Ans. (a) Man [Ref. Park 21/e p278, Park 22/e p277]
201. Ans. (a) >300 [Ref. K. Park 22/e p221]
202. Ans. (a) Ankylostoma duodenale [Ref. K. Park 22/e p221]
203. Ans. (b) Monitoring individual treatment [Ref. Park 22/e p221]
204. Ans. (b) DDT [Ref. Park 22/e p224]

205. Ans. (a) Step wells [Ref. Park 21/e p223, Park 22/e p223]
206. Ans. (a) Ankylostoma duodenale [Ref. Park 21/e p221, Park 22/e p221]
207. Ans. (c) Dangerous [Ref. Park 21/e p221, Park 22/e p221]
208. Ans. (a) No of hookworm eggs per gram of stool [Ref. Park 21/e p221, Park 22/e p221]
209. Ans. (b) Rajasthan [Ref. Park 21/e p221, Park 22/e p221]
210. Ans. (b) Taenia solium [Ref. Park 21/e p277, Park 22/e p276]
211. Ans. (c) No. of eggs of hookworm in per gram stool [Ref. Park 21/e p221, Park 22/e p221]
212. Ans. (b) Tertiary care [Ref. Park 21/e p827-28, Park 22/e p831-32]

DENGUE

213. Ans. (d) Decreased hemoglobin [Ref. Park 21/e p226-27, Park 22/e p227-28-29]
 - Classical dengue fever (DF):
 - Also known as ‘breakbone fever’
 - Clinical features: High grade fever (biphasic curve) with chills, intense headache, muscle and joint pains, retro-orbital pain, photophobia, colicky pain, abdominal tenderness, skin rash
 - Dengue hemorrhagic fever (DHF): Severe form of DF, caused by infection with more than one dengue virus type
 - Incubation period: 4 - 6 days
Communicable and Non-communicable Diseases

Clinical features: Features of DF plus
- Rash less common
- Rising hematocrit value (> 20% of baseline)
- Moderate-to-marked thrombocytopenia (< 1 lac/mm³)
- Hepatomegaly
- Positive tourniquet test: > 20 petechiae per sq. inch
- Diagnosis of DHF: Fever + hemorrhagic manifestations + thrombocytopenia + hemoconcentration or rising hematocrit

• Dengue shock syndrome (DSS):
 - Diagnosis of DSS: DHF + shock [rapid and weak pulse, narrow pulse pressure (< 20 mm Hg)/ hypotension, cold clammy skin, restlessness]

214. Ans. (d) Aedes aegypti index should not be more than 10% to ensure freedom from yellow Fever [Ref. Park 21/e p257-59, Park 22/e p256-58]

- Incubation Period: 3 – 6 days
- Yellow Fever Vaccine:
 - Live attenuated, lyophilized (Freeze dried) vaccine
 - Strain: 17D strain (Chick Embryo grown)
 - Reconstitution with Diluent: Cold physiological saline
 - Immunity lasts: From 7 days of Vaccination till 35 years
 - WHO recommended validity of Vaccination Certificate for International travel: from 10 days to 10 years
 - YF vaccine is the only Live vaccine that can be administered in Pregnancy (if there is risk of exposure)

• Indices of Surveillance of Aedes Mosquitoes:
 - Container Index = \frac{\text{Not of containers showing breeding of Aedes larvae}}{\text{Total no of containers surveyed}} \times 100 = \frac{C^-}{C} \times 100
 - House Index = \frac{\text{No of house showing breeding of Aedes Larvae}}{\text{Total no of Houses surveyed}} \times 100 = \frac{H^+}{H} \times 100
 - Breteau Index = \frac{\text{No of containers showing breeding of Aedes Larvae}}{\text{Total no of houses surveyed}} \times 100 = \frac{C^+}{H} \times 400

• Breteau Index (Aedes aegypti index) should be < 1% in towns and seaports in endemic areas to ensure freedom from Yellow Fever

Also Remember

- India is a ‘Yellow Fever receptive’ area: Population is unvaccinated and susceptible to Yellow Fever. Vector Aedes aegypti is also found in abundance. Common monkey of India (Macacus spp) is also susceptible
- International Health Regulations (IHR) covers 7 diseases:
 - Cholera
 - Plague
 - Yellow Fever
 - Smallpox
 - Wild Polio Virus
 - Human Influenza
 - SARS
- Thermostability of vaccines: sensitivity to heat
 - Reconstituted BCG > YF > OPV > Measles and Reconstituted Measles > Hep B > DPT > DT > BCG > TT
 - Most Thermolabile vaccine: Reconstituted BCG
 - Most Thermostable vaccine: TT
- Vaccines contraindicated in pregnancy: All Live Vaccines (except Yellow fever) and Meningococcal Vaccine.

215. Ans. (a) Aedes mosquito [Ref. Park 21/e p225, Park 22/e p225]

216. Ans. ALL CHOICES [Ref. Park 21/e p224-31, Park 22/e p224-32]
Review of Preventive and Social Medicine

217. Ans. (c) Transovarian transmission of virus [Ref. Park 21/e p225, Park 22/e p225]
 - Aedes mosquito become infective by feeding on a patient from the day before onset to the 5th day (viraemia stage) of illness: After an extrinsic incubation period of 8-10 days, the mosquitoes become infective, it remains so for life
 - Transovarial transmission of dengue virus has been demonstrated in the laboratory

218. Ans. (a) Is the most common arboviral infection; (b) Can be both epidemic as well as endemic; (c) Can survive in ambient temperature; (e) Vector is Aedes aegypti [Ref. Park 21/e p224-25, Park 22/e p224-25]

Refer to Theory

219. Ans. (a) Aedes aegypti [Ref. Park 21/e p225, Park 22/e p225]

Also Refer to Theory

220. Ans. (c) Serotype 4 is more dangerous than other serotypes [Ref. K. Park 22/e p224-32]

221. Ans. (a) Lamivudine is drug of choice [Ref. K. Park, 22/e p225; Infectious Diseases and Arthropods by J. Goddard, 2/e, p62]
 - Moderate to severe protein energy malnutrition reduces risk of DHF/DSS in dengue-infected children
 - Treatment of DHF: None specific
 - Paracetamol
 - ORS, Oral fluids
 - I/V fluids, IV colloids
 - Blood transfusion

Review Questions

222. Ans. (c) Shock [Ref. Park 21/e p225-28, Park 22/e p225-]

223. Ans. (c) Aedes aegypti [Ref. Park 21/e p225, Park 22/e p225]

224. Ans. (d) Lifelong [Ref. Park 21/e p225, Park 22/e p225]

225. Ans. (b) It is endemic in India [Ref. Park 21/e p224-31, Park 22/e p224-33]

MALARIA

226. Ans. (d) Annual parasitic incidence [Ref. Park 21/e p238, Park 22/e p238]
 - Annual parasitic incidence (API): Sophisticated measure of malaria incidence in a community
 - \[\text{API} = \frac{\text{Confirmed cases during one year}}{\text{Population under surveillance}} \times 100 \]

227. Ans. (a) Trophozoite [Ref. Parasitology by KD Chatterjee, 12/e p86, Park 22/e p87]

Modes of Malaria Transmission:
 - Bite of female anopheline mosquitoes:
 - Infective forms: Sporozoites
 - Injection of blood of a malaria patient containing asexual forms: ‘Trophozoite induced malaria’
 - Transfusion malaria
 - Congenital malaria
 - Malaria in drug addicts

228. Ans. (d) quinine [Ref. Anti malaria drug policy 2007]

229. Ans. (d) Sulphadoxine + pyrimethamine [Ref. Park 20/e p228]

230. Ans. (a) 0.25 mg/kg body weight [Ref. Anti malaria drug policy 2007, Park 21/e p239, Park 22/e p239]

Please Refer to New Guidelines (Annexure 12)

Also Remember

- Mefloquine should be used ONLY in Plasmodium falciparum cases having proven resistance to chloroquine
- Primaquine is contraindicated in: pregnant women, infants, G6PD patients
- Mass treatment of Malaria (WHO recommendation): In highly endemic areas (API > 5 per 1000 population)
 - Mass prophylaxis in age < 5 years is not recommended

231. Ans. (b) Infant parasite rate [Ref. Park 21/e p237, Park 22/e p238]
232. Ans. (d) Infant parasite site [Ref. Park 21/e p237, Park 22/e p238]
233. Ans. (d) Spleen rate [Ref. Park 21/e p237, Park 22/e p238]
234. Ans. (a) Primaquine [Ref. Park 21/e p238-40, Park 22/e p238-40]
235. Ans. (a) Stephensi [Ref. Park 21/e p232, Park 22/e p233]
236. Ans. (c) Merozoites [Ref. Park 21/e p233-37, Park 22/e p234-38]
 * Peaks of fever in malaria coincide with release of successive broods of Merozoites into the blood stream
237. Ans. (a) Anopheles stephensi [Ref. Park 21/e p232, Park 22/e p233]

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease(s) transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anopheles stephensi</td>
<td>Urban Malaria</td>
</tr>
<tr>
<td>Anopheles culicifacies</td>
<td>Rural Malaria</td>
</tr>
<tr>
<td>Phlebotomus argentipes</td>
<td>Kala azar (Visceral Leishmaniasis), Oriental sore (Cutaneous Leishmaniasis), Sandfly fever, Oroya fever</td>
</tr>
<tr>
<td>Aedes aegypti</td>
<td>Dengue, Chikungunya fever, Yellow Fever</td>
</tr>
<tr>
<td>Culex vishnui</td>
<td>Japanese Encephalitis</td>
</tr>
</tbody>
</table>

238. Ans. (e) Mosquito acts as definitive host [Ref. Park 21/e p233, Park 22/e p234]
 * Epidemiology of Malaria in India:
 - Incubation period:
 | Malaria | Incubation period |
 |--------------------------|-------------------|
 | Plasmodium vivax | 14 days |
 | Plasmodium falciparum | 12 days |
 | Plasmodium malariae | 28 days |
 | Plasmodium ovale | 17 days |
 - Season: Most common in July – November
 - Definitive host: Anopheles mosquito (Intermediate host: Man)
 - Is seen in both rural as well as urban areas
 - Vector: An. culicifacies (rural) and An. stephensi (urban)

239. Ans. (a) Anopheles stephensi; (b) Anopheles dirus [Ref. Park 21/e p232-33, Park 22/e p233-34]

240. Ans. (b) Use of bed-nets [Ref. Park 21/e p712-14, Park 22/e p716-18]
 * Resurgence of Malaria in India has occurred due to:
 - Drug resistance
 - Vector resistance
 - Mutation in parasite
 * Use of bed-nets (primary level of prevention) is in fact likely to reduce incidence of malaria

241. Ans. (d) Gujarat; (e) Orrisa [Ref. Malaria Research Centre, India]
 * Plasmodium ovale has been reported from Baroda, Gujarat and Koraput, Orrisa in India

242. Ans. (a) 1.5 million cases annually; (b) Quinine drug of choice in severe malaria in pregnancy; (e) Falciparum malaria is most common type [Ref. K. Park 22/e p232-44]

243. Ans. (b) Artesunate [Ref. K. Park 22/e p243]

244. Ans. (d) Primaquine [Ref. K. Park 22/e p243]

 * Malaria recrudescence: Reappearance of sexual stage parasitemia after treatment as shown by
 - Plasmodium falciparum
 - Plasmodium malariae

246. Ans. (d) Endogenous [Ref. Park 22/e p235]
Review Questions

247. Ans. (c) P. ovale [BUT NOW ALL ARE REPORTED IN INDIA] [Ref. Park 21/e p233, Park 22/e p234]
248. Ans. (c) 10 – 14 days [Ref. Park 21/e p236, Park 22/e p237]
249. Ans. (c) June [Ref. Internet, Park 21/e p384, Park 22/e p387]
250. Ans. (d) 3 round of malathione every 3 months [Ref. Park 20/e p 360]
251. Ans. (b) 5 [Ref. Park 21/e p238, Park 22/e p238]
252. Ans. (a) Infant parasite rare [Ref. Park 21/e p237, Park 22/e p238]
253. Ans. (a) Plasmodium [Ref. Park 21/e p233, Park 22/e p234]
254. Ans. (b) 50% reduction [Ref. Park 21/e p812, Park 22/e p816]
255. Ans. (a) Female anopheles mosquito [Ref. Park 21/e p236, Park 22/e p237]
256. Ans. (b) Anopheles fluvitalis [Ref. Park 21/e p236, Park 22/e p237]
257. Ans. (a) Infant parasite rate [Ref. Park 21/e p237, Park 22/e p238]

LYMPHATIC FILARIASIS

258. Ans. (a) Microfilariae [Ref. Park 21/e p248, Park 22/e p249]
 • Chemotherapy of Filariasis: Diethylcarbamazine (DEC)
 - Bancroftian filariasis: 6 mg/kg/day X 12 days (Total 72 mg/kg)
 - Brugian filariasis: 3-6 mg/kg/day X 6-12 days (Total 18-72 mg/kg)
 • DEC is effective in killing Mf:
 - No effect on Infective (st age III) larvae
 - Uncertain effect on adult worm
 • DEC medicated salt:
 - Dose: 1-4 gm DEC/kg of salt
 - Is a type of Mass Treatment (using very low dose of drug)
 - Treatment duration: 6-9 months
 • National Filaria Control Programme (NFCP), 1955 is now a component of National Vector Borne Diseases Control Programme (NVBDCP), 2003-04
 - NVBDCP covers Malaria, Filariasis, Japanese Encephalitis, Kala Azar and Dengue

259. Ans. (a) Wuchereria bancrofti [Ref. Park 21/e p244, Park 22/e p245]
 • Problem statement of Lymphatic filariasis:
 - Global: Affects 120 million people in 120 countries; 1.1 billion people live in areas with risk of infection
 - SEAR: 600 million live in endemic areas; 60 million infected
 - India: Lymphatic filariasis is a major public health problem in India with 553 million people at risk in 233 districts; heavily endemic in UP, Bihar, Jharkhand, Andhra Pradesh, Orissa, Tamil Nadu, Kerala, Gujarat

Also Remember

• Subcutaneous Filariasis: It is caused by
 - Loa loa (the African eye worm)
 - Mansonella streptocerca
 - Onchocerca volvulus
 - Dracunculus medinensis (the guinea worm)

260. Ans. (b) DEC – 6 mg/kg/day x 12 days [Ref. Park 21/e p248, Park 22/e p249]
261. Ans. (a) Culex fatigans [Ref. Park 21/e p246, Park 22/e p247]
262. Ans. (d) Lakshadweep islands [Ref. Park 21/e p248, Park 22/e p249]
 • DEC-medicated salt for mass treatment in lymphatic filariasis was shown to be safe, cheap and effective in: Lakshadweep islands
263. Ans. (c) Larvae are deposited on skin surface where they can’t survive [Ref. K. Park 22/e p245-50]
264. Ans. (b) Tail end is free from nuclei and unsheathed [Ref. K. Park 22/e p245-50]
Review Questions

265. Ans. (b) Cyclodevelopmental [Ref. Park 21/e p709, Park 22/e p713]
266. Ans. (d) 8 to 16 months [Ref. Park 21/e p246, Park 22/e p247]
267. Ans. (b) 2015 [Ref. Park 21/e p812, Park 22/e p816]
268. Ans. (d) Days 0, 7, 28 [Ref. Park 21/e p256, Park 22/e p255]

Also Remember
- World Rabies day: September 28
- First successful human antirabies vaccination performed by: Louis Pasteur (1883)
- Serum antibodies take 7 days to appear after vaccination (Maximum level of Immunity achieved in days)
- Best prophylaxis of Rabies in exposed persons: Combined Vaccine and Immunoglobulin/ Serum treatment
- Anti Rabies serum:
 - Horse Antirabies Serum: 40 IU/ kg on Day 0 (50% in Wound, 50% i.m)
 - Human Rabies Immunoglobulin: 20 IU/kg (partly in wound, rest i.m gluteal)
- Intramuscular injections of Cell Culture and Purified Duck Embryo Vaccines: Deltoid (not in Buttocks)
- Volume of intradermal dose of Rabies Vaccine is 1/5th of intramuscular dose
- Booster injections in Pre-exposure prophylaxis: at intervals of 2 years

269. Ans. (a) Scratches without oozing of blood [Ref. Park 21/e p254]
- Rabies occur due to: Animal bites (dogs, cats, monkeys, cow, goat, sheep, buffalo, horses, bats, foxes, jackals, hyenas EXCEPT RAT BITE and HUMAN BITE)
- Human bites are likely to transmit: Streptococcus viridans, Staphylococcus aureus, Eikenella corrodens, Hemophilus influenzae, Fusobacterium nucleatum, Prevotella, Porphyromonas, Peptostreptococcus, HIV, Hepatitis B
- Rat bite can transmit: Streptobacillus moniliformis, Spirillum minor

270. Ans. (c) Immediately stitch wound under antibiotic coverage [Ref. Park 20/e p242, Park 21/e p254]
- Bite wounds should not be immediately sutured to prevent additional trauma, which may help spread of the rabies virus deeper into the tissues.
 - If suturing is necessary, it should be done 24–48 hours later, with minimal possible stitches, under cover of anti-rabies serum locally.
- Rabies vaccine was first developed by: Louis Pasteur (and Emile Roux)
- Strain of Human Diploid Cell Vaccine: Attenuated Pitman-Moore L503 strain
- Induced Coma Treatment: In 2005, the case of Jeanna Giese, a girl of 15 who survived acute, unvaccinated rabies was reported, indicating the successful treatment of rabies through induction of a coma

271. Ans. (c) Intracytoplasmic basophilic inclusion bodies are seen in brain cells [Ref. Internet www.cdc.gov, Park 21/e p250-57, Park 22/e p251-56]
- Incubation period of Rabies is 3 – 8 weeks
- Patients of rabies could present atypically with aseptic meningitis
- Rabies may sometimes present as ‘Convulsive Rabies’
- Negri bodies (Pathognomic of Rabies): Intracytoplasmic basophilic inclusion bodies in neurons.

272. Ans. (c) Anti rabies serum [Ref. Park 21/e p254]

273. Ans. (a) Lakshadweep Islands [Ref. Park 21/e p250, Park 22/e p251]

274. Ans. (b) Mouse [Ref. Park 21/e p251-52, Park 22/e p252-53]

275. Ans. (b) Hematogenous spread to brain [Ref. K. Park 22/e p251-53]

276. Ans. (b) 8-0-4-0-1-1 [Current New Guidelines: 2-2-2-0-2]

277. Ans. (c) 3 [Ref. K. Park 22/e p255]

278. Ans. (c) Fixed [Ref. K. Park 22/e p254]

279. Ans. (b) Dog [Ref. Park 22/e p252]
Review Questions

280. Ans. (c) Australia [Ref. Park 22/e p251]
281. Ans. (c) Britain [Ref. Park 21/e p250, Park 22/e p251]
282. Ans. (d) Recombinant glycoprotein vaccine [Ref. Gupta and Mahajan 3/e p299]
283. Ans. (d) Recombinant glycoprotein vaccine [Ref. Gupta and Mahajan 3/e p299]
284. Ans. (c) Class III [Ref. Park 20/e p243]
285. Ans. (a) It is a DNA virus [Ref. Park 21/e p250-57, Park 22/e p251-56]
286. Ans. (a) Sheep [Ref. Park 21/e p253]
287. Ans. (b) 10 days [Ref. Park 20/e p242, Park 21/e p254]
288. Ans. (b) Lakshadweep [Ref. Park 21/e p250, Park 22/e p251]

YELLOW FEVER

289. Ans. (a) 3 to 6 days [Ref. Park 21/e p258, Park 22/e p257]
 • Incubation Period: 3 – 6 days
 - IP of 6 days recognized under International Health Regulations
290. Ans. (b) Fatality rate > 90% [Ref. Park 21/e p257-59, Park 22/e p256-58]
291. Ans. (a) 1% [Ref. Park 21/e p259, Park 22/e p258]
 • International Health Regulations (IHRs) of WHO covers 7 diseases:
 - Cholera
 - Plague
 - Yellow Fever
 - Smallpox
 - Wild Polio Virus
 - Human Influenza
 - SARS
 • International measures to restrict the spread of Yellow Fever (IHRs):
 - Travellers:
 - Must possess a valid International certificate of vaccination (validity 10 days – 10yrs) against YF before they enter ‘YF receptive areas’
 - If no such certificate available: Quarantine for 6 days (Max I.P of YF) from date of leaving an infected area
 - If traveller arrives before certificate becomes valid (10 days after vaccination): Isolate till it becomes valid
 - Mosquitoes:
 - Aircrafts/ships arriving from endemic areas: Aerosol spray to kill insect vectors
 - Airports/seaports kept free from vector breeding: at least 400 meters around boundary
 - Aedes aegypti index: kept below 1%

Also Remember

Reference centres for YF in India:
- National Institute of Virology (NIV), Pune
- Central Research Institute (CRI), Kasauli
• Indices of Surveillance of Aedes mosquitoes: Refer to Ans. 146, Theory
 - Breteau Index (Aedes aegypti index) should be < 1% in towns and seaports in endemic areas to ensure freedom from Yellow Fever

292. Ans. (d) Incubation period is 16-46 days [Ref. Park 21/e p257-59, Park 22/e p256-58]
293. Ans. (d) 17D [Ref. Park 21/e p258, Park 22/e p257]
294. Ans. (b) Transmitted by Aedes; (d) Incidence is increased by humidity; (e) It is a Flavivirus [Ref. Park 21/e p257-59, Park 22/e p256-58]
295. Ans. (b) 10 years [Ref. K. Park 22/e p258]
Communicable and Non-communicable Diseases

296. Ans. (b) 10 days [Ref. K. Park 22/e p258]
297. Ans. (c) Validity of vaccine 6 years [Ref. K. Park 22/e p257-58]
298. Ans. (b) 1% [Ref. K. Park 22/e p258]
299. Ans. (b) 10 years, starting from 10 days after vaccination [Ref. K. Park 22/e p258]

Review Questions

300. Ans. (b) 10 days [Ref. Park 21/e p259, Park 22/e p258]
301. Ans. (a) 10 years [Ref. Park 21/e p259, Park 22/e p258]
302. Ans. (a) Birth and death registration act [Ref. Park 21/e p779, Park 22/e p783]
303. Ans. (b) Central institute, Kasauli [Ref. Park 21/e p259, Park 22/e p258]

JAPANESE ENCEPHALITIS

304. Ans. (c) Case fatality rate is over 90% [Ref. Park 21/e p260-63, Park 22/e p259-260, 262]
 - Vectors of JE: Culicine mosquitoes and some Anophelines
 - Culex tritaeniorhynchus (most important vector), Culex vishnuii and Culex gelidus
 - Case fatality rate: 20 – 40% (may reach up to 58%)

Also Remember
 - JE has been reported by 26 states and UT’s in India
 - Gorakhpur District of UP contribute the largest no of cases

305. Ans. (d) Epidemic is declared if there are 2-3 cases in a village [Ref. Park 22/e p259-260, 262]
 - 85% of cases of JE are reported in age below 15 years BUT JE IS INFREQUENT IN INFANCY: Vaccination not recommended below 6 months age infants (as also interference from maternal antibodies)
 - Not all humans bitten by mosquitoes develop the disease: Ratio of JE overt disease to inapparent infection varies from 1:300 to 1:1000
 - Endemicity of JE in India: 1-2 cases per village

306. Ans. (a) Pigs-Mosquito [Ref. K. Park 22/e p260]
307. Ans. (b) Pigs [Ref. K. Park 22/e p260]
308. Ans. (a) Culex [Ref. K. Park 22/e p260]

Review Questions

309. Ans. (a) Man to man transmission [Ref. Park 21/e p261, Park 22/e p260]
310. Ans. (a) Culex [Ref. Park 21/e p261, Park 22/e p260]
311. Ans. (c) Large no. of in apparent infections [Ref. Park 21/e p261, Park 22/e p260]

KFD

312. Ans. (b) Deforestation [Ref. Park 21/e p264, Park 22/e p263]
 - Control measures:
 - Control of ticks
 - Restriction of cattle movement
 - Vaccination: Killed KFD vaccine
 - Personal protection: through repellants

Also Remember
 - KFD belongs to ’Biosafety Level 4’, highest risk category of pathogens

313. Ans. (b) Haemaphysalis [Ref. Park 21/e p264, Park 22/e p263]
 - Vectors of KFD:
 - In India: Hemaphysalis spinigera (Hard Tick)
 - Outside India: Soft Tick

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- **Tick as vectors**:

<table>
<thead>
<tr>
<th>Hard tick as vector</th>
<th>Soft tick as vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>KFD (in India)</td>
<td>Q fever (in few animal cases)</td>
</tr>
<tr>
<td>Tularaemia</td>
<td>Relapsing fever</td>
</tr>
<tr>
<td>Babesiosis</td>
<td>KFD (outside India)</td>
</tr>
<tr>
<td>Tick paralysis</td>
<td></td>
</tr>
<tr>
<td>Viral encephalitis</td>
<td></td>
</tr>
<tr>
<td>Tick hemorrhagic fevers</td>
<td></td>
</tr>
</tbody>
</table>

314. Ans. (d) Hard tick [Ref. Park 21/e p264, Park 22/e p263]

Review Questions

315. Ans. (b) Tick [Ref. Park 21/e p264, Park 22/e p263]
316. Ans. (c) Ticks [Ref. Park 21/e p264, Park 22/e p263]

PLAGUE

317. Ans. (a) Domestic rat “Rattus rattus” has been incriminated as main reservoir [Ref. Park 21/e p268-72, Park 22/e p267-271]

Also Remember

- Pneumonic plague is the most virulent and least common form of plague
- **Recent most outbreak of Plague**: Village Dangud, Uttrakashi district, Uttrakhand (2004)
- Man has no natural immunity against Plague
- A Rat flea may ingest up to 0.5 cu.mm of blood (containing as many as 5000 bacilli)
- A partially blocked flea is more efficient transmitter of Plague than a totally blocked flea as it can live longer
- ‘Liasion rodents’ between man and field rodents: Commensal rodents especially the peri-domestic species (eg. R.norvegicus)
- **Most effective method to break chain of transmission of Plague**: Destruction of Rat fleas (by proper application of an effective insecticide)
- **For effective control of Plague by insecticidal sprays**: Flea Index should drop down to zero within 48hrs of application
- **WHO recommendation on Plague vaccination**: should be only for prevention and NOT FOR CONTROL of human plague

318. Ans. (b) Control of fleas [Ref. Park 21/e p271, Park 22/e p270]
319. Ans. (b) Bubonic is the most common variety [Ref. Park 21/e p270, Park 22/e p269]
320. Ans. (c) 28 years [Ref. K. Park 20/e p256]

- Since the last reported cases in Karnataka in 1966, there have been no laboratory confirmed cases in India, till its reappearance in 1994 (Gap of 28 years)
- In 1994, Bubonic Plague (Beed, Maharashtra) was followed by an outbreak of Pneumonic Plague (Surat, Gujarat)
 - Overall 4780 suspected cases, 167 confirmed cases and 53 deaths
- In February 2002, outbreak of Pneumonic Plague (Gap of 8 years) in Hat Koti village, Shimla district, Himachal Pradesh
 - Overall 16 cases and 4 deaths
- In October 2004, Outbreak of Bubonic Plague in Dangud village, Uttarkashi, Uttrakhand.
 - Over all 8 cases and 3 deaths.

321. Ans. (b) Cheopsis index [Ref. Park 21/e p269, Park 22/e p269]
322. Ans. (b) Cheopsis index [Ref. K. Park 22/e p268]

Review Questions

323. Ans. (a) Average number of cheopis per rat [Ref. Park 21/e p269, Park 22/e p269]
324. Ans. (b) Pneumonic plague [Ref. Park 21/e p270, Park 22/e p269]
325. Ans. (c) 40 IU per kg of body weight [Ref. Park 21/e p255, Park 22/e p254]
326. Ans. (c) Rat flea [Ref. Park 21/e p268, Park 22/e p267]
RICKETTSIAL DISEASES

327. Ans. (b) Scrub typhus – Flea [Ref. Park 21/e p274, Park 22/e p273]

Also Remember
• ‘Brill Zinsser Disease’ is the recrudescent form of Epidemic Typhus (Louse borne typhus)
• Drug of choice for Rickettsial diseases: Tetracycline

328. Ans. (c) Rickettsia prowazekii [Ref. Park 21/e p276, Park 22/e p275]
329. Ans. (b) Flea is a vector of the disease [Ref. Park 21/e p274-75, Park 22/e p273-74]
330. Ans. (c) Inhalation of aerosol [Ref. Park 21/e p276, Park 22/e p275]
• Modes of Transmission of few important diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Mode(s) of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptospirosis</td>
<td>Direct contact with urine/ tissue of infected animal, contaminated food or water, droplet infection</td>
</tr>
<tr>
<td>Leprosy</td>
<td>Droplet infection, contact transmission, breast milk, insect vectors, tattoo needles, vertical transmission</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Faecooral route, Parenteral, Sexual</td>
</tr>
<tr>
<td>Legionsnaire’s disease</td>
<td>Contaminated air conditioning supply</td>
</tr>
<tr>
<td>Plague</td>
<td>Bite of Flea (Xenopsylla)</td>
</tr>
<tr>
<td>Yaws</td>
<td>Non-venereal direct contact, fomites, vectors</td>
</tr>
<tr>
<td>Ancylostomiasis (Hookworm)</td>
<td>Direct penetration through skin, oral</td>
</tr>
<tr>
<td>Q fever</td>
<td>Inhalation of infected dust, Meat and milk products</td>
</tr>
<tr>
<td>Hydatid Disease (Echinococcus)</td>
<td>Food, water contaminated with eggs</td>
</tr>
</tbody>
</table>

331. Ans. (d) Epidemic typhus [Ref. Park 21/e p276, Park 22/e p275]
332. Ans. (d) Weil Felix reaction is very useful for diagnosis [Ref. Park 21/e p276, Park 22/e p275]
333. Ans. (b) Rocky mountain spotted fever [Ref. Park 21/e p274, Park 22/e p273]
334. Ans. (b) Adult mite feeds on vertebral host [Ref. Park 21/e p274-75, Park 22/e p273-74]
• In Scrub typhus the nymphal and adult stages of the mite are free living in nature, they do not feed on vertebrate host;
• Larvae (chigger) feed on vertebrate hosts’ and pick up rickettsiae
• Larval stage ‘act as a both reservoir and a vector’
335. Ans. (a) Flea ; (b) Louse ; (d) Mite [Ref. Park 22/e p273]
336. Ans. (a) Rickettsia prowazki & louse [Ref. K. Park 22/e p273]
337. Ans. (a) Louse [Ref. Medicine at a Glance by Davies, 3/e p446]
338. Ans. (a) Louse [Ref. K. Park 22/e p273]
339. Ans. (b) Rickettsia akari [Ref. K. Park 22/e p273]
340. Ans. (a) Flea [Ref. K. Park 22/e p273]

Review Questions

341. Ans. (b) Mite [Ref. Park 21/e p274, Park 22/e p273]
342. Ans. (c) Aerosols [Ref. Park 21/e p276, Park 22/e p275]
343. Ans. (b) Louse [Ref. Park 21/e p274, Park 22/e p273]
344. Ans. (a) R. prowazekii [Ref. Park 21/e p274, Park 22/e p273]
345. Ans. (b) Flea [Ref. Park 21/e p274, Park 22/e p273]
Review of Preventive and Social Medicine

346. Ans. (c) Coxiella burnetii [Ref. Park 21/e p274, Park 22/e p273]

347. Ans. (b) Scrub typhus [Ref. Park 21/e p274, Park 22/e p273]

348. Ans. (c) Q-fever [Ref. Park 21/e p274, Park 22/e p273]

349. Ans. (a) Mite [Ref. Park 21/e p274, Park 22/e p273]

350. Ans. (d) Indian tick typhus [Ref. Park 21/e p276, Park 22/e p275]

351. Ans. (d) Q-fever [Ref. Park 21/e p276, Park 22/e p275]

352. Ans. (c) Aldehyde Test of Napier is a good test for diagnosis [Ref. Park 21/e p279-82, Park 22/e p278-281]

- Reservoir of Infection: Dogs, jackals, foxes, rodents and other mammals
 - Indian Kala Azar is a non-zoonotic infection: Man as reservoir
- Aldehyde Test of Napier:
 - Becomes Positive after 2-3 months of disease onset and reverts to negative 6 months after cure
 - Useful Test for surveillance (but not for diagnosis)
 - Non-specific test: Positive in many chronic infections where albumen: globulin ratio is reversed
- There are no drugs available for personal prophylaxis of Kala azar

353. Ans. (a) Man [Ref. Park 21/e p280, Park 22/e p279]

LEISHMANIASIS:

- Leishmaniasis is also known as Leichmaniosis, Leishmaniose, Orient Boils, Baghdad Boils, kala azar, black fever, sandfly disease, Dum-Dum fever, Espundia, White Leprosy
- Leishmaniasis is diagnosed in the haematology laboratory by direct visualization of the amastigotes (Leishman-Donovan bodies)
- Reservoirs of important diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Microorganism</th>
<th>Reservoir(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemic Typhus</td>
<td>Rickettsia prowazekii</td>
<td>Humans</td>
</tr>
<tr>
<td>Endemic Typhus</td>
<td>Rickettsia typhi</td>
<td>Rats</td>
</tr>
<tr>
<td>Scrub Typhus</td>
<td>Rickettsia tsutsugamushi</td>
<td>Trombiculid Mite</td>
</tr>
<tr>
<td>Indian Tick Typhus</td>
<td>Rickettsia conori</td>
<td>Rodents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also Remember:

- Kala Azar is characterized hematologically by:
 - Reversed albumin: globulin ratio
 - Progressive leucopenia, anemia
 - Increased IgG
 - Low WBC: RBC ratio
 - Increased ESR
- Leishmania Bodies: Amastigote forms of Leishmania in vertebrates
 - Flagellated promastigotes are seen in insects
- Kala azar is known as 'Black Sickness': pigmented of face, hands, feet and abdomen
- Canine Vector Borne Diseases (CVBD): Canine diseases transmitted by parasitic vectors
 - Anaplasma (e.g., Anaplasma phagocytophilum)
 - Babesiosis
 - Bartonellosis
 - Dirofilaria (heartworm)
 - Ehrlichiosis
 - Leishmaniasis
 - Lyme disease
 - Meningoencephalitis
Communicable and Non-communicable Diseases

Contd...

<table>
<thead>
<tr>
<th>Disease</th>
<th>Organism</th>
<th>Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMSF</td>
<td>Rickettsia rickettsii</td>
<td>Rodents</td>
</tr>
<tr>
<td>Rickettsial Pox</td>
<td>Rickettsia akari</td>
<td>Mice</td>
</tr>
<tr>
<td>Trench fever</td>
<td>Bartonella quintana</td>
<td>Humans</td>
</tr>
<tr>
<td>Q fever</td>
<td>Coxiella burneti</td>
<td>Cattle, sheep, goat</td>
</tr>
<tr>
<td>Dracunculiasis</td>
<td>Dracunculus medinensis</td>
<td>Humans</td>
</tr>
<tr>
<td>Ascariasis</td>
<td>Ascaris lumbricoides</td>
<td>Humans</td>
</tr>
<tr>
<td>Ancylostomiasis</td>
<td>Ancylostoma duodenale</td>
<td>Humans</td>
</tr>
</tbody>
</table>

354. Ans. is (c) Hydroxychloroquine [Ref. Internet]
- Sitamaquine is a new once-a day oral drug for treatment of Kala azar
- Miltefosine and paramomycin have been recently included in Kala Azar Control component of NVBDCP

Review Questions

355. Ans. (c) Phlebotomus argentipes [Ref. Park 21/e p280, Park 22/e p279]
356. Ans. (b) Dog is the reservoir of infection [Ref. Park 21/e p280, Park 22/e p279]
357. Ans. (d) Man has flagellar stage of organism [Ref. Park 21/e p279-82, Park 22/e p278-81]

TRACHOMA

358. Ans. (a) Screening [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p368, 8/e p428]
- WHO has recommended ‘SAFE Strategy’ for global elimination of blinding trachoma:
 - Surgery: for Trichiasis and Entropion
 - Antibiotic use: Azithromycin is Drug of choice
 - Facial cleanliness
 - Environmental improvement

Also Remember
- WHO recommended strategy for measles elimination: ‘Catch up – Keep up – Follow up strategy’
- WHO recommended strategy for polio eradication: ‘Pulse strategy’
- GET 2020: The Alliance for the ‘Global Elimination of Blinding Trachoma’ by the year 2020 (GET 2020)

359. Ans. (c) Irritants like kajal or surma also predispose [Ref. Park 21/e p282-83, Park 22/e p281-82]

TRACHOMA (ROUGH EYE):
- Communicability: Trachoma is a disease of low infectivity
- Predisposing factors: Direct sunlight, dust, smoke and irritants (such as kajal or surma)
- Mode of transmission:
 - Direct or indirect contact with ocular discharges or fomites
 - Eye seeking flies
 - Venereal transmission
- Treatment of choice for Trachoma: Azithromycin 20mg/kg oral stat
- Mass treatment for Trachoma: [NEW GUIDELINES–WHO]
 - Indication of mass treatment:³ 10 % prevalence of severe and moderate Trachoma in children < 10yrs of age
 - Treatment: 1% tetracycline ointment BD for 5 consecutive days each month or OD for 10 days each month for 6 consecutive months, or for 60 consecutive days.

Also Remember
- MC infected age group: 2-5 yrs aged children

360. Ans. (c) Children aged 0-10 years [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p365]
Review of Preventive and Social Medicine

361. Ans. (c) Five or more follicles in the upper tarsal conjunctiva [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p368, 8/e p429]

362. Ans. (d) 10% [Ref. Park 20/e p271, Park 21/e p283, Park 22/e p282]
 • Indication of mass treatment in Trachoma: > 10% prevalence of severe and moderate Trachoma in children < 10yrs of age
 [NEW GUIDELINES–WHO]

 • Prevalence rate of active trachoma infection in India 0-14 years (1986-89):
 – Punjab: 21.8%
 – Haryana: 15%
 – Rajasthan: 17.1%
 – UP: 11.7%
 – Orissa: 10.2%

364. Ans. (d) 10% [Ref. WHO Trachoma Control: A guide for programme managers, 2006; p21-22]
 • Current WHO recommendations for antibiotic treatment of trachoma:
 – District level prevalence is > 10% in 1-9 years old children: Mass treatment with Azithromycin
 – District level prevalence is 5-10% in 1-9 years old children: Targeted treatment with Azithromycin (the identification and treatment of all members of any family in whom one or more members have follicular trachoma)
 – District level prevalence is < 5% in 1-9 years old children: Azithromycin distribution may not be necessary

365. Ans. (d) 1-9 years [Ref. K. Park 22/e p282]

366. Ans. (a) Azithromycin [Ref. NPCB Document, Government of India]

TETANUS

367. Ans. (b) Single dose of tetanus toxoid [Ref. Park 21/e p287, Park 22/e p286]
 • In the given question, a person has received complete immunization against tetanus 10 years ago,
 • Thus he is in immunity category B
 • Now, he presents with a clean wound without any lacerations from an injury sustained 3 hours ago,
 • Thus he should now be given single dose of tetanus toxoid

368. Ans. (d) < 0.1 per 1000 [Ref. Park 21/e p284, Park 22/e p283]
 • NNT Elimination (Classification of districts, India is based on 3 parameters: incidence rate, TT-2 or booster coverage and % attended deliveries)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Rate</th>
<th>TT-2 coverage</th>
<th>Attended deliveries</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNT High Risk</td>
<td>> 1/1000 LB</td>
<td>< 70%</td>
<td>< 50%</td>
</tr>
<tr>
<td>NNT Control</td>
<td>< 1/1000 LB</td>
<td>> 70%</td>
<td>> 50%</td>
</tr>
<tr>
<td>NNT Elimination</td>
<td>< 0.1/1000LB</td>
<td>> 90%</td>
<td>> 75%</td>
</tr>
</tbody>
</table>

 • Herd Immunity in Tetanus: Does not protect the individual

369. Ans. (d) Injection penicillin to all neonates [Ref. Park 21/e p284-88, Park 22/e p283-87]

370. Ans. (c) 10 years [Ref. Park 21/e p286, Park 22/e p285]

371. Ans. (d) Seen commonly in winter and dry climate [Ref. Park 21/e p284-88, Park 22/e p283-87]
 Tetanus (especially NNT) has a marked seasonal incidence in India: > 50% cases in July-September

372. Ans. (c) Man-to-man transmission [Ref. Park 21/e p284-88, Park 22/e p283-87]
 • Primary course of tetanus immunisation: 3 doses of DPT at interval of 4-8 weeks starting at 6 weeks age (to be followed by boosters at 18 months, 5-6 years, 10 years and 16 years age)
 • Period of communicability: NONE (not transmitted from person-to-person)
 • Incubation period: 06-10 days
 • Reservoir: Soil and dust (spores survive for years in soil)
373. Ans. (c) Tetanus toxoid complete course [Ref. Park 21/e p287, Park 22/e p286]

374. Ans. (b) Herd immunity present [Ref. K. Park 22/e p285]

375. Ans. (a) 0.1 [Ref. K. Park 22/e p284]

Review Questions

376. Ans. (a) 0.1 [Ref. Park 21/e p284, Park 22/e p283]

377. Ans. (d) None [Ref. Park 21/e p285, Park 22/e p284]

378. Ans. (b) Toxoid one dose [Ref. Park 21/e p287, Park 22/e p286]

379. Ans. (b) > 90% coverage of 3 antenatal visits [Ref. Park 21/e p284, Park 22/e p283]

380. Ans. (d) None [Ref. Park 21/e p285, Park 22/e p284]

LEPROSY

381. Ans. (d) MDT is contraindicated during pregnancy [Ref. Park 21/e p288-303, Park 22/e p287-302]

- Operational Classification of Leprosy (according to skin smear positivity) to serve as a basis for Chemotherapy:

<table>
<thead>
<tr>
<th>Paucibacillary Leprosy (PBL) BI < 2</th>
<th>Multibacillary Leprosy (MBL) BI > 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Included types</td>
<td>Multidrug therapy (MDT) in NLEP (Drugs)</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>Rifampicin 600 mg OAMS</td>
</tr>
<tr>
<td>Polar tuberculoid (TT)</td>
<td>Dapsone 100 mg daily</td>
</tr>
<tr>
<td>Border tuberculoid (BT)</td>
<td></td>
</tr>
<tr>
<td>Treatment duration</td>
<td>Polar lepromatous (LL)</td>
</tr>
<tr>
<td>6 months</td>
<td>Borderline lepromatous (BL)</td>
</tr>
<tr>
<td>Follow up (after treatment)</td>
<td>Mid-borderline (BB)</td>
</tr>
<tr>
<td></td>
<td>Rifampicin 600 mg OAMS</td>
</tr>
<tr>
<td></td>
<td>Dapsone 100 mg daily</td>
</tr>
<tr>
<td></td>
<td>12 months</td>
</tr>
<tr>
<td></td>
<td>Annually for 2 yrs</td>
</tr>
<tr>
<td>(BI: Bacteriological Index; OAMS: Once a month supervised)</td>
<td></td>
</tr>
</tbody>
</table>

* MBL cases are most important source of infection
* MDT is safe in pregnancy

Also Remember

- An infectious case of Leprosy can be rendered non-infectious by treatment with:
 - Dapsone for 90 days, or
 - Rifampicin for 3 weeks
- Attack rate of Leprosy among house-hold contacts: 4.4 - 12%
- Youngest case of Leprosy in India: 2½ month infant
- Leprosy is often known as a ‘Social disease’
 - Is probably the oldest disease known to mankind
- Mode of transmission of Leprosy:
 - Droplet infection
 - Contact transmission (Direct skin to skin or indirect with soil/fomites)
 - Other routes:
 - Breast milk from lepromatous mothers
 - Insect vectors
 - Tattooing needles
- Diagnosis of leprosy under NLEP: It is currently based on clinical grounds
 - PBL: 1 – 5 skin lesions
 - MBL: > 5 skin lesions
'Case taking' in Leprosy: A set pattern of clinical examination to be followed for a patient for the presence of Leprosy. It comprises of:
- Interrogation (biodata, family history, history of contact, previous history of treatment, symptoms)
- Physical examination:
 - Thorough inspection of Body surface
 - Palpation of commonly involved peripheral and cutaneous nerves (Ulnar nerve - MC involved, Greater auricular nerve, lateral popliteal nerve, dorsal branch of Radial nerve)
 - Testing for loss of sensation and paresis/paralysis of muscles of hand and feet.

382. Ans. None of the above [Ref. Internet, Park 21/e p291, Park 22/e p290]

• Mode of transmission of Leprosy:
 - Droplet Infection (Aerosols)
 - Contact Transmission (infectious patient and healthy susceptible)
 - Direct contact (skin to skin)
 - Indirect contact (soil, fomites, clothes and linen)
 - Breast milk from lepromatous mothers, transplacental
 - Insect vectors
 - Tattoo needles

Also Refer to Anexure 4

383. Ans. (a) 1 per 10,000 [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p215]

• Level of Leprosy for declaring it as a Public Health Problem: >1/10,000
• Elimination Level of Leprosy: <1/10,000 (adopted as a resolution by WHO in 1991, to eliminate leprosy as a public health problem by year 2000)
• Goal for Leprosy under National Health Policy (NHP) 2002: Elimination of Leprosy by 2005
• India eliminated Leprosy in December 2005 (India has so far eliminated 3 diseases, namely, Guineaworm – 2000, Leprosy – 2005 and Yaws – 2006)
• As on 2009, in India:
 - Prevalence: 0.72 per 10,000 [0.69 per 10000 in 2011]
 - Child proportion among new cases detected: 10.1%
• Elimination level for Neonatal tetanus:
 - Rate < 0.1 per 1000 live births
 - TT2 coverage > 90%
 - Attended deliveries > 75%
• Elimination level for Tuberculosis (WHO and STOP TB Strategy): <1 case per million population (to eliminate TB as a public health problem)
• Criteria for tracking progress towards IDD elimination:

 Indicator Goal
 • Proportion with enlarged thyroid (age 6 – 12 years) < 5 %
 • Urinary Iodine Excretion below 100 mcg/litre < 50 %
 • Urinary Iodine Excretion below 50 mcg/litre < 20 %
 • Proportion of houses consuming adequately iodised salt > 90 %

384. Ans. (b) Prognosis [Ref. Park 21/e p294, Park 22/e p293]

• Uses of Lepromin test:
 - Evaluation of CMI status of patients
 - Aid to confirm the classification of Leprosy
 - Estimation of prognosis of cases

Also Refer to Theory

Also Remember

• Tests of immunity/susceptibility:
 - Schick Test: Diphtheria
 - Mantoux Test: Tuberculosis
 - Leishmanin (Montenegro) Test: Leishmaniasis (Kala Azar)
385. Ans. (b) It is a diagnostic test [Ref. Park 21/e p294, Park 22/e p293]

386. Ans. (a) Stop antileprosy treatment [Ref. Internet; WHO Website, Park 21/e p299, Park 22/e p298]

- According to WHO treatment guidelines for Leprosy:
 - All MB (multibacillary) patients who have completed 12 or more doses of WHO MDT for multibacillary leprosy ‘should be regarded as cured’ and removed from the registers
 - However, as usual, all patients should be educated about the signs/symptoms of reactions and relapse and asked to report immediately to the nearest health centre when such problems arise
 - It is not necessary to give MDT to PB patients until clinical inactivity:
 - Clinical activity in PB leprosy does not necessarily imply direct correlation with bacterial multiplication
 - In a large proportion of patients it is not possible to achieve clinical inactivity in six months even though all the organisms are killed: Lesions become inactive gradually over a period of one to two years after the treatment has been discontinued

387. Ans. None of the above choices [Ref. Internet, Park 21/e p291, Park 22/e p290]

388. Ans. (a) Diagnosis [Ref. Park 21/e p294-95, Park 22/e p293-94]

389. Ans. (c) A defaulter is defined as a patient who has not taken treatment for 6 months or more [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p362, Park 21/e p288-303, Park 22/e p287-302]

Also Remember

- ‘Leprosy is not amenable to eradication’ as it has:
 - Long and variable incubation period
 - Disputed modes of transmission
 - Presence of sub-clinical cases and our inability to detect them
 - Complicated spectrum of disease manifestations
 - Failure of cell mediated immunity in lepromatous cases
 - Bacterial resistance and persistence in the human body
 - Absence of a vaccine
 - Social and cultural taboos leading to concealment of disease
 - Discovery of extra-human reservoir

- Definitions in Revised National Tuberculosis Control Programme (RNTCP):
 - New case: Never taken treatment or took treatment less than 4 weeks
 - Cured: Follow up smears negative on 2 separate occasions including those at the end of treatment
 - Relapse: Returns sputum smear positive (ss+ve) after being declared cured
 - Failure: Remains or becomes ss+ve at or after 5 months of treatment
 - Defaulter: Who misses treatment for a continuous period of 2 months or more

390. Ans. (d) FLA-ABS Test [Ref. Park 21/e p294, Park 22/e p293]

Also Remember

- Lepromin Test: It is not a diagnostic test: It can yield false positive or false negative (esp. in lepromatous and near lepromatous cases)
 - Is a useful tool for evaluation of CMI status
 - Is widely used to aid classification of the disease
 - Is of great value in estimating the prognosis in Leprosy: Test is strongly positive in typical tuberculoid (TT) cases.
 - Typical lepromatous (LL) cases are lepromin negative indicating a failure of CMI
 1. Lepromin negative individuals are at a higher risk of developing Progressive Multibacillary Leprosy (MBL)
 2. Lepromin positive individuals either escape the clinical disease (the majority) or develop Paucibacillary Leprosy (PBL-the minority)

- LTT and LMIT CMI Tests:
 - Useful to detect sub-clinical infection
 - Disadvantage: cannot be applied on a mass scale in field conditions
Review of Preventive and Social Medicine

391. Ans. (d) In those with lepromatous leprosy [Ref. Park 21/e p298, Park 22/e p297]

392. Ans. (a) Leprosy decreased in Orissa [Ref. Park 21/e p288-90, Park 22/e p287-289]
 • Leprosy situation in India:
 - Prevalence: 0.74 per 10000 population (April 2008)
 - Annual new case detection rate: 11.7 per 100,000 population
 - 487 districts (79.7%) achieved elimination
 - 29 states/UTs achieved elimination
 - Cure rate: 83 – 84%

393. Ans. (a) Prevalence decreasing in past decade; (d) Highly communicable [Ref. Park 22/e p287-289]

394. Ans. (d) Insect can transmit the disease [Ref. Park 21/e p288-303, Park 22/e p287-302]

395. Ans. (b) It is a diagnostic test [Ref. Park 22/e p281]

396. Ans. (b) < 1 per 10000 [Ref. K. Park 22/e p288]

397. Ans. (d) Long incubation period [SINGLE BEST ANSWER] [Ref. K. Park 22/e p291]

398. Ans. (b) 0.01% [Ref. K. Park 22/e p288]

399. Ans. (d) 0.69 [Ref. K. Park 22/e p289]

400. Ans. (c) 12–15 days [Ref. K. Park 22/e p290]

401. Ans. (b) Lepromatous leprosy [Ref. K. Park 22/e p297]

402. Ans. (a) Leprosy [Ref. K. Park 22/e p296-97]

403. (c) Clinical, bacteriological, Immunological, histological classification [Ref. K Park 22/e p291]

 Classifications of Leprosy

<table>
<thead>
<tr>
<th>Ridley Jopling classification</th>
<th>Indian classification</th>
<th>Madrid classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT (Tuberculoid)</td>
<td>Indeterminate</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>BT (Borderline Tuberculoid)</td>
<td>Tuberculoid</td>
<td>Tuberculoid</td>
</tr>
<tr>
<td>BB (Borderline Borderline)</td>
<td>Borderline</td>
<td>Borderline</td>
</tr>
<tr>
<td>BL (Borderline Lepromatous)</td>
<td>Lepromatous</td>
<td>Lepromatous</td>
</tr>
<tr>
<td>LL (Lepromatous Leprosy)</td>
<td>Pure Neuritic</td>
<td>Lepromatous</td>
</tr>
</tbody>
</table>

- Ridley Jopling classification is based on Immuno-histological scale

404. (d) Diagnosis of leprosy [Ref. K. Park 22/e p294]

405. Ans. (a) Clofazimine included in treatment regimen; (c) Grenz zone in Lepromatous spectrum; (e) MBL recommended treatment for 12 months duration [Ref. Park 22/e p193-97]

Review Questions

406. Ans. (c) 21st day [Ref. Park 21/e p294, Park 22/e p293]

407. Ans. (b) Droplet [Ref. Park 21/e p291, Park 22/e p290]

408. Ans. (b) 5 years [Ref. National Health Programs by Dr. J. Kishore 8/e p356, Park 21/e p300, Park 22/e p299]

409. Ans. (b) 0.01% [Ref. Park 20/e p363]

410. Ans. (a) Ulnar N [Ref. Park 21/e p292, Park 22/e p291]

411. Ans. (c) Ciprofloxacin [Ref. Park 21/e p297, Park 22/e p296]

412. Ans. (c) Paucibacillary leprosy bacterial index is less than 2 [Ref. Park 21/e p288-303, Park 22/e p287-302]

413. Ans. (c) 180 days [Ref. Park 21/e p297, Park 22/e p296]

414. Ans. (b) Prognosis of disease [Ref. Park 21/e p294, Park 22/e p293]

415. Ans. (c) 1 or less than one bacillus in each hpf [Ref. Park 21/e p293, Park 22/e p292]

416. Ans. (b) 17-D [Ref. Park 21/e p258, Park 22/e p257]
417. Ans. (d) Bacteriological index [Ref. Park 21/e p293, Park 22/e p292]

418. Ans. (b) It confirms diagnosis of leprosy [Ref. Micro by Pro. C.P. Baveja 2/e p350, Park 21/e p294, Park 22/e p293]

419. Ans. (d) Pure neuritic type [Ref. Park 21/e p292, Park 22/e p291]

420. Ans. (b) 2 [Ref. Park 22/e p291-92]

421. Ans. (d) Prevalence rate of disease [Ref. Park 21/e p295, Park 22/e p294]

422. Ans. (a) 6 month [Ref. Park 21/e p297, Park 22/e p296]

423. Ans. (c) Heterosexual, transplacental, homosexual [Ref. Park 21/e p320-21, Park 22/e p319-20]

- **HIV transmission in India**: [2010]

<table>
<thead>
<tr>
<th>Route of transmission</th>
<th>Percentage of total cases</th>
<th>Efficiency of route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual</td>
<td>87</td>
<td>0.01 – 1%</td>
</tr>
<tr>
<td>Blood and blood products</td>
<td>01</td>
<td>> 90%</td>
</tr>
<tr>
<td>Sharing needles/ syringes</td>
<td>02</td>
<td>0.3%</td>
</tr>
<tr>
<td>Mother to child transmission</td>
<td>05</td>
<td>30%</td>
</tr>
</tbody>
</table>

- Tamil Nadu in India has the largest number of HIV/AIDS cases; HIV prevalence has crossed 2% mark in Mumbai
- **Age and Sex distribution of HIV/AIDS in India** [2006]:

<table>
<thead>
<tr>
<th>Distribution of HIV/AIDS cases</th>
<th>Cumulative cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age distribution</td>
<td></td>
</tr>
<tr>
<td>0 – 14 years</td>
<td>5 %</td>
</tr>
<tr>
<td>15 – 29 years</td>
<td>32 %</td>
</tr>
<tr>
<td>30 – 44 years</td>
<td>56 %</td>
</tr>
<tr>
<td>> 45 years</td>
<td>7 %</td>
</tr>
<tr>
<td>Sex distribution</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>71%</td>
</tr>
<tr>
<td>Female</td>
<td>29%</td>
</tr>
</tbody>
</table>

- **Mother to Child Transmission (MTCT) of HIV**:
 - MTCT in developing countries (India): 30%
 - MTCT in developed countries: 20%
 - Prevention of MTCT in India:

<table>
<thead>
<tr>
<th>Modality</th>
<th>Dose/ type</th>
<th>Reduction in MTCT by</th>
<th>Post-modality MTCT in India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine</td>
<td>Mother: 300 mg BD from 36 wks POG + 300 mg 3h during delivery Child: 6 mg/kg 6h × 6w</td>
<td>66%</td>
<td>10%</td>
</tr>
<tr>
<td>Nevirapine</td>
<td>Single oral dose Mother: 200 mg at labor onset Child: 2mg/kg within 72 hrs of birth</td>
<td>50%</td>
<td>15%</td>
</tr>
<tr>
<td>Caesarean section</td>
<td>Elective CS</td>
<td>50%</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Risk of HIV transmission with prolonged breast feeding: 12 – 15%
- For NEW GUIDELINES on PMTCT, Refer to Theory

424. Ans. (c) Tamil Nadu [Ref. K. Park 19/e p287]

425. Ans. (c) 1st December [Ref. Internet]

426. Ans. (c) Thailand [Ref. Internet]
Review of Preventive and Social Medicine

• First case of HIV reported:
 - USA: 1981
 - Thailand: 1984
 - India: 1986
 - Sri Lanka: 1987
 - Bangladesh: 1989

427. Ans. (c) Sexual transmission [Ref. Park 21/e p320-21, Park 22/e p319-20]

428. Ans. (c) 30-44 years [Ref. K. Park 20/e p01]
• HIV afflicted age groups in India: 30-44 years > 15-29 years > 45+ years > under 15 years

429. Ans. is (d) Oral thrush [Ref. Park 21/e p322, Park 22/e p321]

430. Ans. (a); (b); (d); (e) [Ref. Park 21/e p323, Park 22/e p322]

431. Ans. (b) Seminal secretions are highly infectious than vaginal secretions; (c) Infectious in window period; (d) Southern Africa have 72% of global burden; (e) Children rarely affected [Ref. Park 21/e p320-21, Park 22/e p319-320]
• Key facts about Epidemiology of HIV infection:
 - Reservoir: Cases and carriers
 - Source: Virus is in greatest concentration in blood, semen and CSF (lower concentrations in tear, saliva, breast milk, urine, cervical and vaginal secretions)
 - Children under 15 years make only 3% of cases
 - Basic modes of transmission:
 - Sexual
 - Blood and blood products
 - Needles/ syringes
 - Mother to Child transmission (MTCT)
 - IP: Few months to 10 years

432. Ans. (b) Nevirapine [Ref. K. Park 21/e p400, Park 22/e p404]

433. Ans. (c) 15-30% [Ref. K Park 22/e p320]
HIV transmission in absence of intervention:
• MTCT of HIV in developed countries: 20% (15-25%)
• MTCT transmission of HIV in developing countries: 30% (25-35%)

434. Ans. (c) 72 hours [Ref. K. Park 22/e p327]

435. Ans. (a) Extrapulmonary TB; (b) Cryptococcosis; (c) Candidiasis; (e) Kaposi sarcoma [Ref. K. Park 22/e p322]

436. Ans. (b) Vitamin A supplementation [Ref. K Park 22/e p320]
• Vitamin A supplementation has been shown to neither increase nor decrease the risk of MTCT of HIV
• Vitamin A supplementation INCREASE HIV transmission through breast feeding

437. Ans. (c) HIV-C [Ref. HIV/ AIDS Care and Counselling by ACV Dyk, 4/e p21]

438. Ans. (d) All of the above [Ref. K. Park 22/e p318, 322]

439. Ans. (d) 65% [Ref. HIV by HJ Makadon 3/e p299]

HIV Discovery
• HIV-1 discovered in 1983
• HIV-2 discovered in 1986
• HIV discovered by:
 - Robert Gallo (USA)
 - Luc Montagnier, Barre Sinoussi (France) – Awarded Nobel Prize

Review Questions

441. Ans. (b) OPV [Ref. CDC Guidelines]

442. Ans. (b) Maternofetal transmission is the most common mode of transmission [Ref. Park 22/e p319-320]
Communicable and Non-communicable Diseases

443. Ans. (c) 1981 [Ref. Park 20/e p298]
444. Ans. (b) They consist of DNA dependent DNA polymerase activity [Ref. Harrison’s 17/e p1140]
445. Ans. (c) Nagaland [Ref. Park 21/e p318, Park 22/e p317]
446. Ans. (c) Providing treatment to 3 million sufferers by year 2005 [Ref. Park 20/e p299]
447. Ans. (a) 3-12 weeks [Ref. Park 21/e p321, Park 22/e p320]
448. Ans. (c) Perinatal [Ref. Park 21/e p321, Park 22/e p320]

STI’S (OTHER THAN HIV)

449. Ans. (d) Chlamydia trachomatis [Ref. Park 21/e p304, Park 22/e p303]
450. Ans. (d) Echinococcus [Ref. Park 21/e p304, Park 22/e p303]
 • Echinococcus is transmitted to humans by ingestion of eggs in dog’s faeces.

Also Remember

- The 1st effective treatment for a STD: Salvarsan (a treatment for syphilis)
- Sexually transmitted oral infections:
 - Common colds
 - Influenza
 - Staphylococcus aureus
 - E. coli
 - Candida albicans
- Echinococcus granulosus:
 - Also known as ‘Dog Tape Worm’
 - Dog – sheep cycle with man as intermediate dead end host
 - Definitive host: Dog
 - Intermediate host: Sheep
 - Infective stage: Metacystode larva
 - Drug of choice: Mebendazole
 - Casoni’s test: Immediate hypersensitivity skin test

451. Ans. (d) Chlamydia psittaci [Ref. Park 21/e p304, Park 22/e p303]

Also Remember

- MC STI globally: Trichomoniasis
- Age group with highest risk of STI incidence: 20-24 yrs > 25-29 yrs > 15-19yrs
- Usual methods of case detection in a STD control programme:
 - Screening:
 - Contact tracing: Sexual partners of diagnosed patients are identified, located, investigated and treated
 - Is one of the best methods of controlling the spread of infection
 - Is relatively expensive (in low prevalence)
 - Key to success is patient himself (who must disclose all sexual contacts voluntarily)
 - Cluster testing: Screening of all persons of either sex, who move in the same socio-sexual environment of the patient
 - It almost doubles the number of cases found
 - Epidemiological treatment or contact treatment: Administration of full therapeutic dose of treatment to persons recently exposed to STD, while awaiting the results of laboratory tests
 - It must be combined with venereological examination and tracing of contacts revealed by that examination
 - Starting point of control of STD’s: Establishment of STD clinics

452. Ans. (c) A-II, B-III, C-I [Ref. Park 21/e p314, Park 22/e p313]
ENDEMIC TREPONEMATOSES:

<table>
<thead>
<tr>
<th>Treponemal Disease</th>
<th>Causative agent</th>
<th>Mode of transmission</th>
<th>Treatment of choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinta</td>
<td>Treponema carateum</td>
<td>Non venereal (direct contact with infectious lesions)</td>
<td>Benzathine Penicillin G</td>
</tr>
<tr>
<td>Yaws</td>
<td>Treponema pertunae</td>
<td>Non venereal (direct contact with secretions from infectious lesions, fomites, insect vectors)</td>
<td></td>
</tr>
<tr>
<td>Endemic syphilis</td>
<td>Treponema pallidum</td>
<td>Non venereal</td>
<td></td>
</tr>
<tr>
<td>Syphilis</td>
<td>Treponema pallidum</td>
<td>Venereal</td>
<td></td>
</tr>
</tbody>
</table>

453. Ans. (c) Neisseria gonorrhoeae and Chlamydia trachomatis [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p249, Park 21/e p307, Park 22/e p306]

454. Ans. (c) Chancroid, Chancre and Herpes genitalis [Ref. National Health Programs of India by Dr. J. Kishore, 9/e p261-262]

455. Ans. (a) Syphilis 10-90 days; (b) LGV 3-10 days; (c) Donovanosis 3-20 days [Ref. K. Park 21/e p305, Park 22/e p304]

456. Ans. (a) Metronidazole, Azithromycin, Fluconazole [Ref. K. Park 22/e p305-12]

457. Ans. (d) Notification [Ref. K. Park 22/e p312]

458. Ans. (d) Permethrin [Ref. Drugs in Pregnancy and Lactation by Briggs & Freeman, 8/e p1447]

Review Questions

459. Ans. (a) STD [Ref. Park 21/e p313, Park 22/e p312]

460. Ans. (a) STD [Ref. Park 21/e p313, Park 22/e p312]

461. Ans. (d) Sarcoptes scabiei [Ref. Park 21/e p721-22, Park 22/e p725-26]

462. Ans. (a) Less than 7 days [Ref. Park 21/e p305, Park 22/e p304]

463. Ans. (a) 9-90 days [Ref. Park 20/e p291]

464. Ans. (d) Cluster testing [Ref. Park 21/e p313, Park 22/e p312]

465. Ans. (a) STD [Ref. Park 21/e p313, Park 22/e p312]

MISCELLANEOUS (COMM. DISEASES)

466. Ans. (c) HIV [Ref. Park 21/e p89, 250, Park 22/e p90, 251]

Also Remember

- Classification of Zoonoses based upon life cycle of infecting organism:
 - Direct zoonoses: Transmitted from infected to susceptible vertebrate host by direct contact/ fomite/ vector. Examples: Rabies, Brucellosis, Trichinosis
 - Cyclo-zoonoses: Involve more than one vertebrate species. Examples: Taeniasis, Echinococcosis
 - Sapro-zoonoses: Involves non-animal developmental site or reservoir. Examples: Mycoses, Larva migrans
- Reverse Zoonoses: Is synonymous with Zoonanthroponoses
- Epizootic: Outbreak (epidemic) of a disease in animal population. Examples: Anthrax, Brucellosis, Influenza, Rabies, Rift Valley Fever, Q fever, Japanese encephalitis, Equine encephalitis
- Enzootic: Endemic of disease occurring in animals. Examples: Anthrax, Rabies, Brucellosis, Bovine TB, Endemic typhus, Tick typhus

467. Ans. (a) Spread by sexual transmission [Ref. Park 21/e p314-16, Park 22/e p313-15]

468. Ans. (b) Leprosy [Ref. Park 21/e p292, Park 22/e p291]

469. Ans. (c) Toxins can be destroyed by boiling for 30 minutes [Ref. Park 21/e p216-17, Park 22/e p216-17]
470. Ans. (b) Sexually transmitted infections [Ref. Park 21/e p313, Park 22/e p312]

Also Remember

- **MC STI globally:** Trichomoniasis
- **Age group with highest risk of STI incidence:** 20-24 yrs > 25-29 yrs > 15-19yrs
- **Epidemiological treatment or contact treatment:** Administration of full therapeutic dose of treatment to persons recently exposed to STD, while awaiting the results of laboratory tests
 - It must be combined with venereological examination and tracing of contacts revealed by that examination
- **Starting point of control of STD’s:** Establishment of STD clinics
- **Cluster sampling:** Is used for evaluation of immunization coverage.

471. Ans. (d) Measles [Ref. Park 21/e p137, Park 22/e p138]

472. Ans. (b) Tuberculosis [Ref. Park 21/e p91, Park 22/e p92]

- CARRIER: An infected person or animal that harbours a specific infectious agent ‘in the absence of discernible clinical disease’ and serves as a potential source of infection to others
 - **Characteristics of a carrier:**
 - Disease agent present in body
 - Absence of recognizable signs and symptoms of disease
 - Shedding disease agent (thus a source of infection)
 - **Incubatory carriers:** Shed infectious agent during the incubation period of the disease (esp. during last few days of IP).
 - For example: Measles, Mumps, Polio, Pertussis, Influenza, Diphtheria, Hepatitis B, HIV

Also Remember

LATENT TUBERCULOSIS (LATENT TB, LTBI):

- Latent tuberculosis is where a patient is infected with Mycobacterium tuberculosis, but does not have active tuberculosis disease.
 - Latent TB are NOT INFECTIOUS
 - Main risk: 10% will go on to develop active TB at a later life
- **Tests used to identify patients with latent TB:**
 - Tuberculin skin tests (Montaux test, Heaf test, Tine test)
 - α-interferon tests
- To give treatment for latent TB to someone with active TB is a serious error: TB will not be adequately treated and there is a serious risk of developing drug-resistant strains of TB
- Several treatment regimens in use:
 - 9 months Isoniazid
 - 6 months Isoniazid
 - 4 months Rifampicin
 - 3 months Isoniazid + Rifampicin
 - 2 months Rifampicin + Pyrizinamide.

473. Ans. (a) Measles [Ref. Park 21/e p91, Park 22/e p92]

- Chronic carriers: A carrier who excretes bacilli for indefinite periods of time
 - Typhoid
 - Hepatitis B
 - Malaria
 - Dysentery
 - Cerebrospinal meningitis
 - Gonorrhoea
- There are no carriers in Measles

474. Ans. (c) Person to person transmission [Ref. Park 21/e p266, Park 22/e p265]

- Modes of transmission of Brucellosis:
 - *Contact infection:* direct contact with infected tissues, blood, urine, vaginal discharge, aborted fetuses and ESPECIALLY placenta
 - *Food-borne infections:* raw milk/dairy products, fresh raw vegetables, water
 - *Air-borne infection:* aerosol
Review of Preventive and Social Medicine

475. Ans. (b) Yellow fever [Ref. Park 21/e p259, Park 22/e p258]
- There has been NO CASE of YF in India till date:
 - India is a ‘YF receptive’ area: Population is unvaccinated and susceptible to YF. Vector Aedes aegypti is also found in abundance. Common monkey of India (Macacus spp) is also susceptible
 - Missing link in chain of transmission of YF in India: YF Virus
 - If even one case of YF now occurs in India
 - It will be declared an EPIDEMIC (since normal expectancy is zero)
 - It will be an EXOTIC disease

Also Remember

CRIMEAN CONGO FEVER (CCF)
- Type of disease: Zoonosis of domestic/wild animals which may affect human beings
- Causative agent: Nairovirus (Bunyavirus)
- Vector: Hyalomma ticks (Hard ticks)
- Incubation period: 1-13 days (Median 5-6 days)
- Case fatality rate: 30%
- Drug of choice: Ribavirin
- Situation in India: Exotic-Epidemic in India (Gujarat, December 2010)

476. Ans. (c) Pertussis [Ref. Park 21/e p154, Park 22/e p1156]
- The merit of hyperimmune globulin in pertussis prophylaxis has yet to be established. So far there is no evidence of its efficacy in well-controlled trials
- Post exposure prophylaxis of:
 - H. influenza B: Rifampicin × 4 days
 - Hepatitis A: Human normal Immunoglobulin
 - Hepatitis B: Human specific Immunoglobulin
 - Meningococcal meningitis: Rifampicin 600 mg BD × 2 days OR Meningococcal vaccine
 - Rabies: Human normal Immunoglobulin + Vaccine
 - Tetanus: Human normal Immunoglobulin + Vaccine
 - Measles: Vaccine within 3 days

Also Remember

- Types of immunoglobulins:
 - IgG: comprises 85% of total serum immunoglobulins, largely extravascular, ‘only class of immunoglobulins to cross placenta’
 - IgM: comprises 10% of total serum immunoglobulins, ‘indicative of recent infection’, has high agglutinating and complement-fixating ability
 - IgA: comprises 15% of total serum immunoglobulins, predominantly found in secretions, ‘primary defence mechanism at mucous membranes’
 - IgD: exact function not known
 - IgE: concentrated in submucous tissues, ‘responsible for immediate allergic anaphylaxis reaction’
- Preparations of immunoglobulins:

<table>
<thead>
<tr>
<th>Source</th>
<th>Human normal Ig’s</th>
<th>Human specific Ig’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>Antibody-rich fraction obtained from a pool of > 1000 donors</td>
<td>Plasma of recovered patients or immunized individuals</td>
</tr>
<tr>
<td></td>
<td>> 90% IgG; less IgA</td>
<td>5 times antibody potential of standard preparation</td>
</tr>
<tr>
<td></td>
<td>Hepatitis A</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td></td>
<td>Measles</td>
<td>Varicella</td>
</tr>
<tr>
<td></td>
<td>Mumps</td>
<td>Diphtheria</td>
</tr>
<tr>
<td></td>
<td>Rabies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetanus</td>
<td></td>
</tr>
</tbody>
</table>
477. Ans. (a) Hookworm [Ref. Park 21/e p369, Park 22/e p369]

478. Ans. (a) Cough due to Bordetella pertussis [Ref. Park 21/e p152, Park 22/e p154]

Also Remember

- Hundred day cough: Pertussis (Whooping cough)
- 5 day fever: Trench fever
- 8th day disease: Tetanus
- Black sickness: Kala azar
- Black death: Plague
- Cerebrospinal fever: Meningococcal meningitis
- Breakbone fever: Dengue
- Koch’s phenomenon: Tuberculosis
- Hansen’s disease: Leprosy
- Breakbone fever: Dengue
- Slim disease: AIDS
- First disease/ Rubeolla: Measles
- Second disease: Scarlet fever
- Third disease/ German Measles: Rubella
- Fourth disease: Duke’s disease
- Fifth disease: Erythema infectiosum (Parvovirus)
- Sixth disease/ Baby Measles/ 3-day fever: Exanthem subitum/ Roseola infantum
- Barometer of Social Welfare (India): Tuberculosis
- Father of Public Health: Cholera
- River Blindness: Onchocerciasis

479. Ans. (a) Leprosy [Ref. Park 20/e p288, Park 22/e p287]

480. Ans. (d) HIV/ AIDS [Ref. Park 20/e p299, Park 22/e p298]
- 3 BY 5 INITIATIVE: Launched by WHO and UNAIDS on 1st Dec 2003
 - Target: To provide antiretroviral treatment (ART) to 3 million people living with HIV/AIDS (PLHA) in developing countries by end of 2005

Also Remember

- SAFE strategy: Surgery, Antibiotic use, Facial cleanliness, Environmental sanitation is for prevention and control of Trachoma
- Catch up – Keep up – Follow up strategy: WHO Measles elimination strategy comprises a 3-Part Vaccination strategy:
 - Catch up: One time nationwide, vaccination campaign targeting all children 9 months to 14 years of age, irrespective of history of Measles disease or vaccination status
 - Keep up: Routine services aimed at vaccinating more than 95% of each successive birth cohort
 - Follow up: Subsequent nationwide vaccination campaigns conducted every 2 – 4 years targeting usually all children born after the catch-up campaign.
- WHO Intensive PULSE strategy: Is for prevention and control of Poliomyelitis
 - Strengthen health system
 - Ensure proper and expanded use of insecticide treated bed nets (ITBN)
 - Ensure adequate access to basic healthcare and training of healthcare workers
 - Encourage simpler and effective means of administering medicines
 - Encourage development of more effective drugs and vaccines

481. Ans. (b) Cattle [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p511, Park 21/e p277, Park 22/e p276]
- HOST: A person or other animal, including birds and arthropods, that affords subsistence or lodgement to an infectious agent under natural (as opposed to experimental) conditions
 - Primary (definitive) host: Host in which parasite attains maturity or passes its sexual stage
 - Secondary (intermediate) host: Host in which parasite is in larval or asexual stage
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Disease</th>
<th>Host</th>
<th>Parasite</th>
<th>Primary</th>
<th>Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Man</td>
<td>Plasmodium</td>
<td>Anopheles</td>
<td>Man</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Man</td>
<td>Taenia solium</td>
<td>Pigs</td>
<td>Man</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Man</td>
<td>Taenia saginata</td>
<td>Man</td>
<td>Cattle</td>
</tr>
<tr>
<td>Guinea worm</td>
<td>Man</td>
<td>Dracunculus medinensis</td>
<td>Man</td>
<td>Cyclops</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Man</td>
<td>Wuchereria bancrofti</td>
<td>Dog</td>
<td>Sheep, Cattle, Man</td>
</tr>
<tr>
<td>Hydatid Disease</td>
<td>Man</td>
<td>Echinococcus</td>
<td>Man</td>
<td>Tse tse fly</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>Man</td>
<td>Trypanosomes</td>
<td>Man</td>
<td></td>
</tr>
</tbody>
</table>

- **Obligate host:** Only Host for a Parasite. For example, Man in Measles, Man in Typhoid Fever
- **Transport host:** A carrier in which the organism remains alive but does not undergo development
- **Paratenic host:** It is similar to an intermediate host, only that it is not needed for the parasite’s development cycle to progress. The difference between a paratenic and reservoir host is that the latter is a primary host, whereas paratenic hosts serve as “dumps” for non-mature stages of a parasite which they can accumulate in high numbers
- **Dead-end host:** Is an intermediate host that does generally not allow transmission to the definite host, thereby preventing the parasite from completing its development. For example, humans are dead-end hosts for Echinococcus canine tapeworms

Tapeworms:

<table>
<thead>
<tr>
<th>Tapeworm</th>
<th>Causative organism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork tapeworm</td>
<td>Taenia solium</td>
</tr>
<tr>
<td>Beef tapeworm</td>
<td>Taenia saginata</td>
</tr>
<tr>
<td>Fish tapeworm</td>
<td>Diphyllobothrium latum</td>
</tr>
<tr>
<td>Dwarf tapeworm (Rat tapeworm)</td>
<td>Hymenolepsis nana</td>
</tr>
</tbody>
</table>

TAENIASIS:

- *Taeniasis are called as ‘Cyclozoanoses’: Require more than one vertebrate host species (but no invertebrate host) to complete their developmental cycles*
- T.solium and T.saginata may persist for several years in infected humans (small intestines)
- Mode of transmission:
 - Ingestion of infective cysticerci in undercooked beef (T.saginata) or pork (T.solium)
 - Ingestion of food, water or vegetables contaminated with eggs
 - Reinfection by reperistalsis of eggs (bowel to stomach)
- IP: 8-14 weeks
- Most serious risk of T.solium infection: Cysticercosis
- Treatment: Praziqantel and niclosamide
- DOC Cysticercosis: Albendazole
- Most effective method to prevent food borne infections: cooking of beef and pork

482. Ans. (c) Falciparum Malaria [*Ref. K. Park 19/e p219*]

- SPf 66: A synthetic ‘Lytic Cocktail’ vaccine developed for P. Falciparum has been extensively tested
 - Formulated as peptide-alum combination
 - Safe, effective and reduces risk of developing clinics malaria by 30%

483. Ans. (c) Hepatitis E [*Ref. Park 21/e p197, Park 22/e p198*]

HEPATITIS E:

- Enterically transmitted hepatitis non-A, non-B [HNANB]
- HEV is essentially a waterborne disease, transmitted through water or food supplies, contaminated by faeces
- Incubation Period: 2 – 9 weeks
- HEV in pregnancy: Fulminant form is common in Hepatitis E infection during Pregnancy (up to 20% cases) with a high case fatality rate (up to 80%)

484. Ans. (a) Measles [*Ref. Park 21/e p137, Park 22/e p138-139*]

485. Ans. (c) Measles [*Ref. Park 21/e p137, Park 22/e p138-139*]
486. Ans. (b) Hookworm eggs per gram faeces [Ref. Park 21/e p221, Park 22/e p221]

487. Ans. (a) Trichuris trichura [Ref. Park 21/e p94, Park 22/e p95]
- Obligate Host: Means the only host
 - Man in Measles
 - Man in Typhoid

488. Ans. (b) Insulin [Ref. Park 21/e p168, 176, Park 22/e p172, 178]
- Insulin is given through sub-cutaneous route

489. Ans. (a) Yellow fever; (b) Japanese encephalitis; (c) Dengue [Ref. Park 21/e p260, Park 22/e p162]
- Arboviral infections (arthropod-borne viral infections) in India:

<table>
<thead>
<tr>
<th>Group A (Alphaviruses)</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sindbis</td>
<td>Umbre</td>
</tr>
<tr>
<td>Chikungunya</td>
<td>Sathuperi</td>
</tr>
<tr>
<td>Group B (Flaviviruses)</td>
<td>Chandipura</td>
</tr>
<tr>
<td>Dengue</td>
<td>Chittor</td>
</tr>
<tr>
<td>KFD</td>
<td>Ganjam</td>
</tr>
<tr>
<td>JE</td>
<td>Minnal</td>
</tr>
<tr>
<td>West Nile</td>
<td>Venkatapuram</td>
</tr>
<tr>
<td></td>
<td>Dhori</td>
</tr>
<tr>
<td></td>
<td>Kaisodi</td>
</tr>
<tr>
<td></td>
<td>Sandfly fever</td>
</tr>
<tr>
<td></td>
<td>African Horse Sickness</td>
</tr>
<tr>
<td></td>
<td>Vellore</td>
</tr>
</tbody>
</table>

490. Ans. (b) Screening for STD’s [Ref. Park 21/e p313, Park 22/e p312]

491. Ans. (b) Food poisoning [Ref. Park 21/e p216-17, Park 22/e p216-17]
- Incubation period of food poisonings:

<table>
<thead>
<tr>
<th>Food poisoning</th>
<th>Incubation period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>12 – 24 hours</td>
</tr>
<tr>
<td>Staphylococcal</td>
<td>1 – 6 hours</td>
</tr>
<tr>
<td>Botulism</td>
<td>12 – 36 hours</td>
</tr>
<tr>
<td>Cl. perirengens</td>
<td>6 – 24 hours</td>
</tr>
<tr>
<td>B. cereus (emetic form)</td>
<td>1 – 6 hours</td>
</tr>
<tr>
<td>B. cereus (diarrhoeal form)</td>
<td>12 – 24 hours</td>
</tr>
</tbody>
</table>

492. Ans. (a) Yellow fever; (c) Japanese Encephalitis [Ref. Park 21/e p260, Park 22/e p259-260]
- Arboviral infections: Are ‘Arthropod-borne Viral infections’
 - Yellow Fever
 - Japanese Encephalitis
 - Chikungunya Fever
 - Dengue

Also Remember
- Epidemic typhus is a ‘Rickettsial disease’
- Kala azar (Visceral Leishmaniasis) is a ‘Parasitic Zoonoses’

493. Ans. ALL CHOICES [Ref. Park 21/e p89, 250, Park 22/e p90, 251]

494. Ans. (a) HBV; (b) Rabies; (d) Measles; (e) Tetanus [Ref. Park 21/e p139, 196, 255, 286, Park 22/e p141, 197, 285]
Review of Preventive and Social Medicine

- Diseases transmitted by needle stick injury:
 - HIV
 - HBV
 - HCV
 - Malaria
 - Syphilis
 - Leptospirosis
 - Blastomycosis
 - Brucellosis
 - Cryptococcosis

495. Ans. (a) Chikungunya [Ref. Park 21/e p260, Park 22/e p225-60]
496. Ans. (b) Measles [Ref. Park 21/e p138, Park 22/e p140]
497. Ans. (a) Measles; (b) Diarrhoea [Ref. Park 21/e p139, Park 22/e p141]
 - All cases of Measles should be treated with Vitamin A: as many children develop acute deficiency of Vitamin A (Xerophthalmia) which may lead to Keratomalacia and blindness from corneal scarring
 - Diarrhoea is associated with Vitamin A deficiency too
498. Ans. (c) Diarrhoea; (d) Measles [Ref. Park 21/e p139, Park 22/e p141]
499. Ans. (b) Influenza-A [Ref. Park 21/e p146, Park 22/e p147]
500. Ans. (a) Rabies; (b) Japanese encephalitis [Ref. Park 21/e p89, 250, Park 22/e p90, 251]
501. Ans. (a) Epidemic typhus; (b) Japanese encephalitis; (e) KFD [Ref. Park 21/e p93, Park 22/e p94]
502. Ans. (b) Varicella; (d) Parvovirus [Ref. Park 21/e p92, Park 22/e p93]

- Vertical transmission of diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Most common time of transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varicella</td>
<td>I trimester</td>
</tr>
<tr>
<td>Rubella</td>
<td>I trimester</td>
</tr>
<tr>
<td>Parvovirus</td>
<td>II trimester</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>III trimester</td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td>III trimester</td>
</tr>
<tr>
<td>Syphilis</td>
<td>III trimester</td>
</tr>
<tr>
<td>CMV</td>
<td>Any trimester</td>
</tr>
<tr>
<td>HIV</td>
<td>During delivery</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>During delivery</td>
</tr>
</tbody>
</table>

503. Ans. (c) Q fever [Ref. Park 21/e p718, Park 22/e p722]
 Refer to Theory
504. Ans. (b) Overhead tanks severe as breeding sites [Ref. Park 21/e p260-65, Park 22/e p259-60, 264]
 - Culx tritaeniorhynchus, C. vishnuii, C gelidus breed in
 - Irrigated rice fields (most important)
 - Shallow ditches
 - Pools
505. Ans. (c) Scabies [Ref. K. Park 21/e p220, 248, 569, 722, Park 22/e p220, 249, 468, 726]
 - Lymphatic filariasis: DEC OR 'DEC + Albendazole/Ivermectin'
 - Vitamin A deficiency: Single massive dose of Vitamin A (200,000 IU) to preschool children (aged 1-6 years) every 6 months
 - Worm infestation: Periodic de-worming of Ascariasis (Roundworm) may be undertaken every 2-3 months
 - Undertaken where parasites & PEM highly prevalent
 - ONLY reduces worm load (DOESNOT interrupt transmission)
 - Scabies: All family members (NOT community) must be treated simultaneously
Communicable and Non-communicable Diseases

506. Ans. (c) Vertical transmission [Ref. Park 22/e p220]
- Modes of transmission of Amoebiasis:
 - Faecal-oral
 - Sexual (Oro-rectal in homosexuals)
 - Vectors (Flies, Cockroaches, rodents)

507. Ans. (d) Yellow Fever [Ref. Park 21/e p258, Park 22/e p257]
- Although Yellow fever has never been reported from Asia, the region is at risk because conditions required for transmission are present.

508. Ans. (c) Measles [Ref. Park 21/e p137, Park 22/e p138-39]

509. Ans. (d) Later stages involve heart and nerves [Ref. K. Park 21/e p314-16, Park 22/e p313-315]

510. Ans. (a) Cholera [Ref. K. Park 21/e p115, 211, Park 22/e p117, 211]

511. Ans. (c) Whooping cough [Ref. K. Park 21/e p153, Park 22/e p155]
- Infants are susceptible to Pertussis infection from birth because maternal antibody does not appear to give them protection.

512. Ans. ALL CHOICES [Ref. K. Park 21/e p266, Park 22/e p265]

513. Ans. (a) Chikungunya fever; (b) West Nile fever; (c) JE; (d) Sandfly fever [Ref. K. Park 22/e p259]

514. Ans. (c) Japanese encephalitis [Ref. K. Park 22/e p716]

515. Ans. (c) Pertussis [Ref. K. Park 22/e p154]

516. Ans. (a) Scabies [Ref. K. Park 22/e p221, 245, 570, 595]

517. Ans. (a) Leptospirosis [Ref. K. Park 22/e p266]

518. Ans. (a) Cholera [Ref. K. Park 22/e p209]

519. Ans. (d) Molluscum contagiosum [Ref. Clinical Paediatric Dermatology by DM Thappa, 1/e p8]

520. Ans. (a) Hydatid cyst [Ref. K. Park 22/e p277]

521. Ans. (c) Measles [Ref. K. Park 22/e p138-39]

522. Ans. (a) Plague; (c) Rabies; (d) Leishmaniasis [Ref. K. Park 22/e p224]

523. Ans. (a) TB [Ref. Multiple sources]

524. Ans. (b) Hepatitis C [Ref. K. Park 22/e p197]

525. Ans. (a) Gammexene; (b) Crotamiton; (c) 5% Permethrin; (e) Sulphur ointment [Ref. K. Park 22/e p726]

526. Ans. (c) Rabies [Ref. K. Park 22/e p251]

527. Ans. (b) Doxycycline [Ref. Bioterrorism and Infectious Agents by IW Fong & Ken Alibek, 1/e p25]

528. Ans. (d) German measles – 7 days after onset of rash [Ref. K. Park 22/e p112]

529. Ans. (b) Tick [Ref. Lyme Disease by K Donnelley, 1/e p12]

530. Ans. (a) It is a Zoonosis; (c) Transmission occurs through direct skin contact; (d) Drug of choice is Penicillin; (e) Is a Spirochaetal disease [Ref. K. Park 22/e p266]

531. Ans. (d) Leishmaniasis [Ref. K. Park 22/e p278-81]

532. Ans. (a) Typhoid [Ref. K. Park 22/e p215]

533. Ans. (c) Gastroenteritis [Ref. K. Park 22/e p202-03]

534. Ans. (a) Influenza [Ref. K. Park 22/e p90]

535. Ans. (d) Borellia hermsii [Ref. Principles and Practices of Paediatric Infectious Diseases, 4/e p959]

536. Ans. (a) KFD; (b) Dengue fever; (c) Crimean Congo fever; (e) Hanta fever

537. Ans. (b) Dengue fever [Ref. Emerging Biological Threats: A Reference Guide by JR Callahan, 1/e p63]
- Saddleback fever: Two peaks of fever separated by an afebrile period in-between
- Seen in: Dengue, Trench fever, Bartonellosis, Chikungunya, Colaradotick fever
Review of Preventive and Social Medicine

538. Ans. (c) Measles [Ref. Park, 22/e, p117]
539. Ans. (a) Rocky mountain spotted fever [Ref. Park 22/e p273]
540. Ans. (a) Hepatitis A [Ref. Park, 22/e, p191]
541. Ans. (a) Common in veterinarians; (b) Seasonal pattern; (c) Common in butchers; (d) Cutaneous form most common [Ref. Anthrax by Koehler, 1/e p9]
542. Ans. (c) Incubation period is less than 48 hours; (e) Oseltamivir is quite effective in treatment [Ref. Ebola Virus InfoPage, WHO International Website]
543. Ans. (a) Plague; (b) Rabies; (c) Anthrax; (e) Brucellosis [Ref. Park 22/e p90]
544. Ans. (a) Influenza; (d) Yersinia; (e) Swine flu [Ref. Park 22/e p145, 147, 209, 269]
545. Ans. (a) Plague; (c) Schistosomiasis; (e) Yellow fever [Ref. Park 22/e p251]

Review Questions

546. Ans. (a) STD [Ref. Park 21/e p313, Park 22/e p312]
547. Ans. (d) Fever common [Ref. Park 21/e p216, Park 22/e p216]
548. Ans. (a) Rabies [Ref. Park 20/e p240]
549. Ans. (d) Rabies, tetanus [Ref. Park 21/e p94, Park 22/e p95]
550. Ans. (b) Measles [Ref. Park 21/e p137, Park 22/e p138-39]
551. Ans. (a) Plague [Ref. Internet, Wikipedia]
552. Ans. (a) Cholera [Ref. Park 21/e p208, Park 22/e p209]
553. Ans. (a) Measles [Ref. Park 21/e p138, Park 22/e p140]
554. Ans. (a) Diarrhoea [Ref. Park 21/e p216, Park 22/e p216]
555. Ans. (a) Chickenpox [Ref. Park 21/e p135, Park 22/e p137]
556. Ans. (d) T. cruzi [Ref. Park 21/e p250, Park 22/e p251]
557. Ans. (d) Leishmaniasis [Ref. Park 21/e p94, Park 22/e p95]
558. Ans. (c) Scabies [Ref. Park 21/e p89, 250, Park 22/e p90, 251]
559. Ans. (b) Cholera [Ref. Park 21/e p144, Park 22/e p145]
560. Ans. (b) Polio [Ref. Park 21/e p185, Park 22/e p186]
561. Ans. (c) KFD [Ref. Park 21/e p264, Park 22/e p263]
562. Ans. (c) Filaria is transmitted by Aedes mosquito [Ref. Park 21/e p259-60, Park 22/e p258-59-60]
563. Ans. (d) Dracunculosis [Ref. Park 21/e p250, Park 22/e p251]
564. Ans. (a) Rats [Ref. Park 21/e p267, Park 22/e p266]
565. Ans. (a) AIDS [Ref. Park 21/e p110-11, Park 22/e p111-12]
566. Ans. (a) Guinea worm [Ref. Park 21/e p223, Park 22/e p223]
567. Ans. (a) Tularemia; (d) Rocky Mountain spotted fever [Ref. Park 21/e p720-21, Park 22/e p724-25]
568. Ans. (a) Dengue; (b) Chikungunya fever [Ref. Park 21/e p712, Park 22/e p716]
569. Ans. (a) Malaria [Ref. Park 21/e p709, Park 22/e p713]
570. Ans. (b) Clostridium difficile [Ref. Park 21/e p216-17, Park 22/e p216-17]
571. Ans. (a) 1-6 hours [Ref. Park 21/e p216, Park 22/e p216]
572. Ans. (a) Polio [Ref. Park 21/e p110-11, Park 22/e p111-12]
573. Ans. (d) Kala-azar [Ref. Park 21/e p182, 223, 268, 279, Park 22/e p184, 223, 267, 278]
574. Ans. (a) Teniasis [Ref. Park 21/e p94, Park 22/e p95]

https://kat.cr/user/Blink99/
Communicable and Non-communicable Diseases

575. Ans. (b) Rabies [Ref. Park 21/e p37, 124, Park 22/e p37, 127]

576. Ans. (c) Influenza [Ref. Park 21/e p144, Park 22/e p145]

577. Ans. (a) Treponema pertenue [Ref. Park 21/e p314-15, Park 22/e p313-314]

578. Ans. (d) Tuberculosis [Ref. Park 21/e p178, Park 22/e p180]

579. Ans. (d) Meta Zoonosis [Ref. Park 21/e p89, 250, Park 22/e p90, 251]

580. Ans. (b) Malaria [Ref. Park 21/e p89, 250, Park 22/e p90, 251]

581. Ans. (a) Tetanus [Ref. Park 21/e p89, 250, Park 22/e p90, 251]

582. Ans. (a) Diphtheria [Ref. Park 21/e p150, Park 22/e p152]

583. Ans. (c) Secondary attack rate [Ref. Park 21/e p95, Park 22/e p96]

CORONARY HEART DISEASE

584. Ans. (c) Salt intake less than 20g/day [Ref. Park 21/e p341, Park 22/e p142]

- PRUDENT DIET (DIETARY GOALS): Dietary modification is the principal preventive strategy in the prevention of CHD. WHO recommended changes: [GOAL: Cholesterol/HDL Ratio < 3.5]
 - Reduction of fat intake to < 20 – 30 % of total energy intake
 - Consumption of saturated fats < 10 % of total energy intake
 - Reduction in dietary cholesterol to < 100 mg/1000 kcal/day
 - Increase in complex carbohydrate consumption
 - Reduction of salt intake to < 5 gms per day
 - Avoidance of alcohol consumption

Also Remember

CORONARY HEART DISEASE:

- CHD is our modern epidemic (WHO): CHD causes 25 – 30% of deaths in most industrialized countries
- Simplest measure of burden of CHD: Proportional mortality ratio
- Case fatality rate of CHD: Proportion of attacks fatal within 28 days of onset
- According to Ross, Incubation period of CHD may be > 10 years
- Pattern of CHD in India:
 - Occurs a decade earlier compared with age incidence in developed nations
 - Peak period is 51 – 60 years age
 - Males affected more than females
 - Hypertension and Diabetes mellitus account for > 40% cases
 - Heavy smoking is responsible for a large no. of cases
- Single most useful test for identifying individuals at high risk of CHD: Blood pressure
 - Systolic BP better predictor of CHD than Diastolic BP
- CHD risk prediction based on serum lipid levels:
 - Cholesterol/ CHD ratio < 3.5
 - HDL cholesterol > 30 mg/ dl
- Alcohol intake as an independent risk factor for CHD; > 75 grams per day.

585. Ans. is (b) Filters provide a protective effect for CHD [Ref. Park 21/e p339]

- Smoking as a risk factor for CHD:
 - Modifiable major risk factor
 - 25% of CHD deaths under 165 years age
 - Causes Sudden death from CHD, especially in men < 50 years age
 - Degree of risk of developing CHD is directly related to no. of cigarettes smoked per day
 - Filter cigarettes are probably not protective
 - Synergistic with other risk factors like hypertension and elevated serum cholesterol
 - Risk of death from CHD decreases on cessation of smoking.
1. Risk declines substantially within 1 year of cessation
2. After 10 – 20 years, it is same as that of non-smokers
 - Those with history of myocardial infarction – risk of fatal occurrence reduced by 50%

Also Remember

- Mean serum cholesterol level associated with high risk of CHD: >200 mg/dl
 - Threshold level: 220 mg/dl
 - Most direct association with CHD: LDL cholesterol
 - Protective for CHD: HDL cholesterol (>30 mg/dl)
 - Clinical goal of CHD prevention: Cholesterol/HDL ratio <3.5
 - Better predictors of CHD: Apolipoprotein A-I and Apolipoprotein B

586. Ans. (c) LDL [Ref. K. Park 21/e p340, Park 22/e p340]

587. Ans. (a) LDL cholesterol less than 100 mg/dL

588. Ans. (d) NYHA 4 [Ref. Comprehensive Coronary Care by Jowett & Thompson, 4/e p280]

New York Heart Association (NYHA) Classification

- Importance: Scale used for quantification of degree of functional limitation imposed by Congestive health failure (CHF)

<table>
<thead>
<tr>
<th>Class</th>
<th>Severity</th>
<th>Physical activity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYHA I</td>
<td>Mild asymptomatic</td>
<td>No limitation</td>
<td>Comfortable at rest & ordinary exertion</td>
</tr>
<tr>
<td>NYHA II</td>
<td>Mild symptomatic</td>
<td>Slight limitation</td>
<td>Comfortable at rest; ordinary exertion cause symptoms</td>
</tr>
<tr>
<td>NYHA III*</td>
<td>Moderate</td>
<td>Marked limitation</td>
<td>Comfortable at rest; less than ordinary activity cause symptoms</td>
</tr>
<tr>
<td>NYHA IV</td>
<td>Severe</td>
<td>Unable to carryout</td>
<td>Symptoms at rest</td>
</tr>
</tbody>
</table>

(*Class IIIa No dyspnoea at rest; Class IIIb Dyspnoea at rest)

Review Questions

589. Ans. (b) Decreasing [Ref. Park 21/e p339, Park 22/e p339]

590. Ans. (a) Indian CHD occurs 1 decade later than Western CHD [Ref. Park 22/e p338-43]

591. Ans. (b) Mean age of patient is 10-20 years more than that of western [Ref. Park 21/e p338-43, Park 22/e p338-43]

592. Ans. (a) Framingham study [Ref. Park 21/e p342, Park 22/e p342]

593. Ans. (a) Personality [Ref. Park 21/e p339, Park 22/e p339]

HYPERTENSION

594. Ans. (a) Weight reduction; (b) Exercise promotion; (c) Reduction of salt intake; (e) Self care [Ref. Park 21/e p347, Park 22/e p347]

- Population strategy for prevention of Hypertension:
 - Is primary level of prevention
 - Includes:
 - Nutrition (Reduction of salt intake to < 5 grams a day, moderate fat intake, avoidance of alcohol intake, restriction of energy intake as per body needs)
 - Weight reduction (BMI <25)
 - Exercise promotion
 - Behavioural changes (reduction of stress and smoking, doing yoga and meditation)
 - Health education
 - Self care
Communicable and Non-communicable Diseases

595. Ans. (d) Obesity [Ref. K. Park 22/e p345-46]

596. Ans. (d) BP of hypotensive remain hypotensive [Ref. Park 22/e p345]

RHEUMATIC FEVER

597. Ans. (b) Mitral regurgitation is the commonest cardiac lesion seen [Ref. Park 21/e p350-53, Park 22/e p350-53]

Refer to Theory

Also Remember

- RF is not a communicable disease: but it results from a communicable disease (streptococcal pharyngitis)
- MC cause of Heart disease in 5 – 30 yrs age group (globally): RF
- Prevalence of RHD in India: 5 – 7 per 1000 in 5 – 15 yrs age group
 - RF occurs in 1 – 3 % of Streptococcal infection
- Eradication of Grp A Streptococcus is not possible: In view of its high carrier rate
- MC ECG finding in RF: First degree AV block
- Best indicator for evaluation of RF control programme: Prevalence of RHD in 6 – 14 yrs school children
 - Recommended periodicity of surveys: every 5 yrs
 - Recommended sample size: 20,000-30,000
- Except carditis, other major manifestations in RF do not cause permanent residual damage

598. Ans. (d) In Revised Jones’ Criteria, evidence of preceding streptococcal infection is taken for last 21 days [Ref. Park 21/e p350-353, Park 22/e p350-53]

Refer to Theory

599. Ans. (d) Elevated ESR [Ref. Park 21/e p352, Park 22/e p351]

Refer to Theory

600. Ans. (b) Polyarthralgia [Ref. K Park 22/e p351]

CANCERS

601. Ans. (c) Breast cancer [Ref. Cancer Registration in India – 50 Years of Cancer Control Programme in India, MoHFW]

- Most common cancer among females in India is Breast Cancer in both urban and rural areas [NEW DATA RELEASED]

602. Ans. (c) Lung cancer [Ref. Park 21/e p353, Park 22/e p353]

- The total cancer burden (in decreasing order) globally:
 - Lung cancer
 - Colo-rectal cancer
 - Breast cancer
 - Stomach cancer

Also Remember

- Among Indian women, cancers of breast and cervix account for nearly 60% of all cancers
- Beer consumption is associated with: rectal cancer
- Alcohol contributes to: 3% of all cancer deaths
- Environmental factors are responsible for: 80-90% of all human cancers
- Occupational exposures (MC – Skin cancer) account for 1 – 5% of all cancers
- MC cancer among females in India: Breast cancer
- Gall bladder cancer has the highest age-adjusted incidence rate among females in Delhi

Review of Preventive and Social Medicine

- Incidence of Total Cancers in India: (in Reducing order)

<table>
<thead>
<tr>
<th>Total cancers</th>
<th>Total cancers - Males</th>
<th>Total cancers - Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervix-uteri cancer</td>
<td>Lung cancer</td>
<td>Cervix-uteri cancer</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>Lip, oral cavity cancer</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Lip, Oral cavity cancer</td>
<td>Other pharynx cancer</td>
<td>Ovarian cancer</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>Oesophageal cancer</td>
<td>Lip, Oral cavity cancer</td>
</tr>
<tr>
<td>Oesophageal cancer</td>
<td>Stomach cancer</td>
<td>Oesophagus cancer</td>
</tr>
</tbody>
</table>

604. Ans. (b) Breast cancer [Ref. Park 21/e p354, Park 22/e p354]

605. Ans. (c) Penile cancer and cervical cancer following circumcision [Ref. Park 22/e p353-62]

- Associations of few cancers:

<table>
<thead>
<tr>
<th>Association</th>
<th>Cancer associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>Tobacco chewing</td>
<td>Oral cancer</td>
</tr>
<tr>
<td>Using hot pot in winter</td>
<td>Kangri cancer</td>
</tr>
<tr>
<td>Beer consumption</td>
<td>Rectal cancer</td>
</tr>
<tr>
<td>Smoked fish consumption</td>
<td>Stomach cancer</td>
</tr>
<tr>
<td>High fat intake</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Reduced fibre intake</td>
<td>Colo-rectal cancer</td>
</tr>
<tr>
<td>Aniline dyes exposure</td>
<td>Bladder cancer</td>
</tr>
</tbody>
</table>

606. Ans. (b) 2 primary doses req for immunization; (e) Recommended for age group 20-40 years [Ref. Internet Wikipedia]

- HPV vaccines protect against two HPV types (HPV 16 and 18) that cause 70% of cervical cancers worldwide
- HPV vaccines are recommended for age group 9 – 25 years, who have never been exposed to HPV
- HPV vaccine is a three dose vaccine
- HPV should be refrigerated, NOT frozen

607. Ans. (a) Ca cervix; (b) Ca Breast; (c) Ca Prostate; (e) Ca Colon [Ref. Park 21/e p353-61, Park 22/e p353-62]

- Lung cancer does not satisfy the criteria for suitability of a disease for Lung cancer

608. Ans. (c) Carcinoma colon [Ref. CMDT 2014, p1571]

Refer to Chapter 4

609. Ans. (b) 1 million [Ref. K. Park 22/e p354]

610. Ans. (c) Lung cancer [Ref. K. Park 22/e p353]

611. Ans. (c) Breast cancer [Ref. K. Park 22/e p354]

612. Ans. (c) 90% [Ref. Park 22/e p358]

Review Questions

613. Ans. (c) Breast Cancer [Ref. Park 21/e p338]

614. Ans. (b) Self examination [Ref. Internet]

615. Ans. (a) Head and neck carcinoma [Ref. Internet]

616. Ans. (a) Lung [Ref. Park 21/e p353, Park 22/e p353]

617. Ans. (d) Early marriage [Ref. Park 21/e p357, Park 22/e p357]

618. Ans. (d) Single child birth [Ref. Park 21/e p357, Park 22/e p357]
OBESITY

619. Ans. (b) 18.5 – 22.99 [Ref. Internet]

- Body Mass Index (Quetelet’s Index):
 \[\text{BMI} = \frac{\text{Weight (Kg)}}{\text{Height}^2 (m)^2} \]

- Classification of adults according to BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI for Global population</th>
<th>BMI for Asian population*</th>
<th>BMI for Indian Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>< 18.5</td>
<td>< 18.5</td>
<td>< 18.5</td>
</tr>
<tr>
<td>Obesity</td>
<td>> 30.0</td>
<td>> 27.9</td>
<td>> 25.0</td>
</tr>
</tbody>
</table>

- Classification of obesity based on BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-obese (overweight)</td>
<td>25.0–29.99</td>
</tr>
<tr>
<td>Obesity Grade I</td>
<td>30.0–34.99</td>
</tr>
<tr>
<td>Obesity Grade II</td>
<td>35.0–39.99</td>
</tr>
<tr>
<td>Obesity Grade III</td>
<td>> 40.0</td>
</tr>
</tbody>
</table>

- Classification of underweight based on BMI:

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade I Underweight</td>
<td>17.0–18.49</td>
</tr>
<tr>
<td>Grade II Underweight</td>
<td>16.0–16.99</td>
</tr>
<tr>
<td>Grade III Underweight</td>
<td>< 16.0</td>
</tr>
</tbody>
</table>

Also Remember

- Most prevalent form of malnutrition: Obesity
- BMI > 40: Grade III obesity (Morbid obesity)
- BMI > 50: Super obesity
- Women have higher rate of obesity: Women’s BMI increase by 1kg per pregnancy
- Relationship between alcohol consumption and adiposity: Positive for men and negative for women
- Corpulence index is a ‘height independent’ criterion of obesity
- Cut offs for obesity:
 - In epidemiological studies: + 2SD (standard deviations) from median weight for height
 - In layman terms: Body weight in excess of 10% of expected weight
- NEW GUIDELINES FOR OBESITY IN INDIA (2009):

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal weight</td>
<td>18.5 – 22.99</td>
</tr>
<tr>
<td>Overweight</td>
<td>23.0 – 24.99</td>
</tr>
<tr>
<td>Obesity</td>
<td>> 25.0</td>
</tr>
<tr>
<td>Require bariatric surgery</td>
<td>> 32.5</td>
</tr>
</tbody>
</table>

- Cut-offs for waist circumference:
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Populations</th>
<th>Cut-off for WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>90 cms</td>
</tr>
<tr>
<td>Females</td>
<td>80 cms</td>
</tr>
<tr>
<td>Global</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>102 cms</td>
</tr>
<tr>
<td>Females</td>
<td>88 cms</td>
</tr>
</tbody>
</table>

620. **Ans. (b) 30** [Ref. Park 21/e p369, Park 22/e p369]
 - Body Mass Index (Quetelet’s Index):
 - In the given question, Weight = 89 Kg and Height = 1.72 m
 - Thus, \(\frac{Wt}{Ht^2} = \frac{89}{(1.72)^2} = 30 \)

621. **Ans. (d) Anterior abdominal wall** [Ref. Park 21/e p369, Park 22/e p369]

622. **Ans. (d) Corpulence Index** [Ref. Park 21/e p369, Park 22/e p369]

623. **Ans. (c) > 30** [Ref. Park 21/e p368, Park 22/e p369]

624. **Ans. (a) BMI** [Ref. Park 21/e p369, Park 22/e p369]
 - BMI (Body Mass Index) or Quetelet’s Index: although not an accurate measurement of fat accumulation, but is a widely used index of obesity (also is Broca’s Index)

625. **Ans. (a) Weight/Height 2** [Ref. Park 21/e p369, Park 22/e p369]
 - Body Mass Index (Quetelet’s Index):
 - BMI = Weight (Kg)/ Height\(^2\) (m\(^2\))

626. **Ans. (a) Regular exercise with same amount of food** [Ref. Park 21/e p369-70, Park 22/e p369-70]

WEIGHT CONTROL MEASURES:
- **Dietary changes:**
 - Reduce proportions of carbohydrates and fats (energy dense foods)
 - Increase fibre consumption
 - Ensure adequate levels of essential nutrients
- **Others:**
 - Drugs
 - Surgical treatment
 - Health education

627. **Ans. (c) > 25** [Ref. Park 21/e p368, Park 22/e p369]

628. **Ans. (a) Broca’s index; (b) Ponderal index; (c) Quetelet index; (d) Corpulence index** [Ref. Park 21/e p369, Park 22/e p369]

629. **Ans. (a) 25-29.99** [Ref. K. Park 22/e p369]

630. **Ans. (b) 32** [Ref. K. Park 22/e p369]

631. **Ans. (b) 30** [Ref. K. Park 22/e p369]

632. **Ans. (d) Corpulence index** [Ref. K. Park 22/e p370]

633. **Ans. (d) 18.5 to 22.99** [Ref. K. Park 22/e p369]

634. **Ans. (c) Ponderal’s index** [Ref. K. Park 22/e p369]

635. **Ans. (b) 18.5 – 24.99** [Ref. K. Park 22/e p369]

636. **Ans. (d) Corpulence index** [Ref. K. Park 22/e p369-70]

637. **Ans. (a) Measurement of obesity** [Ref. K. Park 22/e p370]

Review Questions

638. **Ans. (b) 30** [Ref. Park 21/e p369, Park 22/e p369]
639. Ans. (a) Measurement of obesity [Ref. Park 21/e p369, Park 22/e p369]
640. Ans. (d) Sullivan’s index [Ref. Park 21/e p369, Park 22/e p369]
641. Ans. (c) Quetelet’s index [Ref. Park 21/e p369, Park 22/e p369]
642. Ans. (d) Waist to hip ratio [Ref. Park 21/e p369, Park 22/e p369]
643. Ans. (a) \[\frac{\text{Weight (Kg)}}{\text{(Height)}^2}\] [Ref. Park 21/e p369, Park 22/e p369]

BLINDNESS

644. Ans. (b) 700 [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p29]
645. Ans. (a) Cataract [Ref. Park 21/e p371, Park 22/e p371]

Also Remember

- MCC of blindness in SEAR: Cataract (50 – 80%)
 - Major causes of Low Vision in India: (are similar to causes of blindness)
 1. Cataract (77%) – MCC of Low Vision in India
 2. Refractive Error (19%)
 3. Central corneal opacity
 4. Pterygium
 5. Peripheral corneal opacity
 6. Other causes

646. Ans. (b) <6/60 in better eye [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p36]

- Legal blindness: Is defined as visual acuity (vision) of 20/200 (6/60) or less in the better eye with best correction possible
 - In many areas, people with average acuity who nonetheless have a visual field of less than 20 degrees (the norm being 180 degrees) are also classified as being legally blind.

647. Ans. (d) Onchocerciasis [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p368 and The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p234-45]

- Vision 2020 – The Right To Sight: A global initiative by WHO and International NGOs to reduce avoidable (preventable and curable) blindness by 2020

<table>
<thead>
<tr>
<th>Global Vision 2020 (5 diseases)</th>
<th>Indian Vision 2020 (7 diseases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract</td>
<td>Cataract</td>
</tr>
<tr>
<td>Refractive errors and low vision</td>
<td>Refractive errors and low vision</td>
</tr>
<tr>
<td>Childhood blindness</td>
<td>Childhood blindness</td>
</tr>
<tr>
<td>Trachoma</td>
<td>Trachoma (Focal)</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>Glaucoma</td>
</tr>
<tr>
<td></td>
<td>Diabetic retinopathy</td>
</tr>
<tr>
<td></td>
<td>Corneal blindness</td>
</tr>
</tbody>
</table>

Also Remember

- India was the ‘first country in the world to launch the National Programme for Control of Blindness’ in 1976 with the goal of reducing the prevalence of blindness.

648. Ans. (a) Cataract [Ref. Park 21/e p371, Park 22/e p371]
649. Ans. (b) Cataract [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p36]
Also Remember

- WHO defines Blindness as ‘visual acuity of <3/60 in better eye with best possible correction’
- National Programme for Control of Blindness (NPCB), India defines Blindness as ‘visual acuity of <6/60 in better eye with best possible correction’
- American Medical Association definition of blindness: ‘Central visual acuity of 20/200 or less in the better eye with corrective glasses’ (or central visual acuity of more than 20/200 if there is a visual field defect in which the peripheral field is contracted to such an extent that the widest diameter of the visual field subtends an angular distance less than 20 degrees in the better eye)
- Goal for Blindness in National Health Policy (NHP) 2002: Reduce prevalence of Blindness to 0.5% by 2010
- International symbol of blindness: Long white cane.

650. Ans. (a) Jammu and Kashmir [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 02; p34]

WHO – NPCB SURVEY OF BLINDNESS IN INDIA (1986–89):
- Prevalence of blindness: 1.49%
- Prevalence of one-eyed blindness: 0.8%
- Economically blind (Visual acuity <6/60 in better eye) in India: 11.92 million
- One eye economically blind (Visual acuity <6/60 in worse eye): 7.12 million
- Low vision (<6/18 – 6/60 in better eye): 28.56 million (MCC: Cataract)
- Highest prevalence of blindness: Jammu and Kashmir (2800/100,000 population)
- Lowest prevalence of blindness: Meghalaya (220/100,000 population)

Classification of states based on blindness prevalence:

<table>
<thead>
<tr>
<th>Category</th>
<th>% Prevalence</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>< 1</td>
<td>Delhi, Himachal Pradesh, Punjab, West Bengal, North East States</td>
</tr>
<tr>
<td>Moderate</td>
<td>1 – 1.49</td>
<td>Andhra Pradesh, Assam, Bihar, Gujarat, Haryana, Kerala, Karnataka</td>
</tr>
<tr>
<td>High</td>
<td>1.5 – 1.99</td>
<td>Maharashtra, Orissa, Tamil Nadu, Uttar Pradesh</td>
</tr>
<tr>
<td>Very high</td>
<td>> 2</td>
<td>Jammu and Kashmir, Madhya Pradesh, Rajasthan</td>
</tr>
</tbody>
</table>

651. Ans. (b) Cataract [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p936]

Also Remember

- India was the first country to launch NPCB (1976)
- Trends of blindness in India:

<table>
<thead>
<tr>
<th>Year of survey</th>
<th>Prevalence of blindness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971 – 74 (ICMR)</td>
<td>1.38%</td>
</tr>
<tr>
<td>1986 – 89 (NPCB)</td>
<td>1.49%</td>
</tr>
<tr>
<td>2001 – 02</td>
<td>1.1%</td>
</tr>
<tr>
<td>2006 – 07</td>
<td>1.05%</td>
</tr>
<tr>
<td>Goal by 2010</td>
<td>0.5%</td>
</tr>
<tr>
<td>Goal by 2020</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

652. Ans. (a) Measles; (c) Rubella [Ref. Park 21/e p138, 141, Park 22/e p140, 142]

Also Remember

- About 80% of blindness is avoidable
- Legal Blindness: Visual acuity <6/60 (<20/200) OR Visual field <20° in better eye with best possible correction
- Work Vision: <6/60 (Economic Blindness)
- Walk Vision: <3/60 (Social Blindness)

- Severe Measles: can lead to acute deficiency of Vitamin A, which may lead to:
 - Keratomalacia
 - Blindness from corneal scarring
- Congenital Rubella: may lead to:
 - Cataract
 - Glaucoma
 - Retinopathy
Communicable and Non-communicable Diseases

653. Ans. (b) Underestimation [Ref. K. Park 22/e p371]

Blindness situation in India:
- Estimated prevalence of Blindness in India (Total): 11.2 per 1000 population
- Estimated prevalence of Blindness in India (0-14 years): 0.1 per 1000 population
- Estimated prevalence of Blindness in India (15-49 years): 0.6 per 1000 population
- Estimated prevalence of Blindness in India (50+ years): 77.3 per 1000 population

So if Schools are used where only refractive errors generally constitute blindness (that too very few are actually blind i.e. <6/60) AS COMPARED TO POPULATION (where age-related cataract constitute as major cause of blindness), it would lead to underestimation of prevalence of blindness in the country.

654. Ans. (d) 0.75 [Ref. Disability Guidelines, Office of the Commissioner for Persons with Disabilities p13]

655. Ans. (b) 19.7% [Ref. Park 22/e p372]

Review Questions

656. Ans. (a) Cataract [Ref. Park 21/e p371, Park 22/e p371]
657. Ans. (a) Cataract [Ref. Park 21/e p371, Park 22/e p371]
658. Ans. (a) 3/60 [Ref. Park 21/e p370, Park 22/e p370]
659. Ans. (d) 0.7% [Ref. Park 21/e p371, Park 22/e p371]
660. Ans. (d) Refraction error [Ref. Park 21/e p371-72, Park 22/e p371-72]
661. Ans. (d) 3/60 [Ref. Park 21/e p370, Park 22/e p370]
662. Ans. (d) Cataract [Ref. Park 21/e p372, Park 22/e p372]
663. Ans. (c) Vit. A deficiency [Ref. Park 21/e p371, Park 22/e p371]

MISCELLANEOUS

664. Ans. (d) Risk factor intervention trials [Ref. Park 21/e p342-43, Park 22/e p342-43]

WIDELY REPORTED RISK FACTOR INTERVENTION TRIALS:

- Stanford-three-community study:
 - Aim: To determine if community health education can reduce the risk of cardiovascular diseases
 - Results: Reduction seen 23 – 28%

- The North Kerelia project:
 - Aims: To reduce cardiovascular risk factor levels and to promote early diagnosis, treatment and rehabilitation of patients
 - Results: Reduction seen in CHD deaths in 10 years

- Multiple risk factor intervention trial (MRFIT):
 - Aims: To reduce cardiovascular risk factor levels (smoking, high BP, hypercholesterolemia)
 - Results: Non-significant reduction in reduction seen in CHD deaths in 10 years
 - Interpretation: Control group was not properly chosen (changed habits and lifestyle to an extent not anticipated by designers of trial)

- Oslow diet/ smoking intervention study:
 - Aim: To determine if serum lipids lowering and smoking-cessation would reduce incidence of first attack of CHD in 40-50 yrs males
 - Results: Reduction of MI by 47%
 - Importance: With this study, primary prevention of CHD entered practical field of preventive medicine in an impressive manner.

- Lipid Research Clinics study:
 - Aim: To determine if reducing serum cholesterol (using cholestyramine) would prevent CHD events
 - Results: 8.5% reduction in total cholesterol, 12.6% reduction in LDL-cholesterol; 24% reduction in CHD and 19% reduction in non-fatal MI
Review of Preventive and Social Medicine

665. Ans. (a) Cerebral thrombosis [Ref. Park 21/e p348-50, Park 22/e p348-50]

STROKE (APOPLEXY):
- **WHO definition:** Rapidly developing clinical signs of local (or global) cerebral dysfunction, lasting more than 24 hours or leading to death, with no apparent cause other than vascular origin
 - 24 hour threshold EXCLUDES transient ischemic attacks (TIA)
- **WHO definition:** Rapidly developing clinical signs of local (or global) cerebral dysfunction, lasting more than 24 hours or leading to death, with no apparent cause other than vascular origin
- **Causes of stroke:**
 - Cerebral thrombosis (MCC of stroke or apoplexy)
 - Cerebral hemorrhage
 - Subarachnoid hemorrhage
 - Cerebral embolism

666. Ans. (a) Well-defined etiological agent [Ref. Park 21/e p335-36, Park 22/e p334-35]
- **Gaps in natural history of non communicable diseases:**
 - Absence of a known agent
 - Multifactorial causation
 - Long latent period
 - Indefinite onset

Also Remember

- 6 key sets of risk factors for non communicable diseases:
 - Cigarette use and other forms of smoking
 - Alcohol abuse
 - Failure/ inability to obtain preventive health services
 - Lifestyle changes (dietary patterns, physical activity)
 - Environmental risk factors
 - Stress factors

- **Chronic diseases:** Comprises of all impairments or deviations from normal, which have one or more of the following characteristics:
 - Are permanent
 - Leave residual disability
 - Are caused by non-reversible pathological alteration
 - Require special training of patient for rehabilitation
 - May be expected to require a long period of supervision, observation or care

667. Ans. (b) Hypertension [Ref. Park 21/e p345, Park 22/e p345]
- RULE OF HALVES: Hypertension is an ‘iceberg disease’. Only about half of hypertensive subjects in general population of most of the developed countries are aware of condition, only half of those aware of the problem were being treated and only half of those treated were considered adequately treated.
Communicable and Non-communicable Diseases

- Hypertension (HT) is the MC cardiovascular disorder
- Single most useful test to identify high risk of CHD: Blood Pressure
- Systolic BP is a better predictor of CHD than diastolic BP
- Prevalence of HT in India (1977-78):

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>59.9 per 1000</td>
<td>69.9 per 1000</td>
</tr>
<tr>
<td>Rural</td>
<td>35.5 per 1000</td>
<td>35.9 per 1000</td>
</tr>
</tbody>
</table>

- Tracking of Blood Pressure: If BP of individuals were followed up over a period of years from early childhood into adult life, then those having high BP would continue into same ‘track’ as adults
 - Low BP tends to remain low and high BP tends to become higher as individuals grow older

Figure: Tracking of blood pressure

- Goal of population strategy (Primary prevention) for HT control: To shift the community distribution of BP towards lower levels or ‘biological normality’
- Recommended salt intake to prevent HT: < 5 gm per day

668. Ans. (a) Shift the population curve of risk factors by a population based approach [Ref. K. Park 19/e p307, 20/e p320]

669. Ans. (b) Non-communicable diseases [Ref. World Health Organisation]

- **STEP wise approach to surveillance (STEPS):** Is a simple, standardized method by WHO for surveillance
 - Is of two types
 - STEP wise approach to chronic disease risk factor surveillance
 - STEP wise approach to Stroke surveillance
 - Comprises of 3 steps:

<table>
<thead>
<tr>
<th>STEPS</th>
<th>CORE</th>
<th>EXPANDED</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 1</td>
<td>Tobacco use</td>
<td>Tobacco use</td>
</tr>
<tr>
<td>Behavioural measurements</td>
<td>Alcohol consumption</td>
<td>Alcohol consumption</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td>Diet</td>
</tr>
<tr>
<td></td>
<td>Physical activity</td>
<td>Physical activity</td>
</tr>
<tr>
<td></td>
<td>History of raised BP</td>
<td>History of raised BP</td>
</tr>
<tr>
<td></td>
<td>History of diabetes</td>
<td>History of diabetes</td>
</tr>
<tr>
<td></td>
<td>Height and weight</td>
<td>Height and weight</td>
</tr>
<tr>
<td></td>
<td>Waist BP</td>
<td>Waist BP</td>
</tr>
<tr>
<td>STEP 2</td>
<td>Blood glucose</td>
<td>Blood glucose</td>
</tr>
<tr>
<td>Physical measurements</td>
<td>Blood lipids</td>
<td>Blood lipids</td>
</tr>
<tr>
<td>STEP 3</td>
<td>Biochemical measurement</td>
<td>Triglycerides and HDL cholesterol</td>
</tr>
</tbody>
</table>
Review of Preventive and Social Medicine

670. Ans. (b) TB. [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p419, 591, 612]
 - TB in India (National TB Survey, ICMR 1955-58):
 - Rural population suffered as equally as urban population
 - Elderly suffered more than young ones
 - Mental illness in India
 - Prevalence rates are significantly higher in urban areas (Except for epilepsy and hysteria)
 - Bronchitis and Lung Cancer in India: Is more common in Urban areas.

671. Ans. (b) FBS >125 mg/dl and PPBS >199 mg/dl [WHO Guidelines]
 WHO GUIDELINES FOR DIAGNOSIS OF DIABETES MELLITUS
 - Fasting plasma glucose level: > 126 mg/dL (> 7 mmol/L)
 - 2-hour venous plasma glucose in Glucose tolerance test: > 200 mg/dL (> 11.1 mmol/L)
 - Casual plasma glucose: > 200 mg/dL (> 11.1 mmol/L)
 - Glycated haemoglobin: > 6.5%

672. Ans. ALL CHOICES [Ref. Park 21/e p374-375, Park 22/e p374-75]
 - Accidents and injuries in India (in order of decreasing numbers):
 - Road traffic accidents
 - Work related injuries
 - Burns
 - Violence, suicide
 - Poisoning
 - Drowning

673. Ans. (b) Road traffic accident [Ref. K. Park 22/e p375]

674. Ans. (b) Fasting blood sugar [Ref. Oxford Desk Reference OBG by Arulkumaran, 1/e, p201]

675. Ans. (a) Cyclic trends [Ref. Park 22/e p374]

Review Questions

676. Ans. (d) Congenital [Ref. Park 21/e p350-51, Park 22/e p350-50]

677. Ans. (d) Screening for hypertension [Ref. Park 21/e p341-42, Park 22/e p341-42]

678. Ans. (b) Obesity [Ref. Park 21/e p369, Park 22/e p369]

679. Ans. (a) LDL [Ref. Park 21/e p340, Park 22/e p340]

680. Ans. (b) Sarcoidosis [Ref. Internet]

681. Ans. (d) High intake of vitamin-A [Ref. Park 21/e p364-65, Park 22/e p364-65]

682. Ans. (b) Coronary heart disease [Ref. Park 21/e p343, Park 22/e p343]

683. Ans. (c) 3 months [Ref. Park 21/e p366, Park 22/e p366]

684. Ans. (a) 200 [Ref. Park 21/e p340, Park 22/e p340]
SOME IMPORTANT HEALTH PROGRAMMES OF INDIA

Refer to Annexure 6

REVISED NATIONAL TB CONTROL PROGRAMME

Epidemiology of Tuberculosis in India

- **ARI (India):** 1-2% (average ARI = 1.7%)
- For every 1% rise of ARI, there are 50 SS +ve cases/lac population.

<table>
<thead>
<tr>
<th>Index</th>
<th>Situation in India</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of Infection</td>
<td>1-2% (- 1.7%)</td>
<td>ARI – Tuberculin Conversion Index²</td>
</tr>
<tr>
<td>Prevalence of Infection</td>
<td>40%</td>
<td>Standard Tuberculin Test²</td>
</tr>
<tr>
<td>Incidence of Disease</td>
<td>1.7 per 1000</td>
<td>New cases²</td>
</tr>
<tr>
<td>Prevalence of Disease</td>
<td>0.2%</td>
<td>All cases</td>
</tr>
</tbody>
</table>

Key Notable Points regarding Tuberculosis

- Every TB sputum positive patient can infect up to 10-15 individuals in a year.
 - *Without treatment, 50% of TB patients will die, 25% will remain healthy and 25% will develop chronic infectious TB.*
- TB is ‘Barometer of Social Welfare in India’.
- TB (AFB) Bacillus discovered by: Robert Koch²
 - *TB Bacilli are alcohol and acid fast*³
 - *Generation time of TB bacilli: 20 hours*³
 - *TB bacteria remain alive: in sputum for 1 day and in droplet nuclei for 10 days.*³
- Diagnosis in RNTCP: Ziehl Neelsen Staining³
- World TB Day: 24th March³
- TB was declared as ‘Global emergency in 1983’ by WHO³
- TB is the MC Opportunistic Infection (OI) in HIV in India³
- Elimination level for Tuberculosis (WHO and STOP TB Strategy)³: <1 case per million population (to eliminate TB as a public health problem)
- TB Institutes of importance in India:
 - National Tuberculosis Institute (NTI) – Bangalore³
 - Tuberculosis Research Centre – Chennai
 - LRS Institute of TB and Respiratory Diseases – New Delhi

Annual Risk of Infection (ARI)

- **Definition:** Is the proportion of population which will be primarily infected with tuberculosis in course of 1 year
- **Public health importance:**
 - Is incidence of infection of TB
 - Is known as ‘Tuberculin Conversion Index’³
 - Best indicator of trend of TB unaffected by current control measures³
 - Most informative index of magnitude of problem of TB³.

For every 1% rise of ARI, there are 50 SS +ve cases/lac population³.

ARI – Tuberculin Conversion Index³.

World TB Day: 24th March.

National Tuberculosis Institute (NTI) – Bangalore.
Zeihl Neelsen (ZN) Staining

- **Importance**: Sputum smear of a suspected TB patient is used for the diagnosis.
- **Decolourizer**: 25% sulphuric acid
- **Acid Fast Bacilli (AFB) of TB**
 - 'Rod shaped' with 'beaded appearance' (Beads: Mycolic Acid)
- Minimum bacillary load for a positive result: >10,000 bacilli per ml sputum
- Results of ZN staining: Minimum 100 fields examined

<table>
<thead>
<tr>
<th>Grading of smears</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>Scanty</td>
<td>1 – 9 bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>1+ grading</td>
<td>10 – 99 bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>2+ grading</td>
<td>1 – 10 bacilli per oil immersion field</td>
</tr>
<tr>
<td>3+ grading</td>
<td>> 10 bacilli per oil immersion field</td>
</tr>
</tbody>
</table>

Directly Observed Treatment Short Course (DOTS)

- **Description**: Is a community based Tuberculosis treatment and care strategy which combines the benefit of supervised treatment with community based care and support.
- **Success of DOTS depend upon 5 components**:
 - Political commitment
 - Good quality sputum microscopy
 - Directly observed treatment
 - Uninterrupted supply of good quality drugs
 - Accountability
- **Ensures high cure rates through 3 components**:
 - Appropriate medical treatment
 - Supervision and motivation by a health/non-health personnel
 - Monitoring of disease by health services
- **DOTS is given by peripheral health staff - ‘DOTS Agents’ (MPWs, Voluntary workers like teachers, Anganwadi workers, Dais)**
 - Incentive/honorarium paid: 150/- per patient completing treatment
- **Drugs are supplied in ‘patient-wise boxes containing full course of treatment’**
 - Intensive phase: Each blister pack has one day’s medication
 - Continuation phase: Each blister pack has one week’s medication
- **Principles of DOTS administration**:
 - DOTS is directly observed treatment short course chemotherapy
 - In DOTS during the intensive phase of treatment a health worker are other trained person watches as the patients swallows the drugs in his presence
 - During continuation phase the patient is issued medicine for one week in multiblister combipack of which the first dose is swallowed by the patient in the presence of health worker or trained person
 - Consumption of medicine in the continuation phase is also checked by return of empty multiblister combipack when patient come to collect medicine for the next week
 - In this programme alternate day treatment is used
 - Patient compliance is critically important throughout the prescribed period of treatment. All other consideration are secondary
 - Drugs are given category wise, same regimen is not given to all patient
 - Streptomycin is given in category II only
 - In category-I new sputum smear, positive cases sputum examination is done in 2, 4 and 6 months.
Revised National Tuberculosis Control Programme (RNTCP)

- **Objectives of RNTCP**:
 - To achieve a cure rate of at least 85% through administration of short course chemotherapy (SSC), and
 - To achieve a case detection rate of 70% (only after having achieved the desired cure rate)

- **History of RNTCP**:
 - RNTCP (based on SSC strategy), began as a pilot in 1993 and was launched as a national program in 1997
 - Rapid RNTCP expansion began in late 1998
 - By 24th March 2006, the entire country was covered under DOTS, covering 1114 million people

- **Infrastructure**:
 - The RNTCP designated 'Microscopy Centre' is established for approx. 100,000 population (50,000 in hilly and mountainous areas)
 - Senior TB Laboratory Supervisor (STLS) is one for every 5 microscopy centres
 - 1 STLS per 5 lac population
 - STLS rechecks all +ve slides and 10% of all -ve slides

- **Diagnosis in RNTCP**:
 - In RNTCP, mainstay of diagnosis is sputum microscopy; the sputum smears are stained for acid fast bacilli (AFB) with 'Zeihl Neelson (ZN) Stain'
 - Decolorizer: 25% sulphuric acid
 - Counter-stain Q: 0.1% Loeffler's methylene blue (or 1% picric acid or 0.2% malachite green)

AFB Sputum Smears (SS) for Diagnosis of a Case of TB [New Guidelines]

- Tuberculosis suspect: A person with productive cough > 2 weeks with or without hemoptysis, fever for > 2 weeks, chest pain, weight loss, night sweats, and loss of appetite is subjected to 2 SS examinations

- Number of specimen(s) required for diagnosis of smear positive pulmonary Tuberculosis: TWO
 - '2 sputum smears' over 2 days period:
 Spot Sample (Day 1)
 Morning Sample (Day 2)

- Chances of detecting smear positive cases:
 - **With 1 sample**: 80%
 - **With 2 samples**: 93%

- Interpretation of results of 2 sputum smear examinations:
 - None sputum positive: Give antibiotics for 10 - 14 days
 - Cough relieved: Non-tuberculosis person
 - Cough persists: Repeat two sputum smear examinations
 (a) None sputum positive: X-ray chest
 Findings suggestive of TB: Sputum negative tuberculosis; Start ATT
 No findings suggestive of TB: Non-tuberculosis person
(b) One sputum positive: Sputum positive pulmonary tuberculosis; Start ATT
(c) Two sputum positive: Sputum positive pulmonary tuberculosis; Start ATT
 - One sputum positive: Sputum positive pulmonary tuberculosis; Start ATT
 - Two sputum positive: Sputum positive pulmonary tuberculosis; Start ATT

Categorization and Treatment Regimens in RNTCPQ [New Guidelines]

<table>
<thead>
<tr>
<th>Category</th>
<th>Type of patient</th>
<th>Regimens</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat I</td>
<td>New SS+ve, New SS–ve Seriously ill extra-pulmonary</td>
<td>2(HRZE)₂</td>
<td>4(HR)₃</td>
</tr>
<tr>
<td>Cat II</td>
<td>SS+ve relapse SS+ve failure SS+ve treatment after default</td>
<td>2(HRZES)₂ + ₁(HRZE)₂</td>
<td>5(HRE)₃</td>
</tr>
<tr>
<td>Cat IV*</td>
<td>MDR TB</td>
<td>4(KOCZEEI)</td>
<td>12-18 (OCEEt)</td>
</tr>
</tbody>
</table>

(*Category IV - Dots Plus; Category III has been merged in Category I*)

- **Numbers**: The numbers before letters refer to months of treatment (2 imply two months of treatment). The numbers after letters refer to frequency of administration per week (3 imply thrice per week).
- **Seriously ill extra-pulmonary TB**: Meningitis, disseminated TB, tuberculous pericarditis, peritonitis, bilateral or extensive pleurisy, spinal disease with neurological complaints, SS–ve TB with extensive perenchymal involvement, and intestinal and genito-urinary TB.

Daily Self-administered Non-DOTS Regimes [New Guidelines]

- **Indication**: ONLY if there are adverse reactions to drugs or patients compliance is not possible

<table>
<thead>
<tr>
<th>Non-DOTS regime 1 (ND1)</th>
<th>Pulmonary (SS+ve) seriously ill Extra-pulmonary seriously ill</th>
<th>2 (SHE) + 10 (HE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-DOTS regime 2 (ND2)</td>
<td>Pulmonary (SS–ve) not seriously ill Extra-pulmonary not seriously ill</td>
<td>12 (HE)</td>
</tr>
</tbody>
</table>

AFB Sputum Smears (SS) for Follow-up of a Case of TB during Treatment [New Guidelines]

- ‘2 sputum smears’ over 2 days period
- Interpretation of results of 2 sputum smear examination:
 - None +ve: Declared SS -ve
 - One +ve: Declared SS +ve
 - Two +ve: Declared SS +ve
- If SS +ve at end of Intensive Phase (IP):
 - Cat I: Extend IP by 1 month. Do SS examination at end of extended IP. Transfer the patient to Continuation phase (CP), irrespective of SS examination results
 - Cat II: Extend IP by 1 month. Do SS examination at end of extended IP. Transfer the patient to Continuation phase, irrespective of SS examination results.
National Health Programmes, Policies and Legislations in India

- **Follow-up smears examination timings:**

<table>
<thead>
<tr>
<th>Category</th>
<th>If SS –ve at end of IP</th>
<th>If SS +ve at end of IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I</td>
<td>2m, 4m, 6m</td>
<td>2m, 3m*, 5m, 7m</td>
</tr>
<tr>
<td>Category II</td>
<td>3m, 5m, 8m</td>
<td>3m, 4m*, 6m, 9m</td>
</tr>
<tr>
<td>Category IV</td>
<td>IP: Once/month</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CP: Once/3 months</td>
<td>-</td>
</tr>
</tbody>
</table>

(*Irrespective of SS examination results, patients is started with CP treatment)

Some Important Working Definitions in RNTCP

- **New Case**¹: A person suffering from TB who has ‘never taken treatment or took treatment for <4weeks (1 month)’
- **Cured**²: Sputum smear positive (SS +ve) who has completed treatment, and has ‘sputum smear negative (SS –ve) on atleast 2 separate occasions with one at the end’ (completion of treatment)
- **Relapse**: A person ‘declared cured returns back as SS +ve’
- **Failure**³: A person on treatment who is SS +ve at or after 5 months of treatment
- **Defaulter**⁴: A person who, at any time after registration, ‘has not taken anti-TB drugs for 2 months or more consecutively'.

Drug Resistance in TB

- **Primary (Initial) Resistance**: When a person contract infection from a person with resistant bacilli of TB
- **Secondary (Acquired) Resistance**: Resistance developing during the course of treatment for TB
- **Multidrug Resistant TB (MDR-TB)**⁵: Resistance to Isoniazid and Rifampicin ‘with or without resistance to other drugs’
 - **Treatment of MDR-TB**⁵:
 - DOTS PLUS (Category IV)
 - Must be done on basis of sensitivity testing
 - Directly observed therapy certainly helps to improve outcomes and is considered an integral part of MDR-TB treatment
 - When sensitivities are known and the isolate is confirmed as resistant to both INH and RMP, five drugs should chosen in the following order⁶ (based on known sensitivities):
 - Aminoglycoside (e.g., amikacin, kanamycin) or polypeptide antibiotic (e.g., capreomycin)
 - pyrazimamide
 - ethambutol
 - fluoroquinolones: moxifloxacin preferred
 - rifabutin
 - cycloserine
 - thioamide: prothionamide or ethionamide
 - PAS
 - macrolide: e.g. clarithromycin
 - linezolid
 - high-dose INH (if low-level resistance)
 - interferon-alpha
 - thioridazine
- **Extensive Drug Resistant TB (XDR–TB)**⁷: Resistance to rifampicin and isoniazid AND to any member of the quinolone family AND to one of the injectable second-line drugs (kanamycin, capreomycin, or amikacin)
 - XDR-TB is MDR TB with further resistance to 3 – 6 classes of second line drugs (Older definition⁷)

Failure³: A person on treatment who is SS +ve at or after 5 months of treatment.

I

Treatment of MDR-TB⁸:
- DOTS PLUS (Category IV).

[1] Some Important Working Definitions in RNTCP
[2] New Case: A person suffering from TB who has ‘never taken treatment or took treatment for <4weeks (1 month)’
[3] Cured: Sputum smear positive (SS +ve) who has completed treatment, and has ‘sputum smear negative (SS –ve) on at least 2 separate occasions with one at the end’ (completion of treatment)
[4] Relapse: A person ‘declared cured returns back as SS +ve’
[5] Failure: A person on treatment who is SS +ve at or after 5 months of treatment
[6] Defaulter: A person who, at any time after registration, ‘has not taken anti-TB drugs for 2 months or more consecutively’.
[8] Multidrug Resistant TB (MDR-TB): Resistance to Isoniazid and Rifampicin ‘with or without resistance to other drugs’
[9] Treatment of MDR-TB:
- DOTS PLUS (Category IV).
[10] Extensive Drug Resistant TB (XDR–TB): Resistance to rifampicin and isoniazid AND to any member of the quinolone family AND to one of the injectable second-line drugs (kanamycin, capreomycin, or amikacin)
- XDR-TB is MDR TB with further resistance to 3 – 6 classes of second line drugs (Older definition)
- Principles of treatment for MDR-TB and for XDR-TB are same
- XDR-TB does not transmit easily in healthy populations, yet is capable of causing ‘epidemics in populations which are already stricken by HIV’

Drug Resistance (TB) in India:

<table>
<thead>
<tr>
<th>Drug Resistance</th>
<th>INH Resistence</th>
<th>Rifampicin Resistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary drug resistance</td>
<td>3-13%</td>
<td>11-22%</td>
</tr>
<tr>
<td>Acquired drug resistance</td>
<td>34-67%</td>
<td>0-53%</td>
</tr>
<tr>
<td>MDR – TB²</td>
<td>3-42%</td>
<td></td>
</tr>
</tbody>
</table>

Tuberculin Test and Mantoux Test (Pirquet test or PPD Test)

- Tool for detecting TB infection
- **Positive reaction:** past or present infection by Mycobacterium TB⁰
- **Dose:** 1 Tuberculin Unit (TU) in 0.1 ml⁰
- **WHO advocated preparation:** PPD-RT-23 with Tween–80
- **Reading after 72 hours**: (horizontal transverse diameter of induration⁰):
 - Reactions >10 mm: Positive
 - Reactions 6-9 mm: Doubtful
 - Reactions <6 mm: Negative

Tuberculin test conversion: An increase > 10 mm within a 2-year period, regardless of age

False Mantoux Reactions:

<table>
<thead>
<tr>
<th>False positive Mantoux⁰</th>
<th>False negative Mantoux⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty technique of injection</td>
<td>Pre-allergic phase</td>
</tr>
<tr>
<td>Using degraded tuberculin</td>
<td>High fever</td>
</tr>
<tr>
<td>Too deep injection</td>
<td>Measles and chicken pox</td>
</tr>
<tr>
<td>Infection of other mycobacterium</td>
<td>Whooping cough</td>
</tr>
<tr>
<td>Repeated tuberculin testing</td>
<td>Malnutrition</td>
</tr>
<tr>
<td>Prior BCG vaccine⁰</td>
<td>HIV/AIDS⁰</td>
</tr>
<tr>
<td>Use of anti-allergic drugs</td>
<td>Use of immuno-suppressants</td>
</tr>
</tbody>
</table>

Antitubercular Drugs

<table>
<thead>
<tr>
<th>Bactericidal drugs⁰</th>
<th>Bacteriostatic drugs⁰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>Rifampicin</td>
<td></td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Pyrizinamide</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Thiaacetazone</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>Cycloserine</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>PAS</td>
</tr>
</tbody>
</table>

- **Isoniazid:**
 - First effective bactericidal drug used to treat tuberculosis
 - May be bacteriostatic at lower concentrations
 - Acts on extracellular as well as intracellular organisms
- **Rifampicin:**
 - Only bactericidal drug effective against ‘persisters’ or dormant bacilli in solid caseous lesions⁰
 - Acts on extracellular as well as intracellular organisms⁰
 - Acts best on slowly or intermittently dividing (spurters)⁰
National Health Programmes, Policies and Legislations in India

Dosages of Antitubercular Drugs

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Daily therapy<sup>Q</sup></th>
<th>Thrice weekly therapy<sup>Q</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>5 mg/kg</td>
<td>10 – 15 mg/kg</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>10 mg/kg</td>
<td>10 mg/kg</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>25 mg/kg</td>
<td>35 mg/kg</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>15 mg/kg</td>
<td>15 mg/kg</td>
</tr>
<tr>
<td>Ethambutol</td>
<td>15 mg/kg</td>
<td>30 mg/kg</td>
</tr>
</tbody>
</table>

Important Facts of Antitubercular Drugs

- Most effective anti-tubercular drug: Rifampicin^Q
- Most bactericidal antitubercular drug: Rifampicin^Q
- Most toxic antitubercular drug: Isoniazid
- Antitubercular drug causing rapid sputum conversion: Isoniazid
- Antitubercular drug causing orange discoloration of urine: Rifampicin^Q
- Antitubercular drug first to develop resistance: Isoniazid^Q
- Antitubercular drug contraindicated AIDS patients on Protease Inhibitors: Rifampicin^Q
- Antitubercular drug contraindicated in HIV: Thiacetazone^Q (Exfoliative dermatitis)
- Antitubercular drugs contained in all phases of all categories of DOTS: Rifampicin and Isoniazid^Q
- Injectable Antitubercular drug: Streptomycin^Q
- Antitubercular drug contraindicated in pregnancy: Streptomycin^Q
- Antitubercular drug contraindicated in children < 6 years age: Ethambutol^Q
- Antitubercular drug causing Optic neuritis (Red-Green color blindness): Ethambutol^Q
- Antitubercular drug causing vestibular damage: Streptomycin^Q

NATIONAL POLIO ELIMINATION PROGRAMME (NPEP)

Pulse Polio Immunization (PPI) Programme in India

- **Launched in India**: 1995–96^Q (1st round on 9th Dec 1995 and 20th Jan 1996)
 - First PPI targeted children < 3 years age
 - Later on WHO recommended age group be 0-5 years (1996-97)
- **Meaning of “Pulse”**: Sudden, simultaneous mass administration of Oral Polio Vaccine (OPV) on a single day to “all children 0–5 years age”, irrespective of their previous immunization status
 - PPI replaces wild virus with vaccine virus from the community
 - PPI is over and above routine immunization
- **Intensive Pulse Polio Immunization (IPPI)**: Intensification of PPI has been done by adding additional rounds at fixed booths followed by “house-to-house search-and-vaccinate” component
- **Success of PPI (India)**: 35000 cases annually in 1995-96 to NIL case in 2013

Basic Strategies to Eradicate Poliomyelitis from India^Q

- Routine immunization
- PPI/National Immunization Day (NID)/ Sub-NID (SNID)
- Surveillance of acute flaccid paralysis (AFP)
- Conduct extensive house-to-house immunization mopping-up campaigns

Pyrazinamide:
- Acts on intracellular bacilli
- Acts on bacilli at sites of inflammatory response

Antitubercular drug causing Optic neuritis (Red-Green color blindness): Ethambutol.
Review of Preventive and Social Medicine

Vaccine Vial Monitor (VVM)

- **Description:** A simple tool (sticker on OPV vial) which enables vaccinator to know ‘whether vaccine is potent’ at the time of administration\(^5\)
- Mandatory since 1998 for quality assurance
- **WHO Grading of VVM (OPV):**

![VVM Grades](https://kat.cr/user/Blink99/)

Figure: VVM (Vaccine Vial Monitor)

Acute Flaccid Paralysis (AFP) Case Investigation\(^6\)

- **Acute Flaccid Paralysis (AFP):** Acute onset (<4 weeks) in a child aged <15 years, or any case of paralytic illness in a person of any age when polio is suspected
 - **Acute:** rapid progression of from onset to maximum paralysis
 - **Flaccid:** loss of muscle tone, 'floppy' as opposed to spastic or rigid
 - **Paralysis:** weakness, loss of voluntary movement
- **Differential diagnosis of AFP\(^6\):** Descending asymmetric flaccid LMN paralysis
 - Guillain Barre Syndrome (Cytologico-albuminic dissociation\(^6\))
 - Transverse myelitis (Normal CSF, sensory loss +, bladder dysfunction +)
 - Traumatic neuritis (any age, only one leg involved)
 - Other Non-polio enteric viruses: Coxsackie-B, ECHO, Enterovirus type 70 and 71, Mumps
- **Active case search in the community:** In the community where an AFP case resides or where an AFP case has visited during the incubation period for polio (4-25 days before paralysis onset\(^6\)), a house-to-house active case search is conducted to find additional AFP cases that may have occurred
 - This activity is carried out immediately along with ORI
 - A search is conducted for any children <15 years who have had the onset of AFP within the preceding 60 days\(^6\)
 - All cases that are found are investigated immediately, with collection from the case of two stool specimens before administration of OPV
- **Adequate stool sample collection\(^6\):** From every case of AFP, stool samples are collected for diagnosis of cases of poliomyelitis
 - 2 stool samples
 - 24 - 48 hours apart
 - Within 14 days of onset of paralysis\(^5\) (or maximum 8 weeks)
 - Each 8 grams (adult thumb size) weight\(^6\)
 - Collect in clean, dry screw-capped container (need not be sterile, no preservative/transport media required)
 - Transport to laboratory in ‘Reverse cold chain’\(^5\) (+2° to +8°C)
 - Standard Lab Request Form (LRF) filled accompany the specimens
- **Outbreak response immunization (ORI):** Following the AFP case investigation and stool specimen collection, ORI is organized in community
 - Children aged 0-59 months are given one dose of OPV regardless of previous immunization\(^5\) (in the village/locality of the AFP case)
 - Travel history of the child with AFP may suggest additional places of stay where ORI should also be conducted
 - At least 500 children are vaccinated\(^5\)

\(^{I}\) Transport to laboratory in 'Reverse cold chain'\(^5\) (+2° to +8°C).
WHO Indicators of AFP Surveillance & Laboratory Surveillance

- **Two most critical indicators**:
 - Non-polio AFP rate in children < 15 years of age (Target > 1/100,000): If it is < 1/100,000 then the surveillance system is probably missing cases of AFP
 - Reported AFP cases with 2 stool specimens collected < 14 days since paralysis onset (Target > 80%).

- **Other Indicators**:
 - Timeliness of weekly ‘zero reporting’ (Target > 80%)
 - Reported cases investigated < 48 hours of report (Target > 80%)
 - Completeness of weekly ‘zero reporting’ (Target > 90%)
 - Reported AFP cases with a follow-up exam at least 60 days after paralysis onset to verify the presence of residual paralysis or weakness (Target > 80%): AFP cases that should undergo 60-day follow-up include
 - cases with inadequate or no stool specimens
 - cases with isolation of vaccine virus from the stool
 - cases with isolation of wild poliovirus from the stool
 - any case that the investigator thought was strongly suggestive of poliomyelitis on initial examination (‘hot case’)
 - Specimens arriving at the national lab < 3 days of being sent (Target > 80%)
 - Specimens arriving at the laboratory in ‘good condition’ (Target > 80%)
 - there are frozen ice packs or ice, or a temperature indicator (showing < 8°C) in the container
 - the specimen volume is adequate (> 8 grams)
 - there is no evidence of leakage or desiccation
 - appropriate documentation (laboratory request/reporting form) is completed
 - Specimens with a ‘turn-around time’ < 28 days (Target > 80%): The turn-around time is the time between specimen receipt and reporting of results
 - Stool specimens from which a non-polio enterovirus is isolated (Target > 10%): An indicator of the quality of the ‘reverse cold chain’ (i.e. that the specimen has been continuously maintained at temperatures <8°C during transportation from the field to the laboratory) and how well the laboratory is able to perform routine isolation of enteroviruses.

AFP and Poliomyelitis Data – India [Till 15th November, 2014]

<table>
<thead>
<tr>
<th>Year</th>
<th>No. of AFP cases</th>
<th>No. of polio cases</th>
<th>P1 type</th>
<th>P2 type</th>
<th>P3 type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>60,941</td>
<td>1</td>
<td>0</td>
<td>1(VDPV)</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>49,950</td>
<td>NIL*</td>
<td>0</td>
<td>5 (VDPV)</td>
<td>0</td>
</tr>
<tr>
<td>2014</td>
<td>46,171</td>
<td>NIL</td>
<td>0</td>
<td>3 (VDPV)</td>
<td>0</td>
</tr>
</tbody>
</table>

RCH PROGRAMME2

RMNCH+A (Reproductive, Maternal, Newborn, Child and Adolescent Health) Strategy

- **PLUS indicates**:
 - Inclusion of adolescence as a distinct ‘life stage’
Review of Preventive and Social Medicine

- Linking of maternal and child health to reproductive health and other components
- Linking of community and facility-based care as well as referrals
 • **Goals for RMNCH+A strategy (As per 12th Five year plan)**;
 - Reduction of IMR to 25 per 1,000 live births by 2017
 - Reduction in MMR to 100 per 100,000 live births by 2017
 - Reduction in TFR to 2.1 by 2017

<table>
<thead>
<tr>
<th>Adolescents Priority interventions:</th>
<th>Reproductive health Priority interventions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition; IFA supplementation</td>
<td>Community-based promotion and delivery of contraceptives</td>
</tr>
<tr>
<td>Adolescent health clinics</td>
<td>Promotion of spacing methods (interval IUCD)</td>
</tr>
<tr>
<td>Information and counselling</td>
<td>Sterilization services (vasectomies and tubectomies)</td>
</tr>
<tr>
<td>Menstrual hygiene</td>
<td>Comprehensive abortion care (includes MTP Act)</td>
</tr>
<tr>
<td>Preventive health checkups</td>
<td>Prevention and management of STI/RTI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New born and Child care Priority interventions:</th>
<th>Pregnancy and Child birth Priority interventions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home-based newborn care, prompt referral</td>
<td>AN care & tracking of high-risk pregnancies</td>
</tr>
<tr>
<td>Child nutrition, Micronutrients supplementation</td>
<td>Skilled obstetric care</td>
</tr>
<tr>
<td>Immunization IMNCI</td>
<td>Immediate essential newborn care & resuscitation</td>
</tr>
<tr>
<td>Facility-based care of the sick newborn</td>
<td>Emergency obstetric and new born care</td>
</tr>
<tr>
<td>Early detection and management of 4Ds</td>
<td>Postpartum care, IUCD and sterilization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reproductive health</th>
<th>Maternal health</th>
<th>Newborn health</th>
<th>Child health</th>
<th>Adolescent health</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP commodities:</td>
<td>Injection</td>
<td>Injection</td>
<td>ORS</td>
<td>Tablet</td>
</tr>
<tr>
<td>Tubal rings, CuT</td>
<td>Oxytocin</td>
<td>Vitamin K</td>
<td></td>
<td>Albenazole</td>
</tr>
<tr>
<td>380A, IUCD 375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCPs, Mala N,</td>
<td>Tablet</td>
<td>Mucus extractor</td>
<td>Zinc dispersible</td>
<td>Tablet</td>
</tr>
<tr>
<td>Condoms</td>
<td>Misoprostol</td>
<td></td>
<td>tablets</td>
<td>Dicyclomine</td>
</tr>
<tr>
<td>Emergency</td>
<td>Inj. Magnesium</td>
<td>Vaccines: BCG,</td>
<td>Salbutamol</td>
<td></td>
</tr>
<tr>
<td>contraceptive pills</td>
<td>sulphate</td>
<td>OPV, HepB</td>
<td>syrup/ nebulising</td>
<td></td>
</tr>
<tr>
<td>(LNG 1.5 mg)</td>
<td></td>
<td></td>
<td>solution</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pregnancy testing kits</th>
<th>Nischaray</th>
<th>Vaccines: DPT, OPV, Measles, Hep-B, JE, Pentavalent vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablet Mifepristone</td>
<td>Syrup</td>
<td>Vitamin A</td>
</tr>
</tbody>
</table>

- All facilities must have IFA tablets, IFA syrup, PCM, Chloroquine, Dexamethasone, Trimethorim-Sulphamethoxazole, Amoxycillin, Ampicillin, Gentamicin, Ceftriaxone, Thermometer, Weighing scale, BP apparatus, Stop watch, Cold box, Vaccine carrier, Oxygren Bag & mask, Testing equipments of Sugar/ Hemoglobin/ Urine

Components of Reproductive and Child Health Programme

- Community Needs Assessment Approach (CNAA)
- Integrated packages of services for mother and child
- MTP services at PHC and safe abortion
- Control and prevention of RTI/ STI

(4Ds: Defects, Deficiencies, Diseases and Disability in children (0-18 years)

- **5 X 5 Matrix of RMNCH+A: Minimum Essential commodities**

https://kat.cr/user/Blink99/
National Health Programmes, Policies and Legislations in India

- Adolescent health
- Services in urban slums
- Improving quality of services
- Unmet needs and sub-centre action plans
- Communication strategy
- Gender sensitiveness
- Greater involvement of Panchayati Raj Institutions (PRIs), NGOs and community

BEmONC & CEmONC Components

<table>
<thead>
<tr>
<th>BEmONC</th>
<th>CEmONC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Emergency Obstetric & Newborn Care</td>
<td>Comprehensive Emergency Obstetric & Newborn Care</td>
</tr>
<tr>
<td>24 hour delivery & neonatal services</td>
<td>Additional services</td>
</tr>
<tr>
<td>Level II facilities</td>
<td>Level III facilities</td>
</tr>
<tr>
<td>24 X 7 PHC, CHC</td>
<td>District hospital, 1 FRU per 500,000 population</td>
</tr>
<tr>
<td>Manual removal of placenta</td>
<td>All components of BEmONC</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Surgical capability</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Blood transfusion</td>
</tr>
<tr>
<td>Uterotonics</td>
<td></td>
</tr>
<tr>
<td>Vacuum assisted delivery</td>
<td></td>
</tr>
<tr>
<td>MVA off retained products of conception</td>
<td></td>
</tr>
<tr>
<td>Newborn resuscitation</td>
<td></td>
</tr>
</tbody>
</table>

(Level I facilities include other PHCs/ Subcentres/ delivery points; MVA: Manual vacuum aspiration)

Couple Protection Rate (CPR)

- **Definition**: Is defined as the percent of eligible couples protected against childbirth by one of the approved methods of family planning, i.e. condoms, oral pills, IUDs or sterilization
 - CPR is an indicator of ‘contraceptive prevalence in a community’
 - Demographers believe that ‘NRR = 1 can be achieved only with CPR > 60%’
 Thus goal under the earlier National Population Policy was CPR 60% by 2000
- **Effective Couple Protection Rate (ECPR)**: Is defined as the percent of eligible couples ‘effectively’ protected against childbirth by one of the approved methods of family planning, i.e. condoms, oral pills, IUDs or sterilization.

IFA Tablets & Iron Deficiency Anaemia

- **Iron and Folic Acid content per IFA tablet**:
 - Adult tablet: 100 mg elemental iron and 500 mcg folic acid
 - Pediatric tablet: 20 mg elemental iron and 100 mcg folic acid
 - For preterm infants, recommended Iron and Folic Acid content per IFA tablet: 10 – 15 mg elemental iron and 100 mcg folic acid
- ‘National Nutritional Anemia Prophylaxis Programme’ was launched in 1970 to prevent nutritional anaemia in mothers and children
 - This programme is being taken up by Maternal and Child Health (MCH) Division of Ministry of Health and Family Welfare; now it is part of RCH programme.
- Prevalence of Iron Deficiency Anemia (IDA) in India: [NFHS – 3, 2005 – 06]
Integrated Management of Neonatal and Childness Illness (IMNCI)

- **IMNCI is a ‘strategy for reducing morbidity and mortality associated with major causes of childhood illness’**
- **Curative component includes management of**
 - Diarrhoea
 - Measles
 - Pneumonia
 - Malaria
 - Severe malnutrition and nutritional counseling
- **Health promotive and preventive component:**
 - Breast feeding
 - Nutritional counseling
 - Vitamin A and iron supplementation
 - Immunization
 - Treatment of helminthic infestation
- **Target:** Children < 5 years age
 - Children < 2 months age
 - Children aged 2 months – 5 years
- **Components of IMNCI strategy:**
 - Improving case management skills of health care staff
 - Improving overall health systems
 - Improving family and community health practices
- **Case management process:** Is presented in a series of charts (Mnemonic: A Case Is Treated & Care Given)
 - Assess the young infant or child
 - Classify the illness
 - Identify the treatment
 - Treat the infant or child
 - Counsel the mother
 - Give follow-up care
- **IMNCI is the Indian adaptation of IMCI (Integrated Management of Childhood Illness); major highlights of Indian adaptation are**
 - Inclusion of early neonatal age (0 – 7 days age) in programme
 - Incorporating national guidelines on malaria, anemia, Vitamin-A supplementation and immunization schedule
 - Training of health workers begin with sick young infants up to 2 months
 - Proportion of training time devoted to sick young infant and sick child is almost equal
 - Is skill based

Anemia Levels and Prevalence

<table>
<thead>
<tr>
<th>Group</th>
<th>Anemia cut off level</th>
<th>Anemia type</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (6 – 59 months)</td>
<td>< 11.0 gm/dl</td>
<td>Any</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>10.0 – 10.9 gm/dl</td>
<td>Mild</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td>7.0 – 9.9 gm/dl</td>
<td>Moderate</td>
<td>40%</td>
</tr>
<tr>
<td></td>
<td>< 7.0 gm/dl</td>
<td>Severe</td>
<td>03%</td>
</tr>
<tr>
<td>Women (15 – 49 years)</td>
<td>< 12.0 gm/dl</td>
<td>Any</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>10.0 – 11.9 gm/dl</td>
<td>Mild</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>7.0 – 9.9 gm/dl</td>
<td>Moderate</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>< 7.0 gm/dl</td>
<td>Severe</td>
<td>02%</td>
</tr>
<tr>
<td>Men (15 – 49 years)</td>
<td>< 13.0 gm/dl</td>
<td>Any</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>12.0 – 12.9 gm/dl</td>
<td>Mild</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>9.0 – 11.9 gm/dl</td>
<td>Moderate</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>< 9.0 gm/dl</td>
<td>Severe</td>
<td>01%</td>
</tr>
</tbody>
</table>

Colour Coding:
- **PINK:** Pre-referral treatment + Refer urgently to hospital
- **YELLOW:** Specific treatment at PHC
- **GREEN:** Home based management
Quality Indicators to Monitor and Evaluate RCH Program

- No. of RTI/STI cases detected, treated, referred
- No. of ANC cases registered - Total and less than 12 weeks
- No. of pregnant females with 3 antenatal checkups
- No. of high risk pregnant females referred
- No. of pregnant females who had received 2 doses of TT
- No. of pregnant females under anaemia prophylaxis and treatment
- No. of ANC cases with complication referred to PHC/FRU
- No. of deliveries by trained and untrained birth attendant
- No. of women given 3 Post natal checkups
- No. of newborns with birth weight recorded
- No. of children fully immunised
- No. of adverse effects following immunization (AEFI)
- No. of cases of ARI and diarrhoea under 5 years treated, referred, deaths
- No. of cases motivated, followed up for contraception.

NATIONAL PROGRAM FOR CONTROL OF BLINDNESS (NPCB)

Blindness in India

- **India is single largest contributor to global blind pool**
 - Measured according to: NPCB criterion (<6/60 in BEBPC°)
 - Total estimated no. of blind persons: 15 million
- **Current prevalence: 1.05%**
 - State with highest prevalence of blindness: Jammu & Kashmir\(^4\)
 - State with lowest prevalence of blindness: Meghalaya
 - Prevalence after correction: 0.56% [2001–02]
 - Prevalence of blindness in age >50 years: 8.5%
 - Prevalence of one-eyed blindness: 0.8% (MCC: Cataract – 73%)
- India is ‘overestimating the no. of blinds as per WHO definition\(^9\)
 - If WHO cutoff (<3/60 in BEBPC) is employed in India, estimated prevalence of blindness would be: 0.7%\(^9\)
- **Blindness in India includes:** Economic Blindness, Social Blindness, Manifest Blindness and Absolute Blindness (WHO blindness includes Social Blindness, Manifest Blindness and Absolute Blindness)
 - MCC of Blindness (India): Cataract\(^9\).

Strategies of National Program for Control of Blindness (NPCB, 1976)

- Strengthening service delivery
- Developing human resources for eye care
- Promoting outreach activities and public awareness
- Developing institutional capacity
- To establish eye care facilities for every 5 lac persons

Revised Strategies of NPCB

- **To make NPCB more comprehensive by:**
 - Strengthening services for other causes of blindness like corneal blindness and refractive errors in school children
 - Improving follow-up services of cataract operated persons
 - Treating other causes of blindness like glaucoma
- To strengthen participation of voluntary organizations
- To shift from eye camp approach to fixed facility surgical approach\(^9\)
- To enhance coverage of eye services in tribal & underserved areas
- To expand World Bank project activities.
Review of Preventive and Social Medicine

- Construction of dedicated eye OTs and eye wards
- Training of eye surgeons
- Modern cataract surgery
- Supply of ophthalmic equipment.

Organizational Structure for NPCB

<table>
<thead>
<tr>
<th>Organizational level</th>
<th>Infrastructure developed/upgraded</th>
</tr>
</thead>
</table>
| Tertiary Level | Regional institutes of Ophthalmology
 | upgraded medical colleges
 | Medical colleges designated as training centers for PMOAs
 | Eye banks |
| Secondary level | District hospitals upgraded
 | NGO eye hospitals |
| Primary level | Sub-district level hospitals/ CHCs
 | Mobile Ophthalmic Units
 | Upgraded PHCs
 | Link workers/ Panchayats |

• NPCB was launched in 1976 as a ‘100% Centrally sponsored programme’
 - India was the ‘first country to launch a national level programme for blindness’
• Apex institute: National Institute of Ophthalmology (Dr. Rajendra Prasad Centre for Ophthalmic Sciences [2007] AIIMS, New Delhi)
• NPCB cut-off for blindness: <6/60 in better eye
 - Prevalence of blindness in general population: 1.05% (MCC: Cataract 77%) [2007]
 - Cataract surgery rate required to clear the backlog of blindness: 340 operations per lac population [2007]
 - IOL implantations in cataract surgeries: 34% [2007]

Definition and Causes of Blindness in NPCB

<table>
<thead>
<tr>
<th>World</th>
<th>India (NPCB, India)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blindness<sup>2</sup></td>
<td>‘visual acuity of <3/60 in better eye with best possible correction’</td>
</tr>
<tr>
<td>Prevalence</td>
<td>0.6% [2002]</td>
</tr>
</tbody>
</table>
| **Causes**³ | Cataract (48%) – MCC
 | Glaucoma (12%)
 | Uveitis (10%)
 | ARMD
 | Trachoma
 | Corneal opacity
 | Diabetic Retinopathy
 | Others | Cataract (77%) – MCC
 | Refractive Error
 | Glaucoma
 | Posterior segment pathology
 | Corneal opacity
 | Other causes |

Important Points of Blindness

• **Goal for Blindness in National Health Policy (NHP) 2002**: Reduce prevalence of Blindness to 0.5% by 2010 [NEW GOAL 0.3% by 2020]
• About 80% of blindness is avoidable
• Legal Blindness: Visual acuity <6/60 (<20/200) OR Visual field <20° in better eye with best possible correction
• Work Vision: <6/60 (Economic Blindness)
• Walk Vision: <3/60 (Social Blindness).
National Health Programmes, Policies and Legislations in India

School Eye Screening (SES) Program

- Focus on middle school (V - VIII class) covering 10 - 14 years age
 - 150,000 children to be screened per block
- One trained teacher to handle 150 students
 - 1 - day training for teacher at nearest PHC
 - Teacher Kit: Vision screening cards, referral cards, tape/rope to measure 20 feet
- Visual cut-off for referral to nearest PHC: <6/9 in either eye
- Prerequisites for undertaking SES:
 - Para-medical Ophthalmic Assistant (PMOA) available
 - Relevant equipments procured
 - Optician contracted for providing spectacles

Vision 2020 – Right to Sight Initiative

Refer to Chapter 5, Theory

- Targets for X five year plan under Vision 2020:
 - Increase cataract surgery rate to 450 operations per one lac population
 - Improve visual outcome (>6/18) after cataract surgery in 80%
 - Intra-ocular lens implantation in > 80% of cataract surgery cases
 - Development of 50 paediatric ophthalmology units in tertiary care hospitals
 - Screen known diabetics for diabetic retinopathy
 - Screen for glaucoma for those > 35 years attending eye clinics
 - Basic refraction services available in all districts
 - 4000 vision centres manned by trained optometrist/Refractionist/Ophthalmic Assistant
 - Low vision centres at 50 centres of excellence/tertiary centres
 - 25 fully functional, accredited safe eye banks
 - MMR replace Measles vaccine, coverage >60
 - 75% coverage for regular vitamin A supplementation (till 5 years age)
- International organisations involved in Vision 2020:
 - WHO
 - Orbis
 - International Agency for Prevention of Blindness
 - International Eye Foundation
 - International Federation for Ophthalmological Societies
 - International Organisation against Trachoma
 - Rotary International
 - World Blind Union
 - World Council of Optometry
 - International Association of Lions Club
 - Sight Savers International
 - Helen Keller International.

Cataract Blindness Control Project (CPCB)

- The Government of India obtained a soft loan from the ‘World Bank’ to control cataract blindness in 7 states of country for the period 1994-2002
- Activities undertaken in the project:
 - Establishment and functioning of ‘District Blindness Control Societies (DBCS)’
 - Construction of eye theatre/eye wards in District hospitals
 - Supply of Ophthalmic equipment
 - Intra-Ocular Lens (IOL) implantation in District Hospitals
 - Training of surgeons in IOL surgery, and
 - Assistance to NGOs for setting up of eye care facilities
- Achievements of the project:
Review of Preventive and Social Medicine

- 15.35 million cataract operations performed (Target: 11 million)
- IOL implantation increased from 3% (1993) to 75% (2002)
- 307 dedicated eye units were constructed & equipped in Government sector & 30 in Non-government sector
- 800 eye surgeons trained on IOL surgery.

NATIONAL HIV/AIDS CONTROL PROGRAMME (NACP)

3 by 5 Initiative

- **People living with HIV/AIDS (PLHA) in World:** 40 million
- **3 by 5 Target:** Announced by WHO and UNAIDS on December 1, 2003
- **Interim target:** Providing anti-retroviral treatment (ART) to 3 million people living with HIV/AIDS (PLHA), in developing countries (low & middle income), by end of 2005
- **Ultimate goal:** Universal access to ART to anyone who needs it
- **Focus areas:** (Five pillars)
 - Simplified standard tools to deliver ART
 - A new service to ensure effective, reliable supply of medicines and diagnostics
 - Dissemination and application of new knowledge and successful strategy
 - Urgent, sustained support to countries
 - Global leadership, backed by strong partnership

Role of Laboratories in 3 by 5 Initiative:

<table>
<thead>
<tr>
<th>Peripheral Lab</th>
<th>Intermediate Lab</th>
<th>Central Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapid HIV test</td>
<td>Peripheral lab tests</td>
<td>Intermediate Lab tests</td>
</tr>
<tr>
<td>Hb-estimation</td>
<td>Total blood count</td>
<td>CD4 count (FIC)</td>
</tr>
<tr>
<td>TB microscopy</td>
<td>2nd HIV detection test</td>
<td>EQAS for FC</td>
</tr>
<tr>
<td>Pregnancy test</td>
<td>Total lymphocyte counts</td>
<td>Viral load</td>
</tr>
<tr>
<td></td>
<td>CD4 count (FIC)</td>
<td>Clinical chemistry markers</td>
</tr>
<tr>
<td></td>
<td>Liver & renal function tests</td>
<td>Resistance studies</td>
</tr>
<tr>
<td></td>
<td>Opportunistic infections diagnosis</td>
<td></td>
</tr>
</tbody>
</table>

HIV Screening in NACP

- **Tests for Screening of HIV:** E/R/S Battery
 - ELISA (E) Test
 - RAPID (R) Test
 - SIMPLE (S) Test
- **Confirmatory diagnosis of HIV:** Western Blot Assay
- **Screening strategies of HIV:**
 - **Strategy I:** One out of three screening tests (E/R/S) are used
 - Done for screening every blood unit before transfusion
 - Does not recommend its use for diagnosis of HIV in a person
 - **Strategy II:** Two out of three screening tests (E/R/S) are used
 - Done for screening person who is symptomatic with any one of AIDS defining illness (NACO guidelines)
 - **Strategy III:** All three screening tests (E/R/S) are used
 - Done for screening person who is asymptomatic
- **ELISA Test:** first screening test commonly employed for HIV
 - It has a high sensitivity.

HIV Diagnosis Tests

- **Western Blot Assay (Immunoblot):** Is a method to detect a specific protein in a given sample of tissue homogenate or extract.

https://kat.cr/user/Blink99/
- Used as a confirmatory test for HIV (NACP, India).
- Based on detecting\(^2\): Viral core protein (p24) and envelope glycoprotein (gp 41)
- Mechanism:
 - gel electrophoresis to separate native or denatured proteins.
 - proteins transfer to a membrane (nitrocellulose or PVDF).
 - probe detection using antibodies specific to the target protein.
- p24 Antigen Test: detects the presence of the p24 protein of HIV.
- Nucleic-acid-based tests: amplify and detect a 142-base target sequence located in a highly conserved region of the HIV gag gene.
- RT-PCR test: viral RNA is extracted and is treated with reverse transcriptase; PCR applied; amplified segments bind to specific oligonucleotides; made visible with a probe bound to an enzyme.
- Quantiplex bDNA or branched DNA test: plasma centrifuged and opened to release its RNA; special oligonucleotides are added to fasten RNA to wall; amplify the signal; oligonucleotides bound to an enzyme added; the enzyme action causes a color reaction which allows quantification of the viral RNA in the original sample.

Targeted Interventions in NACP\(^2\)

- **Basic purpose:** To reduce transmission of HIV amongst most vulnerable populations.
- **Approach:** Combines a comprehensive and integrated approach to vulnerable segments of population.
- **Main activities:**
 - Behaviour change
 - Communication
 - Treatment of STD
 - Create enabling environment to facilitate behaviour change
- **Segments of population covered\(^2\):**
 - Sex workers
 - Injecting Drug Users
 - Truckers
 - Homosexual men (MSM-Men having sex with men)
 - Migrant labourers
 - Street children

Opt-in/Opt-out Testing

- **Opt-in testing\(^2\):** Testing is offered and the patient is required to actively give permission before it can occur
- **Opt-out testing\(^2\):** Means performing an HIV test after notifying the patient that the test is normally performed, but that the patient may elect to decline or defer testing; assent is then assumed unless the patient declines testing
 - WHO and CDC recommends opt-out testing policies in health care settings
 - Opt-out testing has a higher (85-98%) testing rate than opt-in testing (25-83%)
 - It does NOT eliminate the need for informed consent.

LAC (Link ART Centre)

- Providing ARV drugs to patients on ART
- Monitoring of patients on ART
- Treatment of minor Opportunistic Infections (OIs)
- Identification and management of side-effects
- Reinforcement of drug adherence on every visit

LAC PLUS (LAC services PLUS Pre-ART management)

- Help in integrating HIV care into general health system
• Reduce loss of patients between ICTC and Care Support and Treatment (CST) services

ART Plus
• Second line ART drugs in NACP

NATIONAL VECTOR BORNE DISEASES CONTROL PROGRAMME (NVBDCP)

Introduction to NVBDCP
• NVBDCP covers 6 vector borne diseases of public health importance in India:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Main vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Female Anopheles</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Culex quinquefasciatus (C. fatigans)</td>
</tr>
<tr>
<td>Dengue</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>Kala Azar</td>
<td>Sandfly (Phlebotamus)</td>
</tr>
<tr>
<td>Japanese Encephalitis</td>
<td>Culex tritaeniorhynchus</td>
</tr>
<tr>
<td>Chikungunya fever</td>
<td>Aedes aegypti</td>
</tr>
</tbody>
</table>

NVBDCP: Malaria

Modified Plan of Operation (MPO)
• *Modified Plan of Operation (MPO):* In 1977, attempts at malaria eradication were given up and under review policy MPO was launched
• *Under MPO, areas were divided on the basis of API:*:
 - *Areas with API > 2:*
 - Regular insecticide spray (interval 6 weeks)
 - Entomological studies
 - Malaria surveillance
 - Treatment of cases
 - Intensify efforts in rural areas (providing input under Plasmodium falciparum Containment Programme with SIDA)
 - Decentralization of lab services to PHC level
 - Establishment of Drug Distribution Centers (DDCs) and Fever Treatment Depots (FTDs)
 - *Areas with API < 2:*
 - Focal spray of DDT (or BHC or Malathion) if a case of Pf occurs in the area
 - Active and passive surveillance
 - Presumptive treatment to all suspected fever cases
 - Ensuring radical treatment to those found positive on blood smear
 - Epidemiological investigation of case to determine causative factors

<table>
<thead>
<tr>
<th>Condition</th>
<th>Insecticide</th>
<th>Dose and frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-refractory to DDT</td>
<td>DDT</td>
<td>1.0 gm per square metre; 2 rounds</td>
</tr>
<tr>
<td>Refractory to DDT</td>
<td>Malathion</td>
<td>2.0 gm per square metre; 3 rounds</td>
</tr>
<tr>
<td>Refractory to Malathion</td>
<td>Pyrethroids</td>
<td>0.25 gm per square metre; 2 rounds</td>
</tr>
</tbody>
</table>
Fever Treatment Depots (FTDs) and Drug Distribution Centres (DDCs)

<table>
<thead>
<tr>
<th>Fever Treatment Depots</th>
<th>Drug Distribution Centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTD holder given training at PHC</td>
<td>DDC established (if no FTD)</td>
</tr>
<tr>
<td>2. Giving presumptive treatment</td>
<td>2. Impregnation of bed nets</td>
</tr>
<tr>
<td>3. Impregnation of bed nets</td>
<td>3. Promotion of larvivorous fishes</td>
</tr>
<tr>
<td>4. Promotion of larvivorous fishes</td>
<td></td>
</tr>
</tbody>
</table>

Malaria Diagnosis

- **Diagnosis of malaria in NVBDCP (malaria component): Peripheral blood smear**
 - **Two types of smear,**
 - **Thick smear (Sensitivity):** Presence of malaria
 - **Thin smear (Specificity):** Species identification
 - **Stain used:** JSB (Jaswant Singh Bhattacharaya) Stain
 - 1 microscope per 30,000 population at PHCs in rural areas and for 50,000 population in urban areas
 - Dipstick test in selected areas
 - ‘Link Worker’ per 2000 population in high Pf areas (collects smears, provides presumptive treatment and forwards slides to PHCs)
 - 1 Fever Treatment Depot (FTD) in every village.

- **Rapid tests for diagnosis of Pf:**
 - Dipstick test (Pf Histidine rich protein II – HRP II)
 - Leishman stain
 - Field’s stain
 - Acridine orange
 - ‘Dipstick Test’ is used for the rapid diagnosis of Plasmodium falciparum (Pf)
 - Is a ‘rapid whole blood immuno-chromatographic test’
 - Uses 2 antibodies specific for ‘Pf Histidine Rich Protein II Antigen’
 - Is a ‘antigen capture assay’
 - Colloidal gold is used in the test card
 - Gives results in 3 – 5 minutes
 - Specificity and negative predictive value is 99%
 - Not as effective when parasite levels < 100 parasites/ml of blood

- **Optimal Test [Parasite-specific lactic dehydrogenase (LDH dipstick test)]:** Positive in P.falciparum and P.vivax parasitaemia; It is a simple and rapid, and superior to HRP II.

Enhanced Malaria Control Project (EMCP)

- World Bank supported project for six crore tribal population in 8 states
 - Has been implemented in 1045 PHCs in 100 districts of 8 states
- **Selection criteria for PHCs in EMCP:**
 - Annual parasitic incidence (API) > 2 in last 3 yrs
 - Pf cases >30% of all malaria cases
 - 25% of population is tribal
 - Area has been reporting deaths due to malaria (and has flexibility to direct resources to needy areas in case of outbreak)
- **Objectives of EMCP:**
 - Reduction of malaria morbidity
 - Prevention of malaria mortality
 - Consolidation of gains achieved so far
- **Important strategies of EMCP:**
 - **Early case detection and prompt treatment (EDPT):**
 - Link worker (1 per 2000 population)
- Microscopy
- Dipstick test
- FTD

- Selective vector control:
 - Introduction of larvivorous fishes
 - Use of biocides - Bacillus thuringiensis H14
 - Environmental management
 - Residual spray in areas with > 1 case of Pf

- Personal protection:
 - Insecticide treated bednets (ITBN).

Insecticide Treated Bed Nets (ITBN)

- Insecticide treated Bed nets (ITBN) Programme (esp. deltamethrin) has resulted in significant decline in malaria incidence and API
 - Average decline in anopheline mosquito density – 68%
 - Average decline in culicine mosquito density – 50%
- Chemicals used in ITBN Programme: Synthetic pyretheroids:
 - Deltamethrin: 2.5 % in dosage of 25 mg/m2
 - Cyfluthrin: 5 % in dosage of 50 mg/m2
 - Other insecticides used: Permethrin, Lambda-cyhalothrin, Etofenprox, Cypermethrin
 - Effectiveness of pyrethroids: for 6 – 12 months (Retreatment every 6 months)
 - Long-lasting insecticidal mosquito nets (LLINs): Also use pyrethroid insecticides, and a chemical binder that allows the nets to be washed > 20 times, allowing use for > 3 years

 - Household bed nets used for mosquito control:
 - No. of holes per square inch > 150
 - Diameter of each hole < 0.0475 inch

 - Common insect repellents:
 - DEET (N, N-diethyl-m-toluamide)
 - Allethrin
 - Essential oil of the lemon eucalyptus [p-menthane-3, 8-diol (PMD)]
 - Icaridin (picaridin)
 - Nepetalactone (catnip oil)
 - Citronella oil
 - Permethrin
 - Soyabean oil
 - Neem oil.

Types of Drug Resistance in Malaria:

- R1 resistance: Recrudescence of infection between 7-28 days of treatment completion following initial resolution of symptoms and parasite clearance.
- R2 resistance: Patients with marked reduction of parasitemia (parasite count reduced by more than 75%) at 48 h but failed to clear parasites by day 7.
- R3 resistance: Patients whose parasitemia did not fall by more than 75% within 48 h or occasionally increased by day 7.

NVBDCP: LEISHMANIASIS

Introduction to Leishmaniasis

- Leishmaniasis (Kala azar): Is a group of protozoal diseases caused by Leishmania
National Health Programmes, Policies and Legislations in India

<table>
<thead>
<tr>
<th>Type of Leishmaniasis</th>
<th>Causative agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral Leishmaniasis</td>
<td>Leishmania donovani</td>
</tr>
<tr>
<td>Cutaneous/dermal Leishmaniasis</td>
<td>Leishmania tropica</td>
</tr>
<tr>
<td>Muco-cutaneous Leishmaniasis</td>
<td>Leishmania braziliensis</td>
</tr>
</tbody>
</table>

- *Kala azar is transmitted by*: Female Phlebotamus argentipes (Sandfly)
 - Sandfly cannot fly; it hops
 - Sandfly rests in cracks and crevices of walls
- *Insecticide of choice*: DDT
 - 2 rounds of spray per year
 - Spray up to 6 feet height on walls
 - If DDT-resistant, use BHC
- *Kala azar is known as* ‘Black Sickness’

Sandfly

- *Sandfly is the vector of*:
 - Visceral Leishmaniasis (Kala azar)
 - Cutaneous Leishmaniasis (Oriental Sore)
 - Sandfly Fever
 - Oroya Fever
- Sandflies inject the infective stage, *metacyclic promastigotes*, during blood meals.

DDT

- DDT is Dichloro-Diphenyl-Trichloroethane
- Synthesized by: Othmar Zeidler (1874)
- Insecticidal properties discovered by: Swiss scientist Paul H. Müller (1939) [awarded the 1948 Nobel Prize in Physiology and Medicine]
- Positive association found with: Liver, biliary tract and breast cancers.

Tests for Leishmaniasis

- *Parasitological diagnosis*: LD bodies in aspirates of spleen, liver, bone marrow, lymph nodes, skin
- *Hematological diagnosis*: Progressive leucopenia, anemia, reversed albumin: globulin ratio (raised IgG)
- *Aldehyde Test of Napier*: Used earlier for diagnosis but is a better test for surveillance
 - Non-specific test
 - Demands use of venous blood
 - Detects raised globulins
 - False +ve in many chronic conditions where albumin: globulin ratio is reversed
- *Serological Tests*:
 - *rK-39 Dipstick test*: Is for Visceral Leishmaniasis (Kala Azar)
 - ELISA
 - IFAT
 - Direct Agglutination Test
- *Leishmanin (Montenegro) Test*: Test of immunity status
 - 0.1 ml (intradermal) washed promastigotes on forearm
 - Read after 48-72 hours
 - Induration > 5 mm is +ve.

Treatment of Kala Azar

- *1st Line*: Sodium stibogluconate (i/v or i/m) 20 mg/kg × 20 days (antimonial compounds)
National Health Programmes, Policies and Legislations in India

Review of Preventive and Social Medicine

- 2nd Line: *Pentamidine* (i/v) 3 mg/kg × 10 days
- 3rd Line: *Amphotericin-B* (i/v) 1 mg/kg × 20 days (now considered as treatment of choice in many countries)
- *Other drugs:*
 - Ketoconazole
 - Allopurinol
 - Paramomycin
 - Mepacrine (for dermal leishmaniasis)
 - New Wonder Drug: Miltefosine (oral) 2.5 mg OD × 4 weeks [Is now second line treatment].

NATIONAL HEALTH MISSION

- **Launched:** 2013
- **Composition:** NRHM + NUHM
- **Goals of NHM:** (According to XII FYP 2012-17)
 - Reduce MMR to 1/1000 live births
 - Reduce IMR to 25/1000 live births
 - Reduce TFR to 2.1
 - Prevention and reduction of anaemia in women aged 15–49 years
 - Prevent and reduce mortality & morbidity from communicable, non-communicable; injuries and emerging diseases
 - Reduce household out-of-pocket expenditure on total health care expenditure
 - Reduce annual incidence and mortality from Tuberculosis by half
 - Reduce prevalence of Leprosy to <1/10000 population and incidence to zero in all districts
 - Annual Malaria Incidence to be <1/1000
 - Less than 1 per cent microfilaria prevalence in all districts
 - Kala-azar Elimination by 2015, <1 case per 10000 population in all blocks

NATIONAL RURAL HEALTH MISSION (NRHM)

Core Strategies of National Rural Health Mission (NRHM)

- Train and enhance capacity of Panchayati Raj Institutions (PRIs)
- Promote access to improved healthcare at household level (ASHA recruitment and training)
- Health Plan for each village through Village Health Committee
- Strengthening sub-centre through an untied fund
- Strengthening existing PHCs and CHCs, and provision of 30-50 bedded CHC per lakh population (Indian public Health standards: IPHS9)
- Preparation and Implementation of an inter-sectoral District Health Missions
- Strengthening capacities for data collection, assessment and review for evidence based planning, monitoring and supervision.
- Formulation of transparent policies for development of human resources
- Developing capacities for preventive health care at all levels.
- Janani Suraksha Yojana (JSY) is a safe motherhood intervention under NRHM being implemented with by promoting institutional delivery amount the poor pregnant women
- Promoting non-profit sector particularly in under served areas.

Key Strategies of NRHM

- *National Rural Health Mission (NRHM) 2005–12:* One of the key components of the is to provide every village in the country with a trained female community health activist – ASHA (Accredited Social Health Activist).
A core strategy of National Rural Health Mission (NRHM) is to develop ‘Health Plan (VHP) for each village’ through Village Health Samiti of Panchayat (PHS).
- **ASHA will make VHP:** ASHA along with ANM, Aanganwadi Workers and community workers under the leadership of PHS
- Another core strategy is preparation of an ‘Intersectoral District Health Plan (DHP)’, prepared by District Health Mission (DHM) including drinking water, sanitation, hygiene and nutrition
 - **DHP:** Amalgamation of field responses through VHPs and State and national Priorities for health, drinking water, sanitation and nutrition
 - Health plans to form core unit of action proposed
 - Implementing departments to integrate into DHM for monitoring
 - Core unit of planning, budgeting and implementation: District

Accredited Social Health Activist (ASHA)

- **Proposed population norm:** 1 ASHA worker per 1000 population
- **ASHA is expected to act as,**
 - **Interface between:** Community and Health care system
 - **Bridge between:** ANM and village
 - **Accountable to:** Panchayat
- **Selection criteria of ASHA:**
 - Woman resident of local community
 - Preferably 25 – 45 years age
 - Literate with formal education up to VIII class
- **Responsibilities of ASHA:**
 - Create awareness on health and its social determinants and mobilize the community towards local health planning and increased utilization and accountability of the existing health services
 - Promote good health practices and provide a minimum package of curative care as appropriate and feasible and make timely referrals
 - Provide information on determinants of health, on existing health services and the need for timely utilization of services
 - Counsel women on aspects of reproductive and child health
 - Mobilise the community and facilitate them in accessing health and health related services provided by the government
 - Act as a depot holder for essential provisions like ORS, IFA tablets, chloroquine, disposable delivery kits, oral pills & condoms
 - Provide primary medical care and act as DOTS provider
 - Help develop a comprehensive village health plan
 - Arrange escort/accompany pregnant women and children requiring treatment/admission to nearest health facility
 - Be a part of JSY (Janani Suraksha Yojana) and help reduce MMR

Other roles of Anganwadi worker integrated with ASHA:
- Organisation of Health-day
- IEC activities
- Depot holder and issuing to ASHA
- Update list of eligible couples and children
- Mobilisation for food supplementation

Other roles of ANM worker integrated with ASHA:
- Organise meetings with ASHA
- Participate and guide for organising Health-day
- Updating eligible couple register
- Motivating pregnant females for antenatal care
- Educating ASHA for danger signals of pregnancy
- Orient ASHA on OCPs.

Indicators for Monitoring and Evaluation of ASHA’s Work

- **Process indicators:**
 - No. of ASHAs selected
 - No. of ASHAs trained
 - % ASHAs attending review meeting after 1 year
- **Outcome indicators:**
 - % newborns weighed and families counseled
 - % deliveries with skilled assistance
 - % institutional deliveries
 - % JSY claims made to ASHA
 - Completed immunized 12-23 months age group
 - % unmet need in BPL
 - % fever cases received chloroquine within 1 weeks in endemic area
- **Impact indicators:**
 - Infant mortality rate (IMR)
 - Child malnutrition rates
 - No. of cases of TB/Leprosy detected as compared to last year.

Janani Suraksha Yojana (JSY)

- Launched on 12th April 2005
- Is modification of National Maternity Benefit Scheme
- **Objectives of JSY:** Reduction of maternal mortality and infant mortality (through institutional deliveries and care especially for poor women)
- **Salient features of JSY:**
 - Is 100% centrally sponsored
 - Combines ‘benefit of cash assistance with institutional care’
 - Eligibility of cash assistance.
 - In low performing states (LPS): All women undergoing institutional deliveries
 - In high performing states (HPS): Below poverty linewomen aged 19 years and above and SC/ST pregnant women
 - Limitation of cash assistance:
 - In low performing states (LPS): All births in institutions
 - In high performing states (HPS): Up to 2 live births
- **JSY package:** [New guidelines]

<table>
<thead>
<tr>
<th>Category</th>
<th>Rural areas</th>
<th>Urban areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mother’s package</td>
<td>ASHA’s package</td>
</tr>
<tr>
<td>LPS</td>
<td>1400</td>
<td>600</td>
</tr>
<tr>
<td>HPS</td>
<td>700</td>
<td>200</td>
</tr>
</tbody>
</table>

(LPS: Low performing states; HPS: High performing states)

National Rural Health Mission (NRHM)

- **New Initiatives:**
 - Home delivery of contraceptives by ASHA
 - District level household survey (DLHS-4) in 26 states/UTs
 - Promotion of Menstrual hygiene in 152 districts
 - Differential financial approach
- ASHA involvement in Home based newborn care (HBNC)
- Performance based funds allocation to states
- Village Health, Sanitation and Nutrition Committee (VHSNC)
- Mainstreaming of AYUSH

Janani-Shishu Suraksha Karyakram (JSSK)

- **Pregnant women components:**
 - Free deliveries (including caesarean section) in public health institutions
 - Free drugs and consumables
 - Free diet (Normal delivery: 3 days; Caesarean section: 7 days)
 - Free diagnostics
 - Free blood transfusion (whenever required)
 - Free transport from home to institution

- **Child health components:**
 - Nutritional rehabilitation centres (NRCs): Inpatient treatment of severely malnourished children and counselling of mothers on proper feeding
 - Integrated management of neonatal and childhood illnesses (IMNICI): Management of common childhood illnesses
 - Pre-service IMNICI: Included in medical curriculum to generate trained IMNICI manpower
 - Facility based IMNICI (F-IMNICI): Focus on inpatient management of major causes of neonatal and childhood mortality, viz. asphyxia, sepsis, low birth weight, pneumonia, diarrhoea, malaria, meningitis and severe malnutrition
 - Facility based newborn care:

<table>
<thead>
<tr>
<th>Health facility</th>
<th>All newborns at birth</th>
<th>Sick newborns</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCH level I: PHC, Subcentre</td>
<td>Newborn care corner (NBCC) in labour room</td>
<td>Prompt referral</td>
</tr>
<tr>
<td>MCH level II: CHC, First referral unit (FRU)</td>
<td>NBCC in labour room and operation theatre</td>
<td>Newborn stabilization unit (NBSU)</td>
</tr>
<tr>
<td>MCH level III: District hospital</td>
<td>NBCC in labour room and operation theatre</td>
<td>Special newborn care unit (SNCU)</td>
</tr>
</tbody>
</table>

- **Newborn care corner (NBCC):** Space within delivery room for immediate care to newborns mandatory for all health facilities
- **Newborn stabilization unit (NBSU):** Facility within or near maternity ward where sick and low birth weight newborns can be cared for short periods
 - **Location:** CHCs, FRUs
 - **Space required:** 4 bedded unit and 2 beds for post-natal ward for rooming-in
- **Special newborn care unit (SNCU):** Neonatal unit near labour room to provide special care for sick newborns (EXCEPT assisted ventilation, major surgery)
 - **Location:** District hospitals, Sub-district hospitals having >3000 deliveries per year
 - **Space required:** 12 bedded unit and 4 additional beds for adult step-down

- **Triage of sick newborns:**

<table>
<thead>
<tr>
<th>Emergency signs</th>
<th>Priority signs</th>
<th>Non-urgent signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermia (<36°C)</td>
<td>Cold stress</td>
<td>Transitional stools</td>
</tr>
<tr>
<td>Apnoea, gasping</td>
<td>Respiratory distress</td>
<td>Possetting</td>
</tr>
<tr>
<td>Severe respiratory distress</td>
<td>Irritable/ restless/ jittery</td>
<td>Minor birth trauma</td>
</tr>
<tr>
<td>Central cyanosis</td>
<td>Abdominal distension</td>
<td>Superficial infections</td>
</tr>
<tr>
<td>Shock</td>
<td>Severe jaundice</td>
<td>Minor malformations</td>
</tr>
<tr>
<td>Coma, convulsions</td>
<td>Severe pallor</td>
<td>Jaundice</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>Bleeding from other sites</td>
<td>All other cases</td>
</tr>
<tr>
<td></td>
<td>Wt <1.8 or >4.0 kg</td>
<td></td>
</tr>
</tbody>
</table>

Initiate emergency treatment | *Assess and act rapidly* | *Assess and counsel*
- **Home-based newborn care (HBNC):**
 - **Main person involved:** ASHA
 - **Other health personnel involved:** ANM, Anganwadi worker, Medical officer
 - **ASHA 6 visits in Institutional deliveries:** Day 3, 7, 14, 21, 28, 42
 - **ASHA 7 visits in Home based deliveries:** Day 1, 3, 7, 14, 21, 28, 42
 - **Other functions of ASHA (Paid ₹ 250/-):**
 - Record birth weight
 - BCG, OPV, DPT to newborn
 - Birth registration
 - Mother/newborn safety till 42nd day

Navjat-Shishu Suraksha Karyakram (NSSK)

- **Main objective:** To train health personnel in basic newborn care and resuscitation

Rashtriya Bal Swasthya Karyakram (RBSK) 2013

- **Importance:** Child Health Screening and Early Intervention Services Program under National Rural Health Mission
- **Target group:**
 - 0-6 years old children (Rural areas + Urban slums)
 - 6-18 years old children (Enrolled in government schools)
- **Targeted diseases (4D's):**
 - Defects at birth
 - Diseases in children
 - Deficiency conditions
 - Developmental delays including disabilities
- **Selected 34 diseases under RBSK:**

<table>
<thead>
<tr>
<th>Defects at birth</th>
<th>Deficiency conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural tube defects</td>
<td>Anemia (especially severe)</td>
</tr>
<tr>
<td>Down’s syndrome</td>
<td>Vitamin A deficiency (Bitot spots)</td>
</tr>
<tr>
<td>Cleft lip/ palate</td>
<td>Vitamin D deficiency (Rickets)</td>
</tr>
<tr>
<td>Talipes</td>
<td>Severe acute malnutrition</td>
</tr>
<tr>
<td>Dysplasia of hip</td>
<td>Goitre</td>
</tr>
<tr>
<td>Congenital cataract</td>
<td></td>
</tr>
<tr>
<td>Congenital deafness</td>
<td></td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td></td>
</tr>
<tr>
<td>Retinopathy of prematurity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseases in children</th>
<th>Developmental delays including disabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin conditions (Eczema, Fungal, Scabies)</td>
<td>Vision impairment</td>
</tr>
<tr>
<td>Otitis media</td>
<td>Hearing impairment</td>
</tr>
<tr>
<td>Rheumatic heart disease</td>
<td>Neuro-motor impairment</td>
</tr>
<tr>
<td>Reactive airway disease</td>
<td>Motor delay</td>
</tr>
<tr>
<td>Dental conditions</td>
<td>Cognitive delay</td>
</tr>
<tr>
<td>Convulsive disorders</td>
<td>Language delay</td>
</tr>
<tr>
<td>Congenital hypothyroidism, Sickle cell anemia, Beta thalassemia</td>
<td>Behaviour disorder (Autism)</td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>Learning disorder</td>
</tr>
<tr>
<td>Retinopathy of prematurity</td>
<td>Attention deficit hyperactivity disorder</td>
</tr>
</tbody>
</table>

- **Suggested composition of Mobile health team:**
 - 2 AYUSH Medical officers (1 male, 1 female)
 - 1 ANM/ Staff nurse
 - Pharmacist

Rashtriya Kishor Swasthya Karyakram (RKS) 2014

- **Importance:** India’s First comprehensive adolescent health program
• Target Group: Adolescents 10-19 years age (243 million; 21% of Indian population) in Urban and rural areas
 - Girls and Boys
 - Married and Unmarried
 - Poor and Affluent
 - School and Out of school
• Strategy: RMNCH+A (Reproductive, Maternal, New born, Child Health + Adolescent)

<table>
<thead>
<tr>
<th>7 Critical Components (7C’s)</th>
<th>6 Strategic Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Content</td>
<td>Sexual and reproductive health (SRH)</td>
</tr>
<tr>
<td>Communities</td>
<td>Non-communicable diseases (NCDs)</td>
</tr>
<tr>
<td>Clinics</td>
<td>Substance misuse</td>
</tr>
<tr>
<td>Counselling</td>
<td>Injuries & violence (+ gender-based violence)</td>
</tr>
<tr>
<td>Communication</td>
<td>Mental health</td>
</tr>
<tr>
<td>Convergence</td>
<td></td>
</tr>
</tbody>
</table>

National Urban Health Mission 2013

• Description: Subcomponent of National Health Mission (NHM), other component being NRHM
• Coverage: All state capitals, district headquarters and other cities/towns with a population of 50,000 and above (Cities and towns <50,000 population covered by NRHM)
• Main aim: To improve the health status of urban population particularly slum dwellers and other vulnerable sections by facilitating their access to quality health care
• Expected outcomes of the program:
 - Reducing IMR in urban areas by 40% to 20 per 1000
 - Reduce MMR in urban areas by 50% to 1 per 1000
 - Achieve universal access to reproductive health including 100% institutional delivery
 - Achieve Total Fertility Rate of 2.1
 - Achieve all targets of Disease Control Programs
• Key components of NUHM:
 - U-PHC (Urban - Primary Health Centre):
 1. 1 per 50,000 population (near or within a slum)
 2. OPD (consultation), basic lab diagnosis, drug/ contraceptive dispensing and delivery of RCH services, as well as preventive and promotive aspects of all diseases
 - U-CHC (Urban - Community Health Centre):
 1. 30-50 bedded U-CHC providing inpatient care in cities (>1 per 500,000 population)
 2. 75-100 bedded U-CHC facilities in metros
 - Subcentres: NOT ESTABLISHED in NUHM
 - USHA (Urban Social Health Activist): 1 per 1000-2500 population

NATIONAL LEPROSY ELIMINATION PROGRAMME (NLEP)

Multidrug Therapy (MDT)

Refer to Chapter 5, Theory
• Drugs used in treatment of leprosy (Multi-Drug Therapy – MDT):
 - Rifampicin: Bactericidal drug kills 99.9% organisms (600 mg dose)
 - Clofazimine: Bacteriostatic drug most active on daily administration
 - Dapsone: Safe drug in dose up to 100 mg
Review of Preventive and Social Medicine

- **Other drugs effective in treatment of leprosy:**
 - Thioamides: Ethionamide & Prothionamide
 - Fluoroquinolones
 - Minocycline
 - Macrolides

- **Treatment of Single Skin Lesion (SSL) of Leprosy:**
 - **Previously:** ROM therapy
 - Rifampicin 600 mg
 - Ofloxacin 400 mg
 - Minocycline 100 mg
 - **Currently:** 6 month treatment as for Paucibacillary (PBL) Leprosy (Rifampicin and dapsone for 6 months)\(^2\).

Lepra Reactions

- **Lepra Reactions:** Is an inflammation that can affect skin patches, nerves, eyes and in few case, internal organs
- They can occur anytime in a leprosy patient:
 - Before diagnosis
 - At time of diagnosis
 - During treatment
 - After treatment has finished
- **Types of Lepra Reactions**\(^2\):

<table>
<thead>
<tr>
<th>Type I Lepra reactions</th>
<th>Type II Lepra reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal reactions</td>
<td>Erythema Nodosum Leprosum (ENL)</td>
</tr>
<tr>
<td>More common in Borderline leprosy(^2)</td>
<td>More common in LL and BL leprosy(^2)</td>
</tr>
<tr>
<td>Reddish & swollen skin lesions</td>
<td>Tender, reddish & transient skin nodules</td>
</tr>
<tr>
<td>Painful, tender, swollen nerves</td>
<td>Occasionally painful & swollen nerves</td>
</tr>
<tr>
<td>Signs of nerve damage</td>
<td>Fever, joint pains & malaise</td>
</tr>
<tr>
<td>Fever & malaise</td>
<td>Eye involvement</td>
</tr>
<tr>
<td>Swollen hands & feet</td>
<td></td>
</tr>
<tr>
<td>New skin lesions (rare)</td>
<td></td>
</tr>
</tbody>
</table>

- **Treatment of Lepra Reactions:**
 - **Type I (Reversal) Reactions:** Prednisolone (steroid\(^2\))
 - **Type II (ENL) Reactions:**
 - **Mild cases:** Analgesics or anti-pyretics like aspirin
 - **Severe cases:** Prednisolone (steroid\(^2\))
 - **During steroid withdrawal:** Clofazimine

- **Reversal Reaction Versus Relapse:**

<table>
<thead>
<tr>
<th></th>
<th>Reversal Reaction</th>
<th>Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time interval</td>
<td>During treatment or within 6 months of stopping treatment</td>
<td>Generally after 6 months of stopping treatment</td>
</tr>
<tr>
<td>Onset</td>
<td>Abrupt & sudden</td>
<td>Slow & insidious</td>
</tr>
<tr>
<td>Old lesions</td>
<td>Edematous, erythematous, tender</td>
<td>Erythematous & infiltration</td>
</tr>
<tr>
<td>New Lesions</td>
<td>Several appear</td>
<td>Few appear</td>
</tr>
<tr>
<td>Ulceraions</td>
<td>May take place</td>
<td>Does not occur</td>
</tr>
<tr>
<td>Nerve involvement</td>
<td>Multiple nerves involved, painful & tender</td>
<td>Single nerve involved, non-painful & non-tender</td>
</tr>
<tr>
<td>General condition</td>
<td>Fever, joint pains, malaise</td>
<td>Not usually affected</td>
</tr>
<tr>
<td>Response to steroids</td>
<td>Rapid</td>
<td>Nil</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
National Health Programmes, Policies and Legislations in India

Infrastructure Norms under NLEP

- SET Centre: one per 20,000 – 25,000 population
- Urban Leprosy Centre (ULC): one per 50,000 population
- Leprosy Control Unit (LCU): one per 4-5 Lac population

Survey Education and Treatment (SET) Centre

- A SET Centre is attached with: PHC in rural area
- Administrative control: Medical Officer (PHC)
- Population catered: 20 – 25,000
- Staff: One paramedical worker
- Functions:
 - Detection of cases early by house-to-house survey
 - Health education about leprosy
 - Free treatment of all cases and follow-up
 - Contact tracing and their chemoprophylaxis with Dapsone

Simplified Information System (SIS)

- Description: Is the Management and Information System (MIS) essential for the monitoring and evaluation of National Leprosy Eradication Programme (NLEP); It was started in 2002
- Indicators of SIS (NLEP):
 - Prevalence rate of leprosy
 - New case detection rate
 - Child proportion among new cases
 - Visible deformed case proportion among new cases
 - MBL (Multibacillary Leprosy) proportion among new cases
 - Female proportion among new cases
 - New case detection rate in Scheduled castes
 - New case detection rate in Scheduled tribes
 - Patient month blister calendar packs stock
 - Proportion of health subcentres providing MDT (Multidrug Therapy)
 - Absolute no. of patients made RFT (Released from treatment)

Newer Initiatives Under NLEP

- Focussed Leprosy Elimination Plan (FLEP) 2005:
 - Priority areas: Prevalence > 3 per 10,000
 - Increased efforts on IEC, training and integrated service delivery
 - Week long ‘Block Leprosy Awareness Campaign’
- SAPEL and LEC:
 - Special Action Projects for Elimination of Leprosy (SAPEL) in Rural areas and Leprosy Elimination Campaigns (LEC) for Urban areas: To cover populations residing in difficult/inaccessible areas, which were not generally covered by regular programme activities.
- Accompanied MDT: If patient is unable to come to collect his/her MDT from clinic, any responsible person from family or village can collect it.
 - Designed to help patients who have to interrupt their treatment due to any avoidable reason
 - Especially useful for irregular patients
 - Gives patients a choice: Patients can collect entire MDT course when diagnosed after proper counselling.

New Set of Indicators in Leprosy Control

- Operational Indicators: Monitor functioning of control activities
 - No. of new cases detected
Incidence

- Most sensitive index of transmission

- New cases with grade 2 disability per 100,000 population
- Treatment completion/cure rate

• Case detection indicators
 - % of children (0-14 yrs) among new detected cases: A high prevalence of infection among children indicate that Leprosy is an active and spreading
 - % of females among new detected cases
 - % of Multi-bacillary cases on regular treatment
 - % of new cases with grade 2 disability

• Quality of service indicators
 - New cases % correctly diagnosed
 - No. of relapses
 - % treatment defaulters
 - % patients who develop new disability during MDT

• Epidemiological indicators: Evaluate effectiveness of programme
 - Incidence
 - Most sensitive index of transmission
 - Prevalence
 - ‘Is Measure of case load’
 - Is useful in planning treatment services

NATIONAL PROGRAMME FOR PREVENTION AND CONTROL OF DEAFNESS

NPPCD

• Long term objective: To reduce disease burden by 25% by end of XI Five Year Plan
• Immediate objectives:
 - To prevent avoidable hearing loss due to disease or injury
 - Early identification, diagnosis and treatment of ear problems responsible for hearing loss and deafness
 - To medically rehabilitate deaf persons of all age groups
 - To strengthen the existing inter-sectoral linkages for continuity of the rehabilitation programme, for deaf
 - To develop institutional capacity for ear care services by providing equipment, material and training personnel
• Pilot project: In first phase of implementation in 25 districts.

NATIONAL IODINE DEFICIENCY DISORDERS CONTROL PROGRAM (NIDDCP)

NIDDCP

• National Goitre Control Programme (NGCP) launched in 1962 (100% centrally sponsored)
• National Iodine Deficiency Disorders Control Programme (NIDDCP) was launched in 1992.

Indicators to Monitor Success of NIDDCP

• Process Indicators: Indicators to monitor and evaluate the salt iodization process
 - Salt iodine content at the production site
 - Salt iodine content at point of packaging
 - Salt iodine content at wholesale and retail levels
 - Salt iodine content in households

• Impact Indicators: Indicators to assess baseline (Iodine Deficiency Disorders) IDD status and to monitor and evaluate the impact of salt iodization on the target population
 - Urinary Iodine Levels: The ‘principal impact indicator’ recommended once a salt iodization programme has been initiated (changes in goitre prevalence lag behind
changes in iodine status and therefore cannot be relied upon to reflect accurately current iodine intake, although they may be useful in following trends)

- **Goitre assessment**: (by palpation or by ultrasound) should remain a component of surveys to establish the baseline severity of IDD
- **Neonatal thyroid stimulating hormone (TSH) levels**: may also play a role here if a country already has in place a screening programme for hypothyroidism

Sustainability Indicators: Indicators to assess whether iodine deficiency has been successfully eliminated and to judge whether achievements can be sustained and maintained for the decades to come

- Median urinary iodine levels in the target population
- Availability of adequately iodized salt at the household level
- Set of programmatic indicators (as evidence of sustainability).

Important Points Regarding NIDDCP

- **Indicators for epidemiological assessment of iodine deficiency**:
 - Prevalence of goitre
 - Prevalence of cretinism
 - Urinary iodine excretion
 - Measurement of thyroid function (T4, TSH)
 - Prevalence of neonatal hypothyroidism
 - One-third of world population is exposed to the risk of IDD

- **Iodine deficiency as a major public health problem**: Goitre prevalence > 10%

- **Daily requirement of Iodine**:
 - 150 mcg (<1 teaspoon over lifetime) supplied normally by well balanced diets and drinking water

- **WHO/UNICEF/ICCIDD recommended daily iodine intake**:

<table>
<thead>
<tr>
<th>Group</th>
<th>Recommended daily intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool children (0 – 59 months)</td>
<td>90 mcg</td>
</tr>
<tr>
<td>School children (6 – 12 years)</td>
<td>120 mcg</td>
</tr>
<tr>
<td>Adults (>12 years)</td>
<td>150 mcg</td>
</tr>
<tr>
<td>Pregnancy and lactation</td>
<td>250 mcg</td>
</tr>
</tbody>
</table>

- **Iodised Oil**:
 - **Intramuscular Iodised Oil** (**poppy-seed oil**): Average dose 1 ml injection provided protection for 4 years.
 - **Oral Iodised Oil**: 2 ml dose is effective for 2 years.

- **Most widely used prophylactic public health measure against endemic goiter**: Iodised salt
 - Iodised salt is most convenient, effective and economical method of mass prophylaxis in endemic areas.

- **Standards of iodised salt (Level of iodization in salt)**:
 - At production level: 30 ppm
 - At consumer level: 15 ppm

- **Two-in-one salt**: National Institute of Nutrition (Hyderabad) developed 'Twin Fortified Salt' also known as 'Double Fortified Salt' (DFS)
 - **DFS contains** salt, potassium iodate, ferrous sulphate and sodium hexa meta phosphate (It contains Iron and Iodine)
 - **DFS provides** 40 mcg Iodine and 1 mg Iron per gram of salt

- **DEC Medicated Salt**: is used for mass treatment of Filaria infection; Treatment should be continued for 6 – 9 months
 - 1-4 gm DEC (diethylcarbamazine) per kg salt

- **In areas with mild-moderate iodine deficiency**: IQ of school children is lower by 13 points average
• Global Iodine Deficiency Disorders (IDD) Day: 21st October
• Criteria for tracking progress towards IDD elimination:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with enlarged thyroid (age 6 – 12 years)</td>
<td>< 5 %</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 100 mcg/litre</td>
<td>< 50 %</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 50 mcg/litre</td>
<td>< 20 %</td>
</tr>
<tr>
<td>Proportion of houses consuming adequately iodised salt</td>
<td>> 90 %</td>
</tr>
</tbody>
</table>

NATIONAL PROGRAM FOR PREVENTION AND CONTROL OF CANCER, DIABETES, CARDIOVASCULAR DISEASES AND STROKE (NPCDCS)

• **Introduction:**
 - Single centre for Cancer, Diabetes, Cardiovascular disease, Stroke
 - 100 districts in 21 states being covered in 11th Five year plan
 - 20,000 Subcentres and 700 Community health centres (CHCs) covered

• **Activities at Sub-centres:**
 - Health promotion for behaviour and lifestyle change
 - Opportunistic screening of BP, Blood glucose (Strip method) in age >30 years
 - Referral to CHC of cases of DM, HT

• **Activities at CHCs:**
 - Diagnosis and management at NCD clinic
 - Home visits by nurse for bedridden cases
 - Referral to District hospital for complicated cases

• **Activities at District hospital:**
 - Health promotion
 - Screening of population >30 years
 - Diagnosis and management of cardiovascular diseases
 - Home-based palliative care for chronic, debilitating, progressive patients

• **Urban health check-up scheme for Diabetes and High BP:**
 - Screen urban slum population
 - Screen population >30 years and pregnant females

• **Cancer control in NPCDCS:**
 - Regional cancer control scheme: Regional cancer centres to act as Referral centres for complicated cases
 - Oncology wing development scheme
 - Decentralized NGO scheme: IEC activities and early cancer detection
 - IEC at Central level
 - Research and training

COMMUNITY BASED UNIVERSAL HEALTH INSURANCE SCHEME (UHIS)

• **Launched in India:** in 2003–04 for BPL (Below Poverty Line) population
• **Age limit:** 3 months – 65 years
• **Premium Payable (Post Subsidy):**
 - For an individual: ₹165/- per annum
 - For a family up to 5 members: ₹248/- per annum
 - For a family up to 7 members: ₹330/- per annum
• **Subsidy given in premiums:**
 - For an individual: ₹200/- per annum
 - For a family up to 5 members: ₹300/- per annum
 - For a family up to 7 members: ₹400/- per annum
• **Scope of cover:**
 - Medical reimbursement: Hospitalization expenses up to ₹30,000/- to an individual/family
RASHTRIYA SWASTHYA BIMA YOJANA (RSBY)

- **Synonym:** National Health Insurance Scheme (NHIS)
- **Beneficiaries:** Below poverty line families
- **Contribution:**
 - Central government: INR 600/- (75% of total)
 - State Government: INR 200 (25% of total)
 - BPL family: INR 30/- (One time payment)
- **Benefits:**
 - Inpatient medical cover per family per year: INR 30,000/-
 - Cover in case of death of a family member: INR 25,000/-

PRADHAN MANTRI JAN DHAN YOJANA (PMJDY) 2014

- **Launched:** 15th August, 2014
- **Description:** “National Mission for Financial Inclusion” to ensure access to financial services, namely, Banking/ Savings & Deposit Accounts, Remittance Credit, Insurance, Pension in an affordable manner.
- **Objectives:**
 - To ensure access to various financial services like availability of basic savings bank account, access to need based credit, remittances facility, insurance and pension to excluded sections (weaker sections & low income groups)
 - Effective use of technology to allow deep penetration at affordable cost
- **Phases of PMJDY:**
 - Phase I: 15 August 2014- 14 August 2015
 - Phase II: 15 August 2015- 14 August 2018
- **Mission mode objectives (6 Pillars):**
 - Universal access to banking facilities
 - Providing basic banking accounts (overdraft facility, RuPay Debit card to all households)
 - Financial Literacy Program
 - Creation of Credit Guarantee Fund
 - Microinsurance
 - Unorganized sector Pension schemes

PRADHAN MANTRI SWASTHYA SURAKSHA YOJANA (PMSSY) 2006

- **Importance:** Aims at correcting the imbalances in the availability of affordable healthcare facilities in the different parts of the country in general, and augmenting facilities for quality medical education in the under-served States in particular
- **Components of first phase:**
 - Setting up 6 AIIMS institutions at Bhopal, Bhubaneswar, Jodhpur, Patna, Raipur and Rishikesh
National Health Programmes, Policies and Legislations in India

- Upgradation of 13 existing medical institutions at Jammu, Srinagar, Kolkata, Lucknow, Varanasi, Hyderabad, Tirupati, Salem, Ranchi, Ahmedabad, Bangalore, Mumbai, Thiruvananthapuram

• Components of Second phase:
- Setting up 2 AIIMS institutions at Rae bareli, Raigunj (Dinajpur)
- Upgradation of 6 medical institutions at Rohtak, Tanda, Amritsar, Nagpur, Madurai, Aligarh

• Components of Third phase:
- Upgradation of 39 more medical institutions

National Health Policy (NHP) 2002

• Goals for 2005
- Eradicate Polio and Yaws
- Eliminate Leprosy
- Establish integrated system of Surveillance, National Health Accounts and Health Statistics
- Increase state sector health spending from 5.5% to 7% of budget

• Goals for 2007
- Achieve zero level of growth of HIV/AIDS

• Goals for 2010
- Eliminate Kala Azar
- Reduce mortality by 50% due to TB, malaria, Vector borne diseases and Water borne diseases
- Reduce prevalence of blindness to 0.5%
- Reduce IMR to 30/1000 and MMR to 100/Lac
- Increase utilization of public health facilities from <20% to >75%
- Increase health expenditure as % of GDP from 0.9% to 2.0%
- Increase share of central grants to constitute >25% of total health spending
- Further increase state sector health spending to 8% of budget.

• Goals for 2015
- Eliminate Lymphatic Filariasis.

• Immediate objective: To address the unmet needs for contraception, health care infrastructure, and health personnel, and to provide integrated service delivery for basic reproductive and child health care
• Mid-term objective: To bring the TFR to replacement levels (TFR = 2.1) by 2010
• Long term objective: To achieve a stable population by 2045
• National Socio-demographic goals for 2010:
- Address the unmet needs for basic reproductive and child health services, supplies and infrastructure
- Make school education up to age 14 free and compulsory, and reduce drop outs at primary and secondary school levels to <20% for both boys and girls
- Reduce IMR to < 30 per 1000 live births
- Reduce MMR to < 100 per 100,000 live births
- Achieve universal immunization of children against all VPDs
- Promote delayed marriage for girls (not <18y and preferably >20y).
- Achieve 80% institutional deliveries and 100% by trained persons
- Achieve universal access to information/counseling, and services for fertility regulation and contraception with a wide basket of choices
- Achieve 100% registration of births, deaths, marriage & pregnancy
- Contain the spread of AIDS, and promote greater integration between the management of RTI and STI and the NACO
National Health Programmes, Policies and Legislations in India

- Prevent and control communicable diseases
- Integrate Indian Systems of Medicine (ISM) in RCH services
- Promote vigorously the small family norm to achieve replacement levels of TFR (i.e., TFR = 2.1)°
- Bring about convergence in implementation of related social sector programs so that family welfare becomes people centred programme.

NATIONAL MENTAL HEALTH POLICY 2014

- Vision: Promote mental health, prevent mental illness, enable recovery from mental illness and ensure accessible & affordable quality health and social care
- Goals°:
 - To reduce distress, disability, exclusion morbidity and premature mortality associated with MH disorders
 - To enhance understanding of MH in country
 - To strengthen leadership in MH at district, state and national levels

<table>
<thead>
<tr>
<th>Values and principles:</th>
<th>Objectives°:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>To provide universal access to MH care</td>
</tr>
<tr>
<td>Justice</td>
<td>To increase access to MH services for vulnerable groups</td>
</tr>
<tr>
<td>Integrated care</td>
<td>To reduce prevalence & impact of risk factors</td>
</tr>
<tr>
<td>Evidence based care</td>
<td>To reduce risk & incidence of suicide</td>
</tr>
<tr>
<td>Quality</td>
<td>To ensure respect for right of persons with MH disorders</td>
</tr>
<tr>
<td>Participatory and rights based approach</td>
<td>To reduce associated stigma</td>
</tr>
<tr>
<td>Governance and effective delivery</td>
<td>To enhance availability & equity of human resources</td>
</tr>
<tr>
<td>Value base in teaching & training programs</td>
<td>To enhance financial allocation and improve utilization</td>
</tr>
<tr>
<td>Holistic approach to mental health</td>
<td>To identify social, biological & behavioral determinants</td>
</tr>
</tbody>
</table>

SOME IMPORTANT HEALTH LEGISLATIONS PASSED IN INDIA

- The Quarantine Act, 1870°
- The Vaccination Act, 1880
- The Child Marriage Restraint (SARDA) Act, 1929°
- The Employees State Insurance (ESI) Act, 1948°
- The Factories Act, 1948°
- The Prevention of Food Adulteration (PFA) Act, 1954
- The Immoral Traffic (Prevention) Act, 1956
- The Indian Medical Council (Prof. Conduct and Ethics) Act 1956
- The Children’s Act 1960
- The Dowry Prohibition Act, 1961
- The Maternity Benefit Act, 1961
- The Registration of Births and Deaths Act, 1969°
- The Medical Termination of Pregnancy (MTP) Act, 1971°
- The Narcotic Drugs and Psychotropic Substances Act, 1985°
- The Consumer Protection Act (COPRA), 1986°
- The Environmental Protection Act (EPA), 1986
- The Mental Health Act, 1987
- The Infant Milk Substitutes, Feeding Bottles and Infant Food (Regulation of production, supply and distribution) Act, 1992°
- The Protection of Human Rights Act, 1993
- The Pre-conception and Pre-natal Diagnostic Techniques (Prohibition of Sex Selection) (PNDT) Act, 1994°
The Right to Information (RTI) Act, 2005².

Punishment for persons involved to be increased to up to 10 years imprisonment².

Both the births and deaths are to be registered within 21 days each².

- The Transplantation of Human Organs Act, 1994^Q
- The Biomedical Waste (Management and Handling) Rules, 1998
- The National Rural Employment Guarantee Act (NREGA), 2005^Q
- The Protection of Women from Domestic Violence Act, 2005^Q
- The Right to Information (RTI) Act, 2005^Q.

OT ACT, 1994

- *The Transplantation of Human Organs Act* was passed by Government of India in 1994.
 - It is an act to provide for the regulation of removal, storage and transplantation of human organs for therapeutic purposes and for the prevention of commercial dealings in human organs and for matters connected therewith or incidental thereto.
- Any person 18 years age or more can authorize, any of his near relatives (spouse, son, daughter, father, mother, brother or sister), for removal of organs from his/her body after death (parents can authorize in case of minors).
- No donor and no person shall authorize the removal of any human organ for any purpose other than therapeutic purposes.
- Before removal of body organs, atleast RMPs should certify that life or brain-stem function have ceased.
- Tests to be carried out before transplantation (proposed):
 - HLA, HLA-B alleles by serological /or PCR based DNA methods
 - HLA-DR beta genes using the PCR based DNA methods
- If no genetic relationship is still established, then following tests are carried out:
 - Same tests on both or at least one parent (or relative)
 - DNA fingerprinting using single/multi locus polymorphic probes
- Punishments under Organ Transplantation Act 1994:
 - New Modification in 2011: Punishment for persons involved to be increased to up to 10 years imprisonment² + fine up to ₹2,00,000-1,00,00,000/-.

CBD REGISTRATION ACT, 1969

- According to *The Registration of Births & Deaths Act 1969*, both the births and deaths are to be registered within 21 days each².

<table>
<thead>
<tr>
<th>Time of registration</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 21 days</td>
<td>None</td>
</tr>
<tr>
<td>Delay < 30 days</td>
<td>Prescribed fee</td>
</tr>
<tr>
<td>Delay > 30 days & < 1 year</td>
<td>Late fee + affidavit from notary public</td>
</tr>
<tr>
<td>Delay > 1 year</td>
<td>Late fee + order from Class I officer/magistrate</td>
</tr>
</tbody>
</table>

NATIONAL RURAL EMPLOYMENT GUARANTEE ACT (NREGA) 2005

- NREGA Act 2005 has been passed by the Parliament to provide for *‘100 days of guaranteed wage employment in every year’*^Q to every household whose adult members volunteer to do *‘unskilled manual work’*^Q
- Salient features:
 - A household is entitled for *‘100 days of work in a year’*^Q
 - Rural Households to register to local gram panchayat. *‘Job card’* to be given to every registered household (valid for 5 years)^Q
 - Registered adult must submit an application to gram panchayat (for at least 14 days of continuous work)
One-third of persons who are given employment will be women. Allotment for work: ‘within 15 days’ and non-maintenance of records medical (for refusal of registration number of State Medical Council or the Medical Council of India in his clinic, prescriptions and certificates
Committing adultery or improper conduct with a patient
Conviction by Court of Law
Sex Determination Tests
Signing professional Certificates, Reports and other Documents which are untrue, misleading or improper
Contravening the provisions of the Drugs and Cosmetics Act and regulations
Performing or enabling unqualified person to perform an abortion or any illegal operation for which there is no medical, surgical or psychological indication
Issuing certificates of efficiency in modern medicine to unqualified or non-medical person
Contributing to the lay press articles and give interviews regarding diseases and treatments which may have the effect of advertising himself or soliciting practices
Advertisements of institution run by a physician containing anything more than the name of the institution, type of patients, type of training, other facilities and the fees
Using an unusually large sign board and write on it anything other than his name, qualifications, titles and name of his specialty, registration number or affixing a sign-board on a chemist’s shop or in places where he does not reside or work.
Disclosing the secrets of a patient, except:
 - in a court of law under orders of the Presiding Judge.
 - in circumstances where there is a serious and identified risk to a specific person and/or community.
 - notifiable diseases.
Refusal on religious grounds alone to give assistance in or conduct of sterility, birth control, circumcision and medical termination of Pregnancy.
Not taking written consent.
Publishing photographs or case reports of patients without their permission.
Using touts or agents for procuring patients.
Claiming to be specialist unless he has a special qualification in that branch.
Undertaking act of in-vitro fertilization or artificial insemination without the informed consent of the female patient and her spouse as well as the donor.
Violating existing ICMR guidelines in clinical drug trials or other research involving patients or volunteers.
Physician posted in rural area found absent on > 2 occasions during inspection by the Head of the District Health Authority or the Chairman, Zila Parishad.
• Physician posted in a medical college/institution both as teaching faculty or otherwise found absent on >2 occasions.

THE NARCOTIC DRUGS AND PSYCHOTROPIC SUBSTANCES ACT, 1985

• Whosoever produce, manufacture, buy, sell, produce, transport, use, consume any narcotic drug (Opium/popp) or psychotropic substance: Shall be punished with imprisonment 10-20 years² + fine 1-2 lac rupees (5 years + 50000 rupees for Ganja).
 - Users, if not covered under Sections 15-25, will be sent for treatment/rehabilitation and not punished³.
• Breach in licence for opium growth: Shall be punished with imprisonment 3 years with or without fine.
• Whosoever possess a small quantity for personal consumption: Shall be punished with imprisonment 6 months + fine.
 - Subsequent offences: Death penalty.
• Alcohol use: IS NOT covered by this act⁰.

POCSO Act (Prevention of Children from Sexual Offences Act) 2012

• Child definition: Any person less than 18 years of age
• Includes: Sexual abuses and pornography
• Punishments under the act:

<table>
<thead>
<tr>
<th>Offences (Section)</th>
<th>Punishment (Section)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrative sexual assault (3)</td>
<td>7 years-Life imprisonment + Fine (4)</td>
</tr>
<tr>
<td>Aggravated penetrative sexual assault (5)</td>
<td>10 years-Life imprisonment + Fine (6)</td>
</tr>
<tr>
<td>Sexual assault (7)</td>
<td>3-5 years + Fine (8)</td>
</tr>
<tr>
<td>Aggravated sexual assault (9)</td>
<td>5-7 years + Fine (10)</td>
</tr>
<tr>
<td>Sexual harassment (11)</td>
<td>3 years + Fine (12)</td>
</tr>
<tr>
<td>Use of child for pornography (13)</td>
<td>5 years + Fine (14)</td>
</tr>
</tbody>
</table>

FOOD STANDARDS AND SAFETY ACT (FSSA) 2006⁰

• Ministry In-charge: Ministry of Health and Family Welfare
• Objectives:
 - To introduce a single statute relating to food
 - To provide for scientific development of the food processing industry
• Organization constituted: Food Standards and Safety Association of India (FSSAI) 2008
MULTIPLE CHOICE QUESTIONS

REvised NATIONAL TB CONTROL PROGRAMME

1. A 25-year-old female has been diagnosed to be suffering from tuberculosis categorized as category I (sputum +ve) case of relapse. The new treatment regimen recommended under DOTS is: [AIIMS May 04]
 (a) 2(HRZE)₃ + 5(HR),
 (b) 2(HRSZE)₃ + 1(HRZE)₃ + 5(HRE)₃,
 (c) 3(HRZE)₃ + 2(HRE)₃ + 4(HR)₃,
 (d) 3(HRSZE)₃ + 1(HRZE)₃ + 6(HRE)₃

2. For sputum smear to come positive on ZN staining there should be minimum: [AIIMS Nov 1999]
 (a) 100 bacilli per ml sputum
 (b) 1000 bacilli per ml sputum
 (c) 2000 bacilli per ml sputum
 (d) 10,000 bacilli per ml sputum

3. A 26 years old male has symptoms suggestive of tuberculosis. At DOTS clinic, he undergoes 3 sputum smear examinations. Only one of the sputum smear turns out to be positive for AFB. Next step of management will be: [AIIMS Feb 1997]
 (a) He is declared a Sputum smear +ve case; started with DOTS Cat I treatment
 (b) He is declared a Sputum smear –ve case; started with DOTS Cat III treatment
 (c) He is referred for Chest X-ray
 (d) He will undergo sputum smear examinations after 12 months again

4. Which is the right number of doses of ATT for a category II patient under DOTS? [AIIMS Nov 04]
 (a) IP - 24, CP - 54
 (b) IP - 36, CP - 66
 (c) IP - 24, CP - 48
 (d) IP - 36, CP - 54

5. In RNTCP the schedule for sputum examination for category I patients is: [AIIMS May 02]
 (a) 2, 3 and 5 months
 (b) 2, 4 and 6 months
 (c) 1, 3 and 5 months
 (d) 2, 5 and 7 months

6. Best indicator of trend of Tuberculosis unaffected by current control measures is: [AIIMS Nov 1995]
 (a) Annual Risk of Infection
 (b) Prevalence of TB infection
 (c) % of primary drug resistance
 (d) % of Multidrug resistance

7. Multidrug resistance in TB is defined as resistance to:
 (a) Streptomycin, Rifampicin and Isoniazid
 (b) Streptomycin and Rifampicin [AIIMS May 2004]
 (c) Isoniazid and Rifampicin
 (d) Streptomycin and Isoniazid

8. Every TB sputum positive patient can infect up to:
 (a) 1-2 persons per year [AIIMS Dec 1995]
 (b) 5-6 persons per year
 (c) 10-15 persons per year
 (d) 100-200 persons per year

9. Under RNTCP, objective is to achieve:
 (a) To achieve a cure rate of 70% and then to detect 85% of estimated cases [AIIMS May 2001]
 (b) To achieve a cure rate of 85% and then to detect 70% of estimated cases
 (c) To detect 70% of estimated cases and then to achieve a cure rate of 85%
 (d) To detect 85% of estimated cases and then to achieve a cure rate of 70%

10. To yield a positive sputum smear result on ZN Staining, there should be minimum of:
 (a) 100 acid fast bacilli per ml of sputum
 (b) 1000 acid fast bacilli per ml of sputum
 (c) 10000 acid fast bacilli per ml of sputum
 (d) 100000 acid fast bacilli per ml of sputum

11. Only bacteriostatic anti-tubercular drug among the following is:
 (a) Isoniazid
 (b) Rifampicin
 (c) Streptomycin
 (d) Ethambutol

12. Anti-tubercular drug contraindicated during pregnancy is:
 (a) Isoniazid
 (b) Rifampicin
 (c) Streptomycin
 (d) Ethambutol

13. Ethambutol is associated with:
 (a) Red-blue colour blindness
 (b) Red-green colour blindness
 (c) Blue-green colour blindness
 (d) Yellow-green colour blindness

14. Anti-tubercular drug not given in children < 6 years is:
 (a) Isoniazid
 (b) Rifampicin
 (c) Streptomycin
 (d) Ethambutol

https://kat.cr/user/Blink99/
15. Under RNTCP, a patient who was initially sputum smear +ve, who began treatment and who remained or became smear +ve again at 5 months or later during course of treatment is a:
(a) New case
(b) Relapse
(c) Failure case
(d) Defaulter

[AIIMS June 98-99]

16. A adult male patient presented in the OPD with complaints of cough and fever for 3 months and haemoptysis off and on. His sputum was positive for AFB. On probing it was found that he had already received treatment with RHZE for 3 weeks from a nearby hospital and discontinued. How will you categorize and manage the patient?

[AIIMS May 03]

17. ‘DOTS’ indicates:
(a) Short-term treatment under supervision
(b) Short-term treatment without supervision
(c) Long-term treatment with supervision
(d) Long-term treatment without supervision

[Karnataka 2006]

18. The sputum examination under DTP is done when the patient present with:
(a) Cough of 1-2 wks duration
(b) Persistent cough of 1-2 days duration
(c) Hemoptysis
(d) Chest pain
(e) Intermittent fever

[PGI June 02]

19. True about revised National Tuberculosis programme (NTP):
(a) Active case finding
(b) DOTS applied
(c) Treatment is given only in smear positive cases
(d) General practitioners are restricted to give the treatment
(e) It has replaced NTP

[PGI June 03]

20. Which is not included in RNTCP:
(a) Active case finding
(b) Directly observed
(c) X-ray is diagnostic
(d) Drugs given daily

[PGI June 04]

21. As per RNTCP Cat-I, should receive:
(a) 4 drugs for 2 months and 2 drugs for 4 months
(b) 3 drugs for two months and 2 drugs for four months
(c) Includes Retreatment cases
(d) Rx is given daily
(e) Directly observed

[PGI June 04]

22. Features of RNTCP A/E:
(a) Active case findings
(b) Involvement of NGO
(c) Sputum – 2 times

[PGI June 04]

23. True about DOTS:
(a) Drugs are given on supervision
(b) Streptomycin always given in first two months
(c) Intermittent regimen are used
(d) Same regimen is given in all patient
(e) In category – I. new sputum positive cases sputum examined in 2.5 and 6 months

[PGI June 2008]

24. DOTS true about:
(a) Rx under supervision
(b) All given same Rx
(c) Streptomycin given to all
(d) Intermittent regimen
(e) Daily regimen

[PGI Dec 08]

25. Treatment of choice for sputum positive pulmonary tuberculosis detected in the I trimester of pregnancy is:
(a) Defer treatment till II trimester
(b) Start Category I immediately
(c) Start Category II immediately
(d) Start Category III immediately

[AIIMS May 09]

26. A pregnant female in first trimester came with sputum positive TB. Treatment of choice:
(a) Start Cat I treatment immediately
(b) Start Cat II treatment immediately
(c) Start Cat III treatment immediately
(d) Delay treatment till 2nd trimester

[AIIMS May 2010]

27. A person with tuberculosis on domiciliary treatment is expected to do all, except:
(a) Dispose sputum safely
(b) Use separate vessels
(c) Collect drugs regularly
(d) Report to PHC if new symptoms arise

[Recent Question 2013]

28. Dose of Rifampicin in RNTCP is:
(a) 300 mg
(b) 450 mg
(c) 600 mg
(d) 800 mg

[AIIMS November 2013]

29. Diagnosis of TB according to DOTS (RNTCP) is:
(a) 1 out of 2 samples positive
(b) 2 out of 3 samples positive
(c) 3 out of 3 samples positive
(d) None

[Recent Question 2013]

30. Category II treatment:
(a) 2HRZES + 1HRZE + 5HRE
(b) 2HRZE + 5HRZ
(c) 2HRZE + 4HR
(d) None

[Recent Question 2013]

31. Drugs are used in AKT-4 kit for TB as:
(a) Decrease in resistance by mutation
(b) Decrease in resistance by conjugation
(c) To cure disease early
(d) None

[Recent Question 2013]
32. DOTS criteria for TB is positive if:
 (a) 1 out of 2 sputum positive
 (b) 2 out of 3 sputum positive
 (c) CXR positive
 (d) Mantoux positive
 [DNB December 2011]

33. True about Category III RNCTP is/are:
 (a) Recently abolished
 (b) Meant for MDR-TB treatment
 (c) Given for 6 months
 (d) Includes defaulters
 (e) Based on sputum culture findings
 [PGI November 2012]

34. Dose of Rifampicin in RNTCP is:
 (a) 600 mg
 (b) 450 mg
 (c) 300 mg
 (d) 100 mg
 [Recent Question 2013]

35. Why a TB patient is recommended a regimen of 4 drugs on 1st visit:
 (a) To avoid emergence of persistors
 (b) To avoid side effects
 (c) To cure early
 (d) None of the above
 [Recent Question 2013]

36. Category I TB treatment is:
 (a) Active
 (b) Passive
 (c) Both
 (d) None
 [Recent Question 2013]

37. RNTCP case finding is:
 (a) Active
 (b) Passive
 (c) Both
 (d) None
 [Recent Question 2013]

38. XDR-TB definition include resistance to:
 (a) Rifampicin
 (b) Any one Fluoroquinolone
 (c) INH
 (d) Kanamycin
 (e) Ethionamide
 [PGI May 2014] [Recent Question 2014]

39. Under RNCTP diagnosis, TB bacilli take up AFB stain faster showing 'Beaded appearance' due to presence of:
 (a) Palmitic acid
 (b) Wax-D
 (c) Cord-factor
 (d) Mycolic acid
 [Recent Question 2014]

40. What is New change in Revised National Tuberculosis Control Programme (RNTCP)?
 (a) DOTS based therapy
 (b) Diagnosis by Sputum smear microscopy
 (c) Non-DOTS based therapy
 (d) Early diagnosis and treatment
 [Recent Question 2014]

41. Disadvantage of INH prophylaxis are all of the following except:
 (a) Costly
 (b) Not effective
 (c) Cannot prevent disease in infected person
 (d) Risk of hepatitis
 [Kerala 2001; UP 2004]

42. If after 2 months of conventional antituberculous therapy, sputum smear examination is positive, it indicates:
 (a) Treatment failure
 (b) Return after default
 (c) Resistant tuberculosis
 (d) Category-II failure
 [AP 2005]

43. A patient of tuberculosis was treated 5 years back. Now he represents with symptoms of cough, sputum culture was negative, X-ray changes show opacities. It did not respond to broad spectrum antibiotics. It belongs to which category:
 (a) Category I
 (b) Category II
 (c) Category III
 (d) Category IV
 [AP 2006]

44. The drug which is used only in RNTCP CAT II is:
 (a) INH
 (b) Rifampicin
 (c) Streptomycin
 (d) Pyrazinamide
 [TN 2005]

45. In revised National tuberculosis control programme main objective is:
 (a) To improve patient's compliance
 (b) Achievements of high cure rates through DOTS
 (c) To decrease development of resistance against Antitubercular drugs
 (d) To increase effectiveness
 [MP 2002]

46. Under directly observed treatment of short course chemotherapy, the recommended regimen of category-II treatment is:
 (a) 2 (HRE);4 (HR)
 (b) 2 (HRZES); 1 (HRZE);3.5 (HRE)
 (c) 3 (HRZES); 2 (HRZE); 4 (HRZ)
 (d) 2 (HRZ); 4 (HR)
 [MP 2009]

47. In the DOTS strategy under National Tuberculosis Control Programme, the letter ‘D’ and ‘O’ stand for which of the following?
 (a) Daily observed
 (b) Directly observed
 (c) Day out
 (d) Dually observed
 [Karnataka 2006; MH 2003]
48. Treatment of recently sputum positive case of pulmonary TB is: [MH 2005]
 (a) RMP + INH + PZM
 (b) RMP + INH + PZM + SMC
 (c) RMP + INH + PZM + ETM
 (d) RMP + INH + ETM

49. The Pillars of Revised National Tuberculosis Control Programme (RNTCP) are all Except: [ESIS 2005; MH 2006]
 (a) Achievement of not less than 85% cure rate amongst infectious cases of tuberculosis through short course chemotherapy involving peripheral health functionary
 (b) Detecting 70% of estimated cases through Quality Sputum Microscopy
 (c) Not involving NGO’s in RNTCP
 (d) Directly observed therapy (short term), is a community based TB treatment and care strategy

50. According to RNTCP, tubercular pericarditis should be treated with which category of anti-tubercular regimen? [MH 2007]
 (a) Category I
 (b) Category III
 (c) Category II
 (d) Category IV

51. According to RNTCP, the first action to be taken in a person with cough of more than three weeks with one sample of sputum positive? [MH 2008]
 (a) Star antibiotics for 15 days
 (b) Chest X-ray
 (c) Sputum sample for AFB
 (d) Culture study

52. Pulse polio immunization is administration of OPV to: [AIIMS Nov 2007]
 (a) All children between 0—5 years of age on a single day, irrespective of their previous immunization status
 (b) Children in the age group of 0—1 year only who have not been immunized earlier
 (c) Children in the age group of 12—24 months only, as the booster dose
 (d) All children between 0—5 years of age, whenever there is an outbreak of poliomyelitis

53. Under AFP Surveillance, follow-up examination is done after: [AIPGME 2005]
 (a) 15 days of onset of paralysis
 (b) 30 days of onset of paralysis
 (c) 60 days of onset of paralysis
 (d) 90 days of onset of paralysis

54. All are true regarding AFP Surveillance except: [MH 2005]
 (a) WHO recommends it for age less than 15 yrs
 (b) Two stool samples are collected per case
 (c) Non-polio AFP rate should be >1 per 100000 among <15 yrs old
 (d) Adequate stool specimens should be taken from 100% AFP

55. Acute flaccid paralysis is reported in a child aged: [AIPGME 02]
 (a) 0-3 years
 (b) 0-5 years
 (c) 0-15 years
 (d) 0-25 years

56. In Acute Flaccid paralysis, examination for residual paralysis should be done after: [AIPGME 2010]
 (a) 30 days
 (b) 60 days
 (c) 90 days
 (d) 120 days

57. In acute flaccid paralysis surveillance, evaluation for residual paralysis is done at: [AIIMS May 2012]
 (a) 6 weeks
 (b) 6 months
 (c) 60 days
 (d) 90 days

58. Target group for pulse polio immunization is [Recent Question 2012]
 (a) 0-1 years
 (b) 0-3 years
 (c) 0-5 years
 (d) 0-10 years

59. Line listing of cases of Acute Flaccid Paralysis is done for all of the following reasons except [NIPGME 2013]
 (a) To check for duplication
 (b) To document high risk groups
 (c) To confirm year of onset of illness
 (d) To identify high risk population

60. Under national polio eradication programme, a case of acute flaccid paralysis is confirmed as polio by surveillance after how many days? [DNB December 2009]
 (a) 15 days
 (b) 30 days
 (c) 60 days
 (d) 90 days

Review Questions

61. OPV Vaccine type: [Bihar 2006]
 (a) Killed
 (b) Live
 (c) Toxoid
 (d) None

62. All are true regarding Acute flaccid paralysis in National Polio Eradication Programme, except: [UP 2008]
 (a) Acute flaccid paralysis in a child <15 years of age
 (b) All cases of AFP should be reported irrespective of diagnosis within 6 months of onset stool
 (c) Two specimens collected within 14 days of paralysis onset and at least 24 hours apart
 (d) 30 days follow up examination
63. Pulse polio immunization covers: [MP 2005]
 (a) 0-3 yrs children
 (b) 0-1 yrs children
 (c) 1-3 yrs children
 (d) 0-2 yrs children

 (c) Reassurance and continue pregnancy
 (d) Laparotomy

64. Integrated Management of Neonatal and Childhood Illness (IMNCl) includes all except: [AIPGME 09]
 (a) Malaria
 (b) Respiratory infections
 (c) Diarrhoea
 (d) Tuberculosis

65. Essential components of RCH Programme in India include all of the following except:
 (a) Prevention and management of unwanted pregnancies [AIPGME 04]
 (b) Maternal care including antenatal, delivery and postnatal services
 (c) Reduce the under five mortality to half
 (d) Management of reproductive tract infections and sexually transmitted infections

66. ‘Seven Cleans’ of safe and hygienic birth practices include:
 [AIIMS May 2007]
 (a) Clean walls and Clean floor
 (b) Clean towel and Clean water for hand washing
 (c) Clean birth canal and Clean cord surface
 (d) Clean mind and Clean environment

67. RCH-II (2004-09) has set the goal of achieving a Couple Protection Rate of:
 [AIIMS May 2005]
 (a) 48%
 (b) 60%
 (c) 65%
 (d) 100%

68. Elemental iron and folic acid contents of pediatric iron-folic acid tablets supplied under Reproductive and Child Health (RCH) Programme are:
 [AIPGME 03]
 (a) 20 mg iron and 100 micrograms folic acid
 (b) 40 mg iron and 100 micrograms folic acid
 (c) 40 mg iron and 50 micrograms folic acid
 (d) 60 mg iron and 100 micrograms folic acid

69. IMNCI differs from IMCI in all except:
 [AIPGME 2010]
 (a) Malaria and anaemia are included
 (b) 0 – 7 days infants are included
 (c) Sick neonates are preferred over sick older children
 (d) Treatment is aimed at more than one disease (condition) at a time

70. Copper-T with threads is visible in a case of early pregnancy. Treatment of choice is:
 [DPG 2011]
 (a) Remove CuT only
 (b) Suction evacuation with Copper-T removal

71. According to IMNCI, fast breathing in 5 month child is defined as [Recent Question 2012]
 (a) >30/min
 (b) >40/min
 (c) >50/min
 (d) >60/min

72. Under RCH programme, intervention done in selected districts [Recent Question 2013]
 (a) Immunization
 (b) Treatment of STD
 (c) ORS therapy
 (d) Vitamin A supplementation

73. Drug-kit B is given at:
 [Recent Question 2012]
 (a) PHC
 (b) Subcenter
 (c) CHC
 (d) FRU level

74. RCH programme includes [Recent Question 2013]
 (a) CSSM plus school health
 (b) CSSM plus family planning
 (c) CSSM plus ORS
 (d) CSSM plus pneumonia control

75. According to 2006 government of India guidelines for sterilization all are true except [DNB December 2011]
 (a) Should be married
 (b) Female clients should be below the age of 45 years and above the age of 20 years
 (c) The couple should have at least one child whose age is above one year unless the sterilization is medically indicated.
 (d) Clients or their spouses/partner must not have undergone sterilization in the past

76. Patient treated at home is allotted what color code according to IMNCI color coding [DNB December 2010]
 (a) Pink
 (b) Red
 (c) Green
 (d) Yellow

77. RCH phase 2 does not include [Recent Question 2012]
 (a) Immunization of pregnant women
 (b) Treatment of STD/RTI
 (c) Feed to malnourished children
 (d) Early registration of pregnancy upto 12-16 weeks

78. Components of RCH elaborated include [Recent Question 2013]
 (a) Prevention of STD
 (b) Family planning
 (c) Child survival
 (d) All of the above
79. IMNCI target group is [Recent Question 2013]
 (a) Upto 5 yrs
 (b) Upto 10 yrs
 (c) Upto 15 yrs
 (d) Upto 20 yrs

80. RCH II includes: [Kolkata 2007]
 (a) Low osmolar ors
 (b) Adolescent health
 (c) Exclusive breast feeding
 (d) All

81. In CSSM programme drug of choice for Pneumonia: [MP 2000]
 (a) Co-trimoxazole
 (b) Doxycycline
 (c) Erythromycin
 (d) Chloramphenicol

82. Recommended dose for treatment of pneumonia of 6 months old child is (1 tablet contains 100 mg of sulphamethozazole and 20 mg of trimethoprim): [MP 2009]
 (a) ½ tablet twice daily
 (b) One tablet twice daily
 (c) Two tablets twice daily
 (d) Three tablets twice daily

83. According to maternal health programme the daily dose of folic acid for pregnant women should be: [MH 2005]
 (a) 100 mcg
 (b) 200 mcg
 (c) 300 mcg
 (d) 400 mcg

84. Under the National Programme for Control of Blindness in India, medical colleges are classified as eye care centers of: [AIIMS Nov 2003]
 (a) Primary level
 (b) Secondary level
 (c) Tertiary level
 (d) Intermediate level

85. A 46- Years old female presented at the eye OPD in a hospital. Her vision in the right eye was 6/60 and in left eye 3/60. Under the National Programme for Control of Blindness, she will be classified as: [AIIMS Nov 02]
 (a) Socially blind
 (b) Low vision
 (c) Economically blind
 (d) Normal vision

86. According to the World Health Organization, the definition of blindness is: [AIPGME 06, AIPGME 2000, 01; AIIMS Nov 05]
 (a) Visual acuity < 6/60 in the better eye with available correction
 (b) Visual acuity <3/60 in the better eye with available correction
 (c) Visual acuity < 6/60 in the better eye with best correction
 (d) Visual acuity < 3/60 in the better eye with best correction

87. According to the National Programme for Control of Blindness (NPCB) in India, the definition of blindness is: [AIPGME 1999]
 (a) Visual acuity < 6/60 in the better eye with available correction
 (b) Visual acuity < 3/60 in the better eye with available correction
 (c) Visual acuity < 6/60 in the better eye with best correction
 (d) Visual acuity < 3/60 in the better eye with best correction

88. A 46- Years old female presented at the eye OPD in a hospital. Her vision in the right eye was 6/60 and in left eye 3/60. Under the National Programme for Control of Blindness, she will be classified as: [AIIMS May 05]
 (a) Socially blind
 (b) Low vision
 (c) Economically blind
 (d) Normal vision

89. The visual acuity used as cut off for differentiating “normal” from “abnormal” children in the School Vision Screening Programme in India is: [AIIMS Nov 2002]
 (a) 6/6
 (b) 6/9
 (c) 6/12
 (d) 6/60

90. Revised strategies of National Programme for Control of Blindness include all except: [AIPGME 2006]
 (a) To strengthen participation of voluntary organizations
 (b) To shift from fixed facility surgical approach to eye camp approach
 (c) To enhance coverage of eye care services in tribal and other under-served areas
 (d) To strengthen services for transplantation of cornea, treatment of glaucoma

91. Most cost-effective method for cataract surgery in India has been found to be: [AIPGME 2003]
 (a) Private Hospital
 (b) NGO Hospital
 (c) Government Camps
 (d) NGO organized screening camps followed by surgery at base hospital

92. Match the following NPCB categories of Visual impairment and Blindness: [AIPGME 1999]
 A < 6/18 to 6/60, I - Economic Blindness
 B < 6/60 to 3/60, II - Manifest Blindness
 C < 3/60 to 1/60, III - Social Blindness
 D < 1/60 to perception of light, IV - Low Vision
 (a) A-II, B-IV, C-III, D-I
 (b) A-I, B-II, C-IV, D-IV
 (c) A-IV, B-I, C-III, D-II
 (d) A-IV, B-II, C-III, D-I
93. Prevalence of blindness in India is 1.1%. This has been calculated using following cut off for blindness:
(a) 3/60 [AIIMS Feb 1997]
(b) 6/60
(c) 1/60
(d) 6/18
94. All of the following are given global prominence in the VISION 2020 goals, except: [AIIMS May 07]
(a) Refractive errors
(b) Cataract
(c) Trachoma
(d) Glaucoma
95. Target diseases for VISION 2020 in India does not include: [AIIMS May 2007-2008]
(a) Refractive errors and Low vision
(b) Diabetic retinopathy
(c) Trachoma
(d) Xerophthalmia
96. The eye condition for which the World Bank assistance was provided to the National Programme for Control of Blindness (1994-2001) is: [AIIMS May 07]
(a) Cataract
(b) Refractive errors
(c) Trachoma
(d) Vitamin A deficiency
97. Under the school eye-screening programme in India, the initial vision screening of school children is done by: [AIPGME 2006]
(a) School teachers
(b) Primary level health workers
(c) Eye specialists
(d) Medical officers
98. Under national blindness control program social blindness is vision between: [AIPGME 2004]
(a) 3/60 and 1/60
(b) PL – ve
(c) 6/60 and 3/60
(d) below 1/60 but PL + ve
99. False about School Vision Screening Programme is: [AIIMS Nov 2007]
(a) Age group screened is 5-10 years
(b) Screening is done by Teacher
(c) One teacher is for 150 students
(d) Cut off for referral of a child is vision < 6/9
100. SAFE strategy has been developed for the control of: [AIPGME 07]
(a) Onchocerciasis
(b) Trachoma
(c) Refractive error
(d) Ocular trauma
101. About National Programme for Control of Blindness (NPCB), all are true except: [AIIMS May 09]
(a) Increase cataract surgery rate to 450 operations per one lac population
(b) Intra-ocular lens implantation in more than 80% of cataract surgery cases
(c) 100% coverage of vitamin A prophylaxia doses from 9 months to 3 years age
(d) Development of 50 paediatric ophthalmology units
102. Which of the following diseases is not included in “Vision 2020 - Right to Sight” immediate goals?
(a) Cataract [AIIMS May 2010]
(b) Epidemic conjunctivitis
(c) Onchocerciasis
(d) Trachoma
103. Which of the following Health organisation is not a part of Vision 2020? [AIIMS November 2011]
(a) UNICEF
(b) WHO
(c) Orbis
(d) International Agency for Prevention of Blindness
104. All of the following are included in Vision 2020 for India except: [AIPGME 2012]
(a) Diabetic retinopathy
(b) Glaucoma
(c) Vitamin A deficiency
(d) Refractive errors
105. Number of Vision centers under Vision 2020, National Program for Control of Blindness are [AIIMS May 2013]
(a) 20
(b) 200
(c) 2000
(d) 20000
106. In SAFE strategy, S stands for [DNB December 2011]
(a) Surgery
(b) Syringing
(c) Streptomycin
(d) All of the above
107. Follow-up of Cataract operations in National Blindness Control Program is done by [AIIMS November 2013]
(a) Active surveillance
(b) Passive surveillance
(c) Sentinel surveillance
(d) Routine check-up
108. In Vision 2020, the target for secondary service centre is for how much population [AIIMS May 2012]
(a) 10000
(b) 50000
(c) 100,000
(d) 500,000
109. In vision 2020, recommended ophthalmic personnel per population ratio is [AIIMS May 2012]
(a) 5000
(b) 10000
(c) 50000
(d) 100,000
110. Under National Program for Control of Blindness, District blindness control society is headed by:
(a) District program manager [AIIMS November 2014]
(b) District eye surgeon [Recent Question 2014]
(c) District collector
(d) District health officer

Review Questions

111. Highest content of protein is found in: [Bihar 2004]
(a) Soya bean
(b) Red gram
(c) Bengal gram
(d) Black gram

112. Goal for 2000 A.D. to reduce blindness is: [UP 2000]
(a) 1%
(b) 3%
(c) 5%

113. WHO defines blindness as visual acuity of less than:
(a) Not able to count the fingers at 3 metres distance
(b) 3/60 [TN 1994; TN 2000]
(c) 6/60
(d) Not of the above

114. Mobile eye care services are not done at which level:
(a) Primary care level [R 2007]
(b) Secondary care
(c) Tertiary care
(d) District hospitals

115. “3 BY 5 target” approach refers to: [AIIMS Nov 04]
(a) Providing 3 ART drugs to all patients by 2005
(b) Providing ART to 3 million people by 2005
(c) Providing 3 antiretroviral drugs to all patients
(d) All of above

116. For diagnosis of HIV infection in asymptomatic, minimum number of tests required is/are:
(a) 1 [AIIMS Nov 2003]
(b) 2
(c) 3
(d) 4

117. Route for HIV transmission with maximum efficiency is: [AIIMS Nov 1999]
(a) Sexual
(b) Transfusion of blood/blood products
(c) Sharing needles/syringes
(d) Mother to child transmission

118. CTL inducing vaccines, Recombinant Adeno-associated Virus Vaccine (rAAV) and Modified Vaccinia Ankara (MVA) are being developed for: [AIPGME 2002]
(a) Tuberculosis
(b) Leprosy

119. Targeted Interventions for HIV is done for all except: [AIIMS May 2009]
(a) Commercial sex workers
(b) Migrant labours
(c) Street children
(d) Industrial workers

120. According to CDC recommendations, HIV screening of pregnant women is: [AIIMS May 09]
(a) Opt-in testing
(b) Opt – out testing
(c) Compulsory
(d) Symptomatic

121. Drugs used to prevent Mother-to-child transmission of HIV in India ia/ are [PGI November 2012]
(a) Lamivudine
(b) Zidovudine
(c) Nevirapine
(d) Ribavirin
(e) Stavudine

122. Sentinel surveillance for HIV under National AIDS Control program is used for all except: [AIIMS May 2014]
(a) Estimation of total infection in community
(b) Estimation of total cases in hospitals
(c) Estimation of trend of the disease
(d) Classification of districts

123. Anti-retroviral therapy is started when CD4 count is less than [Recent Question 2014]
(a) 100
(b) 200
(c) 350
(d) 400

124. Which of the following RTI/ STI colour coded kits wrongly matched? [Recent Question 2014]
(a) Kit 1 – Grey
(b) Kit 2 – Green
(c) Kit 3 – White
(d) Kit 4 – Red

125. According to Suraksha Clinic in National AIDS Control Program, infant coming with lower abdominal pain, the color code of kit in treatment is [Recent Question 2014]
(a) White (b) Yellow
(c) Green (d) Grey

Review Questions

126. To prevent vertical transmission of HIV in a child of pregnant mother, used is: [DNB 2002]
(a) Single dose of Nevirapine mother and child
(b) Zidovudine for 3 months
(c) Observation
(d) Zidovudine for 6 months

https://kat.cr/user/Blink99/
127. Helpline for AIDS can be reached by dialling:
(a) 1079 [TN 2005]
(b) 1091
(c) 1098
(d) 1097

128. Drug of choice for chemoprophylaxis of plague is:
(a) Streptomycin [MP 2005]
(b) Tetracycline
(c) Penicillin
(d) Erythromycin

129. For prevention of mother to child transmission of HIV infection the dose of nevirapine to be given to the mother at the onset of labour is: [MP 2006]
(a) 200mg
(b) 300mg
(c) 500mg
(d) 750mg

130. HIV sentinel surveillance was started in 1994 with how many sentinel sites: [MP 2009]
(a) 55
(b) 155
(c) 255
(d) 355

131. National Vector Borne Diseases Control Programme

132. Which of the following is not reported in India? [AIIMS Dec 1991]
(a) Plasmodium vivax
(b) Plasmodium falciparum
(c) Plasmodium ovale
(d) Plasmodium malariae

133. ‘Dipstick Test’ for rapid diagnosis of Plasmodium falciparum is based on: [AIIMS Nov 2004]
(a) Arginine-rich protein
(b) Histidine-rich protein
(c) Tyrosine-rich protein
(d) Serine-rich protein

134. PHCs selected under Enhanced Malaria Control Project were having: [AIIMS May 2004]
(a) API < 2 in last 3 yrs
(b) Pf cases less than 5 % of all malaria cases
(c) 100% population is tribal
(d) Area has been reporting malaria deaths

135. Insecticide treated Bed nets (ITBN) are treated with: [AIIMS May 2003]
(a) Deltamethrin and Cyfluthrin
(b) Diethyltoluamide
(c) Pyrethrum
(d) Malathion

136. Insecticide of choice for Phlebotamus argenteipes is: [AIIMS Nov 2003]
(a) DDT
(b) BHC
(c) Malathion
(d) Pyrethrum

137. According to modified plan of operation, endemic areas were classified based on: [DPG 2004]
(a) ABER
(b) API
(c) Slide positivity rate
(d) Slide falciparum rate

138. Measurement of operational efficiency of National Anti Malaria Programme (NAMP) is done by: [DPG 2006]
(a) Annual parasite incidence (API)
(b) Annual Blood Examination Rate (ABER)
(c) Infant parasite rate
(d) Slide positivity rate

139. An index of operational efficiency of the malaria control programme is: [Karnataka 2005]
(a) Annual parasite incidence
(b) Annual blood examination rate
(c) Slide positivity rate
(d) Human blood index

140. Patient was given chloroquine and doxycycline for 7 days. Patients fever decreases in 4 days, but, peripheral smear showed occasional gametocytes of Plasmodium falciparum. This type of drug resistance:
(a) R1 type
(b) R2 type
(c) R3 type
(d) R4 type

141. In a town with population of 100,000 the number of slides examined is 5000. Out of these, 100 slides were positive for malaria. The API is: [DNB December 2010]
(a) 2 (b) 5
(c) 1 (d) 0.5

142. In Roll Back Malaria program, which of the following is not a component? [AIIMS November 2013]
(a) Training for health care worker
(b) Using Insecticide-treated bednets
(c) Developing newer insecticides
(d) Strengthening health system

143. NVBDCP does not include [Recent Question 2013]
(a) Malaria
(b) Filariasis
(c) Kala azar
(d) Chikungunya fever
Review of Preventive and Social Medicine

144. Urban malaria scheme is based on:
(a) API levels [Recent Question 2012]
(b) Anti-adult measures
(c) Anti-larval measures
(d) Drug based treatment

145. Burden of malaria is best estimated by:
(a) Mosquito rate [Recent Question 2012]
(b) API
(c) Parasite rate
(d) SPR

146. Dose of Chloroquine when used for Chemoprophylaxis of Malaria is: [Recent Question 2014]
(a) 300 mg twice/week
(b) 600 mg once/week
(c) 600 mg/week
(d) 300 mg Once/week

147. Most efficient anti-larval measure to prevent urban malaria is: [AIIMS November 2014]
(a) Clean drainage and sewerage systems
(b) Cover overhead tanks properly
(c) Filling cesspools and ditches
(d) Cover pits

148. Treatment of Severe Falciparum malaria is: [AIIMS November 2014]
(a) Chloroquine
(b) Mefloquine
(c) Quinine
(d) Primapine

Review Questions

149. Plasmodium vivax malaria in pregnancy should be treated in pregnancy by: [Kolkata 2004]
(a) Chloroquine
(b) Quinine
(c) Pyrimethamine
(d) Mefloquine

150. According to NMEP, malaria surveillance should be done every: [MH 2002]
(a) Fortnightly
(b) Yearly
(c) Monthly
(d) Weekly

151. In malaria control programme the endemic areas are reclassified according to modified operation plan of malaria (MOP) depending on: [MH 2005]
(a) Infant parasite rate
(b) ABER
(c) Splenic rate
(d) Annual parasite index

152. According Malaria Control Programme, single dose Chloroquine _____ mg is given after taking blood smear (presumptive treatment): [MH 2005]
(a) 300
(b) 400

153. About ASHA (Accredited Social Health Activist) true is all except: [AIIMS Nov 06, AIIMS May 07]
(a) They are preferably females
(b) There is one ASHA worker per 1000 population
(c) ASHA is skilled birth attendant
(d) Provides primary medical care for minor ailments

(a) A Social Health Agent
(b) A Specific Health Agent
(c) Accredited Social Health Activist
(d) Advanced Scientific Health Activist

155. Under National Rural Health Mission, lowest level at which Health Action Plan is prepared is: [AIIMS Nov 2007]
(a) State level
(b) District Level
(c) Subcentre Level
(d) Village Level

156. Which of the following is the ‘Impact indicator’ for evaluation of ASHA’s performance? [AIIMS November 09]
(a) Number of meetings attended
(b) Number of institutional deliveries
(c) Reduction in infant mortality
(d) Hours of training

157. All are included in National Rural Health Mission (NRHM) except: [AIIMS Nov 09]
(a) Strengthening of JSY (Janani Suraksha Yojana)
(b) Formation of family health and social welfare societies
(c) State and district health mission
(d) Recruitment and training of ASHA

158. Which of the following is the ego-expansion of JSY? [AIPGME 2010]
(a) Janani Sampoorna Yojana
(b) Janani Samridhi Yojana
(c) Janani Swarojgar Yojana
(d) Janani Sampoorna Yojana

159. Resource persons for training of ASHA: [AIPGME 2012]
(a) Medical officer and ANM
(b) Medical officer and Anganwadi worker
(c) ANM and Anganwadi worker
(d) Medical officer

160. ASHA is recruited under? [Recent Question 2013]
(a) NRHM
(b) National urban health mission
(c) ICDS
(d) Village health system
161. Janani Suraksha Yojana includes? [DNB December 2011]
 (a) Tetanus immunization
 (b) Institutional deliveries
 (c) Iron supplementation
 (d) Abortions

162. ASHA full form is: [Recent Question 2013] [DNB December 2011]
 (a) Accredited Social Health Activist
 (b) A Social Health Agent
 (c) A Specific Health Agent
 (d) Advanced Scientific Health Activist

163. NRHM was started in: [Recent Question 2013] [Recent Question 2014]
 (a) 2005
 (b) 2006
 (c) 2007
 (d) 2009

164. ASHA gets remuneration on all except:
 (a) Institutional delivery [AIIMS May 2013]
 (b) Zero dose of OPV and BCG [AIIMS May 2014]
 (c) Recording birth weight
 (d) Birth registration

165. All are true about Janani Shishu Suraksha Karyakram (JSSK), except: [AIIMS May 2014]
 (a) Free diet to mother during hospital stay
 (b) Free delivery [Recent Question 2014]
 (c) Free transport from home to hospital and back
 (d) Free treatment of sick infants up to 1 year

166. Asha worker works for population:
 (a) 3000 [Recent Question 2014]
 (b) 1000
 (c) 5000
 (d) 400

167. ASHA is located at: [Recent Question 2014]
 (a) Subcentre
 (b) PHC
 (c) CHC
 (d) Village

Review Questions

168. Under National Rural Health mission who will be the link person between community and health care services? [MP 2006]
 (a) Anganwadi worker
 (b) TBA
 (c) ASHA
 (d) ANM

169. All are correct statement about ASHA except:
 (a) Female trained village guide [R] 2009
 (b) One per village
 (c) One per 1000 population
 (d) Female untrained guide

170. A leprosy case with a single anesthetic patch is treated with: [AIIMS June 2000]
 (a) Rifampicin + dapsone
 (b) Rifampicin+ofloxacin+minocycline
 (c) Rifampicin+dapsone+clofazimine
 (d) Rifampicin+clofazimine

171. Multi drug therapy (MDT) is treatment for: [AIIMS Nov 2000]
 (a) TB
 (b) Leprosy
 (c) HIV
 (d) All of the above

172. A 27- year old patient was diagnosed to have borderline leprosy and started on multibacillary multi-drug therapy. Six weeks later, he developed pain in the nerves and redness and swelling of the skin lesions. The management of his illness should include all of the following, except: [AIIPGME 1992 and 2004]
 (a) Stop anti-leprosy drugs
 (b) Systemic corticosteroids
 (c) Rest to the limbs affected
 (d) Analgesics

173. Survey Education and Treatment Center (SET Centers) cover a population of: [AIIMS Nov 2000]
 (a) 20-25000
 (b) 50000
 (c) 1 lakh
 (d) 4.5 lakh

174. ‘Accompanied MDT’ in NLEP implies:
 (a) A patient will be given MDT only in the presence of a MDT provider [AIIPGME 2006]
 (b) MDT should be accompanied with Steroids/ Clofazimine to help fight Reversal reactions
 (c) Any responsible person from family or village can collect MDT, if patient is unable to come
 (d) MDT prescription should be accompanied by all the precautions to be observed by the patient

175. Treatment duration for multibacillary leprosy is:
 (a) 12 months
 (b) 18 months
 (c) 24 months
 (d) 5 years

176. Multibacillary leprosy follow-up duration:
 (a) 12-18 months [Recent Question 2012]
 (b) 2 years
 (c) 5 years
 (d) 10 years

177. For treatment of paucibacillary leprosy drugs used are:
 (a) Dapsone [Recent Question 2012]
 (b) Dapsone, Rifampicin
 (c) Rifampicin, Clofazimine
 (d) Dapsone, Rifampicin, Clofazimine
178. In multibacillary leprosy, the follow-up examination after adequate treatment should be done for [DNB 2008]
(a) 3 years
(b) 5 years
(c) 10 years
(d) 2 years

179. National Leprosy Eradication Programme started in:
(a) 1949 [Recent Question 2012]
(b) 1955
(c) 1973
(d) 1983

180. Two years duration in terms of leprosy is with regard to:
(b) Treatment of paucibacillary leprosy
(c) Post-treatment surveillance of paucibacillary leprosy
(d) Post-treatment surveillance of multibacillary leprosy

181. Which of the following Anti-leprotic drugs is not given in blister packs of NLEP? [Recent Question 2014]
(a) Dapsone
(b) Rifampicin
(c) Clofazimine
(d) Minocycline

182. The Long term objective of National Programme for Prevention and Control of Deafness is:
(a) To reduce disease burden by 25% by end of XI Five Year Plan [AIIMS May 2007]
(b) To reduce disease burden by 50% by end of XI Five Year Plan
(c) To reduce disease burden by 75% by end of XI Five Year Plan
(d) To reduce disease burden by 100% by end of XI Five Year Plan

183. The best indicator for monitoring the impact of Iodine Deficiency Disorders control programme is: [AIPGME 05, AIIMS Nov 2006, AIPGME 07]
(a) Prevalence of goiter among school children
(b) Urinary iodine levels
(c) Neonatal Hypothyroidism
(d) Iodine level in soil

184. Under National programme for prevention of nutritional blindness, a child in the age group of 6-11 months is given a mega dose of vitamin A equal to:
(a) 50,000 IU [AIIMS Nov 05]
(b) 1 lakh IU
(c) 1.5 lakh IU
(d) 2 lakh IU

185. The premium of the “Community based Universal Health Insurance Scheme” launched during 2003-04 ranges from: [AIPGME 06]
(a) ₹ 1 per day poor and individual to ₹ 2 per day for a family of seven
(b) ₹ 1 per day poor and individual to ₹ 3 per day for a family of seven
(c) ₹ 2 per day poor and individual to ₹ 2 per day for a family of seven
(d) ₹ 1 per day poor and individual to ₹ 7 per day a family of seven

186. Elemental iron and folic acid content of iron and folic acid adult tablets supplied under the National Programme for Anaemia Prophylaxis are:
(a) 60 mg of elemental iron and 250 micrograms of folic acid [AIIMS May 1997]
(b) 100 mg of elemental iron and 500 micrograms of folic acid
(c) 120 mg of elemental iron and 750 micrograms of folic acid
(d) 200 mg of elemental iron and 1000 micrograms of folic acid

187. The Vitamin A supplement administered in “Prevention of nutritional blindness in children programme” contains: [AIPGME 2003]
(a) 25,000 IU/ml
(b) 1 lakh IU/ml
(c) 3 lakh IU/ml
(d) 5 lakh IU/ml

188. Blood smear must be made at night for which of the following conditions? [DPG 2004]
(a) Malaria
(b) Filaria
(c) Leprosy
(d) Onchocerciasis

189. Minimum level of iodine in iodized salt reaching the consumer level according to Iodine programme should be: [Recent Question 2013][DPG 2006]
(a) 15 ppm
(b) 30 ppm
(c) 5 ppm
(d) 20 ppm

190. Effective Leprosy Control Programmes may be indicated by all except: [AIIMS Nov 09]
(a) High new case detection rate
(b) Increasing no. of children affected
(c) Decreased type II disability
(d) Proportion of multi-bacillary cases on treatment

191. STEPS done for: [Recent Question 2013][AIIMS May 2010]
(a) Surveillance of risk factors of non-communicable disease
(b) Surveillance of incidence of non-communicable disease
(c) Surveillance of evaluation of treatment of non-communicable disease
(d) Surveillance of mortality from non-communicable disease
192. Rashtriya Swasthya Bima Yojana, all are true except:
(a) Applicable for BPL only
(b) Entitled for 30000 rupees
(c) Pay and reimbursement follows
(d) Is a type of employment scheme

[AIIMS November 2013]

193. Rashtriya Swasthya Bima Yojana is:
(a) Government run insurance scheme for its employees
(b) Government run insurance scheme for all citizens
(c) Government run insurance scheme for poor
(d) Private insurance company run scheme for all poor

[AIIMS May 2012]

194. True about Rashtriya Swasthya Bima Yojana is:
(a) Applies to BPL families only
(b) Annual cover is Rupees 30000/- per family member
(c) 75% premium is borne by family
(d) Implemented all over India

[AIIMS November 2012]

195. Mental health programme was started in:
(a) 1982
(b) 1987
(c) 1990
(d) 1995

[Recent Question 2013]

196. Which of the following diseases is not under surveillance in Integrated Disease Surveillance Project (P- FORM)?
(a) Snake bite
(b) Acute Respiratory Tract Infections
(c) Tuberculosis
(d) Leptospirosis

[AIIMS March 2013]

197. Disease NOT covered under Integrated Disease Surveillance Project (IDSP) is
(a) Meningococcal disease
(b) Tuberculosis
(c) Herpes zoster
(d) Cholera

[AIIMS November 2013]

198. National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular diseases and Stroke (NPCDCS), true is
(a) Separate centre for stroke, DM, cancer
(b) Implementation in some 5 states over 10 districts
(c) District hospital has specialised facilities
(d) Subcentre has facility for diagnosis and treatment

[AIIMS May 2013]

199. True about National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular diseases and Stroke is
(a) Home based care is not given
(b) Implementation in some 5 states over 10 districts
(c) Separate centre for stroke, DM,
(d) CHC has facilities for diagnosis and treatment of CVD, Diabetes

[AIIMS November 2012]

200. The best indicator for monitoring the impact of iodine deficiency disorders control programme is
(a) Prevalence of goiter among school children
(b) Urinary iodine levels among pregnant women
(c) Neonatal hypothyroidism
(d) Iodine level in soil

[DNB 2007]

201. Type of surveillance included in integrated disease control program for non-communicable disease is:
(a) Sentinel surveillance
(b) Regular surveillance
(c) Periodic regular survey
(d) Additional state priority

[DNB December 2010]

202. Most sensitive indicator of Hypothyroidism in a community is
(a) T4
(b) Neonatal hypothyroidism
(c) TSH
(d) Median urinary iodine excretion

[AIIMS May 2014]

203. What is the new change in National Program on Prevention and Control of Diabetes, Cardiovascular diseases and Stroke?
(a) Opportunistic screening
(b) Awareness of lifestyle and behavior related diseases
(c) Specialized units at Medical colleges
(d) Integration with National Cancer Control Program

[Recent Question 2014]

Review Questions

204. True about Mid-day meal given in school is:

<table>
<thead>
<tr>
<th>Calories</th>
<th>Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>(b) 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(c) 1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(d) 1/2</td>
<td>1/3</td>
</tr>
</tbody>
</table>

[DNB 2005]

205. Duration of treatment in multibacillary leprosy according to WHO is:
(a) 6 months
(b) 1 yr
(c) 2 yrs
(d) 5 yrs
(e) Life-long

[PGI June 02]

206. According to WHO, treatment of paucibacillary leprosy is:
(a) 6 month
(b) 1 year
(c) 2 year
(d) 4 years

[UIP 2002]

207. WHO recommended modern drug therapy in paucibacillary leprosy is:
(a) Rifamipicin, Clofazimine, Dapsone
(b) Rifampicin, Dapsone
(c) Rifampicin, Clofazimine
(d) Clofazimine, Dapsone

[UIP 2007]
Review of Preventive and Social Medicine

208. The goal of National Leprosy Eradication Programme is to bring the prevalence of leprosy to less than one per:
(a) 100
(b) 1000
(c) 10,000
(d) 1,00,000

[MH 2005]

209. Treatment of lepromatous leprosy is:
(a) Rifampicin + Dapsone
(b) Rifampicin + Clofazamine
(c) Rifampicin + Dapsone + Clofazamine
(d) Rifampicin + Ofloxacin + Minocycline

[MHPCMCET 2003; MH 2005]

210. In leprosy mass survey is done if prevalence is (per 1000 person):
(a) 1
(b) 5
(c) 7
(d) 10

[RJ 2003]

211. The multidrug regimen under the National Leprosy Eradication programme for the treatment of all multi-bacillary leprosy would include:
(a) Clofazimine, thiacetazone and dapsone
(b) Clofazimine, Rifampicin and dapsone
(c) Ethionamide, Rifampicin and dapsone
(d) Propionamide, Rifampicin and dapsone

[RJ 2007]

212. All are true of Midday School Meal Programme except:
(a) Should supply ½ daily protein and ⅓ rd or daily calories
(b) Is a substitute for regular food
(c) Locally available foods are used
(d) Cheap and easy to prepare

[AP 2004]

213. As per national iodine deficiency disorder prevention and control programme, how much iodine should be there in the salt at the point of consumption?
(a) 7 ppm
(b) 10 ppm
(c) 15 ppm
(d) 30 ppm

[MP 2006]

214. Single massive dose of vitamin A for preventing the deficiency in preschool children between the age of 1-6 years for every 6 months is:
(a) 2,000 IU
(b) 20,000 IU
(c) 2,00,000 IU
(d) 20,00,000 IU

[MH 2007]

MISCELLANEOUS (H. PROGRAMMES)

215. A young boy had a flea bite while working in a wheat grain godown. After 5 days he developed fever and had axillary lymphadenopathy. A smear was sent to the laboratory to perform a specific staining. Which one of the following staining methods would help in the identification of the suspected pathogen?
(a) Albert staining
(b) Ziehl-Neelson staining
(c) McFadyean’s staining
(d) Wayson’s staining

[AIPGME 2006]

216. Simplified Information System plays an important role as part of MIS in:
(a) RNTCP
(b) National Leprosy Eradication Programme
(c) National Vector Borne Disease Control Programme
(d) National AIDS Control Programme

[AHIMS Nov 2005]

217. Which of the following drugs is not given as supervised regimen in National Health programmes of India:
(a) Clofazimine
(b) Dapsone
(c) Rifampicin
(d) Pyrazinamide

[AHIMS Nov 09]

218. Which of the following programmes were started before 1960?
(a) Malaria
(b) Filaria
(c) Leprosy
(d) TB
(e) Blindness

[PGI November 2011]

219. KISHORI SHAKTI YOJANA has been designed to improve nutritional status of
(a) Adult men
(b) Adolescent girls
(c) Under five children
(d) Senior citizens

[NUPGET 2013]

220. WHO funds which of the following programs in India?
(a) RNTCP
(b) National Leprosy Eradication Programme
(c) Janani Suraksha Yojnna
(d) National old age pension plan

[Recent Question 2013]

221. Disease not under integrated disease surveillance project is
(a) TB
(b) Meningoencephalitis
(c) Cholera
(d) Herpes zoster

[Recent Question 2013; DNB December 2011]

222. Integrated Child Protection Scheme is under which ministry?
(a) Health & Family Welfare
(b) Women & Child Development
(c) Home Affairs
(d) Labour

[Recent Question 2012]

223. ICDS was launched in
(a) 1955
(b) 1968
(c) 1975
(d) 2005

[Recent Question 2012]
224. Direct cash transfer scheme to adolescent girls is covered under (a) Indira Gandhi scheme
(b) Rajiv Gandhi scheme (SABLA)
(c) CSSM
(d) RCH

Review Questions

225. Ultimate aim in health programme is: (a) To attain the goal of health
(b) Supply the safe drinking water and sanitation
(c) Provision of legislative support to health protection
(d) Research into alternative methods of health care delivery

226. Directly observed treatment (DOTs) agents is under: (a) Revised National Tuberculosis Control Programme
(b) Reproductive and Child Health (RCH) Programme
(c) National AIDS Control Programme
(d) National Leprosy Eradication Programme

NATIONAL HEALTH POLICY

(b) Eradicate HIV/AIDS transmission by 2007
(c) Achieve zero level of growth of HIV/AIDS by 2007
(d) Eliminate HIV/AIDS by 2015

228. According to National Health Policy 1983, the target is to reduce incidence of LBW to below— by 2000:
(a) 20% (b) 15% (c) 10% (d) 5%

229. National Health Policy for 2010 includes:
(a) IMR < 30/1000
(b) Control of communicable disease
(c) MMR < 200/1000
(d) Registration of birth and deaths – 80%
(e) 80% couple protection rate.

230. India aims to eliminate _________ by 2015:
(a) Malaria (b) TB (c) Filariasis (d) HIV

231. Maternal mortality must be reduced to less than:
(a) 100 (b) 200 (c) 300 (d) 400

Review Questions

232. Which of the following is not a goal for 2010 as per National Health Policy 2002? (a) Reduce mortality by TB by 50%
(b) Eliminate kala azar
(c) Reduce IMR
(d) Eradicate polio

233. National health policy true ALL/except: (a) Eradicate polio-2005
(b) Eliminate leprosy-2005
(c) Eliminate lymphatic filariasis- 2010
(d) Achieve zero level growth of HIV-2007

234. According National health policy 2002, which of the following is to be eliminated by 2015? (a) Malaria (b) Kala azar (c) Leprosy (d) Filariasis

235. National health policy is based on: (a) Primary health care (b) Tertiary care (c) Child care (d) Mother Care

NATIONAL POPULATION POLICY

236. ‘Preferable’ age for marriage for girls under National Population Policy 2000 is: (a) 18 years (b) 19 years (c) 20 years (d) 21 years

237. National Population Policy 2000 has set a goal (by 2010) for 100% Registration of all the following except:
(a) Births and Deaths (b) Marriages (c) Divorces (d) Pregnancies

238. The National Population Policy 2000 aims to achieve Total Fertility Rate of 2.1 by the year: (a) 2005 (b) 2010 (c) 2015 (d) 2050

239. National Population Policy 2000 aims to achieve all except: (a) Targets to be achieved by the year 2010 (b) Reduction of IMR to less than 30 live births/1000 live births (c) Reduction of MMR to less than 100 /1000 live births (d) Achieve 100% registration of births, deaths, marriage and pregnancy
240. Goals of national population policy are all except?
 [AIIMS May 2011]
 (a) Decrease IMR to below 30/1000 live births
 (b) Reduce MMR to below 100/100000 live births
 (c) Achieve 100% registration of births, deaths, marriage and pregnancy
 (d) Bring down TFR to replacement levels by 2015

241. National Population Policy was started from which of the following year?
 [MH 2003]
 (a) 1976
 (b) 1980
 (c) 1986
 (d) 1988

242. The information technology has revolutionized the world of medical sciences. In which of the following year the Information Technology Act was passed by the Government of India?
 [AIPGME 2005]
 (a) 1998
 (b) 2000
 (c) 2001
 (d) 2003

243. Transplantation of Human Organs Act was passed by Government of India in:
 [AIPGME 05, 06]
 (a) 1996
 (b) 1993
 (c) 1998
 (d) 1994

244. According to Organ Transplantation Act 1994, what is the punishment for doctor if found guilty?
 [AIIMS November 2011]
 (a) 1 year
 (b) 2 years
 (c) 2-5 years
 (d) More than 5 years

245. According to Registration of Births and Deaths Act 1969, the birth and death are to be registered, respectively in:
 [AIPGME 1999]
 (a) 14 days and 7 days
 (b) 7 days and 14 days
 (c) 14 days and 21 days
 (d) 21 days and 21 days
National Health Programmes, Policies and Legislations in India

255. Medical termination of pregnancy can be done by a registered medical practitioner if the gestation period is less than [Recent Question 2013]
 (a) 8 weeks
 (b) 12 weeks
 (c) 20 weeks
 (d) 24 weeks

256. Mental health act was passed in [Recent Question 2013] [Recent Question 2014]
 (a) 1982
 (b) 1987
 (c) 1971
 (d) 1950

257. Not included in NDPS Act is/are [PGI November 2012]
 (a) Alcohol
 (b) Opium
 (c) Cannabis
 (d) Nicotine
 (e) Morphine

258. Recent mental health act in India is designated as: [AIIMS May 2013]
 (a) The Mental Health Act
 (b) The Mental Health Care Act
 (c) The Mental Health Care and Rehabilitation Act
 (d) The Mental Health Treatment and Rehabilitation Act

259. Which of the following in NOT included in Mental Health Care Act 2011? [AIIMS November 2014]
 (a) Promotion of mental health and prevention of mental illness
 (b) Integration of mental health care system into all levels of health care
 (c) Fundamental rights of mentally retarded
 (d) Minimum mental health care for all

260. Central Drugs Standard Control Organisation Zonal Offices are located all all of the following places except: [Recent Question 2014]
 (a) Mumbai
 (b) Chennai
 (c) Ahmedabad
 (d) Jaipur

261. Naranjo algorithms is used for: [Recent Question 2014]
 (a) Environmental factors effecting drug
 (b) Parameter based data evaluation
 (c) Calculating probability of adverse drug reaction
 (d) Demographic factor affecting drugs action

262. Medical Termination of Pregnancy Act 1971, was amended in 2002 to include: [Recent Question 2014]
 (a) Risk to mother’s life as an indication
 (b) Failure of contraception as an indication
 (c) ‘Mentally ill’ in place of lunatic
 (d) POG upto 20 weeks

263. Act(s) passed after independence in India is/ are: [PGI November 2014]
 (a) MTP act
 (b) ESI act
 (c) SARDA act
 (d) Factory act
 (e) Immunization act

Review Questions

264. The best indicator for monitoring the impact of Iodine Deficiency Disorders control programme is:
 (a) Prevalence of goiter among school children
 (b) Urinary iodine levels among pregnant women
 (c) Neonatal Hypothyroidism [DNB 2007]
 (d) Iodine level in soil

265. Elemental iron and folic acid contents of iron and folic acid adult tablets supplied under the “National programme for anaemia prophylaxis” are: [Bihar 2004]
 (a) 60 mg of elemental iron and 250 µg of folic acid
 (b) 100 mg of elemental iron and 500 µg of folic acid
 (c) 120 mg of elemental iron and 750 µg of folic acid
 (d) 200 mg of elemental iron and 1000 µgof folic acid

266. RTI act was passed in: [Kolkata 2009]
 (a) 2004
 (b) 2005
 (c) 2000
 (d) 2007

267. Screening test commonly used for HIV is:
 (a) Western Blot [MP 2005]
 (b) Absolute CD4 count
 (c) ELISA
 (d) Viral load assay
EXPLANATIONS

REVISED NATIONAL TB CONTROL PROGRAMME

1. Ans. (b) $2(HRZE)_3 + 1(HRZE)_3 + 5(HRE)_3$ [Ref. Park 21/e p173, Park 22/e p175]
 - *Categorization and Treatment Regimens in RNTCP:*

<table>
<thead>
<tr>
<th>Category</th>
<th>Type of patient</th>
<th>Regimens</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat I</td>
<td>New SS +ve, SS–ve</td>
<td>$2(HRZE)_3$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Seriously illSS –ve/SS +ve</td>
<td>$4(HR)_3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seriously ill extra-pulmonary</td>
<td>$5(HRE)_3$</td>
<td>6</td>
</tr>
<tr>
<td>Cat II</td>
<td>SS +ve relapse</td>
<td>$2(HRZES)_3$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SS +ve failure</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SS +ve treatment after default</td>
<td>$1(HRZE)_3$</td>
<td>8</td>
</tr>
<tr>
<td>Cat IV*</td>
<td>MDR – TB</td>
<td>$6(KOCZEEt)$</td>
<td>18 – 24</td>
</tr>
</tbody>
</table>

 (*Category IV (DOTS PLUS): For MDR cases; pilot projects undertaken in Gujarat)

2. Ans. (d) 10,000 bacilli per ml sputum
 - *Zeihl Neelsen (ZN) Staining IN RNTCP:*
 - Sputum smear of a suspected TB patient is used for the diagnosis
 - Decolourizer: 25% sulphuric acid
 - Acid Fast Bacilli (AFB) of TB: ‘Rod shaped’ with ‘beaded appearance’ (Beads: Mycolic Acid)
 - >10,000 bacilli per ml sputum must be present for a positive result
 - Results of ZN staining: Minimum 100 fields examined

<table>
<thead>
<tr>
<th>Grading of smears</th>
<th>Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>Scanty</td>
<td>1 – 9 bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>1+ grading</td>
<td>10 – 99 bacilli per 100 oil immersion fields</td>
</tr>
<tr>
<td>2+ grading</td>
<td>1 – 10 bacilli per oil immersion field</td>
</tr>
<tr>
<td>3+ grading</td>
<td>> 10 bacilli per oil immersion field</td>
</tr>
</tbody>
</table>

Also Remember

New Tuberculosis Diagnosis (RNTCP) Guidelines In India (w.e.f. 01 April 2009 onwards)
Refer to Annexure 8.

3. Ans. (a) According to NEW GUIDELINES
 [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p180 and Park 22/e p157]
 Refer to Annexure 8

4. Ans. (b) IP – 36, CP – 66 [Ref. Park 21/e p173, Park 22/e p175]
 Refer to answer 1.
National Health Programmes, Policies and Legislations in India

- **No. of total doses given to a TB patient in RNTCP:**

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of weeks</th>
<th>No. of doses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP</td>
<td>CP</td>
</tr>
<tr>
<td>Category I</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Category II</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Category IV</td>
<td>26</td>
<td>78</td>
</tr>
</tbody>
</table>

5. Ans. (b) 2, 4 and 6 months [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p183 and, 8/e p209-10, Park 21/e p173, Park 22/e p175]

- Follow-up smears examination timings:

<table>
<thead>
<tr>
<th>Category</th>
<th>If SS –ve at end of IP</th>
<th>If SS +ve at end of IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I</td>
<td>2 m, 4 m, 6 m</td>
<td>2 m, 3 m*, 5 m, 7 m</td>
</tr>
<tr>
<td>Category II</td>
<td>3 m, 5 m, 8 m</td>
<td>3 m, 4 m*, 6m, 9 m</td>
</tr>
<tr>
<td>Category IV</td>
<td>once/month (IP); once/3 months (CP)</td>
<td>—</td>
</tr>
</tbody>
</table>

(*Irrespective of SS examination results, patients is started with CP treatment)

6. Ans. (a) Annual Risk of Infection [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p196]

- **Annual Risk of Infection (ARI):** Is the proportion of population which will be primarily infected with tuberculosis in course of 1 year
 - Is incidence of infection of TB
 - Is known as ‘Tuberculin Conversion Index’
 - Best indicator of trend of TB unaffected by current control measures
 - Most informative index of magnitude of problem of TB

- **ARI (India):** 1 – 2% (average ARI = 1.5%)
 - For every 1% rise of ARI, there are 50 SS +ve cases/lac population

- **Key epidemiological indices for TB (India):**

<table>
<thead>
<tr>
<th>Index</th>
<th>Situation in India</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of Infection</td>
<td>1–2% (~ 1.5%)</td>
<td>ARI – Tuberculin Conversion Index</td>
</tr>
<tr>
<td>Prevalence of Infection</td>
<td>40%</td>
<td>Standard Tuberculin Test</td>
</tr>
<tr>
<td>Incidence of Disease</td>
<td>1.7 per 1000</td>
<td>New cases (culture +ve)</td>
</tr>
<tr>
<td>Prevalence of Disease</td>
<td>0.2%</td>
<td>Sputum positive</td>
</tr>
</tbody>
</table>

7. Ans. (c) Isoniazid & Rifampicin [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p197, Park 22/e p180]

- **Multidrug Resistant TB (MDR-TB):** Resistance to Isoniazid and Rifampicin “with or without resistance to other drugs’
 - Treatment of MDR-TB must be done on the basis of sensitivity testing
 - Directly observed therapy certainly helps to improve outcomes and should be considered an integral part of the treatment of MDR-TB.

- **Extensive Drug Resistant TB (XDR–TB):** Resistance to rifampicin and isoniazid as well as to any member of the quinolone family and at least one of the following second-line TB treatments: kanamycin, capreomycin, or amikacin
 - XDR–TB is MDR TB with further resistance to 3 – 6 classes of second line drugs (older definition)
 - Principles of treatment for MDR-TB and for XDR-TB are same.
 - XDR-TB does not transmit easily in healthy populations, yet is capable of causing ‘epidemics in populations which are already stricken by HIV’

- **Management of MDR – TB (DOTS – PLUS):** Refers to DOTS programmes that add components for MDR-TB diagnosis, management and treatment
 - Initiated as Category IV pilot projects (Gujarat)
 - Target: management of 5000 new MDR – TB cases per year

<table>
<thead>
<tr>
<th>Category</th>
<th>Type of patient</th>
<th>Regimens</th>
<th>Duration (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IP</td>
<td>CP</td>
</tr>
<tr>
<td>Cat IV</td>
<td>MDR – TB</td>
<td>6 (KOCZEE)</td>
<td>18 (OCEEI)</td>
</tr>
</tbody>
</table>

(Letters: E – Ethambutol, Z – Pyrazinamide, K – Kanamycin, O – Ofloxacin, Et – Ethionamide, C – Cycloserine; Numbers: The numbers before letters refer to months of treatment (4 imply four months of treatment))
8. Ans. (c) 10-15 persons per year [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p195; Park 22/e p167]
 - Every TB sputum positive patient can infect up to 10-15 individuals in a year.

Also Remember
- TB is ‘Barometer of Social Welfare in India’
- TB (AFB) Bacillus discovered by: Robert Koch
- World TB Day: 24th March
- TB was declared as ‘Global emergency in 1983’ by WHO
- TB is the MC Opportunistic Infection (OI) in HIV in India
- TB bacteria remain alive: in sputum for 1 day and in droplet nuclei for 10 days
- Elimination level for Tuberculosis (WHO and STOP TB Strategy): <1 case per million population (to eliminate TB as a public health problem)
- TB Institutes of importance in India:
 - National Tuberculosis Institute (NTI) – Bangalore
 - Tuberculosis Research Centre – Chennai
 - LRS Institute of TB and Respiratory Diseases – New Delhi

9. Ans. (b) To achieve a cure rate of 85% and then to detect 70% of estimated cases [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p202, Park 21/e p310, 91, Park 22/e p394, 95]
 - Objectives of Revised National Tuberculosis Control Programme (RNTCP):
 - To achieve a cure rate of at least 85% through administration of short course chemotherapy (SCC) and
 - To achieve a case detection rate of 70% (only after having achieved the desired cure rate).

10. Ans. (c) 10000 acid fast bacilli per ml of sputum [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p205; Park 21/e p170, Park 22/e p171]

Also Remember
- Other Tests in Tuberculosis:
 - Auramine-rhodamine stain (AR):
 - Histological technique to visualize AFB (fluorescence microscopy)
 - Acid-fast organisms display a reddish-yellow fluorescence
 - More sensitive than ZN staining
 - Culture (LIAT – LJ Medium/Kirchner Medium/Middlebrook 7H10 or 7H11 media):
 - Very sensitive; +ve even with ‘10 – 100 bacilli per ml sputum’
 - Incubation at 37°C for 4 days and at least twice weekly thereafter
 - Chest radiography:
 - Findings suggestive of but not diagnostic of TB
 - Abreugraphy (Mass Miniature Radiography – MMR):
 - Sufficiently accurate for diagnosis of TB
 - BACTEC Radiometric System:
 - C14 radio-labelled with palmitic acid
 - Detect as early as 7 – 14 days
 - 95% sensitivity
 - Microscopic Observation Drug Susceptibility assay (MODS):
 - Direct observation of TB and simultaneously yields drug-resistance
 - ELISA Test:
 - A60 antigen
 - Nor sufficiently sensitive nor specific
 - Supportive value for diagnosis of extra-pulmonary TB
 - PCR Test (Nucleic acid amplification tests – NAAT):
 - Detect within 1 day
 - Extremely sensitive; +ve even with ‘1 – 10 bacilli per ml sputum’
 - Restriction Fragment Length Polymorphism (RFLP):
 - Combines Southern blotting and hybridization with DNA probes
 - Fast Plaque TB (FTB):
 - Sputum, aspirates, pus, blood
National Health Programmes, Policies and Legislations in India

- Detect within 48 - 72 hours
- 90% sensitivity and 100% specificity

Quantiferon TB Gold (QTG) (Interferon α-release assay):
- Detect within 3 – 5 days
- Higher sensitivity Adenosine Deaminase (ADA):
- Highest sensitivity in both pleural TB and TB meningitis

Tuberculin Test and Mantoux Test (Pirquet test or PPD Test):
- Tool for detecting TB infection
- +ve reaction: past or present infection by Mycobacterium TB
- Reading after 72 hours (horizontal transverse diameter of induration):
 1. Reactions > 10 mm: Positive
 2. Reactions 6 – 9 mm: Doubtful
 3. Reactions < 6 mm: Negative

- **Tuberculin test conversion:** An increase > 10 mm within a 2-year period, regardless of age
- False Reactions:
 - Faulty technique of injection
 - Using degraded tuberculin
 - Too deep injection
 - Infection of other mycobacterium
 - Repeated tuberculin testing
 - Prior BCG vaccine

<table>
<thead>
<tr>
<th>False +ve Mantoux</th>
<th>False –ve Mantoux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty technique of injection</td>
<td>Pre-allergic phase</td>
</tr>
<tr>
<td>Using degraded tuberculin</td>
<td>High fever</td>
</tr>
<tr>
<td>Too deep injection</td>
<td>Measles and chicken pox</td>
</tr>
<tr>
<td>Infection of other mycobacterium</td>
<td>Whooping cough</td>
</tr>
<tr>
<td>Repeated tuberculin testing</td>
<td>Mainnutrition</td>
</tr>
<tr>
<td>Prior BCG vaccine</td>
<td>HIV/AIDS</td>
</tr>
<tr>
<td></td>
<td>Use of anti-allergic drugs</td>
</tr>
<tr>
<td></td>
<td>Use of immuno-suppressants.</td>
</tr>
</tbody>
</table>

11. Ans. (d) Ethambutol [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p209, Park 21/e p171, Park 22/e p173]

- **Antitubercular Drugs:**

<table>
<thead>
<tr>
<th>Bactericidal drugs</th>
<th>Bacteriostatic drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>Ethambutol</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>Thiacetzone</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>Cycloserine</td>
</tr>
<tr>
<td>Pyrazinamide</td>
<td>PAS</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>Ethionamide</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td></td>
</tr>
<tr>
<td>Kanamycin</td>
<td></td>
</tr>
</tbody>
</table>

12. Ans. (c) Streptomycin [Ref. RNTCP Technical Guidelines for Tuberculosis Control, DGHS; p16]

- Pregnant women with active TB: Should start or continue their anti-TB treatment
- Streptomycin should not be given during pregnancy as it crosses the placenta and may cause damage to the fetus (ototoxicity)
- Breast feeding of infants should continue irrespective of the TB status of mother
 - If mother SS +ve: Chemoprophylaxis to child for 3 months, then
 1. If child is Tuberculin -ve: Vaccinate child with BCG
 2. If child is Tuberculin +ve: Chemoprophylaxis continued for a total duration of 6 months
 - If mother SS –ve: Vaccinate child with BCG (No chemoprophylaxis)

13. Ans. (b) Red-green colour blindness
[Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p211; Park 21/e p171, Park 22/e p173]

- Ethambutol may cause ‘optic neuritis’ (ocular toxicity):
- It may lead to ‘red-green color blindness’
- Patients may thus develop ‘blue vision’
- Thus it is contraindicated in children < 6 years age, as they may not be able to report any deterioration of color vision
- Ethambutol may also cause peripheral neuropathy and arthralgia
- Ethambutol is a bacteriostatic against actively growing TB bacilli

14. Ans. (d) Ethambutol [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p209]
- Ethambutol may cause ‘optic neuritis’ (ocular toxicity): It may lead to ‘red-green color blindness’ and patients may thus develop ‘blue vision’
- Thus it is contraindicated in children < 6 years age, as they may not be able to report any deterioration of color vision

15. Ans. (c) Failure case [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p202 and Park 22/e p169]
- Failure: A person on treatment who is SS +ve at or after 5 months of treatment
- A failure case is given treatment in DOTS category II (RNTCP) for 8 months; start treatment from Day 1 of Cat II, whenever patient is labeled as a failure case
 - Intensive Phase (2(HRZES), 1(HRZE),)
 - Continuation Phase (5(HRE),)
- Failure Cases in Dots Categories in RNTCP:
 - Failure cases in DOTS Cat I (RNTCP):

<table>
<thead>
<tr>
<th>Patients</th>
<th>Follow up sputum smear results</th>
<th>Failure case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End of 2m</td>
<td>End of 4m</td>
</tr>
<tr>
<td>Patient 1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Patient 2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Patient 3</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Patient 4</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

- Failure cases in DOTS Cat II (RNTCP):

<table>
<thead>
<tr>
<th>Patients</th>
<th>Follow up sputum smear results</th>
<th>Failure case</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End of 3m</td>
<td>End of 5m</td>
</tr>
<tr>
<td>Patient 1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Patient 2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Patient 3</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Patient 4</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

16. Ans. (c) Category I, start 2 (RHZE), [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p202; Park 21/e p167, Park 22/e p169]
New Case: A TB case who has never taken treatment or took it <4 weeks.

17. Ans. (a) Short-term treatment under supervision [Ref. Park 21/e p172, Park 22/e p174]
- Directly Observed Treatment Short Course (DOTS): Is a community based Tuberculosis treatment and care strategy which combines the benefit of supervised treatment with community based care and support.

18. Ans. (c) Hemoptysis [Ref. Park 21/e p392, Park 22/e p396]
- Sputum examination under TB program is done when patient presents with:
 - Cough for more than 2 weeks
 - Fever with an evening rise
 - Hemoptysis
 - Unexplained weight loss
 - Reduced appetite

19. Ans. (b) DOTS applied; (e) It has replaced NTP [Ref. Park 21/e p390-95, Park 22/e p394, 99]

20. Ans. (a) Active case finding; (e) X-ray is diagnostic; (d) Drugs given daily [Ref. Park 22/e p394, 99]

21. Ans. (a) 4 drugs for 2 months and 2 drugs for 4 months; (e) Directly observed [Ref. Park 22/e p175]
22. Ans. (a) Active case finding [Ref. Park 21/e p390-95, Park 22/e p394, 99]

23. Ans. (a) and (c) Drugs are given on supervision and Intermitten regimen used. [Ref. Park 21/e p172, Park 22/e p174]

DOTS

- DOTS is directly observed treatment short course.
- In DOTS during the intensive phase of treatment a health worker are other trained person watches as the patients swallows the drugs in his presence.
- During continuation phase the patient is issued medicine for one week in multiblister combipack of which the first dose is swallowed by the patient in the presence of health worker or trained person.
- The consumption of medicine in the continuation phase is also checked by return of empty multiblister combipack when patient come to collect medicine for the next week.
- In this programme attemate day treatment is used.
- Patient compliance is critically important throughout the prescribed period of treatment. All other consideration are secondary.
- Drugs are given category wise, same regimen is not given to all patient.
- Streptomycin is given in category II only.
- In category-1 new sputum smear, positive cases sputum examination is done in 2, 4 and 6 months.

24. Ans. (a) Rx under supervision; (d) Intermitten regimen [Ref. Park 21/e p172, Park 22/e p174]

25. Ans. (b) Start Category I immediately [Ref. RNTCP Technical Guidelines for Tuberculosis Control, DGHS; p16; Park 21/e p173-75, Park 22/e p177, 77]

26. Ans. (a) Start Cat I treatment immediately [Ref. RNTCP Guidelines Document]

In the given question, a pregnant female in first trimester came with sputum positive TB.
Since ATT is safe in pregnancy (EXCEPT streptomycin) and she is sputum positive, start Cat I treatment immediately

27. Ans. (b) Use separate vessels [Ref. K. Park 21/e p119, 172-75, Park 22/e p123, 174, 77]

Domiciliary Treatment

- Domiciliary/Ambulatory treatment: Self-administration of (oral) drugs by patients themselves without recourse to hospitalization
- Studies have shown that ‘hospital treatment has no advantage over domiciliary treatment’
- Guidelines for patients on domiciliary treatment:
 - Collect drugs regularly
 - Dispose sputum safely (burning/5% cresol/boiling/autoclaving)
 - Report to PHC if new symptoms arise

28. (b) 450 mg [Ref. RNTCP Document, GOI]

- Thrice weekly dosages of Antitubercular drugs in RNTCP:
 - Pyrazinamide: 35 mg/kg (1500 mg)
 - Isoniazid: 10 mg/kg (600 mg)
 - Rifampicin: 10 mg/ kg (450 mg; 600 mg IF weight >60 kg)
 - Ethambutol: 30 mg/kg (1200 mg)
 - Streptomycin: 15 mg/kg (750 mg)

29. Ans. (a) 1 out of 2 samples positive [Ref. K. Park, 22/e P170]

30. Ans. (a) 2HRZES + 1HRZE + 5HRE [Ref. K. Park, 22/e P175]

31. Ans. (a) Decrease in resistance by mutation [Ref. K. Park, 22/e P173]

32. Ans. (a) 1 out of 2 sputum positive [Ref. K. Park, 22/e P170]

33. Ans. (a) Recently abolished; (c) Given for 6 months [Ref. K. Park, 22/e P175]
Review of Preventive and Social Medicine

34. Ans. (b) 450 mg [Ref. K. Park, 22/e P175]
35. Ans. (a) To avoid emergence of persisters [Ref. K. Park, 22/e P173]
36. Ans. (a) Active [Ref. K. Park, 22/e P175]
37. Ans. (b) Passive [Ref. K. Park, 22/e P170]
38. Ans. (a) Rifampicin; (b) Any one Fluoroquinolone; (c) INH; (d) Kanamycin [Ref. Park, 22/e, p180]
40. Ans. (c) Non-DOTS based therapy [Ref. Park, 22/e, p177]

Review Questions

41. Ans. (c) Cannot prevent disease in infected person [Ref. Park 21/e p178, Park 22/e p180]
42. Ans. (c) Resistant tuberculosis [Ref. Harrison 16/e p963]
43. Ans. (a) Category II [Ref. Park 21/e p173, Park 22/e p175]
44. Ans. (c) Streptomycin [Ref. Park 21/e p173, Park 22/e p175]
45. Ans. (b) Achievements of high cure rates through DOTS [Ref. Park 21/e p390-91, Park 22/e p394, 95]
46. Ans. (b) 2 (HRZES)3. 1(HRZE)3 [Ref. Park 21/e p173, Park 22/e p175]
47. Ans. (b) Directly observed [Ref. Park 21/e p172, 173, Park 22/e p174, 175]
48. Ans. (c) RMP + INH + PZM + ETM [Ref. Park 21/e p173, Park 22/e p175]
49. Ans. (c) Not involving NGO’s in RNTCP [Ref. Park 21/e p390-91, Park 22/e p394, 95]
50. Ans. (a) Category I [Ref. Park 21/e p173, Park 22/e p175]
51. Ans. (b) Chest X-ray (New Guidelines: start ATT) [Ref. Park 20/e p367]

NATIONAL POLIO ELIMINATION – PROGRAMME

52. Ans. (a) All children between 0 – 5 years of age on a single day, irrespective of their previous immunization status [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p152 and Park 22/e p189]

Pulse Polio Immunization (PPI) Programmeme in India

 - First PPI targeted children < 3 years age
 - Later on WHO recommended age group be 0-5 years (1996-97)
- Meaning of ‘Pulse’: Sudden, simultaneous mass administration of Oral Polio Vaccine (OPV) on a single day to ‘all children 0–5 years age’, irrespective of their previous immunization status
 - PPI replaces wild virus with vaccine virus from the community
 - PPI is over and above routine immunization.

53. Ans. (c) 60 days of onset of paralysis [Ref. Surveillance of Acute Flaccid Paralysis – Field Guide, MoHFW, 2/e p9]
- 60-day follow-up in a case of Acute Flaccid Paralysis (AFP): The District Immunization Officer (DIO) must visit every case of AFP 60 days after onset of paralysis ‘to confirm the presence or absence of residual weakness’
 - Activity completed before 70th day
- Minimal levels of residual weakness can usually be detected by:
 - Mid-arm or mid-thigh circumference: reveal wasting on one side.
 - Asymmetry in the skin folds on medial aspects of thigh.
Also Remember

- All reported cases of AFP should be investigated by DIO ‘within 48 hours’ after notification
- 2 stool samples, at least 24 hours apart, are collected within 14 days of onset of paralysis (maximum within 8 weeks)
- Outbreak response immunization (O R I): Following the AFP case investigation and stool specimen collection, OR I is organized in the community and performed as soon as possible
 - Children aged 0-59 months are given one dose of OPV regardless of previous immunization (in the village/locality of the AFP case)
 - The travel history of the child with AFP may suggest additional places of stay where OR I should also be conducted
- Active case search in the community: In the community where an AFP case resides or where an AFP case has visited during the incubation period for polio (4-25 days before paralysis onset), a house-to-house active case search is conducted to find additional AFP cases that may have occurred
 - This activity is carried out immediately along with OR I
 - A search is conducted for any children <15 years who have had the onset of AFP within the preceding 60 days
 - All cases that are found are investigated immediately, with collection from the case of two stool specimens before administration of OPV.

54. Ans. (d) Adequate stool specimens should be taken from 100% AFP [Ref. WHO Field Guide for supplementary activities aimed at achieving polio eradication, Geneva 1997; Park 21/e p183]

WHO Indicators of AFP Surveillance and Lab Performance:
Two most critical indicators:
- Non-polio AFP rate in children < 15 years of age (Target > 1/100,000): The non-polio AFP rate is an indicator of surveillance sensitivity; if it is < 1/100,000 then the surveillance system is probably missing cases of AFP
- Reported AFP cases with 2 stool specimens collected < 14 days since paralysis onset (Target > 80%)

55. Ans. (c) 0-15 years [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p153; Park 21/e p183]
- Acute Flaccid Paralysis (AFP) Surveillance is used to identify reservoirs of wild poliovirus transmission in National Polio Surveillance Project
 - Acute: rapid progression from onset to maximum paralysis
 - Flaccid: loss of muscle tone, floppy - as opposed to spastic or rigid
 - Paralysis: weakness, loss of voluntary movement
- Acute Flaccid Paralysis (AFP): Any child less than 15 years age who has sudden onset of flaccid paralysis or paralytic illness in a person of any age when polio is suspected
- AFP Surveillance Indicators (WHO):

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-polio AFP rate in < 15 years of age</td>
<td>> 1/100,000</td>
</tr>
<tr>
<td>Completeness of weekly zero reporting</td>
<td>> 90%</td>
</tr>
<tr>
<td>Timeliness of weekly zero reporting</td>
<td>> 80%</td>
</tr>
<tr>
<td>Reported cases investigated < 48 hours</td>
<td>> 80%</td>
</tr>
<tr>
<td>Reported cases 2 stool specimens < 14 d</td>
<td>> 80%</td>
</tr>
<tr>
<td>Reported AFP cases follow-up 60 d</td>
<td>> 80%</td>
</tr>
<tr>
<td>Specimens arriving at laboratory < 3 days</td>
<td>> 80%</td>
</tr>
<tr>
<td>Specimens arriving at the laboratory ‘good’</td>
<td>> 80%</td>
</tr>
<tr>
<td>Specimens with a turn-around time < 28 days</td>
<td>> 80%</td>
</tr>
<tr>
<td>Stool specimens from which a non-polio enterovirus is isolated</td>
<td>> 10%</td>
</tr>
</tbody>
</table>

56. Ans. (b) 60 days [Ref. K. Park 20/e p182]
57. Ans. (c) 60 days [Ref. K. Park, 22/e p189]
58. Ans. (c) 0-5 years [Ref. K. Park, 22/e p189]
59. Ans. (d) To identify high risk population [Ref. K. Park, 22/e p189]
60. Ans. (d) 90 days [Ref. Red Book: Field Immunization Guide, NPSP GOI document]

https://kat.cr/user/Blink99/
Review Questions

61. Ans. (b) Live [Ref. Park 21/e p185, Park 22/e p186]
62. Ans. (d) 30 days follow up examination [Ref. Park 20/e p177, Park 22/e p179]
63. Ans. (a) 0-5 yrs children [Ref. Park’s 20/e p183; Park 21/e p188, Park 22/e p189]
64. Ans. (d) Tuberculosis [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p135-36, Park 21/e p414, Park 22/e p423]

Integrated Management of Neonatal and Childhood Illness (IMNICI):

- IMNICI is a ‘strategy for reducing morbidity and mortality associated with major causes of childhood illness’
 - Curative component includes management of:
 1. Diarrhoea
 2. Measles
 3. Pneumonia
 4. Malaria
 5. Severe malnutrition and nutritional counseling
- Case management process: Is presented in a series of charts (Mnemonic: A Case Is Treated & Care Given)
 - Assess the young infant or child
 - Classify the illness
 - Identify the treatment
 - Treat the infant or child
 - Counsel the mother
 - Give follow-up care

Also Remember

- IMNICI is the Indian adaptation of IMCI (Integrated Management of Childhood Illness); major highlights of Indian adaptation are,
 - Inclusion of early neonatal age (0 – 7 days age) in programme
 - Incorporating national guidelines on malaria, anemia, Vitamin-A supplementation and immunization schedule
 - Training of health workers begin with sick young infants up to 2 months
 - Proportion of training time devoted to sick young infant and sick child is almost equal
 - Is skill based

65. Ans. (c) Reduce the under five mortality to half [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p202; Park 21/e p409-15, Park 22/e p416, 28]

- Components of Reproductive and Child Health Programme:
 - Community Needs Assessment Approach (CNAAs)
 - Integrated packages of services for mother and child
 - MTP services at PHC and safe abortion
 - Control and prevention of RTI/STI
 - Adolescent health
 - Services in urban slums
 - Improving quality of services
 - Unmet needs and sub-centre action plans
 - Communication strategy
 - Gender sensitiveness
 - Greater involvement of Panchayati Raj Institutions (PRIs), NGOs and community.

66. Ans. (b) Clean towel & Clean water for hand washing [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p161]

- ‘Five cleans’ (practices) under strategies for elimination of neonatal tetanus include,
 - Clean delivery surface
 - Clean hands (of birth attendants)
 - Clean cord cut (blade or instrument)
 - Clean cord tie
 - Clean cord stump (no applicant)
• Suggested ‘Seven cleans’ include five cleans and
 – Clean water, and
 – Clean towel, for hand washing.

Also Remember

• Procedures undertaken to ensure 5 cleans:
 – Clean delivery surface: A clean plastic sheet
 – Clean hands: Soap and clean water
 – Clean cord cut: A new razor blade
 – Clean cord tie: A clean piece of thread
 – Clean cord stump: Nothing to be applied to cord
• Sometimes these practices are called as ‘3 cleans’:
 – Clean delivery surface
 – Clean hands
 – Clean cord care (cut, tie and stump)

• Neonatal Tettanus Elimination:
 – Rate < 0.1 per 1000 LB
 – TT2 coverage > 90%
 – Attended deliveries > 75%

67. Ans. (c) 65% [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p115]

• Couple Protection Rate (CPR): Is defined as the percent of eligible couples protected against childbirth by one of the approved methods of family planning, i.e. condoms, oral pills, IUDs or sterilization

• CPR is an indicator of ‘contraceptive prevalence in a community’

• Demographers believe that ‘NRR = 1 can be achieved only with CPR > 60%’: Thus goal under the earlier National Population Policy was CPR 60% by 2000.

Also Remember

• Goals for CPR:

<table>
<thead>
<tr>
<th>Policy</th>
<th>Goal for CPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRHM (2005 – 12)</td>
<td>63%</td>
</tr>
<tr>
<td>RCH – II (2004 – 09)</td>
<td>65%</td>
</tr>
<tr>
<td>NPP 2000 (by 2010)</td>
<td>Meet 100% needs</td>
</tr>
</tbody>
</table>

68. Ans. (a) 20 mg iron & 100 micrograms folic acid [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p413]

• Iron and Folic Acid content per IFA tablet:
 – Adult tablet: 100 mg elemental iron and 500 mcg folic acid
 – Pediatric tablet: 20 mg elemental iron and 100 mcg folic acid

69. Ans. (c) Sick neonates are preferred over sick older children; (d) Treatment is aimed... [Ref. K Park 20/e p387,495-96; Park 21/e p414, Park 22/e p423]

70. Ans. (a) Remove CuT only [Ref. K. Park 21/e p461, Park 22/e p459-60]

Pregnancy with IUD-IN-SITU:
 • If women requests termination of pregnancy: Legally induced abortion should be carried out
 • If women wishes continuation of pregnancy + threads are visible: Remove IUD by gently pulling the threads
 • If women wishes continuation of pregnancy + threads are NOT visible: Carefully examine for any complication; If there are sign of intrauterine infection and sepsis, evacuation of the uterus under broad spectrum antibiotic cover is mandatory.

71. Ans. (c) >50/min [Ref. K. Park, 22/e P161]

72. Ans. (b) Treatment of STD [Ref. K. Park, 22/e P415-16]

73. Ans. (b) Subcenter [Ref. K. Park, 22/e P416]

74. Ans. (b) CSSM plus family planning [Ref. K. Park, 22/e P415]

75. Ans. (b) Female clients should be below the age of 45 years and above the age of 20 years [New Sterilization Guidelines, Government of India, 2006 document]

76. Ans. (c) Green [Ref. K. Park, 22/e P423]
Review Questions

80. Ans. (d) All [Ref. Many sites and journal articles]
81. Ans. (a) Co-trimoxazole [Ref. Park’s 20/e p156]
82. Ans. (c) Two tablets twice daily [Ref. Park’s 20/e p156; Park 21/e p160, Park 22/e p162]
83. Ans. (d) 400 mcg (Recent Guidelines: 500 mcg; Park PSM 18/e p447)

84. Ans. (c) Tertiary level [Ref. Park 20/e p375; Park 21/e p402, Park 22/e p406]
Refer to theory.

85. Ans. (b) Low vision [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p422; Park 21/e p370, Park 22/e p370]
- WHO defines Blindness as ‘visual acuity of <3/60 in better eye with best possible correction’
- National Programme for Control of Blindness (NPCB), India defines Blindness as ‘visual acuity of <6/60 in better eye with best possible correction’
- Comparison of WHO and NPCB definitions:

<table>
<thead>
<tr>
<th>WHO – ICD</th>
<th>Visual Acuity</th>
<th>NPCB, India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Vision Category 1</td>
<td><6/18 – 6/60</td>
<td>Economic Blindness</td>
</tr>
<tr>
<td>Category 2</td>
<td><6/60 – 3/60</td>
<td></td>
</tr>
<tr>
<td>Blindness Category 3</td>
<td><3/60 – 1/60</td>
<td>Social Blindness</td>
</tr>
<tr>
<td>Category 4</td>
<td><1/60 – PL+</td>
<td>Manifest Blindness</td>
</tr>
<tr>
<td>Category 5</td>
<td>PL–</td>
<td>Absolute Blindness</td>
</tr>
</tbody>
</table>

(PL+: Perception of Light; PL–: No perception of Light)

86. Ans. (d) Visual acuity < 3/60 in the better eye with best correction [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p422, Park 21/e p370, Park 22/e p370]
87. Ans. (c) Visual acuity < 6/60 in the better eye with best correction [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p422]
88. Ans. (b) Low vision [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p422 and K. Park 19/e p336]
89. Ans. (b) 6/9 [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p119]
 - WHO defines Blindness as ‘visual acuity of <3/60 in better eye with best possible correction’
 - National Programme for Control of Blindness (NPCB), India defines Blindness as ‘visual acuity of <6/60 in better eye with best possible correction’

90. Ans. (b) To shift from fixed facility surgical approach to eye camp approach [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p425 Park 21/e p401-02, Park 22/e p405-06]
 - Revised strategies of NPCB:
 - To make NPCB more comprehensive by,
 1. Strengthening services for other causes of blindness like corneal blindness and refractive errors in school children
 2. Improving followup services of cataract operated persons
 3. Treating other causes of blindness like glaucoma.
 - To strengthen participation of voluntary organizations
 - To shift from eye camp approach to fixed facility surgical approach
 - To enhance coverage of eye services in tribal & underserved areas
 - To expand World Bank project activities
 1. Construction of dedicated eye OTs and eye wards
 2. Training of eye surgeons
 3. Modern cataract surgery
 4. Supply of ophthalmic equipment.

91. Ans. (d) NGO organized screening camps followed by surgery at base hospital [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p425]
 - The unit cost of providing cataract surgery in India in:
 - Private Hospital: ₹ 5331/- (Least Cost Effective)
 - NGO Hospital: ₹ 4977/-
 - Governemnt camps: ₹ 2143/-
 - NGO organized screening camps followed by surgery at base hospital: ₹ 1128/- (MOST COST EFFECTIVE)
 - MCC of Blindness (World): Cataract (48%)
 - MCC of Blindness (India): Cataract (77%)
 - MCC of Low Vision (India): Cataract (77%)
 - Minimum target for cataract surgery rate in India: 400 per lac population per year.

92. Ans. (c) A-IV, B-I, C-III, D-II [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p422]

93. Ans. (b) 6/60 [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p429]

Also Remember

- **Types of blindness based on causes:**
 - Type I: Blindness caused by obvious lesions of cornea (Preventable)
 - Type II: Blindness caused by lens opacities (Curable)
 - Type III: Blindness caused by other known or identified causes
 - Type IV: Blindness caused by undetermined or unspecified causes.

- **Blindness in India:**
 - India is single largest contributor to global blind pool
 - Measured according to: NPCB criterion (<6/60 in BEBPC)
 - Total estimated no. of blind persons: 15 million
 - Current prevalence: 1.05% (2007)
 - State with highest prevalence of blindness: Jammu & Kashmir
 - State with lowest prevalence of blindness: Meghalaya
 - Prevalence after correction: 0.56% (2001–02)
 - Prevalence of blindness in age >50 years: 8.5%
 - Prevalence of one-eyed blindness: 0.8% (MCC: Cataract – 73%)
 - India is ‘overestimating the no. of blinds as per WHO definition’
 - If WHO cutoff (<3/60 in BEBPC) is employed in India, estimated prevalence of blindness would be: 0.7%
 - Blindness in India includes: Economic Blindness, Social Blindness, Manifest Blindness and Absolute Blindness (WHO blindness includes Social Blindness, Manifest Blindness and Absolute Blindness)
 - MCC of Blindness (India): Cataract (63%).

https://kat.cr/user/Blink99/
94. **Ans. (d) Glaucoma** [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p368 and The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p234-45]

<table>
<thead>
<tr>
<th>Global Vision 2020 (5 diseases)</th>
<th>Indian Vision 2020 (7 diseases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract</td>
<td>Cataract</td>
</tr>
<tr>
<td>Refractive errors and low vision</td>
<td>Refractive errors and low vision</td>
</tr>
<tr>
<td>Childhood blindness</td>
<td>Childhood blindness</td>
</tr>
<tr>
<td>Trachoma</td>
<td>Focal trachoma</td>
</tr>
<tr>
<td>Onchocerciasis</td>
<td>Glaucoma</td>
</tr>
<tr>
<td></td>
<td>Diabetic retinopathy</td>
</tr>
<tr>
<td></td>
<td>Corneal blindness</td>
</tr>
</tbody>
</table>

95. **Ans. (d) Xerophthalmia** [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p428, Park 21/e p403]

Also Remember

- World Sight Day: 2nd Thursday of October.

96. **Ans. (a) Cataract** [Ref. The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p158]

- **MC cause of blindness in India:** Cataract
- Cataract is included among target diseases in Vision 2020 (both Global and Indian)
- National Programme for Control of Blindness (NPCB) was started in 1976 as a 100% centrally sponsored scheme
- Strategies of NPCB include establishing ‘one eye care facility per 5 lac persons’
- Rate of cataract surgery required to clear backlog of cataract blindness in India: 400 operations per lac population
- *Other externally-aided projects in NPCB:*
 - DANISH assistance to NPCB (Manpower development, Establishment of management system at state level, Establishment & development of monitoring and evaluation system, Preparation of health education material, teaching and information aids, Training)
 - WHO assistance to NPCB: (Intra-country fellowships in ophthalmology and pediatric ophthalmology, Pilot survey on childhood blindness (Delhi), Training in district programme management, Development of plan of action for ‘Vision 2020’, High quality workshops for eye care for faculty of medical colleges, Situational analysis on eye care infrastructure and human resources)

97. **Ans. (a) School teachers** [Ref. K. Park 19/e p361 and The Principles and Practice of Community Ophthalmology, NPCB, Govt. of India, 2002; p119, Dr. J. Kishore, 8/e p119]

98. **Ans. (a) 3/60 and 1/60** [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p428, 20/e p349]

99. **Ans. (a) Age group screened is 5-10 years** [Ref. The Principles and Practice of Community Ophthalmology, NPCB,Govt. of India, 2002; p119 and K. Park 20/e p376]

100. **Ans. (b) Trachoma** [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p428-29]

- WHO has recommended ‘SAFE Strategy’ for global elimination of blinding trachoma in the remaining countries
 - Surgery
 - Facial cleanliness
 - Antibiotic use
 - Environmental improvement.

Also Remember

- **Blinding trachoma:** Is found in countries with prevalence of blindness >0.5%. Is indicated by the presence of,
 - Corneal blindness
 - Trachomatous trichiasis and entropion
 - Moderate and severe trachomatous inflammation
- **Mass (Blanket) treatment of trachoma:**
 - Given where prevalence of moderate and severe trachoma in 0 – 10 years age group is >10%
 - Treatment consists of 1% tetracycline (for 5 consecutive days each month or once daily for 10 days each month for 6 consecutive months, or for 60 days) or alternatively erythromycin
- **WHO recommended strategy for measles elimination:** ‘Catch up – Keep up – Follow up strategy’
- **WHO recommended strategy for polio eradication:** ‘PULSE strategy’.
101. Ans. (c) 100% coverage of vitamin A prophylaxis doses from 9 months to 3 years age [Ref. Vision 2020 document, NPCB, Govt of India]
 • Targets for X five year plan under vision 2020.
 - Increase cataract surgery rate to 450 operations per one lac population
 - Improve visual outcome (>6/18) after cataract surgery in 80%
 - Intra-ocular lens implantation in > 80% of cataract surgery cases
 - Development of 50 paediatric ophthalmology units in tertiary care hospitals.
 - Screen known diabetics for diabetic retinopathy
 - Screen for glaucoma for those > 35 years attending eye clinics
 - Basic refraction services available in all districts
 - 4000 vision centres manned by trained optometrist/Refractionist/Ophthalmic Assistant
 - Low vision centres at 50 centres of excellence/tertiary centres
 - 25 fully functiona, accredited safe eye banks
 - MMR replace Measles vaccine, coverage >60
 - 75% coverage for regular vitamin A supplementation (till 5 years age)

102. Ans. (b) Epidemic conjunctivitis [Ref. K. Park 20/e p353, 376]

103. Ans. (a) UNICEF [Ref. www.who.int]
 • International organisations involved in Vision 2020:
 - WHO
 - Orbis
 - International Agency for Prevention of Blindness
 - International Eye Foundation
 - International Federation for Ophthalmological Societies
 - International Organisation against Trachoma
 - Rotary International
 - World Blind Union
 - World Council of Optometry
 - International Association of Lions Club
 - Sight Savers International
 - Helen Keller International

104. (c) Vitamin A deficiency [Ref. Park 21/e p403, Park 22/e p407-08]

Review Questions

105. Ans. (d) 20000 [Ref. K Park, 22/e P408]
 • Proposed Structure for Vision 2020, NPCB:
 - Vision centres 20,000 (Primary level)
 - Service centres 2,000 (Secondary level)
 - Training centres 200 (Tertiary level)
 - Centres for Excellence 20 (Tertiary level)

106. Ans. (a) Surgery [Ref. Vision Rehabilitation, 1/e p47]

107. Ans. (c) Sentinel surveillance [Ref. NPCB Document, GOI]
 • 25 Sentinel surveillance units have been established in Departments of Ophthalmology and PSM in Medical Colleges in India for assessment of,
 - Beneficiary profiles
 - Visual outcomes based on cataract surgery records
 - Follow-up of operated cases
 - Ocular morbidity data

108. Ans. (d) 500,000 [Ref. K. Park, 22/e P407-08]

109. Ans. (c) 50000 [Ref. Postgraduate Ophthalmology by Chaudhuri, Volume 1, 1/e p15]

110. Ans. (c) District collector [Ref. Park, 22/e p406; Guidelines for State Health Society and District Health Society, NPCB document, 11th FYP 2009, Pg 6]
 • Composition of District Blindness Control Society (DBCS)/ District Health Society: 15 members (7 member team plus 8 ex-officio members)
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Chairman</th>
<th>District Collector/ District Mission Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vice-Chairman</td>
<td>Chief Medical & Health Officer/ District Health Officer</td>
</tr>
<tr>
<td>Member Secretary</td>
<td>District Programme Manager (Deputy CMO Ophthalmologist)</td>
</tr>
<tr>
<td>Technical Advisor</td>
<td>Chief Ophthalmic Surgeon of District hospital/ HOD Ophthalmology</td>
</tr>
<tr>
<td>Other members</td>
<td>Medical Superintendent/ Civil Surgeon of District Hospital/ District Education Officer Representatives from NGOs/ District Mass media (IEC) officer Prominent practicing eye surgeons</td>
</tr>
</tbody>
</table>

111. Ans. (a) Soyabean [Ref. Park 21/e p580, Park 22/e p582]
112. Ans. (b) .3% [Ref. Park 20/e p375]
113. Ans. (b) 3/60 [Ref. Neema 4/e p398, Park 21/e p370, Park 22/e p370]
114. Ans. (c) Tertiary care [Ref. Park 21/e p402, Park 22/e p406]

NATIONAL HIV/AIDS CONTROL PROGRAMME

115. Ans. (b) Providing ART to 3 million people by 2005 [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p234 and K. Park 20/e p299]
 - 3 by 5 Target: Announced by WHO and UNAIDS on December 1, 2003
 - **Interim target:** Providing anti-retroviral treatment (ART) to ‘3 million people living with HIV/AIDS (PLHA)’, in developing countries (low & middle income), by end of 2005
 - **Ultimate goal:** Universal access to ART to anyone who needs it
 - **Focus areas:** (Five pillars)
 1. Simplified standard tools to deliver ART
 2. A new service to ensure effective, reliable supply of medicines and diagnostics
 3. Dissemination and application of new knowledge and successful strategy
 4. Urgent, sustained support to countries
 5. Global leadership, backed by strong partnership.

 - **Under National AIDS Control Programme (India):**
 - **Screening of HIV:** E/R/S
 1. ELISA (E) Test
 2. RAPID (R) Test
 3. SIMPLE (S) Test
 - **Confirmatory diagnosis of HIV:** Western Blot Assay
 - **Screening of HIV:**
 1. **Strategy I:** One out of three screening tests (E/R/S) are used
 2. Does not recommend its use for diagnosis of HIV in a person
 3. **Strategy II:** Two out of three screening tests (E/R/S) are used
 1. Done for screening person who is symptomatic with any one of AIDS defining illness (NACO guidelines)
 2. **Strategy III:** All three screening tests (E/R/S) are used
 1. Done for screening person who is asymptomatic

117. Ans. (b) Transfusion of blood/ blood products [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p237; Park 21/e p321, Park 22/e p320]
 - **Risk of HIV transmission through different modes (Efficiency of routes):**
Route of transmission and Efficiency

<table>
<thead>
<tr>
<th>Route of transmission</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual</td>
<td>0.01 – 1%</td>
</tr>
<tr>
<td>Blood and blood products transfusion</td>
<td>> 90%</td>
</tr>
<tr>
<td>Sharing needle/syringes</td>
<td>3 – 5%</td>
</tr>
<tr>
<td>Mother to child transmission (MTCT)</td>
<td>25 – 30%</td>
</tr>
<tr>
<td>Per-cutaneous exposure</td>
<td>0.4%</td>
</tr>
<tr>
<td>Muco-cutaneous exposure</td>
<td>0.05%</td>
</tr>
</tbody>
</table>

- AIDS is known as ‘Slim’s Disease’ in Africa
- Risk of Mother to child transmission (MTCT) of HIV:
 - Developing countries: 30%
 - Developed countries: 25%
- Risk of HIV transmission with prolonged breast feeding: 12 – 15%
- Risk of HIV transmission in presence of other STD: Increases 8 – 10 times.

118. Ans. (d) HIV/AIDS [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p271]
- Since 1987, more than 30 HIV candidate vaccines have been tested in Clinical trials Phases I/II; Some of them are:
 - Mnemonic: CRAMS
 - AIDSVAX (gp 120 based vaccine): only vaccine in Phase III trials
 - Cytotoxic T-Lymphocytes (CTL) Inducing vaccine
 - Recombinant adeno- associated virus (rAAV) vaccine
 - Modified Vaccinia ankara (mVA) vaccine
 - Subunit vaccine

119. Ans. (d) Industrial workers [Ref. K. Park 20/e p373; Park 21/e p399, Park 22/e p403]

Targeted Interventions in NACP

- **Basic purpose**: To reduce transmission of HIV amongst most vulnerable populations
- **Approach**: Combines a comprehensive and integrated approach to vulnerable segments of population
 - Main activities:
 - Behaviour change
 - Communication
 - Treatment of STD
 - Create enabling environment to facilitate behaviour change.

Segments of population covered:
- Sex workers
- Injecting Drug Users
- Truckers
- Homosexual men (MSM-Men having sex with men)
- Migrant labourers
- Street children

120. Ans. (b) Opt-out testing [Ref. HIV testing guidelines, CDC Atlanta]
- **Opt-in testing**: testing is offered and the patient is required to actively give permission before it can occur
- **Opt-out testing**: means performing an HIV test after notifying the patient that the test is normally performed, but that the patient may elect to decline or defer testing; assent is then assumed unless the patient declines testing
- WHO and CDC recommends opt-out testing policies in health care settings
- Opt- out testing has a higher (85-98%) testing rate than opt- in testing (25-83%)
- It does NOT eliminate the need for informed consent.

121. Ans. (b) Zidovudine and (c) Nevirapine [Ref. K. Park 22/e p404]

122. Ans. (b) Estimation of total cases in hospitals [Ref. Park 22/e p400]

Sentinel Surveillance under NACP

- Basis for classification of districts
- Monitoring trend of HIV in different age groups
- Estimation of HIV infected persons in county
Review of Preventive and Social Medicine

123. Ans. (c) 350 [Ref. Park 22/e p326]

124. Ans. (d) Kit 4 – Red [Ref. Park 22/e p401]

125. Ans. (b) Yellow [Ref. Park 22/e p401]

Review Questions

126. Ans. (a) Single dose of Nevirapine mother and child [Ref. Park 21/e p400, Park 22/e p404]

127. Ans. (d) 1097 [Ref. GOI, NACo website; Park 21/e p401, Park 22/e p405]

128. Ans. (b) Yellow [Ref. Park 21/e p271, Park 22/e p270]

129. Ans. (a) 200 mg [Ref. NACO Manual for management of HIV/AIDS in children p106, Park’s 20/e p308]

130. Ans. (a) 55 [Ref. Park 21/e p398, Park 22/e p402]

National Vector Borne Diseases Control Programme

131. Ans. (b) Insecticidal spray with rounds of HCH every 6 weeks [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p291, Park 21/e p381-82, Park 22/e p384-85]

- **Modified Plan of Operation (MPO):** In 1977, attempts at malaria eradication were given up and under review policy MPO was launched
- **Under MPO, areas were divided on the basis of API**
 - **Areas with API > 2:**
 1. Regular insecticide spray (interval 6 weeks)
Condition	Insecticide	Dose and frequency
Non-refractory to DDT	DDT	1.0 gm per square metre; 2 rounds
Refractory to DDT	Malathion	2.0 gm per square metre; 3 rounds
Refractory to Malathion	Pyrethroids	0.25 gm per square metre; 2 rounds
 2. Entomological studies
 3. Malaria surveillance
 4. Treatment of cases
 5. Intensify efforts in rural areas (providing input under Plasmodium falciparum Containment Programme with SIDA)
 6. Decentralization of lab services to PHC level
 7. Establishment of Drug Distribution Centers (DDCs) and Fever Treatment Depots (FTDs)
 - **Areas with API < 2:**
 1. Focal spray of DDT (or BHC or Malathion) if a case of Pf occurs in the area
 2. Active and passive surveillance
 3. Presumptive treatment to all suspected fever cases
 4. Ensuring radical treatment to those found positive on blood smear
 5. Epidemiological investigation of case to determine causative factors.

132. Ans. (c) Plasmodium ovale (Recently reported in India in 2010-11) [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p287K, Park 21/e p233, Park 22/e p234]

- In India, Plasmodium Falciparum the commonest (51%), followed by P. vivax, P. malariae is rarely found and P. ovale has recently been reported in India
- Recent trends have shown that P. falciparum is becoming most common cause of Malaria in India
- P. vivax is the most widely distributed and the most common species observed in temperate regions of the world, while P. falciparum is the most widespread throughout the world’s tropics
- The occurrence of P. ovale has not been very common in India and till date only 4 reports of P. ovale are available from Kolkata, Orissa, Delhi and more recently from Gujarat
- Malaria is the commonest vector borne parasitic disease of the globe
Malaria prevention and control is a component of ‘National Vector Borne Diseases Control Programme’ (NVBDCP); NVBDCP covers 6 vector borne diseases of public health importance in India:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Main vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Female Anopheles</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Culex quinquefasciatus (C. fatigans)</td>
</tr>
<tr>
<td>Dengue</td>
<td>Aedes aegypti</td>
</tr>
<tr>
<td>Kala Azar</td>
<td>Sandfly (Phlebotomus)</td>
</tr>
<tr>
<td>Japanese Encephalitis</td>
<td>Culex tritaeniorhynchus</td>
</tr>
<tr>
<td>Chikungunya fever</td>
<td>Aedes aegypti</td>
</tr>
</tbody>
</table>

133. Ans. (b) Histidine-rich protein [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p289]
- ‘Dipstick Test’ is used for the rapid diagnosis of Plasmodium falciparum (Pf)
 - Is a ‘rapid whole blood immuno-chromatographic test’
 - Uses 2 antibodies specific for ‘Pf Histidine Rich Protein II Antigen’
 - Is a ‘antigen capture assay’
 - Colloidal gold is used in the test card
 - Gives results in 3 - 5 minutes
 - Specificity and negative predictive value is 99%
 - Not as effective when parasite levels < 100 parasites/ml of blood
- Rapid tests for diagnosis of Pf:
 - Dipstick test (Pf Histidine rich protein II – HRP II)
 - Leishman stain
 - Field’s stain
 - Acridine orange.

Also Remember
- Optimal test (Parasite-specific lactic dehydrogenase (LDH dipstick test)): Positive in P.falciparum and P.vivax parasitaemia; It is a simple and rapid, and superior to HRP II.

134. Ans. (d) Area has been reporting malaria deaths [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p293 & K. Park 19/e p348, 20/e p361]
Enhanced Malaria Control Project (EMCP):
- World Bank supported project for six crore tribal population in 8 states
- Has been implemented in 1045 PHCs in 100 districts of 8 states
- Selection criteria for PHCs in EMCP:
 - Annual parasitic incidence (API) > 2 in last 3 yrs
 - Pf cases >30% of all malaria cases
 - 25% of population is tribal
 - Area has been reporting deaths due to malaria (and has flexibility to direct resources to needy areas in case of outbreak).

Also Remember
- Goal under National Health Policy 2002: Reduction of mortality on account of malaria and other vector borne diseases (VBDs) by 50% by 2010 and efficient morbidity control
- Millennium Development Goal 6: Combat HIV/AIDS, malaria and other diseases (by 2015)
- Intensified Malaria Control Project (IMCP): The Government of India has signed a Grant Agreement in July 2005 with the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM) for the launch of IMCP
 - 7 North-Eastern states and selected high-risk areas in Orissa, Jharkhand and West Bengal
 - Focuses on the poor and vulnerable populations living in the remote and inaccessible areas of the country.
135. Ans. (a) Deltamethrin and Cyfluthrin [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p311]

- Chemicals used in ITBN Programme: Synthetic pyrethroids
 - Deltamethrin: 2.5% in dosage of 25 mg/m²
 - Cyfluthrin: 5% in dosage of 50 mg/m²
 - Other insecticides used: Permethrin, Lambda-cyhalothrin, Etofenprox, a-cypermethrin
- Effectiveness of pyrethroids: for 6–12 months (Retreatment every 6 months)
- Long-lasting insecticidal mosquito nets (LLINs): Also use pyrethroid insecticides, and a chemical binder that allows the nets to be washed > 20 times, allowing use for > 3 years.

Also Remember
- Household bed nets used for mosquito control:
 - No. of holes per square inch > 150
 - Diameter of each hole < 0.0475 inch
- Common insect repellents:
 - DEET (N, N-diethyl-m-toluamide)
 - Allethrin
 - Essential oil of the lemon eucalyptus (p-menthane-3,8-diol (PMD))
 - Icaridin (picaridin)
 - Nepetalactone (catnip oil)
 - Citronella oil
 - Permethrin
 - Parmethrin
 - Soyabean oil
 - Neem oil

136. Ans. (a) DDT [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p326; Park 21/e p281, Park 22/e p280]

- Insecticide of choice: DDT
 - 2 rounds of spray per year
 - Spray up to 6 feet height on walls
 - If DDT-resistant, use BHC.

Also Remember
- Sandfly is the vector of:
 - Visceral Leishmaniasis (Kala azar)
 - Cutaneous Leishmaniasis (Oriental Sore)
 - Sandfly Fever
 - Oroya Fever
- Sandflies inject the infective stage, metacyclic promastigotes, during blood meals.
- DDT (Dichloro-Diphenyl-Trichloroethane):
 - Synthesized by: Othmar Zeidler (1874)
 - Insecticidal properties discovered by: Swiss scientist Paul H. Müller (1939) (awarded the 1948 Nobel Prize in Physiology and Medicine)
 - Positive association found with: Liver, biliary tract and breast cancers.

137. Ans. (b) API [Ref. Park 21/e p381, Park 22/e p384]

138. Ans. (b) Annual Blood Examination Rate (ABER) [Ref. Park 21/e p238, Park 22/e p238]

139. Ans. (b) Annual blood examination rate [Ref. Park 21/e p238, Park 22/e p238]

140. Ans. (b) R2 type [Ref. Medical Entomology- A textbook on Public health and Veterinary Problems by Eldridge & Edman, 1/e p213]

Types of Drug Resistance in Malaria
- R1 resistance: Recrudescence of infection between 7–28 days of treatment completion following initial resolution of symptoms and parasite clearance.
- R2 resistance: Patients with marked reduction of parasitemia (parasite count reduced by more than 75%) at 48 h but failed to clear parasites by day 7.
Review Questions

141. Ans. (c) 1 [Ref. K. Park 22/e p238]
142. Ans. (c) Developing newer insecticides [Ref. Roll Back Malaria Website]
143. Ans. NONE [IT INCLUDES ALL] [Ref. K. Park 22/e p383]
144. Ans. (c) Anti-larval measures [Ref. K. Park 22/e p384]
145. Ans. (b) API [Ref. K. Park 22/e p238]
146. Ans. (d) 300 mg Once/week [Ref. Drug Therapy in Nursing by Aschenbrenner 3/e p919]
147. Ans. (b) Cover overhead tanks properly [Ref. Guidelines for Source Reduction, NVBDCP, Government of India]
 - In urban areas, Malaria is mainly transmitted by Anopheles stephensi
 - Lids of overhead tanks must be checked and maintained monthly basis; any leakage be repaired immediately (most effective)
 - Cover-up of underground and open tanks
 - Open tanks used for animals be dead dried once in week
 - Never to throw any containers in open capable of holding water
 - Construction sites: Building bye-laws be implemented to prevent fault in designs, water flow on roof, gully traps open tanks for curing be treated with larvicides on weekly basis
 - Unused wells either be closed or treated with larvicides
 - Ornamental tanks, fountains be checked periodically and larvivorous fish be introduced
 - Public health engineers be involved for proper drainage, building designs, periodic flushing of water logged areas and drainage
148. Ans. (c) Quinine [Ref. Park 22/e p241]

NRHM

153. Ans. (c) ASHA is skilled birth attendant [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p85-86, Park 21/e p407, Park 22/e p413]
154. Ans. (c) Accredited Social Health Activist [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p69, 79, 80 Park 21/e p405, Park 22/e p409]
 - National Rural Health Mission (NRHM) 2005–12: One of the key components of the is to provide every village in the country with a trained female community health activist – ASHA (Accredited Social Health Activist)
 - Proposed population norm: 1 ASHA worker per 1000 population (Village Level)
 - ASHA is expected to act as,
 - Interface between: Community and Health care system
 - Bridge between: ANM and village
 - Accountable to: Panchayat
 - Selection criteria of ASHA:
 - Woman resident of local community
 - Preferably 25 – 45 years age
 - Literate with formal education up to VIII class
155. Ans. (d) Village Level [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p85; Park 22/e p413]
 - A core strategy of National Rural Health Mission (NRHM) is to develop ‘Health Plan (VHP) for each village’ through Village Health Samiti of Panchayat (PHS)
 - ASHA will make VHP: ASHA along with ANM, Aanganwadi Workers and community workers under the leadership of PHS.
Another core strategy is preparation of an ‘Intersectoral District Health Plan (DHP)’, prepared by District Health Mission (DHM) including drinking water, sanitation, hygiene and nutrition.
- DHP: Amalgamation of field responses through VHPs and State and national Priorities for health, drinking water, sanitation and nutrition.
- Implementing departments to integrate core unit of action proposed.
- Core unit of planning, budgeting and implementation: District.

156. Ans. (c) Reduction in infant mortality [Ref. Park 21/e p408, Park 22/e p414]
Impact Indicators for Monitoring and Evaluation of ASHA’s Work:
- Infant mortality rate (IMR)
- Child malnutrition rates
- No. of cases of TB/Leprosy detected as compared to last year

158. Ans. (a) Janani Suraksha Yojana [Ref. K. Park 20/e p385-86; Park 21/e p412]
Janani Suraksha Yojana (JSY)
- Launched on 12th April 2005
- Is ‘modification of National Maternity Benefit Scheme
- Objectives of JSY: Reduction of maternal mortality and infant mortality (through institutional deliveries and care especially for poor women)
- Salient features of JSY:
 - Is 100% centrally sponsored
 - Combines ‘benefit of cash assistance with institutional care’.

159. Ans. (c) ANM and Anganwadi worker [Ref. K. Park 21/e p407, Park 22/e p413]
- Resource person for training of ASHA: ANM and Anganwadi worker.

160. Ans. (a) NRHM [Ref. K. Park, 22/e p412]

161. Ans. (b) Institutional deliveries [Ref. K. Park, 22/e P419]

162. Ans. (a) Accredited Social Health Activist [Ref. K. Park, 22/e P412]

163. Ans. (a) 2005 [Ref. K. Park, 22/e P412]

164. Ans. (b) Zero dose of OPV and BCG [Ref. Operational Guidelines for ASHA, NHRSC]

<table>
<thead>
<tr>
<th>ASHA payments under JSY: ON 45th DAY</th>
<th>Other ASHA payments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 visits in Institutional deliveries (Day 3,7,14,21,28,42)</td>
<td>Institutional deliveries</td>
</tr>
<tr>
<td>7 visits in home deliveries (Day 1,3,7,14,21,28,42)</td>
<td>Arrange transport of AN mother</td>
</tr>
<tr>
<td>Birth weight record</td>
<td>Escort AN mother to facility</td>
</tr>
<tr>
<td>Immunized with BCG, First dose of OPV & DPT</td>
<td>Completed immunization upto 1 & 2 yrs age</td>
</tr>
<tr>
<td>Birth registration</td>
<td>Pulse Polio immunization</td>
</tr>
<tr>
<td>Mother and child are safe</td>
<td>Family planning services</td>
</tr>
<tr>
<td></td>
<td>Sanitary napkins to adolescent girls</td>
</tr>
<tr>
<td></td>
<td>Promote use of sanitary toilets</td>
</tr>
<tr>
<td></td>
<td>DOTS provider</td>
</tr>
<tr>
<td></td>
<td>Leprosy treatment</td>
</tr>
<tr>
<td></td>
<td>P/S for Malaria</td>
</tr>
<tr>
<td></td>
<td>Malaria treatment</td>
</tr>
</tbody>
</table>

165. Ans. (d) Free treatment of sick infants up to 1 year [Ref. Park 22/e p420]

PREGNANT WOMEN COMPONENTS IN JANANI-SHISHU SURAKSHA KARYAKRAM (JSSK)
- Free deliveries (including caesarean section) in public health institutions
- Free drugs and consumables
National Health Programmes, Policies and Legislations in India

• Free diet (Normal delivery: 3 days; Caesarean section: 7 days)
• Free diagnostics
• Free blood transfusion (whenever required)
• Free transport from home to institution

166. Ans. (b) 1000 [Ref. Park 22/e p816]
167. Ans. (d) Village [Ref. Park 22/e p816]

Review Questions

168. Ans. (c) ASHA. [Ref. Indian Pediatrics Vol. 42, No. 8, aug 2005, p 783, Park 21/e p407, Park 22/e p413]
169. Ans. (d) Female untrained guide. [Ref. Park 20/e p380, 381]

NATIONAL LEPROSY ELIMINATION PROGRAMME

170. Ans. (a) Rifampicin + dapsone [Ref. Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p361, Park 21/e p297, Park 22/e p296]
 • Treatment of Single Skin Lesion (SSL) of Leprosy:
 – Previously: ROM therapy
 1. Rifampicin 600 mg
 2. Ofloxacin 400 mg
 3. Minocycline 100 mg
 – CURRENTLY: 6 month treatment as for Paucibacillary (PBL) Leprosy (Rifampicin and dapsone for 6 months)

Also Remember

• Level of Leprosy for declaring it as a Public Health Problem: >1/10,000
• Elimination Level of Leprosy: <1/10,000
• Goal for Leprosy under National Health Policy (NHP) 2002: Elimination of Leprosy by 2005
• India eliminated Leprosy in December 2005 (India has so far eliminated 3 diseases, namely, Guineaworm – 2000, Leprosy – 2005 and Yaws – 2006).

171. Ans. (b) Leprosy [Ref. National Health programs of India by Dr. J kishore, 8/e p356; Park 21/e p295, Park 22/e p294]
172. Ans. (a) Stop anti-leprosy drugs [Ref. Park 21/e p299, Park 22/e p298]
 • Lepra Reactions: Is an inflammation that can affect skin patches, nerves, eyes and in few case, internal organs They can occur anytime in a leprosy patient
 – Before diagnosis
 – At time of diagnosis
 – During treatment
 – After treatment has finished
 • There is no need to stop antiperosy drugs during MDT.

173. Ans. (a) 20-25000 [Ref. National Health Programmes of India by Dr. J. Kishore, 2/e p50]
 • Survey Education and Treatment (SET) Centre:
 – A SET Centre is attached with: PHC in rural area
 – Administrative control: Medical Officer (PHC)
 – Population catered: 20 – 25,000.

Also Remember

• Infrastructure norms under programme:
 – SET Centre: one per 20,000 – 25,000 population
 – Urban Leprosy Centre (ULC): one per 50,000 population
 – Leprosy Control Unit (LCU): one per 4.5 Lac population
• SAPEL and LEC:
 – Special Action Projects for Elimination of Leprosy (SAPEL) in Rural areas and Leprosy Elimination Campaigns (LEC) for Urban areas: To cover populations residing in difficult/inaccessible areas, which were not generally covered by regular programme activities.
[Review of Preventive and Social Medicine]

174. Ans. (c) Any responsible person from family or village can collect MDT, if patient is unable to come [Ref. Guide to eliminate Leprosy as a Public Health Problem, WHO & NLEP; p25]
 - Accompanied MDT: If patient is unable to come to collect his/her MDT from clinic, any responsible person from family or village can collect it
 - Designed to help patients who have to interrupt their treatment due to any avoidable reason
 - Especially useful for irregular patients
 - Gives patients a choice: Patients can collect entire MDT course when diagnosed after proper counseling.

175. Ans. (a) 12 months [Ref. Park 21/e p297, Park 22/e p296]
176. Ans. (c) 5 years [Ref. K. Park, 22/e P296-99]
177. Ans. (b) Dapsone, Rifampicin [Ref. K. Park, 22/e P296]
178. Ans. (b) 5 years [Ref. K. Park, 22/e P296-99]
179. Ans. (d) 1983 [Ref. K. Park, 22/e P391]
180. Ans. (c) Post-treatment surveillance of paucibacillary leprosy [Ref. K. Park, 22/e P296-99]
181. Ans. (d) Minocycline [Ref. Park 22/e p296-97]

OTHER PROGRAMMES

182. Ans. (a) To reduce disease burden by 25% by end of XI Five Year Plan [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p490]
 - National Programme for Prevention and Control of Deafness:
 - Long term objective: To reduce disease burden by 25% by end of XI Five Year Plan.

183. Ans. (b) Urinary iodine levels [Ref. WHO-UNICEF-ICCIDD. Assessment of Iodine Deficiency Disorders and Monitoring their Elimination – A guide for programme managers, 2/e p5]

Indicators to Monitor Success of IDD Control Programme:

- **Impact Indicators:** Indicators to assess baseline (Iodine Deficiency Disorders) IDD status and to monitor and evaluate the impact of salt iodization on the target population
 - **Urinary Iodine Levels:** The ‘principal impact indicator’ recommended once a salt iodization programme has been initiated (changes in goitre prevalence lag behind changes in iodine status and therefore cannot be relied upon to reflect accurately current iodine intake, although they may be useful in following trends)
 - **Goitre assessment:** (by palpation or by ultrasound) should remain a component of surveys to establish the baseline severity of IDD
 - **Neonatal thyroid stimulating hormone (TSH) levels:** may also play a role here if a country already has in place a screening programme for hypothyroidism.

Also Remember

- **Criteria for tracking progress towards IDD elimination:**

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with enlarged thyroid (age 6 – 12 years)</td>
<td>< 5%</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 100 mcg/litre</td>
<td>< 50%</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 50 mcg/litre</td>
<td>< 20%</td>
</tr>
<tr>
<td>Proportion of houses consuming adequately iodised salt</td>
<td>> 90%</td>
</tr>
</tbody>
</table>

- **Some noteworthy daily requirements:**

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Recommended daily requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>600 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>17 mg (males); 21 mg (females)</td>
</tr>
<tr>
<td>Iodine</td>
<td>150 mg</td>
</tr>
<tr>
<td>Fluorine</td>
<td>0.5 – 0.8 mg/litre.</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
184. Ans. (b) 1 lakh IU [Ref. Park 21/e p593, Park 22/e p595]
 • National Programme for Prophylaxis against Blindness in Children caused by Vitamin A Deficiency; Prophylaxis against
 Vitamin-A deficiency is provided in form of oral 5 doses of Vitamin-A
 - 1st dose (1 lac IU) at 9 months age (along with measles vaccine)
 - 2nd dose (2 lac IU) at 15 months age
 - then a dose (2 lac IU) every 6 months till the age of 3 years
 • Vitamin A supplement administered in Prevention of Nutritional Blindness in Children Programme contain: 1 Lac IU per ml

185. Ans. (a) ₹1 per day per day poor and individual to ₹2 per day for a family of seven [Ref. Ministry of Finance, Press Information Bureau (PIB) Release, July 08, 2004]
 Community based Universal Health Insurance Scheme (UHIS):
 • Launched in India: in 2003–04 for BPL (Below Poverty Line) population
 • Age limit: 3 months – 65 years
 • Premium Payable (Post Subsidy):
 - For an individual: ₹165/- per annum
 - For a family up to 5 members: ₹248/- per annum
 - For a family up to 7 members: ₹330/- per annum.

186. Ans. (b) 100 mg of elemental iron and 500 micrograms of folic acid [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p413K. Park 21/e p594, Park 22/e p596]
 Refer to Ans. 51.
 • Recommendations by Government of India (2007):
 - Include infants 6 – 12 months age in the programme
 - For 6 – 60 months age, provide liquid formulations
 • Recommended daily intakes:

<table>
<thead>
<tr>
<th>Group</th>
<th>Elemental iron</th>
<th>Folic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children 6–60 months</td>
<td>20 mg per day</td>
<td>100 mcg per day</td>
</tr>
<tr>
<td>Children 6–10 years</td>
<td>30 mg per day</td>
<td>250 mcg per day</td>
</tr>
<tr>
<td>Adolescents 11–19 years</td>
<td>100 mg per day</td>
<td>500 mcg per day</td>
</tr>
<tr>
<td>Adults</td>
<td>100 mg per day</td>
<td>500 mcg per day</td>
</tr>
</tbody>
</table>

187. Ans. (b) 1 lakh IU/ml [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p202; Park 21/e p593, Park 22/e p595]
 • Vitamin A solution contains 1 lac IU per ml solution
 • Vitamin A is given in NIS of India till 5 years age (Recent guidelines)
 - At 9 months age: 1 lac IU (1 ml)
 - Every 6 months, till 5 years age: 2 lac IU (2 ml) each
 - Total dose given: 17 lac IU (9 doses).

188. Ans. (b) Filaria [Ref. Park 21/e p247, Park 22/e p248]

189. Ans. (a) 15 ppm [Ref. Assessment of IDD and monitoring their elimination, WHO, 3/e Park 21/e p595, Park 22/e p597]
 • Criteria for Sustainable Elimination of IDD:
 - Median Urinary Iodine Excretion 100 mcg/l
 - Level of iodization:
 1. 30 ppm at production level
 2. 15 ppm at consumer level
 - Total Goitre Rate (TGR) < 5%

190. Ans. (b) Increasing no. of children affected [Ref. Park 21/e p301-03, Park 22/e p300-02]
 INDICATORS IN LEPROSY CONTROL
 • % of children (0-14 yrs) among new detected cases: A high prevalence of infection among children indicate that Leprosy is a active and spreading
 • % of females among new detected cases

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- % of Multi-bacillary cases on regular treatment
- % of new cases with grade 2 disability.

191. Ans. (a) Surveillance of risk factors of non-communicable disease [Ref. World Health Organisation]
- STEPwise approach to surveillance (STEPS): Is a simple, standardized method by WHO for surveillance
 - Is of two types:
 - STEPwise approach to chronic disease risk factor surveillance
 - STEPwise approach to Stroke surveillance
- Comprises of 3 steps:

<table>
<thead>
<tr>
<th>STEPS</th>
<th>Core</th>
<th>Expanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 1: Behavioural measurements</td>
<td>Tobacco use</td>
<td>Tobacco use</td>
</tr>
<tr>
<td></td>
<td>Alcohol consumption</td>
<td>Alcohol consumption</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td>Diet Physical activity</td>
</tr>
<tr>
<td></td>
<td>Physical activity</td>
<td>History of raised BP</td>
</tr>
<tr>
<td></td>
<td>History of raised BP</td>
<td>History of diabetes</td>
</tr>
<tr>
<td></td>
<td>History of diabetes</td>
<td></td>
</tr>
<tr>
<td>STEP 2: Physical measurements</td>
<td>Height & weight</td>
<td>Hip circumference</td>
</tr>
<tr>
<td></td>
<td>Waist & BP</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>STEP 3: Biochemical measurements</td>
<td>Blood glucose</td>
<td>Triglycerides &</td>
</tr>
<tr>
<td></td>
<td>Blood lipids</td>
<td>HDL cholesterol</td>
</tr>
</tbody>
</table>

192. Ans. (d) Is a type of employment scheme [Ref. RSBY Document, Government of India]

Rashtriya Swasthya Bima Yojana
- Synonym: National Health Insurance Scheme (NHIS)
- Beneficiaries: Below poverty line families
- Contribution:
 - Central government: INR 600/- (75% of total)
 - State Government: INR 200 (25% of total)
 - BPL family: INR 30/- (One time payment)
- Benefits:
 - Inpatient medical cover per family per year: INR 30,000/-
 - Cover in case of death of family member: INR 25,000/-

193. Ans. (c) Government run insurance scheme for poor [Ref. RSBY Document, Government of India]

194. Ans. (a) Applies to BPL families only [Ref. RSBY Document, Government of India]

195. Ans. (a) 1982 [Ref. K. Park 22/e p426]

196. Ans. (a) Snake bite [Ref. K Park 22/e p426-27]

Diseases covered under IDSP (P-FORM)

- Acute Diarrhoea Disease (including acute gastroenteritis, Cholera)
- Bacillary Dyentery
- Viral Hepatitis
- Enteric Fever
- Malaria
- Dengue/DHF/DSS
- Chikungunya
- Acute Encephalitis Syndrome
- Meningitis
- Measles
- Diphtheria
National Health Programmes, Policies and Legislations in India

- Pertussis
- Chicken Pox
- Fever of Unknown Origin (PUO)
- Acute Respiratory Infection (ARI) Influenza Like Illness (ILI)
- Pneumonia
- Leptospirosis
- Acute Flaccid Paralysis < 15 year of Age
- Anthrax
- Plague
- Any other State Specific Disease
- Unusual Syndromes NOT Captured Above

197. Ans. (c) Herpes zoster [Ref. K Park 22/e p427]

Diseases Covered Under Idsp

<table>
<thead>
<tr>
<th>Regular surveillance:</th>
<th>Sentinel surveillance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>HIV, HBV, HCV</td>
</tr>
<tr>
<td>Cholera, Typhoid</td>
<td>Water quality</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Air quality (outdoor)</td>
</tr>
<tr>
<td>Measles</td>
<td>Regular periodic surveys:</td>
</tr>
<tr>
<td>Poliomyelitis</td>
<td>Anthropometry</td>
</tr>
<tr>
<td>Road traffic accidents</td>
<td>Physical activity</td>
</tr>
<tr>
<td>Plague</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>Unusual disease syndromes: Meningoencephalitis, Hemorrhagic fevers, Respiratory distress</td>
<td>Tobacco Nutrition</td>
</tr>
</tbody>
</table>

| Additional state priorities: |

198. Ans. (c) District hospital has specialised facilities [Ref. K Park 22/e p424-25]
199. Ans. (d) CHC has facilities for diagnosis and treatment of CVD, Diabetes [Ref. K. Park 22/e p424-25]
200. Ans. (b) Urinary iodine levels among pregnant women [Ref. NIDDCP Program document, WHO & GOI]
201. Ans. (c) Periodic regular survey [Ref. K. Park 22/e p427]
203. Ans. (d) Integration with National Cancer Control Program [Ref. Park 22/e p424-25]

Review Question

204. Ans. (a) 1/3 1/2 [Ref. Park 21/e p611, Park 22/e p613]
205. Ans. (b) 1 yr [Ref. Park 21/e p297, Park 22/e p296]
206. Ans. (a) 6 month [Ref. Park 21/e p297, Park 22/e p296]
207. Ans. (b) Rifampicin, Dapsone [Ref. Park 21/e p297, Park 22/e p296]
208. Ans. (c) 10,000 [Ref. Park 21/e p388, Park 22/e p391]
209. Ans. (c) Rifampicin + Dapsone + Clofazamine [Ref. Harrison, Principles of Internal Medicine, 16/e p951, 971; Park 21/e p297, Park 22/e p296]
210. Ans. (d) 10 [Ref. Park 21/e p295, Park 22/e p294]
211. Ans. (b) Clofazimine, Rifampicin and dapsone [Ref. Park 21/e p297, Park 22/e p296]
212. Ans. (b) Is a substitute for regular food [Ref. Park 21/e p611-12, Park 22/e p613-14]
213. Ans. (c) 15 ppm [Ref. Park 21/e p595, Park 22/e p597]
214. Ans. (c) 2,00,000 IU [Ref. Park 21/e p593, Park 22/e p594]

MISCELLANEOUS (H. PROGRAMMES)

215. Ans. (d) Wayson’s staining [Ref. Dr J. Kishore 8/e p258; Park 21/e p270, Park 22/e p269]

- In the given question, a young boy had a flea bite while working in a wheat grain godown and after 5 days he developed fever and had axillary lymphadenopathy
- Thus most likely it is Plague which is transmitted by Rat flea (Xenopsylla cheopsis)
- So the stain used will be Wayson’s staining, which will show ‘Bipolar appearance’ or ‘Safety pin appearance’ of Yersinia pestis
- Stains commonly used in Public Health:

<table>
<thead>
<tr>
<th>Disease (organism)</th>
<th>Stain(s) used</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB (Mycobacterium tuberculosis)</td>
<td>Zeihl Neelson (ZN) stain (RNTCP)</td>
</tr>
<tr>
<td>Leprosy (Mycobacterium leprae)</td>
<td>Auramine Rhodamine stain</td>
</tr>
<tr>
<td>Malaria (Plasmodium)</td>
<td>Modified Zeihl Neelson (Modified ZN) stain</td>
</tr>
<tr>
<td>Plague (Yersinia pestis)</td>
<td>Jaswant Singh Bhattacharya (JSB) stain</td>
</tr>
<tr>
<td>Diphtheria (Corynebacterium diphtheriae)</td>
<td>Wayson’s stain</td>
</tr>
<tr>
<td></td>
<td>Giemsa stain</td>
</tr>
<tr>
<td></td>
<td>Albert’s stain</td>
</tr>
<tr>
<td></td>
<td>Neisser’s stain</td>
</tr>
<tr>
<td></td>
<td>Ponder’s stain</td>
</tr>
</tbody>
</table>

216. Ans. (b) National Leprosy Eradication Programme [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p311, 8/e p366-67]

- Simplified Information System: Is the Management and Information System (MIS) essential for the monitoring and evaluation of National Leprosy Eradication Programme (NLEP); It was started in 2002.

217. Ans. (b) Dapsone [Ref. National Health programmes of India by Dr. J. Kishore, 8/e p203 and Park 22/e p296]

218. Ans. (a) Malaria; (b) Filaria; (c) Leprosy [Ref. K. Park 21/e p380, 386, 388, 390, 401, Park 22/e p283, 289, 391, 394, 405]

219. Ans. (b) Adolescent girls [Ref. K. Park, 22/e P547]

220. Ans. (a) RNTCP [Ref. K. Park 22/e p394]

221. Ans. (d) Herpes zoster [Ref. K. Park 22/e p427]

222. Ans. (b) Women & Child Development [Ref. ICPS Document, GOI]

223. Ans. (c) 1975 [Ref. K. Park 22/e p546]

224. Ans. (b) Rajiv Gandhi scheme (SABLA) [Ref. Welfare Schemes for Adolescent Girls in India, Government of India]

Review Questions

225. Ans. (a) To attain the goal of health [Ref. Park 17/e p651; 18/e p687; 20/e p793; 21/e p834]

226. Ans. (a) Revised National Tuberculosis Control Programme; (d) National Leprosy Eradication Peogram [Ref. Park 20/e p168; Park 21/e p172, Park 22/e p174]

NATIONAL HEALTH POLICY

227. Ans. (c) Achieve zero level of growth of HIV/AIDS by 2007 [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p557, Park 21/e p812, Park 22/e p816]
National Health Policy (NHP) 2002

Also Remember

• National socio-demographic goals of ‘National Population Policy 2000’ have to be achieved by 2010
• ‘Millennium Development Goals’ (MDGs) have to be achieved by 2015
• Previous National Health Policy, India was formulated in 1983.

228. Ans. (c) 10% [Ref. Park 21/e p812, Park 22/e p816]
 • Low Birth Weight (LBW): Birth weight less than 2500 grams (<2.5 kg) (WHO)
 • LBW is regardless of gestational age: LBW includes both pre-term (<37 weeks POG) and full-term (>37 weeks POG) babies
 • Prevalence of LBW: 17% (World); 28% (India). If cutoff for LBW is reduced to 2.0 kg, expected prevalence of LBW in India will be 5.5%
 • Depending on the population, the percentage of LBW should be based on measurements of atleast 500 babies
 • 3 inter-related risk factors for LBW: Malnutrition, Infection and Unregulated fertility

229. Ans. (a) IMR < 30/1000; (b) Control of communicable diseases [Ref. Park 21/e p812, Park 22/e p816]

230. Ans. (c) Filariasis [Ref. Park 21/e p812, Park 22/e p816]
 • Goal of NHP 2002 for year 2015-Eliminate Lymphatic filariasis.

231. Ans. (a) 100 [Ref. K. Park 22/e p816]

232. Ans. (d) Eradicate polio [Ref. K. Park 22/e p816]

Review Questions

233. Ans. (c) Eliminate lymphatic filariasis- 2010 [Ref. Park 21/e p812, Park 22/e p816]

234. Ans. (d) Filariasis [Ref. Park 21/e p812, Park 22/e p816]

235. Ans. (a) Primary health care [Ref. Park 21/e p811-812, Park 22/e p816]

NATIONAL POPULATION POLICY

236. Ans. (c) 20 years [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p571 and Park 21/e p456, Park 22/e p455]
 • Legal age of marriage in India: 18 years for girls and 21 years for boys
 • Legal age for voting in India: 18 years for both boys and girls
 • Legal age for employment in India: > 14 years
 • Legal age of consent by a girl for sexual intercourse in India: 18 years [16 years new guideline in 2013]
 • Juvenile in India: Boy less than 18 years and girl less than 18 years
 • Major in India: 18 years and above
 • Tobacco products cannot be sold in India: To age below 18 years
 • Alcohol cannot be sold in India: To age below 25 years.

237. Ans. (c) Divorces [Ref. National Health Programmes of India by Dr. J. Kishore, 7/e p491 Park 22/e p455]
 • According to National Population Policy 2000 (NPP 2000), one of the national socio-demographic goals is ‘to achieve 100% registration of births, deaths, marriage & pregnancy by 2010’.
 • According to ‘The Registration of Births and Deaths Act 1969’, both the births and deaths are to be registered within 21 days each.

<table>
<thead>
<tr>
<th>Time of registration</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 21 days</td>
<td>None</td>
</tr>
<tr>
<td>Delay < 30 days</td>
<td>Prescribed fee</td>
</tr>
<tr>
<td>Delay > 30 days & < 1 year</td>
<td>Late fee + affidavit from notary public</td>
</tr>
<tr>
<td>Delay > 1 year</td>
<td>Late fee + order from Class I officer/magistrate</td>
</tr>
</tbody>
</table>

• Marriage registration has to be done within 30 days.
238. Ans. (b) 2010 [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p570, Park 22/e p455]

- Immediate objective: To address the unmet needs for contraception, health care infrastructure, and health personnel, and to provide integrated service delivery for basic reproductive and child health care.
- Mid-term objective: To bring the TFR to replacement levels (TFR = 2.1) by 2010.
- Long term objective: To achieve a stable population by 2045.

Also Remember
- Total Fertility Rate (TFR): Average no. of children a woman would bear in her reproductive life span; also known as ‘Period Total Fertility Rate’.
 - Gives magnitude of approximately ‘completed family size’ – no. of alive children in a family
 - Obtained by summing single-year age-specific rates at a given time
 - TFR is a synthetic rate: Is not actually counted, as this would involve waiting until women complete childbearing
 - TFR (India): 2.68 (NFHS – 3, 2005 – 06)
 - Replacement level of fertility (TFR = 2.1): TFR at which newborn girls would have an average of exactly 1 daughter over their lifetimes (women have just enough babies to replace themselves.
 1. Replacement TFR (industrialized countries) = 2.1
 2. Replacement TFR (developing countries) = 2.5 – 3.3
 3. Replacement TFR (globally) = 2.33
 - Total cohort fertility rate (TCFR) is a better estimate of completed family size than TFR.

239. Ans. (c) Reduction of MMR to less than 1/1000 live births [Ref. Park 21/e p456, Park 22/e p455]

240. Ans. (d) Bring down TFR to replacement levels by 2015 [Ref. K. Park 21/e p456, Park 22/e p455]

Review Questions

241. Ans. (a) 1976 [Ref. Park 21/e p456, Park 22/e p455]

IT ACT

242. Ans. (b) 2000 [Ref. Gazette of India – Extraordinary, Part II; Section 1]
- The Information Technology Act: was passed by the Government of India in 2000; it deals with:
 - Legal Recognition of Electronic Documents
 - Legal Recognition of Digital Signatures
 - Offenses and Contraventions
 - Justice Dispensation System for Cybercrimes.

Also Remember
- Some Important Health Legislations Passed in India:
 - The Employees State Insurance (ESI) Act, 1948
 - The Factories Act, 1948
 - The Medical Termination of Pregnancy (MTP) Act, 1971
 - The Organ transplanation Act, 1994
 - The Pre-conception and Pre-natal Diagnostic Techniques (Prohibition of Sex Selection) (PNDT) Act, 1994
 - Information Technology Act, 2000
 - The National Rural Employment Guarantee Act (NREGA), 2005

OT ACT

243. Ans. (d) 1994 [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p675]
- The Transplantation of Human Organs Act was passed by Government of India in 1994; It is an act to provide for the regulation of removal, storage and transplantation of human organs for therapeutic purposes and for the prevention of commercial dealings in human organs and for matters connected therewith or incidental thereto.
244. Ans. (d) More than 5 years [Ref. National Health Programmes of India by Dr. J. Kishore, 9/e p696]
- Punishments under Organ Transplantation Act 1994:
 - For medical practitioners involved: Removal of name for 2 years from Medical register (and permanent removal for any subsequent offence)
 - For other persons involved: Five imprisonment + Fine up to ₹ 10,000/-
- New Modification in 2011: Punishment for persons involved to be increased to up to 10 years imprisonment + fine up to ₹ 20,00,000-1,00,00,000/-.

CBD REGISTRATION ACT
245. Ans. (d) 21 days & 21 days [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p664]

OTHER LEGISLATIONS
246. Ans. (c) 2005 [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p712]
National Rural Employment Guarantee Act (NREGA) 2005:
- The NREGA Act 2005 has been passed by the Parliament to provide for ‘100 days of guaranteed wage employment in every year’ to every household whose adult members volunteer to do ‘unskilled manual work’; Salient features:
 - A household is entitled for ‘100 days of work in a year’ (Minimum `130/- per day).
247. Ans. (b) Smoking [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p654]
- The Indian Medical Council Act, 1956; (Professional Conduct and Ethics) & Regulations, 2002: May remove name of physician or publicize his/her name in press on violation of code of conduct and ethics.
248. Ans. (a) 00.00 hrs 01 March [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p662]
- Census Stop (India) : 01 March 00.00 Hours (First year of each decade) (1st time and date on which population count is done).

Also Remember
- National Family Health Survey (NFHS): NFHS is a 5 yearly activity. It has successfully completed three rounds
 - NFHS – I: 1992–93
 - NFHS – III: 2005–06
- Some key dates:
 - Census Stop (Census Movement): 01 March
 - Mid year Population: 01 July

249. Ans. (e) 1987 [Ref. National Health Programmes by Dr. J. Kishore, 8/e p710]
250. Ans. (c) Workman’s compensation act [Ref. K. Park 20/e p613]
- Workman’s compensation act 1923
- MTP Act 1971
- Indian factories act 1948
- ESI Act 1948
251. Ans. (c) When acceptors requires incentives [Ref. Park 21/e p468, Park 22/e p467]
252. Ans. (a) ESI; (b) Factory; (d) Children Act; (e) MTP [Ref. National Health Programmes by Dr J. Kishore, 8/e p686, 717, 720, 748; Park 21/e p467, Park 22/e p466]
- ESI Act: 1948
- The Factory Act: 1948
- Children’s Act: 1960
- The MTP Act: 1971
- Air Protection Act: 1981
253. Ans. (a) Drugs Controller General of India [Ref. National Health Programmes of India by Dr. J. Kishore, 8/e p587; Park 21/e p442, Park 22/e p440]
Also Remember

- Unlicensed blood banks phased from India: May 1997
- Professional blood donation banned in: December 1997
- National blood policy was evolved in: 2002
- Mandatory testing of blood is done for 5 diseases.
 - HIV
 - Syphilis
 - Malaria
 - Hepatitis B
 - Hepatitis C

254. (a) Drug users sent to treatment not jail if requested [Ref. National Health Programmes of India by Dr. J. Kishore, 9/e p 690-692]

The Narcotic Drugs and Psychotropic Substances Act, 1985

- Whosoever produce, manufacture, buy, sell, produce, transport, use, consume any narcotic drug (Opium/poppy) or psychotropic substance: Shall be punished with imprisonment 10-20 years + fine 1-2 lac rupees (5 years + 50000 rupees for Ganja).
 - Users, if not covered under Sections 15-25, will be sent for treatment/rehabilitation and not punished
- Breach in licence for opium growth: Shall be punished with imprisonment 3 years with or without fine
- Whosoever possess a small quantity for personal consumption: Shall be punished with imprisonment 6 months + fine
- Subsequent offences: Death penalty
- Alcohol use: IS NOT covered by this act.

Also Remember

ESSENTIAL MEDICINES

- Essential medicines: Those which satisfy the priority health care needs of the population (Mnemonic: 6A’s)
 - Available
 - Adequate amounts
 - Appropriate dosage forms
 - Assured quality
 - Adequate information
 - Affordable (at a cost community/country can afford)

WHO MODEL LIST OF ESSENTIAL MEDICINES

- WHO Model List:
 - First drawn up in 1977
 - Revised and updated at an interval of 2 years
 - Latest list: 15th March 2007
 - Not designed as a global standard; but many organisations have modelled their medicine supply system on this list
- Selection criteria:
 - Public health relevance
 - Evidence of efficacy and safety
 - Comparative cost effectiveness
- Core list: List of minimum medicine needs for a basic health care system, listing most safe, efficacious and cost-effectiveness medicines of priority conditions
- Complementary list: Essential medicines for priority diseases, for which specialised diagnostic or care facilities are needed
- Key notable points:
 - Brackets: To mention the strength of selected salt or ester
 - When it refers to active moiety, the name of salt or ester in brackets is preceded by “as”
 - Oral liquids: To mention suspension, solution or any other liquid
 - Tablets: Allow forms of immediate-release tablets
 - Enteric coated: Modified release dosage
 - Square box symbol (%): Indicate similar clinical performance within a pharmacological class
- Dosage forms: listed in alphabetical order.
COUNTERFEIT MEDICINES:
- WHO definition: A drug/medication which is produced with intention to cheat
 - Mislabelling (including fudging expiry date)
 - No active ingredients
 - Wrong ingredient
 - Right ingredient in insufficient quantity
- Types of counterfeit medicines:
 - In developed countries: New expensive lifestyle medicines (hormones, steroids, antihistamines)
 - In developing countries: Medications to treat life threatening conditions (HIV/AIDS, TB, Malaria)
- Global burden: More than 10% of global medicines
 - 25% of medicines in developing countries

QUALITY CONTROL IN DRUG SECTOR IN INDIA
- Quality control of drugs in India:
 - Drugs and Cosmetics Act 1940
 - Drugs and Cosmetics Rules 1945
- Central Drugs Standard Control Organisation (CDSCO):
 - Headed by:
 1. Central level: Drugs Controller General, India (DGHS, MOHFW)
 2. State level: State Drugs Controllers
 - Main functions:
 1. Quality control of imported drugs
 2. Coordination of activities under State Drugs Control Authorities
 3. Approval for importation/manufacture of new drugs
 4. Laying standards for and act as ‘Central Licensing Authority for blood and blood products, iv fluids, sera, vaccines, r-DNA products’
- Zonal offices: Mumbai, Kolkata, Ghaziabad, Chennai.

255. Ans. (c) 20 weeks [Ref. K. Park 22/e p467]
256. Ans. (b) 1987 [Ref. Reconstructing Mental Health Law and Policy by N Grover, 1/e p29]
257. Ans. (a) Alcohol [Ref. Narcotics Control Bureau, India]

Mental Health Care Act, 2011

Recognizing That
Persons with mental illness constitute a vulnerable section, and are subject to discrimination; Families bear disproportionate financial, physical, mental, emotional and social burden of providing treatment and care; Persons with mental illness should be treated like other persons with health problems. The Mental Health Act, 1987 has not been able to adequately protect the rights of persons with mental illness and promote access to mental health care in the country

And in Order to:
- Protect, promote and fulfill the rights of persons with mental illness during the delivery of health care in institutions and in the community; Ensure health care, treatment and rehabilitation to persons with mental illness is provided in the least restrictive environment possible, and in a manner that does not intrudes on their rights and dignity. Community-based solutions in the vicinity of the person's usual place of residence, are preferred to institutional solutions; Provide treatment, care and rehabilitation to improve the capacity of the person to develop his or her full potential and to facilitate his or her integration into community life; Fulfill obligations under the Constitution of India and obligations under various International Conventions ratified by India; Regulate the public and private mental health sectors within a rights framework to achieve the greatest public health good; Improve accessibility to mental health care by mandating sufficient provision of quality public mental health services and non-discrimination in health insurance; Establish a mental health care system integrated into all levels of general health care; Promote principles of equity, efficiency and active participation of all stakeholders in decision making;
- This Act may be called the Mental Health Care Act, 2011.
Review of Preventive and Social Medicine

259. Ans. (c) Fundamental rights of mentally retarded
[Ref. The Mental Health Care Bill 2011 DRAFT, MOHFW, Government of India p6]
- Under Mental Health Care Act of India 2011, Mental retardation has been EXCLUDED from definition of mental illness

260. Ans. (d) Jaipur [Ref. CDSCO Website]
CDSCO (Central Drugs Standards Control Organization) Offices
- Ghaziabad (North Zone)
- Mumbai (West Zone)
- Chennai (South Zone)
- Kolkata (East Zone)
- Ahmedabad (Zone)
- Hyderabad (Zone)
- Bangalore (Subzone)
- Chandigarh (Subzone)
- Jammu (Subzone)
- Goa (Subzone)

261. Ans. (c) Calculating probability of adverse drug reaction [Ref. Clinical Pharmacology and Rational Therapeutics by Rataboli, 2/e p459]

262. Ans. (c) ‘Mentally ill’ in place of lunatic [Ref. MTP Act 1971 Amendment 2002 document]

263. Ans. (a) MTP act; (b) ESI act; (d) Factory act [Ref. Park 22/e p467, 649, 759, 760]

Review Questions

264. Ans. (b) Urinary iodine levels among pregnant woman [Ref. NIDDCP, GOI]

265. Ans. (b) 100 mg of elemental iron and 500 mg of folic acid [Ref. Park 18/e p465, Park 21/e p564, Park 22/e p566]

266. Ans. (b) 2005 [Ref. Internet]

267. Ans. (c) ELISA [Ref. Park 20/e p305, Park 21/e p324, Park 22/e p323]
Demography, Family Planning and Contraception

CHAPTER 7

DEMOGRAPHY

DEMOGRAPHIC CYCLE AND PROCESSES

Demography & Demographic Processes

- **Demography**: Is the scientific study of human population; It focuses attention on:
 - Changes in population size
 - Composition of population
 - Distribution of population in space

- **Types of demography**:
 - **Formal demography**: Measurement of populations processes
 - **Social demography**: Also analyze relationships between economic, social, cultural and biological processes influencing a population

- **Basic demographic equation**: If a country has Population ‘t’ persons at the time ‘t’, then size of population at time ‘t + 1’ will be,
 (Natural increase t =Births t – Deaths t; Net migration t =Immigration t – Emigration t)

 Population t +1 = Population t + Natural increase t + Net migration t

- **Demographic Processes**: 5 processes continuously on work in a population, thus determining its’ size, composition and distribution
 - Fertility
 - Marriage
 - Mortality
 - Migration
 - Social mobility

- **Biodemography**: Is the science dealing with the integration of biology and demography
 - Focus on: understanding the complementary biological and demographic determinants of and interactions between the birth and death processes that shape individuals, cohorts and populations

Important Definitions in Demography

- **Crude birth rate (CBR)**: Annual number of live births per 1000 mid year population
- **General fertility rate (GFR)**: Annual number of live births per 1000 women of childbearing age (15–49 years old, or 15–44 years old) mid-year population
- **General marital fertility rate (GMFR)**: Annual number of live births per 1000 married women of childbearing age (15–49 years old, or 15–44 years old) mid-year population
- **Age-specific fertility rates (ASFR)**: Annual number of live births per 1000 women in particular age groups (usually age 15–19 years, 20–24 years etc)
- **Crude death rate (CDR)**: Annual number of deaths per 1000 mid year population
- **Infant mortality rate (IMR)**: Annual number of deaths of children less than 1 year old per 1000 live births
- **Expectation of life (Life expectancy)**: The number of years which an individual at a given age could expect to live at present mortality levels
- **Total fertility rate (TFR)**: Number of live births per woman completing her reproductive life, if her childbearing at each age reflected current ASFRs

https://kat.cr/user/Blink99/
• Gross reproduction rate (GRR): Number of daughters who would be born to a woman completing her reproductive life at current ASFRs.
• Net reproduction rate (NRR): Expected number of daughters, per newborn prospective mother, who may or may not survive to and through the ages of childbearing.

Demographic Cycle & Concepts
• Demographic cycle is closely related to Socio-economic progress of a country
• 5 stages (phases) of demographic cycle through which a nation passes:

<table>
<thead>
<tr>
<th>Phase</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth rate</td>
<td>High</td>
<td>High</td>
<td>Declining</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Death rate</td>
<td>High</td>
<td>High</td>
<td>Declining</td>
<td>Low</td>
<td>Declining</td>
</tr>
<tr>
<td>DG</td>
<td>Narrow</td>
<td>Increasing</td>
<td>Increasing</td>
<td>Narrow</td>
<td>Reversal</td>
</tr>
<tr>
<td>Population</td>
<td>Stationary</td>
<td>Growing*</td>
<td>Growing$</td>
<td>Stationary</td>
<td>Decreasing</td>
</tr>
<tr>
<td>Composition</td>
<td>Young</td>
<td>Young</td>
<td>Young</td>
<td>Mixed</td>
<td>Ageing</td>
</tr>
<tr>
<td>Age pyramid</td>
<td>Pyramidal</td>
<td>Losing pyramidal shape</td>
<td>Globular</td>
<td>Cylindrical</td>
<td>Losing cylindrical shape</td>
</tr>
</tbody>
</table>

(*) Increasing rate; $ Decreasing rate

Figure: Stages of demographic cycle
[BR-birth rate, DR-death rate, DG-demographic gap, A-high stationary stage, B-early expanding stage, C-late expanding stage, D-low stationary stage, E-declining stage]

• India is in Stage III (Late Expanding Phase) of Demographic cycle
• Stage V (Decline Phase): Germany, Italy, Spain, Portugal, Greece, United Kingdom and Japan (populations are reproducing well < replacement levels)
• Demographic transition: is a model used to explain the process of transition from high BR and high DR to low BR and low DR as part of the economic development of a country from a pre-industrial to an industrialized economy
• Demographic Window: Period of time in a nation’s demographic evolution when ‘proportion of population of working age group is particularly prominent’
 - Typically, demographic window of opportunity lasts 30–40 years
 - UN Population Department definition: Period when the proportion of children and youth under 15 years falls < 30% and proportion of people 65 years and older is still < 15%
 - Societies in demographic window have smaller DR
 - Countries status of demographic window:
 - Europe: 1950 – 2000
 - China: 1990 – 2015
 - India: 2010 – 2050 (expected)
 - Africa: 2045 – ? (expected)
• Demographic dividend: A rise in the rate of economic growth due to a rising share of working age people in a population

https://kat.cr/user/Blink99/
Demography, Family Planning and Contraception

- It usually occurs late in the demographic transition when the fertility rate falls and the youth DR declines.
- In this demographic window opportunity, output per capita rises.
 - **Demographic gift**: The initially favorable effect of falling fertility rates on the ratio of the working population to the dependent population.
 - **Demographic trap**: Applies to a country whose population is growing rapidly due to a high BR and low DR.
 - **Epidemiological transition**: A change in the pattern of disease in a country away from infectious diseases towards degenerative diseases.

BIRTH RATE, DEATH RATE, GROWTH RATE

Crude Birth Rate (CBR) and Crude Death Rate (CDR)
- **Crude birth rate (CBR)**: is the natality or childbirths per 1,000 mid-year population.
 - CBR (World): 19.9 per 1000 population (Max 51 Niger; Min 7 Monaco) [2012]
 - CBR (India): 21.4 per 1000 population [2014]
 - Is a measure of fertility.
- **Crude Death Rate (CDR)**: is the mortality per 1,000 mid-year population.
 - CDR (World): 8.37 per 1000 population (Max 22 Lesotho; Min 1 UAE) [2011]
 - CDR (India): 7.0 per 1000 population [2014]
 - CRUDE means it includes all causes and all ages - It is independent of age of population.

Growth Rate
- **Growth rate (GR)**: Is the change in population overtime, and can be quantified as the ‘change in the number of individuals in a population per unit time’.
 - **Annual growth rate (AGR)**: Crude birth rate (BR) minus crude death rate (DR).
 - **Decadal growth rate (DGR)**: Change in population over a decade
- **Growth rate (India)**: [Census 2011]
 - Annual growth rate (AGR): 1.64%.
 - Since India’s AGR is 1.64%, it is in very rapid growth phase; Population of India will double in 35 – 47 years.
 - Decadal growth rate (DGR): 17.64%
 - Highest DGR: Dadra and Nagra Haveli (55.5%)
 - Lowest DGR: Nagaland (-0.47%)
- **Growth rate (World)**: 1.17% [UN World’s Population Prospects Report 2006]
 - **Growth rates of countries**: [UN World’s Population Prospects Report 2006]
 - Rank 1: Liberia (4.5%) Highest growth rate.
 - Rank 3: Afghanistan (3.85%)
 - Rank 90: India (1.46%)
 - Rank 230: Cook’s Islands (< 2.23%) Lowest growth rate
- **Relation between annual growth rate (AGR) and population**:

<table>
<thead>
<tr>
<th>Rating</th>
<th>Annual GR (%)</th>
<th>Population doubling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary population</td>
<td>None</td>
<td>-</td>
</tr>
<tr>
<td>Slow growth</td>
<td>< 0.5</td>
<td>> 139 years</td>
</tr>
<tr>
<td>Moderate growth</td>
<td>0.5 – 1.0</td>
<td>139 – 70</td>
</tr>
<tr>
<td>Rapid growth</td>
<td>1.0 – 1.5</td>
<td>70 – 47</td>
</tr>
<tr>
<td>Very rapid growth</td>
<td>1.5 – 2.0</td>
<td>47 – 35°</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>2.0 – 2.5</td>
<td>35 – 28</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>2.5 – 3.0</td>
<td>28 – 23</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>3.0 – 3.5</td>
<td>23 – 20</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>3.5 – 4.0</td>
<td>20 – 18</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Growth ratio = Growth rate × 100%

- Positive growth ratio: population is increasing
- Negative growth ratio: population is declining
- Growth ratio of zero: There were the same number of people at the two times (or net difference between births, deaths and migration is zero)

Population Growth Models

- Malthusian Growth Model: (Simple exponential growth model)
 - Essentially exponential growth based on a constant rate of compound interest
 - RULE OF 70: explains the time periods involved in exponential growth at a constant rate. For example, if growth is measured annually then a 1% growth rate results in a doubling every 70 years. At 2% doubling occurs every 35 years.
- Logistic growth model: The Malthusian growth model is the direct ancestor of the logistic function

Carrying Capacity

- Carrying capacity: The supportable population of an organism, given the food, habitat, water and other necessities available within an ecosystem is known as the ecosystem’s carrying capacity for that organism
 - Refers to the number of individuals who can be supported in a given area within natural resource limits, and without degrading the natural social, cultural and economic environment for present and future generations
 - For human population more complex variables (sanitation, medical care) are sometimes considered as part of necessary infrastructure
 - Below carrying capacity, populations typically increase; while above, they typically decrease
 - May depend on a variety of factors including food availability; water supply, environmental conditions and living space

Population Pyramid (Age-Sex Pyramid)

- Population composition of India: [NFHS – 3, 2005–06]
 - 0 – 14 years: 34.9% (Children)
 - 15 – 49 years: 49.5% (Reproductive age group)
 - 50 – 59 years: 7.1%
 - 60 years: 8.5% (Geriatric age group)
- Population pyramid: (age-sex pyramid and age structure diagram) Is a graphical illustration that shows the distribution of various age groups in a population which normally forms the shape of a pyramid
 - Double Histogram: 2 back-to-back histograms
 - one showing the number of males and
 - one showing females in a particular population (Males are conventionally shown on left and females on right)
 - Population (%) is plotted on the X-axis and age on the Y-axis (in 5-year age group intervals)
- Types of Population pyramid:
 - Stationary pyramid: A population pyramid showing an unchanging pattern of fertility and mortality
 - Expansive pyramid: A population pyramid showing a broad base, indicating a high proportion of children, a rapid rate of population growth, and a low proportion of older people
 - Indicates a population in which there is a high birth rate, a high death rate and a short life expectancy
Demography, Family Planning and Contraception

- Typical pattern for less economically developed countries
 - **Constrictive pyramid:** A population pyramid showing lower numbers or percentages of younger people
 - Country will have a greying population which means that people are generally older

- Utility of Population pyramid:
 - **Shape of population pyramid indicates fertility pattern**
 - Broad base, Narrow top (upright triangle): High proportion of younger population (developing countries)
 - Bulge in Middle, Spindle shape: High proportion of adults (developed countries)
 - **Span (height) of population pyramid indicates life expectancy**
 - Taller pyramid: Higher life expectancy (developed countries)
 - Shorter pyramid: Lower life expectancy (developing countries)
 - **Symmetry of population pyramid indicates sex ratio**
 - Symmetric pyramid: ideal sex ratio (developed countries)
 - Asymmetric pyramid: unfavourable sex ratio <1000 (developing countries)

SEX RATIO AND DEPENDENCY RATIO

Sex Ratio

- Sex Ratio: Is defined as number of females per thousand males
 \[
 \text{Sex Ratio} = \frac{\text{No. of Females}}{\text{No. of Males}} \times 1000
 \]

- **Sex Ratio (India):** [Census 2011]
 - Sex ratio (India): 940 (Highly unfavourable)
 - Sex ratio (Rural India): 947
 - Sex ratio (Urban India): 926
 - Favourable sex ratio in India:
 - Kerala: 1084
 - Pondicherry: 1038

- **Census 2011 data for sex ratio (India):**

<table>
<thead>
<tr>
<th>Census 2011</th>
<th>Sex ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>State with Highest Sex Ratio</td>
<td>Kerala</td>
</tr>
<tr>
<td>State with Lowest Sex Ratio</td>
<td>Haryana</td>
</tr>
<tr>
<td>UT with Highest Sex Ratio</td>
<td>Pondicherry</td>
</tr>
<tr>
<td>UT with Lowest Sex Ratio</td>
<td>Daman & Diu</td>
</tr>
<tr>
<td>District with Highest Sex Ratio</td>
<td>Mahe (Pondicherry)</td>
</tr>
<tr>
<td>District with Lowest Sex Ratio</td>
<td>Daman (Daman & Diu)</td>
</tr>
</tbody>
</table>

- Types of sex ratio:
 - Primary sex ratio: Ratio at the time of conception
 - Secondary sex ratio: Ratio at time of birth
 - Tertiary sex ratio: Ratio of mature organisms

- Interpretation of Sex ratio:
 - Ideal Sex Ratio: Sex ratio of 1000 (equal no. of males & females)
 - Favourable Sex Ratio: Sex ratio > 1000 (Females > Males)
 - Unfavourable Sex Ratio: Sex ratio < 1000 (Females < Males)

- Natural sex ratio at birth (estimated): 950
- Evolutionary stable sex ratio: Ideal sex ratio (= 1000 or 50:50 males : females)
- Sex ratio is an important and sensitive indicator of status of women

https://kat.cr/user/Blink99/
Child Sex Ratio (CSR)

- **Child Sex Ratio:** Is defined as number of female children 0 – 6 years age per thousand male children 0 – 6 years age.
 - **Child Sex Ratio (India):** 914 [Census 2011] (Highly unfavourable)
 - **Highest:** Mizoram; **Lowest:** Haryana

Dependency Ratio

- **Dependency Ratio (DR):** The proportion of persons above 65 years of age and children below 15 years of age are considered to be dependent on economically productive age group (15 – 64 years).
 - DR is ratio of the economically dependent part of the population to the productive part
 - DR is the ‘age-wise’ ratio of non-earning to earning population.
 - DR is also known as ‘Societal Dependency ratio (SDR)’

\[
\frac{\text{Population < 15 years + Population > 65 years}}{\text{Population 15-65 years}}
\]

- **DR is of two types:**
 - Young age DR (0 – 14 years)
 - Old age DR (> 65 years)

- **Importance of DR:** As DR increases, there is increased strain on the productive part of the population to support the upbringing and pensions of the economically dependent
 - **DR is CRUDE:** It fails to take into account the earning population in numerator and non-earning population in denominator

- **DR (India) is 62 per 100 or 0.62:** It implies 100 earning people in India are supporting 162 people (100 themselves and 62 non-earning dependents on them)
- **DR (India) projected in forthcoming years:**
 - DR will decrease
 - Young age DR will decrease
 - Old age DR will increase

LITERACY AND LIFE EXPECTANCY

Literacy

- **Literate (India):** Any person who can read AND write, WITH understanding, IN ANY ONE language of India AND who is > 7 years if age (definition used in 1991 & 2001 Censuses)
 - **Literacy Rate:** Denominator is population > 7 years age.
 - **Crude Literacy Rate:** Denominator is total population (used earlier)
 - **UN definition of Literacy:** Ability to read and write a simple sentence in any language.

- **Literacy Rate (India):** 74.04% [Census 2011]
 - **Literacy rate by sex:** Males – 82% & Females – 65%
 - **Literacy rate by state:** Maximum 94% (Kerala) & Least 64% (Bihar)
- **Literacy Rate (World):** 82% [CIA World Factbook 2007]
 - **Literacy rate in countries:** [UNDP Programme report 2007-08]
 - Rank 1: Georgia (100%)
 - Rank 173: Burkina Faso (23.6%)
- **Indian Government Schemes for Literacy:**
 - **Sarva Siksha Abhiyan (2001):** All children in the age 6-14 years attend school and complete 8 years of schooling by 2010
 - **District Primary Education Programme (1994):** Centrally sponsored; has so far opened more than 160,000 new schools, including almost 84,000 alternative schools.
Demography, Family Planning and Contraception

- Mid day meal programme (1995)
- National Literacy Mission (1988): Aims at attaining a literacy rate of 75% by 2007
- International Literacy Day: 8th September (every year)
- Threshold level of literacy: 75%
- Types of Literacy:
 - Functional Literacy: Ability of an individual to use reading, writing, and computational skills efficiently in everyday life situations
 - Transliteracy: The ability to read, write and interact across a range of platforms, tools and media from signing and orality through handwriting, print, TV, radio and film, to digital social networks
 - Illiteracy: The state of being able to read but being uninterested in doing so

FERTILITY

Total Fertility Rate (TFR)

- Is STANDARDIZED INDEX FOR FERTILITY LEVEL.
- Average no. of children a woman would bear in her reproductive life span; Also known as ‘Period Total Fertility Rate’
- Gives magnitude of approximately ‘completed family size’ – no. of alive children in a family
- Obtained by summing single-year age-specific rates (ASFRs) at a given time
- TFR is a synthetic rate: Is not actually counted, as this would involve waiting until women complete childbearing
- TFR (India): 2.68 [NFHS – 3, 2005 – 06]
- Replacement level of fertility (TFR = 2.1): TFR at which newborn girls would have an average of exactly 1 daughter over their lifetimes (women have just enough babies to replace themselves)
 - Replacement TFR (industrialized countries) = 2.1
 - Replacement TFR (developing countries) = 2.5 – 3.3
 - Replacement TFR (globally) = 2.33
- Total cohort fertility rate (TCFR) is a better estimate of completed family size than TFR

Fertility Rates

- GFR is a better measure of fertility than CBR: Number of live births per 1000 women in reproductive age group (15-49 years)
- Major weakness of GFR: Not all women are exposed to risk of child birth
- Total Fertility Rate (TFR): Average no. of children a woman would bear in her reproductive life span. Also known as ‘Period Total Fertility Rate’
 - Gives magnitude of approximately ‘completed family size’ – no. of alive children in a family
 - Obtained by summing single-year age-specific rates (ASFRs) at a given time
 - TFR is a synthetic rate: Is not actually counted, as this would involve waiting until women complete childbearing
- Gross Reproduction Rate (GRR): Measures the no. of daughters a woman would have in her lifetime if she experiences prevailing age-specific fertility, ‘assuming no mortality’
 - GRR is same as the NRR, except that, like the TFR, it ignores life expectancy
- Net Reproduction Rate (NRR): Number of daughters a newborn girl will bear during her lifetime assuming fixed age-specific fertility and mortality rates.
 - NRR = 1: Each generation of women is exactly reproducing itself
 - To achieve NRR = 1: Couple Protection Rate (CPR) should be >60%
 - GRR or NRR = ½ TFR (approximately)
MISCELLANEOUS

Uses of Regular Reporting of Health Statistics

- To measure health status of population
- To quantify health related problems
- To evaluate trends of disease in a population
- To compare health data locally, nationally and internationally
- To effective plan health programs, policies, services
- To monitor and evaluate health programs
- To evaluate satisfaction among population
- To appreciate health personnel’s efforts
- To promote epidemiological research

Sample Registration System

- *Sample Registration System (SRS)* was initiated in 1964–65 (on a pilot basis; full scale from 1969–70) to provide national as well as state level reliable estimates of fertility and mortality
- *SRS is a dual record system:*
 - Field Investigation: continuous enumeration of births and deaths by an enumerator
 - Independent retrospective survey: every 6 months by an investigator-supervisor
- *Advantages of SRS as a dual record system:*
 - Elimination of errors of duplication
 - Leads to a quantitative assessment of the sources of distortion in the two sets of records making it a self evaluating technique.
- *Primary objective:* To build up statistics on ‘Most Probable Causes of Death’ for rural and urban areas using *lay diagnosis reporting (Post Death Verbal Autopsy)* method
- *Main objective of SRS:* To provide reliable estimates of BR, DR and IMR at the natural division level for rural areas and at the state level for urban areas
- *Main components of SRS:*
 - Base-line survey of the sample units to obtain usual resident population of the sample areas
 - Continuous (longitudinal) enumeration of vital events pertaining to usual resident population by the enumerator
 - Independent retrospective half-yearly surveys for recording births and deaths which occurred during the half-year under reference and updating the Houselist, Household schedule and the list of women in the reproductive age group along with their pregnancy status by the Supervisor
 - Matching of events recorded during continuous enumeration and those listed in course of half-yearly survey
 - Field verification of unmatched and partially matched events
 - Filling of Verbal Autopsy forms for finalized deaths
- *Sample design adopted for SRS:* A unistage stratified simple random sample
- *Infant Mortality is the decisive indicator for estimation of sample size at Natural Division*
- *SRS now covers the entire country*
- *Findings of SRS Bulletin: [2013]:*
 - Crude Birth Rate (CBR): 21.6 per 1000 mid-year population
 - Crude Death Rate (CDR): 7.0 per 1000 mid-year population
 - Natural Growth Rate: 14.5 per 1000 mid-year population
 - Infant Mortality Rate (IMR): 42 per 1000 live births

Civil Registration System

- *Civil Registration System (CRS):* Birth and death registration system is technically known as CRS
- Registration of births and deaths (Birth and Death Registration Act, 1969) and marriages is compulsory at their place of occurrence with local registrar in India
 - Births must be registered within: 21 days
 - Deaths must be registered within: 21 days
 - Marriages must be registered within: Variable limits within India
- In cases of delayed registration for birth/ death:
 - After 21 days till 30 days: Late fee
 - After 30 days till 1 year: Late fee + Written permission from district registrar (vide an affidavit)
 - After 1 year: Late fee + Order of executive magistrate
- Registration of name of the child:
 - Within 12 months of birth registration: Free of charge
 - After 12 months of birth registration till 15 years: Rupees 5.00
- Coverage of registration of births and deaths in India
 - Coverage of births registration in India: 55%
 - Coverage of deaths registration in India: 46%

Key Facts of Census (India) 2011

- Frequency of census in India: Every 10 years (decadal)
- Legal basis of conducting census: The Census Act, 1948
- The census organization set up and working under: Ministry of Home Affairs
- Head of census organization: Registrar General and Census Commissioner
- Population enumeration: 9th – 28th February 2011
- Revisional round: 1st – 5th March 2011
- Houseless population enumeration: Night of 28th February 2011
- Districts covered: 640
- Census Stop (Census Movement): 00.00 hrs 01 March 2011 (The referral time and date at which snapshot of the population is taken)

FIRST TIME ACTIVITIES EVER DONE: BIOMETRY
- Finger prints – 10
- Iris scan
- National population register
- UID – Unique identification number
- Photograph

Key Findings of Census of India 2011

- 35 States & UTs; 640 districts; 6.41 lac villages
- Total population: 1210.1 million (M : F = 51.4 : 48.6)
 - Highest population: Uttar Pradesh (199 million)
 - Lowest population: Lakshadweep (64000)
- Sex ratio: 940
 - Highest sex ratio: Kerala (1084); Puducherry (1038)
 - Lowest sex ratio: Daman & Diu (618); Dadra & Nagar Haveli (775); Chandigarh (818); Delhi (866); Haryana (877)
- Child Sex Ratio (0-6 y):
 - Highest CSR: Mizoram (971)
 - Lowest CSR: Haryana (830)
- Literacy rate: 74.04%
 - LR Males: 82.14%
 - LR Females: 65.46%
 - LR Highest: Kerala (93.9%)
 - LR Lowest: Bihar (63.8%)
- Density of population: 382
 - Highest density: Delhi (11,297)
 - Lowest density: Arunachal Pradesh (17)
• Growth rate annual: 1.64%
• Growth rate decadal: 17.64%
 – Highest DGR: Dadra & Nagar Haveli (55.5%)
 – Lowest DGR: Nagaland (-0.47%)

National Family Health Survey (NFHS)

• Is a large-scale, multi-round survey conducted in a representative sample of households throughout India.
• 3 rounds of the NFHS survey have been conducted till date\(^\text{3}\), [NFHS-4 2014-15 ongoing]
 - NFHS–1: 1992–93
 - NFHS–3: 2005–06
• **Goals of NFHS survey:**
 - To provide essential data needed by Ministry of Health & Family Welfare and other agencies for policy and programme purposes
 - To provide information on important emerging health and family welfare issues
• **Main objective of NFHS survey:** To provide state and national information for India on fertility, infant and child mortality, the practice of family planning, maternal and child health, reproductive health, nutrition, anaemia, utilization and quality of health and family planning services.
• **Nodal agency for NFHS:** International Institute for Population Sciences (IIPS), Mumbai\(^\text{2}\)
• Few key findings of NFHS–3, India (2005–06):
 - Literacy rate: Male – 83%, Female – 59%
 - IMR: 57 per 1000 live births
 - TFR: 2.6 \(^\text{1}\)
 - Contraceptive prevalence: 56% (Sterilization: 37%) \(^\text{1}\)
 - 3 AN check ups: 51%
 - Took IFA: 65% (Took IFA for 90 days or more: 23%)
 - Received > 2 TT injections: 76% \(^\text{1}\)
 - Institutional deliveries: 41% \(^\text{1}\)
 - Delivery assisted by health professionals: 48%
 - Delivery conducted by a skilled provider: 47%
 - Anemia – children: 79% \(^\text{1}\)
 - Anemia – pregnancy: 58% \(^\text{1}\)
 - Women experienced domestic violence: 37% \(^\text{1}\)

Key Age-group Definitions

- **Ovum:** 0 – 2 weeks
- **Embryo:** 2 – 9 weeks
- **Fetus:** 9 weeks – delivery
- **Period of viability:** POG > 28 weeks
- **Perinatal period:** 28 weeks POG – 7 days post-delivery
- **Neonatal period:** 0 – 28 days after birth (0 – 4 weeks post-delivery)
 - **Early neonatal period:** 0 – 7 days after birth (1st week)
 - **Late neonatal period:** 8 – 28 days after birth (2 – 4 week)
 - **Post neonatal period:** 29 days – 365 days after birth (1 month – 1 year)
- **Infancy:** Birth – 365 days (1st year of life)
- **Toddler:** 1 – 3 years age
- **Preschool child:** 3 – 6 years age
- **Puberty:** Is the stage of the lifespan in which a child develops secondary sex characteristics as his/her hormonal balance shifts strongly towards an adult state
 - **Average age for onset in girls:** 10-12 years \(^\text{2}\)
 - **Average age for onset in boys:** 12-14 years \(^\text{2}\)
- **Adolescent:** 10 – 19 years age (WHO definition)
 - **Early adolescence:** 10 – 13 years

3 rounds of the NFHS survey have been conducted till date

Perinatal period: 28 weeks POG – 7 days post-delivery

Adolescent: 10 – 19 years age

https://kat.cr/user/Blink99/
FAMILY PLANNING AND CONTRACEPTION

CONCEPTS OF FAMILY PLANNING

Definitions and Concepts

- Birth control (contraception): Is a regimen of one or more actions, devices, or medications followed in order to deliberately prevent or reduce the likelihood of pregnancy or childbirth. It is commonly used as part of family planning
- Contraception: May refer specifically to mechanisms which are intended to reduce the likelihood of the fertilization of an ovum by a spermatozoon
- Family planning: A couple plans when to have children, using birth control and other techniques (sexual education, prevention and management of STIs, preconceptional counselling & management, and infertility management).
- Modern concept of family planning: Family planning is not synonymous with birth control only. A WHO Expert Committee (1970) recommends that family planning includes in its' purview:
 - Proper spacing and limitation of births
 - Advice on sterility
 - Education for parenthood
 - Sex education
 - Screening for pathological conditions related to reproductive system (e.g. Cervical cancer)
 - Genetic counseling
 - Marriage counseling
 - Premarital consultation and examination
 - Carrying out pregnancy tests
 - Preparation of couples for arrival of their 1st child
 - Providing services for unmarried mothers
 - Teaching home economics and nutrition
 - Providing adoption services

Contraceptive Efficacy

- Contraceptive Efficacy: Is assessed by measuring the number of unplanned pregnancies that occur during a specified period of exposure and use of a contraceptive method. Two methods used are:
 - Pearl Index
 - Life table analysis
Pearl Index (PI)

- **PI or Pearl rate**: MC technique used in clinical trials for measuring the effectiveness of a birth control method
 - PI is no. of failures per 100 woman years (HWY) of exposure

 \[
 \text{Pearl Index (PI)} = \frac{\text{Total accidental pregnancy}}{\text{Total months of exposure}} \times 1200
 \]

- In designing a use-effectiveness trial, a ‘minimum of 600 months of exposure’ is required for a firm conclusion
- **Disadvantages for PI**:
 - PI assumes a constant failure rate over time
 - PI also provides no information on factors other than accidental pregnancy which may influence effectiveness calculations, viz. dissatisfaction with the method, trying to achieve pregnancy, medical side effects, lost to follow up
 - PI is only accurate as a statistical estimation of per-year risk of pregnancy if the pregnancy rate was very low

- **Pearl Indices for few contraceptive methods**:

<table>
<thead>
<tr>
<th>Contraceptive Method</th>
<th>Pearl Index (per HWY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No method used</td>
<td>80</td>
</tr>
<tr>
<td>Rhythm (calendar) Method</td>
<td>24</td>
</tr>
<tr>
<td>Coitus interruptus</td>
<td>18</td>
</tr>
<tr>
<td>Male condoms</td>
<td>2 – 14²</td>
</tr>
<tr>
<td>Female condoms</td>
<td>5 – 21</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>12</td>
</tr>
<tr>
<td>Vaginal sponge</td>
<td></td>
</tr>
<tr>
<td>Parous women</td>
<td>20 – 40</td>
</tr>
<tr>
<td>Nulliparous women</td>
<td>9 – 20</td>
</tr>
<tr>
<td>IUD</td>
<td>0.5 – 2.0²</td>
</tr>
<tr>
<td>Oral pill</td>
<td>0.1 – 0.5²</td>
</tr>
<tr>
<td>Centchroman (Saheli)</td>
<td>1.83 – 2.84</td>
</tr>
</tbody>
</table>

- **Second method for calculation of PI**: The number of pregnancies in the study is divided by the number of menstrual cycles experienced by women in the study, and then multiplied by 1300
 - 1300 instead of 1200 is used on the basis that the length of the average menstrual cycle is 28 days, or 13 cycles per year

 \[
 \text{Pearl Index (PI)} = \frac{\text{Total accidental pregnancies}}{\text{Total no. of menstrual cycles experienced}} \times 1300
 \]

Life Table Analysis (LTA)

- **LTA as measure of contraceptive efficacy**: LTA calculates a failure rate per month of use
 - Better measure than PI²

Eligible Couples

- **Eligible couples (ECs)**: A currently married couple with wife in reproductive age group (15–45 years age)²
 - There are 150 – 180 ECs per 1000 population in India
 - ECs are in need of family planning services
 - 20% ECs are in age group 20–24 years
- EC register, a basic document for organizing family planning work, is maintained at Subcentre²

I: PI is no. of failures per 100 woman years (HWY) of exposure

EC register is maintained at Subcentre²
Couple Protection Rate (CPR) & Effective CPR

- **Couple Protection Rate (CPR):** Is an indicator of prevalence of contraceptive practice in a community\(^2\)
 - CPR is percent of eligible couples (ECs) protected against one or the other approved methods of family planning, viz. condoms, OCPs, IUDs, sterilization\(^3\)
 - NRR = 1 can be achieved if: CPR > 60%\(^4\)
 - CPR (India): 46% [2000]
 - Goal for CPR in RCH – II (2004 – 09): > 65%

\[
\text{CPR} = \frac{\text{Total no. of ECs protected by any of 4 approved methods}}{\text{Total no. of ECs in the community}} \times 100
\]

- **Effective Couple Protection rate (ECPR):**
 - ECPR is percent of eligible couples (ECs) protected against one or the other approved methods of family planning, viz. condoms, OCPs, IUDs, sterilization TAKING INTO ACCOUNT THEIR EFFECTIVITY\(^5\)
 - Effectivity of approved contraceptive methods\(^6\):
 - Condoms: 50%
 - IUDs: 95%
 - OCPs: 100%
 - Sterilization (Vasectomy or Tubectomy): 100%

Assisted Reproductive Technology (ART)

- **Assisted reproductive technology (ART):** Is the use of reproductive technology to treat infertility
 - Artificial insemination (AI)
 - Cloning
 - Cryopreservation of sperm, oocytes, embryos
 - Embryo transfer
 - Hormone treatment
 - In vitro fertilization (IVF)
 - Intracytoplasmic sperm injection (ICSI)
 - Preimplantation genetic diagnosis (PGD)
 - Surrogacy
 - Testicular sperm extraction (TESE)
 - Gamete intrafallopian transfer (GIFT)
 - Zygote intrafallopian transfer (ZIFT)

- **In-vitro fertilization:** Is a technique in which egg cells are fertilized by sperm outside the woman’s womb, *in vitro*\(^7\)
 - IVF is a major treatment in infertility when other methods of assisted reproductive technology (ART) have failed
 - Process of IVF: Hormonally controlling the ovulatory process, removing ova (eggs) from the woman’s ovaries and letting sperm fertilize them in a fluid medium. The fertilized egg (zygote) is then transferred to the patient’s uterus with the intent to establish a successful pregnancy
 - Intracytoplasmic sperm injection (ICSI): A more recent development associated with IVF which allows the sperm to be directly injected into the egg using micromanipulation
 - Overall pregnancy rate with IVF: 33%
 - Major complication of IVF: Risk of multiple births

- **Zygote intrafallopian transfer (ZIFT):** Eggs are removed from the woman, fertilized and then placed in the woman’s fallopian tubes rather than the uterus

- **Gamete intrafallopian transfer (GIFT):** Eggs are removed from the woman, and placed in one of the fallopian tubes, along with the man’s sperm; This allows fertilization to take place inside the woman’s body; Therefore, this variation is actually an in vivo fertilization

https://kat.cr/user/Blink99/
NATURAL METHODS

Natural Family Planning Methods

- **Safe period (Rhythm method/Calendar method):**
 - **Fertile period:** Shortest cycle minus 18 days (Last day of fertile period: Longest cycle minus 10 days)\(^2\)
 - **Drawbacks:**
 - Difficult to predict safe period in irregular cycles
 - Only suitable for educated couples with high motivation
 - PROGRAMMED SEX: Abstinence required for ½ month\(^2\)
 - Not useful in postnatal period
 - High failure rate: 9 per HWY\(^3\)
 - Medical complications: Ectopic pregnancies and embryonic abnormalities

- **Basal Body Temperature (BBT) Method:**
 - Depends on: Rise of temperature (0.3° – 0.5° C) at ovulation\(^3\)
 - Occurs due to: Increased progesterone production\(^3\)
 - Measurement: Before getting out of bed in morning (preferably)
 - Reliable if: Intercourse restricted to post-ovulatory infertile period
 - Drawback: Abstinence necessary for entire pre-ovulatory period

- **Cervical Mucus Method:**
 - Also known as ‘Billing’s Method’\(^2\) or ‘Ovulation Method’\(^2\)
 - Based on: Changes in characteristics of cervical mucus
 - At ovulation: Watery, clear, smooth, slippery, profuse (like Egg white)
 - After ovulation: Thickens and lessens in quantity
 - Method: Tissue paper to wipe off inside of vagina
 - Drawback: Requires high degree of motivation

- **Symptothermic Method:**
 - Combines temperature, cervical mucus and calendar techniques\(^2\)
 - More effective than Billing’s method\(^2\)

- **Sexual abstinence:**
 - Only method of birth control which is completely effective: Sexual abstinence\(^2\)

- **Coitus interruptus/Withdrawal method:**
 - Oldest method of voluntary fertility control: Coitus interruptus\(^2\)

- **Lactation amenorrhea method (LAM):** A good method for natural conception under exclusive breast feeding

BARRIER METHODS

Condoms

- **Major advantage:** Protection against HIV and other sexually transmitted infections (STIs)
- **Male condoms versus female condoms:**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Male condoms</th>
<th>Female condoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material commonly used</td>
<td>Latex</td>
<td>Polyurethane/ Nitrile</td>
</tr>
<tr>
<td>Pearl Index (failure rate)</td>
<td>2–14 per HWY (^a)</td>
<td>5–21 per HWY</td>
</tr>
<tr>
<td>No. of rings</td>
<td>1</td>
<td>2 (outer & inner)</td>
</tr>
<tr>
<td>Reusable</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Covering skin around external genitals</td>
<td>No</td>
<td>Yes(^a)</td>
</tr>
<tr>
<td>Compatible with oil based lubricants</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Insertion requires male erection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Prevention of pregnancy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prevention of STIs</td>
<td>Yes(^a)</td>
<td>Yes(^a)</td>
</tr>
</tbody>
</table>

\(^a\) https://kat.cr/user/Blink99/
Female Condoms

- Female condoms: A device that is used during sexual intercourse
- Invented by Danish MD Lasse Hessel
- It is worn internally by the receptive partner and physically blocks ejaculated semen from entering that person’s body
- Prevent pregnancy and transmission of STIs
- Three types:
 - FC Female condom: made of polyurethane
 - FC2: made of nitrile polymer
 - Latex
- Only tool for HIV prevention that women can initiate & control

Vaginal Sponge (TODAY)

- VAGINAL SPONGE: TODAY (brand name)
- Sponge a barrier method of contraception: It actually combines barrier and spermicidal methods to prevent conception
 - Is a small polyurethane sponge 5 cms X 2.5 cms
 - Saturated with 1000 mg of spermicide ‘Non-oxynol-9’
 - Today must be run under water till thoroughly wet before insertion
 - Sponges is ‘inserted vaginally’ prior to intercourse and must be ‘placed over the cervix to be effective’
 - Sponge must be left in place for 6 hours after ejaculation: All sponges must be removed within the time limits specified by the manufacturer (24 hours for Today)
- Disadvantages of sponge:
 - Sponge provide no protection from STIs
 - Can lead to Toxic Shock Syndrome
 - Increased risk of yeast infection and UTI
- Failure rate (Pearl Index):
 - Parous women: 20 – 40 per HWY
 - Nulliparous women: 9 – 20 per HWY

Diaphragm

- DIAPHRAGM: Is a cervical barrier type of birth control
- Mechanism of action: It is a soft latex or silicone dome with a spring molded into the rim; the spring creates a seal against the walls of the vagina and blocks sperm from entering the female reproductive tract
- One teaspoon (5ml) of spermicide may be placed in the dome of the diaphragm before insertion, or with an applicator after insertion
- It must be inserted sometime before sexual intercourse, and remain in the vagina for 6-8 hours after a man’s last ejaculation
- Protection against: PID and Human Papilloma Virus (HPV)
- Disadvantages:
 - Increased risk of UTI, yeast infection & bacterial vaginosis
 - Toxic Shock Syndrome (if left in-situ > 24 hours)

IUDs

Types of Intrauterine Devices (IUDs)

- Numbers (7, 220, 380) represent: Surface area of copper (in sq. mm) on the device
- B in CuT 220 B represent: Size of IUD (IUDs were earlier available in different sizes
 - A, B, C and D; D was the largest size)
- A or Ag in CuT 380 A represent: Silver or Gold (with copper)
1st Generation IUDs
Non-medicated IUDs
Inert IUDs
No medication is added to the IUD
No medication is added to IUD

2nd Generation IUDs
Medicated IUDs
Bio-active IUDs
Metallic ions (Copper) are added to IUD

3rd Generation IUDs
Hormones are added to IUD

Non-medicated IUDs
Inert IUDs
Medicated IUDs
Bio-active IUDs

CuT 7
CuT 220 B
CuT 380 A/Ag

Progestasert
LNG – IUD

Shelf-life of IUDs

<table>
<thead>
<tr>
<th>IUD</th>
<th>Approved years of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper IUDs</td>
<td>3 – 5</td>
</tr>
<tr>
<td>Progestasert</td>
<td>1</td>
</tr>
<tr>
<td>CuT 200</td>
<td>4</td>
</tr>
<tr>
<td>NOVA T</td>
<td>5</td>
</tr>
<tr>
<td>LNG IUD</td>
<td>7 – 10</td>
</tr>
<tr>
<td>CuT 380 A/Ag</td>
<td>10</td>
</tr>
</tbody>
</table>

Mechanisms of Action of Intrauterine Devices (IUDs)

- ‘Foreign body reaction’:
 - cellular/biochemical changes in endometrium/uterine fluids
 - impair viability of gamete
 - reduces chances of fertilization, rather than implantation
- Copper in IUD:
 - enhances cellular response in endometrium
 - affects enzymes in uterus
 - alter cervical mucus thus affecting sperm motility, capacitation & survival
- Hormones in IUD:
 - increase viscosity of cervical mucus
 - prevent sperm from entering cervix
 - make endometrium unfavorable to implantation (high progesterone & low estrogen)

Side Effects of IUD (Intrauterine Device) Insertion

- Bleeding:
 - MC side effect of woman with IUD: Increased vaginal bleeding
 - Usually disappear by: 1 – 2 months
 - Leads to: 10 – 20 % of all IUD removals (MCC removal: Pain)
 - Greater bleeding with: Non-medicated (Inert) IUDs
 - Types of bleeding:
 - Greater blood loss in menstruation
 - Mid-cycle bleeding
 - Longer menstrual periods
 - Can lead to Iron deficiency anemia (IDA)
 - Management of bleeding:
 - Re-assure the female (DO NOT REMOVE IUD)
 - Ferrous sulphate 200 mg TDS X 1 – 2 months
 - If bleeding is heavy or persistent: REMOVE IUD

- Pain:
 - Second major side effect of IUD insertion
 - MCC requiring removal of IUDs: Pain (15 – 40% removals)
 - Usually disappear by: 3 months

https://kat.cr/user/Blink99/
Causes of severe pain during IUD insertion:
- Incorrect placement of IUD in uterus
- Disparity in size of IUD and cavity
- Uterine perforation
- Uterine infection

Pain is more common in:
- Nullipara
- Those who have not had child for many years

Management of Pain:
- Slight pain: Analgesics like Aspirin or Codeine
- Intolerable pain: Remove the IUD, insert a copper based device or advise other contraceptives

Pelvic infection (Pelvic Inflammatory Disease – PID):
- PID include: Acute, subacute and chronic infection of tubes, ovaries, uterus, connective tissue and pelvic peritoneum
- IUD increases risk of PID in a woman: 2–8 times
- Higher risk of PID with IUD insertion:
 - Women with greater no. of sexual partners
 - In first few months after insertion
- Organism involved:
 - Gardnerella
 - Anaerobic streptococci
 - Bacteroides
 - Coliform bacilli
 - Actinomyces
- Clinical manifestations: Vaginal discharge, pelvic pain & tenderness, abnormal bleeding, chills and fever
- Management of PID:
 - Prompt treatment with broad spectrum antibiotics
 - If no response to antibiotics in 24 – 48 hours: Remove IUD

Uterine perforation:
- Reported incidence: 1:150 to 1:9000 insertions
- Incidence in hands of trained physicians: <0.3% (< 30 per 1000)
- More common in: IUD inserted in 48 hours-6 weeks postpartum
- Conclusive diagnosis: Pelvic X-ray
- Management: Removal of IUD

Pregnancy with IUD-in-situ:
- Actual use failure rate in 1st year: 3%
- Outcomes: 50% spontaneous abortion, 25% only successful
- Management:
 - If woman requests: Legally induced abortion
 - If woman wants to continue pregnancy and threads are visible: Remove IUD gently by pulling the threads
 - If woman wants to continue pregnancy and threads are NOT visible: Carefully examine for possible complications. If any sign of intrauterine infection – evacuation of uterus under broad spectrum antibiotic cover

Ectopic pregnancy with IUD-in-situ:
- Women with IUDs be taught to recognize symptoms: Lower abdominal pain, dark & scanty vaginal bleeding or amenorrhoea.
- Women with high risk of ectopic pregnancy: should not use IUDs

Spontaneous expulsion:
- Expulsion rate: 12-20%
- Usually occurs in: first few weeks following insertion or during menstruation
- Higher risk of expulsion:
 - Young women
 - Nullipara women
 - Women who have had a postpartum insertion
 - Inert (Non-medicated IUDs)
Review of Preventive and Social Medicine

- Mortality associated with IUD use:
 - Very low: ~1 death per 1,00,000 years of use
 - Safer than OCPs

IUDs associated with Side-effects/ Complications

<table>
<thead>
<tr>
<th>Side effects or complications</th>
<th>IUD most commonly associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest pregnancy rate<sup>a</sup></td>
<td>Lippes Loop</td>
</tr>
<tr>
<td>Lowest pregnancy rate<sup>a</sup></td>
<td>LNG – IUD</td>
</tr>
<tr>
<td>Highest expulsion rate<sup>a</sup></td>
<td>Lippes Loop</td>
</tr>
<tr>
<td>Lowest expulsion rate<sup>a</sup></td>
<td>Progestasert</td>
</tr>
<tr>
<td>Highest removal rate<sup>a</sup></td>
<td>LNG – IUD</td>
</tr>
<tr>
<td>Lowest removal rate<sup>a</sup></td>
<td>Progestasert</td>
</tr>
</tbody>
</table>

Contraindications for IUDs Use

- Absolute contraindications^b:
 - Suspected pregnancy
 - PID
 - Vaginal bleeding of undiagnosed etiology
 - Cancer of cervix, uterus or adnexa and other pelvic tumors
 - Previous ectopic pregnancy

- Relative contraindications:
 - Anemia
 - Menorrhagia
 - History of PID since last pregnancy
 - Purulent cervical discharge
 - Distortions of uterine cavity due to congenital malformations, fibroids
 - Unmotivated persons

- The WHO Medical Eligibility Criteria for Contraceptive Use:
 - Category 3 (CuT NOT RECOMMENDED):
 - Postpartum between 48 hours and 4 weeks
 - Benign gestational trophoblastic disease
 - Ovarian cancer
 - High likelihood of exposure to gonorrhea/chlamydial STIs
 - AIDS (unless clinically well on anti-retroviral therapy)

- Category 4 (CuT CONTRAINDICATED^c):
 - Pregnancy
 - Postpartum puerperal sepsis
 - Immediately post-septic abortion
 - Before evaluation of unexplained vaginal bleeding suspected of being a serious condition
 - Malignant gestational trophoblastic disease
 - Cervical cancer (awaiting treatment)
 - Endometrial cancer
 - Distortions of the uterine cavity by uterine fibroids or anatomical abnormalities
 - Current PID
 - Current purulent cervicitis, chlamydial infection, or gonorrheal STIs
 - Known pelvic tuberculosis

Ideal IUD Woman Candidate^d (Planned Parenthood Federation of America PPFA)

- Who has borne atleast one child
- Has no history of pelvic disease
- Has normal menstrual periods
- Is willing to check the IUD tail
- Has access to follow-up and treatment of potential problems
Demography, Family Planning and Contraception

- Is in a monogamous relationship
- American College of Obstetricians and Gynaecologists (1985) stated that ‘IUDs are not recommended for women who have not had children or who have multiple partners, because of the risk of PID and possible infertility’

Pregnancy Rates of IUDs (Clinical Experience)

<table>
<thead>
<tr>
<th>Device</th>
<th>Pregnancy rate (%)</th>
<th>Expulsion rate (%)</th>
<th>Removal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lippes Loop</td>
<td>3</td>
<td>12 – 60</td>
<td>12 – 15</td>
</tr>
<tr>
<td>CuT 7</td>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>CuT 200</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>CuT 380 A</td>
<td>0.5 – 0.8</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Progestasert</td>
<td>1.5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>LNG IUD</td>
<td>0.2</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

Timings of IUD Insertion

- During menstruation or within 10 days of beginning of menstrual period:
 - Best time for IUD insertion
 - Cervical canal diameter greatest, lesser expulsion, least risk of pregnancy
- Immediate post-partum insertion: During 1st week after delivery before woman leaves hospital
 - High chance of perforation
 - High chance of expulsion
- Post-partum insertion: 6 – 8 weeks after delivery
 - Can be combined with follow-up visit of mother and child
 - Not recommended after 2nd trimester abortion

IUDs as Emergency Contraceptives

- IUDs can be used as emergency contraception to prevent pregnancy ‘up to 5 days after’ unprotected sexual intercourse, or sexual intercourse during which the primary contraception is believed to have failed
- Insertion of a CuT as emergency contraception is ‘more than 99% effective’ (more effective than emergency contraceptive pills)

Grafenberg’s Ring

- Grafenberg’s ring: 1st Generation (Non-medicated/Inert) IUD
- A flexible ring of ‘silver wire’ used as a birth control device
- It was a precursor to the IUD (inserted into the woman’s uterus)

Progestasert

- Progestasert is a 3rd Generation IUD (Medicated/Bio-active IUD)
- Progestasert was the ‘first hormonal uterine device’, developed in 1976
- T-shaped device filled with 38 mg progesterone
- Reservoir: Silicon oil (in vertical stem)
- Rate of hormone release: 65 mcg per day
- Shelf life: 1 – 1½ years
- Mechanism of action:
 - Direct local effect on uterine lining
 - Effect on cervical mucus
 - Effect on sperms
- Advantages of Progestasert:
 - IUD with ‘Lowest expulsion rate’
- IUD with ‘Lowest removal rate’
- Lesser chances of dysmenorrhea and menorrhagia

Disadvantages of Progestasert:
- Expensive
- Requires yearly replacement
- Highest rate of ectopic pregnancy: 9-fold higher
- Failure rate of Progestasert: 2% per year

HORMONAL METHODS

Types of Combined OCPs

- *Monophasic OCPs* deliver the same amount of estrogen and progestin every day
- *Biphasic OCPs* deliver the same amount of estrogen every day for the first 21 days of the cycle
 - first half of the cycle: progestin/estrogen ratio is lower to allow the endometrium to thicken
 - second half of the cycle: progestin/estrogen ratio is higher to allow normal shedding of the lining of the uterus
- *Triphasic OCPs* have constant or changing estrogen concentrations and varying progestin concentrations throughout the cycle

Composition of Combined OCPs

- *Composition of Combined OCP®*: (MALA-N)
 - Ethinyl estradiol: 0.03 mg (30 mcg)
 - Norgestrel: 0.15 mg (150 mcg)
- *Composition of ‘New Low dose OCP®*: (Brand name: Femilon/Elogen)
 - Ethinyl estradiol: 0.02 mg (20 mcg)
 - Desogestrel: 0.15 mg (150 mcg)

Combined OCPs under RCH Program

<table>
<thead>
<tr>
<th>Type of contraceptive</th>
<th>MALA – N</th>
<th>MALA – D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen®</td>
<td>Ethinyl estradiol (0.03 mg)</td>
<td>Ethinyl estradiol (0.03 mg)</td>
</tr>
<tr>
<td>Progestosterone®</td>
<td>Norgestrel (0.15 mg)</td>
<td>Desogestrel (0.15 mg)</td>
</tr>
<tr>
<td>Status in RCH®</td>
<td>Provided free of cost</td>
<td>Provided at a subsidized cost (₹ 3/- per packet)</td>
</tr>
</tbody>
</table>

Adverse Effects of Combined Oral Contraceptive Pills (OCPs)®

- *Cardiovascular effects*: (due to oestrogenic component)
 - Myocardial infarction
 - Cerebral thrombosis
 - Venous thrombosis (with or without pulmonary embolus)
 - Hypertension
- *Carcinogenesis*: ©
 - Cervical cancer (increased risk)
 - Breast Cancer
- *Metabolic Effects*: (due to progesterone component)
 - Elevated blood pressure (hypertension)
 - Altered lipid profile (reduced HDL)
 - Blood clotting
 - Hyperglycemia and increased plasma insulin
- *Hepatocellular adenoma®*
- *Gall bladder disease®*
- *Cholestatic jaundice®*
Demography, Family Planning and Contraception

- Monilial vaginitis (candidiasis)
- Decline milk volume during lactation
- Slight delay in return of fertility (upon discontinuation)
- Depression
- Fetal birth defects (?)
- General effects:
 - Breast tenderness
 - Weight gain (due to water retention)
 - Headache & migraine
 - Bleeding disturbances

Beneficial Effects of Combined Oral Contraceptive Pills (OCPs)

- Benign breast disorders (Fibrocystic disease, Fibroadenoma)
- Pelvic Inflammatory Disease (PID)
- Ectopic pregnancy
- Iron deficiency anemia
- Benign ovarian disease (Ovarian cysts)
- Malignant ovarian disease (Ovarian cancer)
- Endometrial cancer
 - Combined oral contraceptive use ‘reduces the risk of ovarian cancer by 40% and the risk of endometrial cancer by 50%’ compared to never users
 - Risk reduction increases with duration of use (80% reduction in risk for both cancers with use >10 years)
 - Risk reduction for both cancers persists for >20 years
- Non-contraceptive benefits of combined OCPs:
 - polycystic ovary syndrome (PCOS)
 - endometriosis
 - adenomyosis
 - anaemia related to menstruation
 - painful menstruation (dysmenorrhea)
 - mild or moderate acne
 - irregular menstrual cycles
 - dysfunctional uterine bleeding

Contraindications for Use of Combined Oral Contraceptive Pills (OCPs)

<table>
<thead>
<tr>
<th>Absolute contraindications</th>
<th>Relative contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Breast Cancer</td>
<td>1. Age > 40 years</td>
</tr>
<tr>
<td>2. Genital Cancer</td>
<td>2. Smoking and age > 35 years</td>
</tr>
<tr>
<td>3. Liver disease</td>
<td>3. Mild hypertension</td>
</tr>
<tr>
<td>5. Cardiac abnormalities</td>
<td>5. Epilepsy</td>
</tr>
<tr>
<td>7. Undiagnosed abnormal uterine bleeding</td>
<td>7. Nursing mothers (0 – 6 months)</td>
</tr>
<tr>
<td>11. Amenorrhoea</td>
<td>11. Amenorrhoea</td>
</tr>
</tbody>
</table>

(*require medical surveillance)

Centchroman (Saheli)

- Synthetic NON-STEROIDAL oral contraceptive
- Brand name: Saheli
- Chemical in Centchroman: ORMELOXIFENE
- Mechanism of Action: Selective estrogen receptor modulators (SERMs) a class of medication which acts on the estrogen receptor
- Works through a unique combination of weak estrogenic and potent anti-
 estrogenic properties
- **Developed by:** Central Drug Research Institute (CDRI), Lucknow, India
- **Dosage & frequency:** 1 tablet (30 mg) twice a week X 3 months, then 1 tablet per
 week
- **Failure rate (Pearl Index):** 1.83 – 2.84 per HWY
- **Uses of Centchroman:**
 - As a contraceptive
 - Treatment of dysfunctional uterine bleeding
- **Contraindications of Centchroman:**
 - PCOD (Stein Leventhal Syndrome)
 - Cervical hyperplasia
 - Recent history of jaundice
 - Severe allergic disease
- **Other features:**
 - Centchroman is also known as ‘once-a-week pill’
 - Centchroman is the ‘only anti-implantation agent approved for clinical use’
 globally
 - Centchroman has also been found effective as an anti-breast cancer agent

DEPOT Formulations (Injectable Hormones)

- **DMPA (Depot Medroxy Progesterone Acetate):** a Progestogen only Injectable
 contraceptive (Depot formulation)

 - **Dose:** 150 mg i/m every 3 months

 - **Advantages:**
 - Highly effective
 - Long lasting and reversible
 - Does not affect lactation

 - **Side effects:**
 - Disruptions of normal menstrual cycles
 - Amenorrhoea

- **NET–EN:** Norethisterone Enanthate, a Progestogen only Injectable contraceptive
 (Depot formulation)

 - **Dose:** 200 mg i/m every 2 months

 - **Advantages:**
 - Highly effective
 - Long lasting and reversible

 - **Side effects:**
 - Disruptions of normal menstrual cycles
 - Amenorrhoea

Norplant

- **Norplant:** Subdermal implant contraceptive

 - 6 silastic capsules containing 35 mg LNG each
 - Norplant R2: 2 capsules containing 75 mg LNG each

- **Mechanism of action:** Capsules or rods are inserted beneath skin of forearm; pre-
 vents ovulation
- **Effectiveness:** 5 years
- **Disadvantages:**
 - Irregularities of menstrual bleeding (MC)
 - Surgical procedures required for insertion and removal
EMERGENCY METHODS

Emergency Contraception (EC)

- **EC/ Emergency postcoital contraception:** Contraceptive measures that, if taken after sex, may prevent pregnancy.
- **Yuzpe and Lancee Method:** Combined oral pills are generally accepted as the preparation of choice for post-coital (emergency) contraception, as it is less likely to cause adverse side effects.
 - **Regimens:**
 - Current recommendation (pills with 30 mcg oestrogen): 4 pills immediately followed by 4 pills 12 hours later
 - Standard method (pills with 50 mcg oestrogen): 2 pills immediately followed by 2 pills 12 hours later
 - Pills with 200 mcg oestrogen: 1 pill immediately followed by 1 pill 12 hours later
 - Regimens have to be ‘completed within 72 hours of coitus’.
 - The sooner started, the more effective it is and the effectiveness more than 72 hours after sexual intercourse is greatly reduced.
 - Method is not guaranteed to prevent pregnancy:
 - A pregnancy test should be carried out if the period is >3 days late.
 - The Regimen does not protect against STDs.
 - Phrase ‘morning-after pill’ is figurative: Combined OCPs can be used for up to 72 hours after sexual intercourse.
 - MC side effect reported by users of emergency contraceptive pills: Nausea

- **Mini Pills (POP):** Progesterone only Pill (POP) 0.75 mg.
 - Pill has to be ‘used within 72 hours of intercourse’ (LNG oral tablet (0.75 mg): 1st tablet within 72 hours of intercourse and 2nd tablet after 12 hours of first dose).
 - Reduces risk of pregnancy by 89%.
 - Use in first 24 hours prevent 95% of expected pregnancies.
 - POP as an Emergency Contraceptive has showed greater efficacy with reduced side effects and has therefore superseded Yuzpe & Lancee method (WHO).

- **IUD Insertion:** Must be ‘inserted within 5 days of coitus’.
 - Insertion of IUD is more effective than use of Emergency OCPs.

- **High dose estrogens:** Estrogen 5mg OD X 5 days.
- **Antiprogestogen (Mifepristone RU 486):** 600 mg stat within 72 hours of coitus.

STERILIZATION

New Sterilization Guidelines in India 2013

- Female sterilization:
 - Married (or ever-married)
 - 22-49 years of age
 - Atleast one child >1 year age
 - No past history of sterilization of self/ spouse
 - Sound mind
 - For mentally-ill:
 - Certified by Psychiatrist
 - Statement on soundness of mind by legal guardian/ spouse
 - Service:
 - Minilap by Trained MBBS doctor
 - Laparoscopic sterilization by DGO, MD (GynObs) or MS (Surgery)

- Male sterilization:
 - Married (or ever-married)
- <60 years of age
- Atleast one child >1 year age
- No past history of sterilization of self/spouse
- Sound mind
- For mentally-ill:
 ‣ Certified by Psychiatrist
 ‣ Statement on soundness of mind by legal guardian/spouse
- Service:
 ‣ Conventional vasectomy by Trained MBBS doctor
 ‣ No-scalpel vasectomy (NSV) by Trained MBBS doctor

Vasectomy

• **Procedure of Vasectomy:**
 - Remove *minimum 1 cm of vas deferens*\(^0\)
 - Ends are ligated and folded back to themselves
 - Person is NOT sterile UNTIL after 30 ejaculations (3months) post-vasectomy\(^0\)
 - Open ended Vasectomy:
 - Seals only top end of vas deferens
 - Sperms are free to spill out from the lower severed end of the vas
 - Likelihood of long-term testicular pain from *backup pressure* seems to be eliminated using this method
 - *No Scalpel Vasectomy (NSV):* vas is brought out through a tiny puncture which does not require any stitches
 - Also known as *Key hole vasectomy*\(^0\)
 - Surgical hook (not scalpel) is used to enter the scrotum
 - New safer, convenient technique acceptable to males
 - Nearly painless, less invasive and faster

• **Post-operative advice:**
 - Patient need 30 ejaculations after vasectomy, before turning sterile\(^0\)
 - Use of barriers methods till aspermia
 - Avoid bath for 24 hours after operation\(^0\)
 - T-bandage for support for 15 days, keep site dry\(^0\)
 - Avoid cycling, lifting heavy weights for 15 days\(^0\)
 - Stitch removal on 5th day

• **After-effects of vasectomy\(^0\):**
 - Operative: Pain, scrotal hematoma, local infection
 - Sperm granules:
 - 7 mm painful mass
 - appears 10–14 days after vasectomy\(^0\)
 - can provide a medium for re-anastomosis of vas
 - using metal clips reduce this problem
 - Spontaneous recanalization:
 - seen in 0–6 % cases\(^0\)
 - require regular follow-up for 3 years
 - Autoimmune response:
 - seen in 54% of vasectomised persons\(^0\)
 - require regular follow-up for 3 years\(^0\)
 - Psychological:
 - diminution of sex vigour, impotence,
 - fatigue, headache
 - Post-Vasectomy Pain Syndrome: primary long-term complication (permanent feeling)
Demography, Family Planning and Contraception

- Sterilization is the most cost-effective contraceptive measure
 - Vasectomy is overall most cost-effective: Cost wise ratio is 5 vasectomies to 1 tubectomy
- Failure of vasectomy:
 - MSSC in India: Mistaken identification of vas deferens
 - Failure rate (Pearl Index): 0.15 per HWY
 - Confirmation of successful vasectomy:
 - Histological confirmation
 - Smear of squeeze of vas by Wright’s stain

Tubectomy

Refer to Obstetrics & Gynaecology book for Theory

MISCELLANEOUS

Non-contraceptive Benefits of Contraceptives

- Non-contraceptive benefit of Male Condom and Female condom: Prevention of HIV and STI transmission
- Non-contraceptive benefit of Combined OCP:
 - Regularization of irregular menstrual cycles esp. in Stein Levinthal Syndrome (Polycystic Ovarian Disease – PCOD)
 - Reduced incidence or improvements in:
 - Dysmenorrhea
 - Anemia
 - Acne
 - Hirsutism
 - Ectopic pregnancy
 - Benign breast disease
 - Endometrial cancer
 - Ovarian cysts
 - Ovarian cancer
 - Colorectal cancer
 - Pelvic inflammatory disease (PID)
 - Osteopenia, osteoporosis
- Non-contraceptive benefit of Centchroman: Treatment of dysfunctional uterine bleeding (DUB)
- Non-contraceptive benefit of IUDs:
 - Synediolysis in Asherman’s Syndrome
 - Reduction of risk of Endometrial cancer
 - Treatment of anemia
 - Treatment of menorrhagia (LNG IUD)
 - Hormone replacement therapy – HRT (LNG IUD)
 - Adjuvant therapy to tamoxifen (LNG IUD)

Medical Termination of Pregnancy Act, 1971

- Passed in: April 1972
- Indications for MTP:
 - Humanitarian: If pregnancy is as a result of rape/ sexual assault
 - Eugenic: Any genetic/ chromosomal anomaly detected in fetus
 - Therapeutic: If carrying out full term pregnancy poses a risk to life of mother
 - Social: If pregnancy is a result of contraceptive failure

Medical Termination of Pregnancy Act, 1971
Period of gestation must be ‘less than 20 weeks’
Written consent of guardians:
- If woman is a lunatic
- If woman is less than 18 years age

Period of gestation must be ‘less than 20 weeks’:
- 0 – 12 weeks: Opinion of one doctor is sufficient
- 12 – 20 weeks: Opinions of 2 doctors required

Who can perform MTP:
- Qualification: MD (Gyn-Obs) or DGO or 6-months Housemanship in Gyn-Obs
- Experience: Atleast carried out 20 – 25 supervised MTPs

Where MTP can be done: At a place authorised by Government of India

Newer Contraceptives

Essure: A permanent sterilization procedure for women (USA)

Mechanism of action:
- Micro-inserts are placed into fallopian tubes by a catheter passed from vagina through cervix and uterus
- Once in place, the device is designed to elicit tissue growth (scarring) in & around micro-insert to form over a period of 3 months an occlusion/blockage in fallopian tubes
- Tissue barrier formed prevents sperm from reaching an egg
- Occlusion confirmed by Hysterosalpingogram
- No general anaesthetic nor incision through the abdomen required

Effectiveness: 99.80% effective based on 4 years of follow-up

Disadvantages:
- Micro-inserts do not prevent the transmission of STIs
- Ectopic pregnancy
- Expulsion, perforation of uterus

Contraceptive patch: Is a ‘transdermal patch’ applied to the skin that releases synthetic estrogen and progestin hormones to prevent pregnancy

Have the same effectiveness as the combined OCPs

Composition: ethinyl estradiol (an estrogen) and norelgestromin (a progestin)

1 patch is applied for 7 days; 3 such patches are applied successively, No patch is applied in the 4th week

Mechanism of action: Prevention of ovulation

Combined hormonal contraceptive vaginal ring:

Composition: etonogestrel (a progestin) and ethinyl estradiol

Mechanism of action: Prevention of ovulation

Ring is inserted into vagina for a 3 week period, then removal of the ring for 1 week, during which user will experience menstrual period

Muscles of the vagina keep ring securely in place, even during exercise or sex

Benefits of the ring include:
- once-a-month self-administered use offering convenience, ease of use and privacy
- lower estrogen exposure than with OCPs or patch
- low incidence of estrogenic side effects such as nausea and breast tenderness
- low incidence of irregular bleeding.
MULTIPLE CHOICE QUESTIONS

DEMOGRAPHY

1. Demographic Gap attains its maximum limit in:
 (a) Early Stage I [AIIMS May 2005]
 (b) Late Stage II
 (c) Late Stage III
 (d) Early Stage IV

2. True about late expanding phase of demographic cycle:
 [Recent Question 2013] [AIPGME, 2004-09]
 (a) Birth rate is lower than the death rate
 (b) Death rate begins to decline, while the birth rate remains unchanged
 (c) Death rate declines still further, and the birth rate tends to fall
 (d) High birth rate and high death rate

3. Contraction of Demographic-Gap starts in:
 [AIIMS Nov 2005, Nov 05]
 (a) Stage I
 (b) Late Stage II
 (c) Early Stage III
 (d) Stage IV

4. In which stage of the demographic cycle is India currently?
 [Recent Question 2013] [AIIMS Dec 1997]
 (a) High stationary
 (b) Late expanding
 (c) Early stationary
 (d) Low stationary

5. ‘Demographic Processes’ does not include:
 [AIIMS Sep 1996]
 (a) Fertility
 (b) Morbidity
 (c) Mortality
 (d) Social mobility

6. In a demographic cycle low stationary phase corresponds to which stage?
 [DPG 2008]
 (a) First
 (b) Second
 (c) Third
 (d) Fourth

7. In the demographic cycle, India is in the:
 [Karnataka 2004]
 (a) High stationary stage
 (b) Early expanding stage
 (c) Late expanding stage
 (d) Low stationary stage

8. The fourth stage of the demographic cycle is:
 [Karnataka 2007]
 (a) Declining
 (b) Early expanding
 (c) High stationary
 (d) Low stationary

9. 3rd stage of demography indicates:
 [PGI June 2007]
 (a) High birth rate and high death rate
 (b) Death rate begins to decline
 (c) While the birth rate remains unchange
 (d) Birth rate tends to fall and death rate declines still further
 (e) Low death rate and low birth rate
 (f) Birth rate lower than death rate

10. Movement is socio-economic level is:
 [AIPGME 2010]
 (a) Social equality
 (b) Social mobility
 (c) Socio-economic upliftment
 (d) Social mobilization

11. Late expanding stage of population in India is due to?
 [AIIMS May 2011]
 (a) Birth rate stationary death rate continues to fall
 (b) Death rate declines faster than birth rate
 (c) Birth rate declines, death rate same
 (d) Birth rate is less than birth rate

Review Questions

12. Early expanding stage is denoted by:
 [AP 2002]
 (a) Decreased birth rate and Decreased death rate
 (b) Increased birth rate and Increased death rate
 (c) Decreased birth rate and Increased death rate
 (d) Unchanged birth rate and Decreased death rate

13. India is in which stage of population growth:
 [MP 2002]
 (a) Late expanding stage
 (b) Early expanding stage
 (c) High stationary stage
 (d) Low stationary stage

14. India is in which phase of demographic cycle?
 [MH 2007]
 (a) High stationary
 (b) High expanding
 (c) Low stationary
 (d) Late expanding

15. India belongs to which demographic trends:
 [RJ 2002]
 (a) High stationary
 (b) Low stationary
 (c) Early expanding
 (d) Late expanding
16. At current growth rate, India’s population will double in: [AIPGME 1992-1997]
 (a) 23-28 years
 (b) 28-35 years
 (c) 35-47 years
 (d) 47-70 years

17. Current annual growth rate of a population can be calculated by: [AIIMS Dec 1995]
 (a) Crude birth rate (CBR) minus Crude death rate (CDR)
 (b) Crude death rate (CDR) minus Crude birth rate (CBR)
 (c) Decadal growth rate/10
 (d) Crude birth rate (CBR) plus Crude death rate

18. Crude birth rate is a simplest measure of fertility because it includes: [Karnataka 2006]
 (a) Total population
 (b) Mid year population
 (c) Live births only
 (d) Pre-term births

19. Birth rate is: [PGI Dec 05]
 (a) Live birth/1000 mid year population
 (b) Birth/1000 mid year population
 (c) Live birth/10000 mid year population
 (d) Live birth/10,000 population of reproductive age group (15-45)
 (e) Live birth/1000 population

20. Which countries have a higher growth rate than India? [PGI June 08]
 (a) Myanmar
 (b) Nepal
 (c) Sri Lanka
 (d) Bangladesh

21. Crude birth rate – NOT true is: [AIIMS May 2010]
 (a) It is a measure of fertility
 (b) It is actually a ratio not a rate
 (c) It is independent of age of population
 (d) Numerator does not include still births

22. Population growth is rated to be ‘explosive’ if the annual growth rate exceeds: [Karnataka 2011]
 (a) 2.0%
 (b) 1.5%
 (c) 1.0%
 (d) 0.5%

23. In a community of 5000 people, the crude birth rate is 30 per 1000 people. The number of pregnant females is: [Recent Question 2013]
 (a) 150
 (b) 165
 (c) 175
 (d) 200

24. In a community of 5000 people, the crude birth rate is 30 per 1000 people. The number of pregnant females is: [DNB December 2010][DNB December 2011]
 (a) 150
 (b) 165
 (c) 175
 (d) 200

25. What is exponential growth? [Recent Question 2013]
 (a) Rapid growth in population that leads to imbalance in birth and deaths
 (b) Slow growth rate
 (c) Growth limited by limiting factors
 (d) None of the above

26. Indicators of health in India are all except: [DNB June 2009]
 (a) Crude birth rate – 22.5
 (b) IMR 60/1000 live births
 (c) Crude death rate 7.5
 (d) Total fertility rate – 2.6

27. If Birth rate – 42 and death rate 31 then annual growth rate: [Bihar 2005]
 (a) 11%
 (b) 1.1%
 (c) 0.25%
 (d) 2.5%

28. Denominator of crude birth rate is: [UP 2000]
 (a) Mid year population
 (b) Number of living children
 (c) Number of death children
 (d) Total number of crude birth

29. ‘Explosive’ growth rates occurs when annual rate of growth%: [UP 2006]
 (a) 0.5 – 1.0
 (b) 1.0 – 1.5
 (c) 1.5 – 2.0
 (d) >2.0

30. Denominator in crude birth rate: [MP 2000]
 (a) Mid year population
 (b) Total no. of live births in a year
 (c) Mid year males between 15-44 years
 (d) No. of children 0-4 years of age

31. Denominator in crude death rate is: [MP 2000]
 (a) Mid year population
 (b) Mid year females 15-44 years
 (c) Mid year marital females 14-44 years
 (d) Mid year males 15-44 years

32. If annual growth rate of population is 1.5–2% the population is likely to get doubled in: [MH 2006]
 (a) 18-20 years
 (b) 20-23 years
 (c) 28-35 years
 (d) 35-47 years
33. Population explosion is defined as population growth rate of more than- _____ per year:
(a) 2.0
(b) 1.75
(c) 1.8
(d) 1.5

34. Population explosion is defined as population growth rate > _____ per year:
[MH-PGM-CET 2008] [MH 2008]
(a) 1.8
(b) 2.0
(c) 2.5
(d) 3.5

35. Age pyramid of India is:
(a) Broad at base and narrow at apex
(b) Broad from base to apex
(c) Broad at apex and narrow at base
(d) All

36. Population growth is rated to be ‘explosive’ if the annual growth rate exceeds:
[Karnataka 2011]
(a) 2.0%
(b) 1.5%
(c) 1.0%
(d) 0.5%

SEX RATIO AND DEPENDENCY RATIO

41. According to 2001 census, sex ratio i.e. no. of females per 1000 males is:
[AIIPGME 2006]
(a) 940
(b) 933
(c) 927
(d) 104

42. For a population of 10000, sex ratio of more than 1000 means:
[AIIMS Nov 2003]
(a) Males are less than 500
(b) Females are less than 500
(c) Males are less than 5000
(d) Females are less than 5000

43. In calculating Dependency Ratio, the numerator is expressed as:
[AIIMS May 03]
(a) Population under 10 years and 60 and above
(b) Population under 15 years and 60 and above
(c) Population under 10 years and 65 and above
(d) Population under 15 years and 65 and above

44. Community X has 30% below 15 yrs of age and 10% over 65 years of age. Dependency ratio for community X is:
[AIIMS May 2002]
(a) 20%
(b) 40%
(c) 66.6%
(d) 3%

45. Dependency ratio includes:
[PGI June 05]
(a) 0-5 yrs age
(b) 6-14 yrs age
(c) 15-45 yrs age
(d) > 65 yrs

46. Child sex ratio of India (Census 2011) is:
[AIIPGME 2012]
(a) 927
(b) 940
(c) 914
(d) 933

47. Dependency ratio numerator is:
[Recent Question 2013]
(a) Less than 15 years and more than 65 years
(b) Less than 85 years
(c) 30-35 years
(d) 15-65 years

48. Potential Support Ratio (PSR) is defined as:
[AP 2014]
(a) Number of persons aged 15 to 65 per children below 15 years
(b) Number of persons aged 15 to 65 per one older person aged >/= 65 years
(c) Number of person aged 15 to 65 per one older person aged > 65 and younger person < 15 years
(d) Number of persons aged 15 to 65 persons older person aged > 60 and younger person < 15 years
Review Questions

49. Which states in India has the lowest female/male sex ratio is:
 (a) Kerala
 (b) Haryana
 (c) Tamil Nadu
 (d) Himachal Pradesh [UP 2004]

50. All are true about sex ratio except:
 (a) Kerala is the state where it is not adverse for women
 (b) Since 1901 it is unfavourable for women
 (c) Since 1901 there is steadily decreasing trend
 (d) It is determined by sex composition of population affected by differentials in mortality conditions of male and females, sex selective migration and sex ratio at birth [MP 2001]

51. Denominator age group for calculation of dependency ratio is:
 (a) 0-5 years
 (b) 5-15 years
 (c) 15-65 years
 (d) 65 years and above [MP 2009]

LITERACY AND LIFE EXPECTANCY

52. The denominator used for calculating literacy rate of Indian population (Census 2001) is:
 (a) Total mid-year population [AIIMS Nov 2003]
 (b) Population age 7 years or more
 (c) School going population
 (d) Population age 18 years or more

53. Literacy rate for India, as per 2001 census, is:
 (a) 43.5 % [AIIMS Nov 04]
 (b) 52.2 %
 (c) 65.4 %
 (d) 76.4 %

54. The denominator used for calculating literacy rate is:
 (a) Population above 14 years [DPG 2005]
 (b) Population above 7 years
 (c) Entire population
 (d) Per 1000 population

55. Effective literacy rate is calculated from:
 (a) Those above age of 7 years [AIIMS PGMEE November 2013]
 (b) Those who have completed 10 year schooling
 (c) Those who have completed 15 year schooling
 (d) Total population

FERTILITY

56. True about ‘total fertility rate’ is:
 (a) Sensitive indicator of family planning achievement [AIPGME 02, 08, AIIMS Dec 1997]
 (b) Completed family size

57. If the total fertility rate in India is 2.2, the crude birth rate would be:
 (a) 18.6 per 1000 population
 (b) 19.2 per 1000 population
 (c) 22.4 per 1000 population
 (d) 26.2 per 1000 population [AIPGME 1996]

58. Which of the following is the national level system that provides annual national as well as state level reliable estimates of fertility and mortality?
 (a) Civil registration system
 (b) Census [AIIMS Nov 96, 03, AIIMS May 05]
 (c) Ad-hoc survey
 (d) Sample registration system

59. The number of live birth per 1000 women in the reproductive age group in a year refers to:
 (a) Total fertility rate [AIIMS Nov 03, Dec 1997]
 (b) Gross Reproduction Rate [Recent Question 2014]
 (c) Net Reproduction Rate
 (d) General Fertility Rate

60. If TFR in a population is 4 per woman, the GRR approx. would be:
 (a) 2
 (b) 4
 (c) 8
 (d) 16 [AIIMS Dec 1991]

61. Approximate magnitude of completed family size is denoted by:
 (a) Total fertility rate [Karnataka 2007, 2009]
 (b) Total marital fertility rate
 (c) General fertility rate
 (d) General marital fertility rate

62. Total fertility rate:
 (a) Total no. of children born to a woman in a given yr
 (b) Measure of completed family size
 (c) Sum of fertility of all age
 (d) No of female child born to mother [PGI Dec 2K]

63. Population growth is said to be less than adequate requirement when NRR is:
 (a) < 1
 (b) = 1
 (c) > 1
 (d) = 0 [PGI June 03]

64. Which of the following indicators involve reproductive woman:
 (a) Birth Rate
 (b) G.F.R.
 (c) T.F.R [PGI June 04]
 (d) Maternal mortality rate
Review Questions

74. The denominator of general fertility rate is:
 (a) Midyear population of women of 15-44 years age
 [(DNB 2002)]
 (b) Total year population of women of reproductive age group
 (c) Average population of women in a year
 (d) Any of the above

75. The denominator of general fertility rate is:
 (a) Midyear population of Women of 15-44 years age
 [(DNB 2005)]
 (b) Total year population of women of reproductive age group
 (c) Average population of women in a year
 (d) Any of the above

76. General fertility rate:
 [(Bihar 2003)]
 (a) It is the number of live births per 1000 women in the reproductive age group in a given year
 (b) It is a better measure of fertility than crude birth rate
 (c) The major weakness of this rate is that not all women in the denominator are exposed to the risk of child birth
 (d) All of the above

77. Denominator in general fertility rate is:
 [(UP 2000)]
 (a) Total population of 15-45 years of female
 (b) Married 15-45 years of female
 (c) Mid years population
 (d) Numbers of live birth

78. Complete family size is indicative of:
 [(UP 2001)]
 (a) Total fertility rate
 (b) Gross fertility rate
 (c) General fertility rate
 (d) Net- reproduction rate

79. One of the Following is calculated taking mortality variables into accounts:
 [(PGI 1998; UP 2004)]
 (a) Growth rate
 (b) NRR
 (c) TFR
 (d) GFR

80. General fertility rate (GFR) is:
 [(UP 2004)]
 (a) Women in the reproductive age-group 15-44 years
 (b) Unmarried women in the age group 15-44 years
 (c) Number of children a woman would have if she were to pass through her reproductive years
 (d) Number of abortions, usually per 1000 women of child bearing age

81. Best indicator of fertility:
 [(Kolkata 2003)]
 (a) CBR
 (b) TFR
 (c) NRR
 (d) GRR
82. To achieve Net Reproduction Rate of 1, the couple protection rate should be? [MH 2008]
(a) 50 %
(b) 55 %
(c) 60 %
(d) 65 %

83. Which of the following is indicator of Completed family size? [MH 2008]
(a) Birth rate
(b) Total fertility rate
(c) Net reproduction rate
(d) Gross reproduction rate

84. If Population = 2000, Eligible couple has 4 children than gross reproduction rate will be: [R] 2006
(a) 2
(b) 4
(c) 1
(d) 8

85. Births in India must be registered within:
(a) 7 days [AIPGME 1994]
(b) 14 days
(c) 21 days
(d) 1 month

86. A community has a population of 10,000 and a birth rate of 36 per 1000. 5 maternal deaths were reported in the current year. The MMR is: [AIPGME 01]
(a) 14.5
(b) 13.8
(c) 20
(d) 5

87. Census population count is in reference to:
(a) 1st March [AIIMS Nov 2005]
(b) 1st July
(c) 30th June
(d) 1st January

88. % of people below poverty line in India:
(a) 14% [AIIMS May 05]
(b) 22%
(c) 29%
(d) 72%

89. National Family Health Survey has successfully completed:
(a) One rounds [AIIMS May 05]
(b) Two rounds
(c) Three rounds
(d) Four rounds

90. The age and sex structure of a population may be described by a:
(a) Life table [AIIMS Nov 03, AIIMS May 05]
(b) Correlation coefficient
(c) Population pyramid
(d) Bar chart

91. In a town of 36,000 people, there are 1200 live births, and 60 infant deaths. What is the IMR?
(a) 50 [AIIMS May 2001]
(b) 25
(c) 10
(d) 5

92. What is the best determinant of the health status of a country? [AIIMS May 94, 2001]
(a) CPR
(b) IMR
(c) MMR
(d) CDR

93. By 2015, Indian city likely to join group of Mega cities (Delhi, Mumbai, Kolkata) is: [AIPGME 2002]
(a) Chennai
(b) Ahmedabad
(c) Hyderabad
(d) Pune

94. WHO defines adolescent age between:
(a) 10-19 years of age [AIPGME 2005]
(b) 10-14 years of age [PGI November 2014]
(c) 10-25 years of age
(d) 9-14 years of age

95. Which of the following statements is true according to 2001 census of India? [DPG 2008]
(a) TFR=2.5
(b) F:M Ratio=985:1000
(c) Population density = 324/km2
(d) Life expectancy at birth = 74 years

96. Census is conducted in every ________ years in India:
(a) 25 [Karnataka 2006]
(b) 15
(c) 10
(d) 20

97. Indices-Census 2001: [PGI Dec 06]
(a) Sex ratio 927
(b) Literacy 65%
(c) Poverty 40%
(d) Crude Birth rate 35
(e) Crude Death rates 8.9

98. NFHS-3 was carried out in: [Recent Question 2013]
(a) 1995
(b) 2000
(c) 2005
(d) 2010

99. National family health survey is done every......... [DNB December 2010]
(a) 6 months
(b) 1 year
(c) 5 years
(d) 10 years
100. First disability census was done in the year:
 (a) 1881
 (b) 1951
 (c) 1981
 (d) 2001

101. Which is/are true for Kerala in relation to India?
 (a) High literacy rate
 (b) High Doctor: Population ratio
 (c) High growth rate
 (d) Older age of marriage
 (e) Higher Life expectancy

102. Second National Family Health Survey was done in the year:
 (a) 1992-93
 (b) 1998-99
 (c) 2005-2006
 (d) 2008-2009

103. Sample registration system done for both death and birth enumeration at:
 (a) 6 months
 (b) 1 year
 (c) 5 years
 (d) 10 years

104. BIRADS is:
 (a) Breast Imaging Reporting and Data System
 (b) Best Imaging Reporting and Data System
 (c) Brain Imaging Reporting and data system
 (d) Biopsy Imaging reporting and data system

105. First census in India was done in?
 (a) 1861
 (b) 1871
 (c) 1881
 (d) 1891

106. True about Census of India is/are:
 (a) Total population doubled from 1921 to 1971
 (b) Annual average growth rate 1.64% in 2011 census
 (c) Decadal growth rate has always been positive
 (d) Total population above 500 million in 1961
 (e) Decadal growth rate 17.64% in 2011

107. True regarding Census of India is/are:
 (a) Done by Ministry of Home Affairs
 (b) Done every 5 years
 (c) Census Commissioner is the supreme head
 (d) First started in 1851
 (e) Done at Mid-year

108. A child is born to an Indian couple outside India. Birth registration must be done:
 (a) Within 21 days
 (b) Within 21 days of arrival into India
 (c) Within 60 days
 (d) Within 60 days of arrival into India

109. Sex and age is presented by:
 (a) Pyramid
 (b) Bar diagram
 (c) Both
 (d) None

110. All are true regarding Sample Registration System (SRS) except:
 (a) Initiated in the 1960
 (b) Estimates of birth and death rates
 (c) Dual-record system
 (d) Survey should be done every year

111. Sample registration survey is carried out once in every:
 (a) 6 months
 (b) 1 year
 (c) 2 years
 (d) 5 years

112. Tamilnadu State contributes how much percent to the total population of India:
 (a) 5.5%
 (b) 6.05%
 (c) 6.59%
 (d) 7.37%

113. Population of West Bengal (according to 2001 census) is:
 (a) 78.1 million
 (b) 80.22 million
 (c) 82.25 million
 (d) 96.75 million

114. Which of the following year in the history of demography of India is India is known as the year of big divide:
 (a) 1881
 (b) 1921
 (c) 1947
 (d) 1978

115. True regarding demographic profile in India:
 (a) Literacy rate is 76%
 (b) Growth rate 2.4
 (c) Life expectancy at birth is 60yrs
 (d) Family size 2.1

116. Leprosy in India true is:
 (a) Prevalence is 5 per 10,000
 (b) MDT coverage is 90%
 (c) Highest prevalence of leprosy in Orissa
 (d) Lepra bacilli is not transmitted by insect bite

117. Birth and death registration should be done within how many days?
 (a) 14 and 7 respectively
 (b) 7 and 14 respectively
 (c) 7 and 21 respectively
 (d) 14 and 21 respectively
118. The system of collection of data to give national and subnational estimate of vital indicators consist of continuous enumeration backed by 6 months survey is:
(a) Model registration survey
(b) National sample survey
(c) Sample registration survey
(d) National family health survey

119. Which of the following is best to compare the vital statistics of countries? [MH-PGM-CET 2007, MH 2008]
(a) Crude death and birth rates
(b) Age standardized death rate
(c) Proportional mortality rate
(d) Age specific death rate

120. Which one of the following is a DUAL RECORD SYSTEM consisting of continuous enumeration of birth and death by numerator and which indicates survey every six months? [MH 2008]
(a) Sample registration system
(b) Civil registration system
(c) Census
(d) Model registration system

121. A contraceptive ‘Z’ is used by 100 couples for a continuous period of 2 years. During this period 20 women become pregnant despite using the contraceptive ‘Z’. What is the Pearl Index of ‘Z’? [AIPGME 1993]
(a) 0.1 per HWY
(b) 5 per HWY
(c) 10 per HWY
(d) 1000 per HWY

122. Contraceptive efficacy is measured by:
(a) Pearl Index only [AIIMS Dec 1995, Nov 2008]
(b) Pearl Index and Life table analysis
(c) Life table analysis and Couple protection rate
(d) Pearl Index and Couple protection rate

123. Eligible couples per 1000 population in India is:
(a) 50 – 70 [AIPGME 2002]
(b) 100 – 120
(c) 150 – 180
(d) 200 – 250

124. In a village with 180 eligible couples, Family Planning data of contraceptive methods is:
- Sterilization: Vasectomy - 3 and Tubectomy - 8
- IUD users - 10
- Orals pills users - 10
- Condom users - 29
Effective CPR in the village is: [AIPGME 2004]
(a) 60%
(b) 33%
(c) 25%
(d) 10%

125. Scope of Modern Concept of family planning services include all of the following except: [AIPGME 03]
(a) Screening for cervical cancer
(b) Providing services for unmarried mothers
(c) Screening for HIV infection
(d) Providing adoption services

126. ‘Modern concept of Family Planning’ includes all except: [AIIMS Nov 2001]
(a) Sex education
(b) Adoption services
(c) Screening for cervical cancer
(d) In-vitro fertilization

127. Which of the following is important in calculation of pearl index:
(a) Number of abortions
(b) Total accidental pregnancy
(c) Socioeconomic status
(d) Total gestational period

128. Pearl Index is expressed: [Recent Question 2013]
(a) Per 100 woman years
(b) Per 10 woman years
(c) Per 1000 woman years
(d) Per 100 woman years

129. Pearl Index is: [DNB December 2011]
(a) Failures per 1000 women-years of exposure
(b) Failures per 100 women-years of exposure
(c) Failures per 10 women-years of exposure
(d) Failures per women-years of exposure

130. Pearl index is defined as: [Recent Question 2012]
(a) Accidental pregnancies per 1000 women-years of exposure
(b) Accidental pregnancies per 100 women-years of exposure
(c) Accidental pregnancies per 10 women-years of exposure
(d) Accidental pregnancies per women-years of exposure

131. All parameters are used by epidemiologist in evaluation of the efficacy of acceptance of family planning method except: [DNB 2002]
(a) Annual general marriage rate
(b) Spacing between first and second child
(c) Annual birth rate
(d) Number of children born

132. 100 women, followed up for 20 months, with OCPs, 5 became pregnant. Calculate the Pearl Index: [Bihar 2003]
(a) 1
(b) 2
(c) 3
(d) 4
133. ‘Pearl-index’ for accidental pregnancies failure per:
 (a) 10 women-years of exposure [UP 2006]
 (b) 12 women-years of exposure
 (c) 100 women – years of exposure
 (d) 120 women –years of exposure

134. “Pearl Index” Is normally used for studying the:
 (a) Effectiveness of a contraceptive [TN 2003]
 (b) Unmet need for family planning
 (c) Prevention of undesired pregnancies and of STD in young people
 (d) Basis of women’s response to survey questions

135. Population control can be achieved by:
 (a) By spacing between the pregnancies [MP 2002]
 (b) By promoting infanticide
 (c) By prohibiting infanticide
 (d) Securing maximum involvement of non-governmental agencies

136. Pearl index is used to evaluate: [MP 2005]
 (a) Family planning
 (b) Contraceptive acceptance
 (c) Population control
 (d) Contraceptive failures

137. The couple protection rate (CPR) to bring within normal range in India, which of the following contraceptive measure is used?: [MH 2005]
 (a) Sterilization
 (b) IUCD
 (c) Condom
 (d) All of the above

138. Natural Family Planning does not include: [AIPGME 1994]
 (a) Terminal methods
 (b) Basal Body Temperature Method
 (c) Cervical Mucus Method
 (d) Symptohermic Method

139. Which of the following Natural method of contraception is most effective? [MPSC2006; MH 2008]
 (a) Calendar method
 (b) Billing method
 (c) Symptohermic method
 (d) Basal body temperature method

140. Match the contraceptive and its type

<table>
<thead>
<tr>
<th>Contraceptive</th>
<th>Type of contraceptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Vaginal Sponge</td>
<td>I. Subdermal implant</td>
</tr>
<tr>
<td>B. Norplant</td>
<td>II. Barrier Method</td>
</tr>
<tr>
<td>C. NET–EN</td>
<td>III. IUD</td>
</tr>
<tr>
<td>D. Grafenbarg’s Ring</td>
<td>IV. Depot formulation</td>
</tr>
</tbody>
</table>

141. Barrier methods are all except: [UP 2006]
 (a) Diaphragm
 (b) Foam tablets
 (c) Vaginal-sponge
 (d) Lippes loop

142. TODAY, failure rate is: [Recent Question 2012, 2013]
 (a) 0-5/100 woman years
 (b) 5-10/100 women years
 (c) 9-20/100 women years
 (d) 0-1/100 woman years

Review Questions

143. Spermicide used in the contraceptive TODAY: [DNB 2003]
 (a) Norethinsosterol
 (b) Nonoxynol
 (c) DMPA
 (d) NET-EN

144. ‘Today’ – a contraceptive contains: [DNB 2004]
 (a) Prestaglandin F_{2α}
 (b) Norethisterone
 (c) 9-Nonoxynol
 (d) Cu releasing mesh

IUDS

 (a) No. of turns of copper wire
 (b) Surface area of Cu-T in sq. mm
 (c) Surface area of copper in sq. mm
 (d) Effective Life of Cu-T in quarters

146. The most common side effect of IUD insertion is: [AIPGME 2005]
 (a) Bleeding
 (b) Pain
 (c) Pelvic infection
 (d) Ectopic pregnancy

147. All are true about Progestasert except: [AIPGME 2004]
 (a) Progestasert releases 65 mcg progesterone per day
 (b) Progestasert contains 38 mg progesterone
 (c) Progestasert is implanted subdermally
 (d) Progestasert is a T-shaped device

148. The most common side effect of IUD insertion, which requires its removal is: [AIIMS Nov 1992-1996]
 (a) Bleeding
 (b) Pain
 (c) Pelvic infection
 (d) Ectopic pregnancy
149. Characteristics of an ideal candidate for copper – T insertion include all of the following except:
(a) Has borne at least one child
(b) Is willing to check IUD tail
(c) Has a history of ectopic pregnancy
(d) Has normal menstrual periods

150. The following statements are true about Intra uterine devices (IUD) except:
(a) Multiload Cu-375 is a third generation IUD
(b) The pregnancy rate of Lippes loop and Cu- T 200 are similar
(c) IUD can be used for Emergency Contraception within 5 days
(d) Levonorgestrel releasing IUD has an effective life of 10 years

151. Most common side effect leading to IUD removal is:
(a) Bleeding
(b) Pain
(c) Infection
(d) Uterine perforation

152. Copper – T is preferably inserted postnatal, after:
(a) 2 weeks
(b) 4 weeks
(c) 5 weeks
(d) 8 weeks

153. In Cu T 200, the number denotes:
(a) Weight in Microgram
(b) Weight in Milligram
(c) Surface area
(d) Volume of Device
(e) Effective Half life in week

154. Which of the following IUDs do not require to be changed every 3-5 years?
(a) CuT 220 B
(b) CuT ML-375
(c) CuT 380 A
(d) CuT ML-250

155. The most common side effect of IUD insertion is:
(a) Bleeding
(b) Pain
(c) Pelvic infection
(d) Ectopic pregnancy

156. Cu T 380A IUD should be replaced once in:
(a) 4 yrs
(b) 6 yrs
(c) 8 yrs
(d) 10 yrs

158. IUD ‘Mirena’ release Levonorgestrel for ……… years:
(a) 3
(b) 5
(c) 7
(d) 10

159. The most common side effect of IUD insertion is:
(a) Bleeding
(b) Pain
(c) Pelvic infection
(d) Ectopic pregnancy

160. Cu T 380A IUCD should be replaced once in:
[a] 4 yrs
[b] 6 yrs
[c] 8 yrs
[d] 10 yrs

161. Nova T has:
(a) Silver core
(b) Platinum core
(c) Copper core
(d) Iron core

162. Radiopaque material in copper-T:
(a) Silicon
(b) Barium sulphate
(c) Carbon
(d) None

163. True statements of Nova-T:
(a) Effective for 10 years
(b) Silver core
(c) More copper content
(d) More chances of perforation

164. All of the following are the advantages of 3rd generation IUD’s except:
(a) High efficacy
(b) Low expulsion rates
(c) Long acting
(d) Low risk of ectopic pregnancy

165. 3rd generation IUCD acts by:
(a) Strong anti-fertility effect of metallic copper
(b) By altering the composition of cervical mucus
(c) Hormonal effect on mucosa of endometrium
(d) Enhanced cellular response on endometrium

166. Absolute contraindication of IUCD is:
(a) Anemia
(b) Diabetes
(c) PID
(d) Hemorrhage

167. Multi load device refers to:
(a) First generation IUCD
(b) Second generation IUCD
(c) Oral contraceptive pills
(d) Barrier contraceptives
168. Most effective Cu-T is: [R] 2008
 (a) Cu-T 380
 (b) Cu- T 220
 (c) Cu-T 200
 (d) ML-Cu 250

HORMONAL METHODS

169. All are true about Centchroman except: [AIIMS June 1997]
 (a) Centchroman is a non-steroidal contraceptive
 (b) Centchroman has been developed in India
 (c) Centchroman is useful for females with PCOD
 (d) Failure rate of Centchroman is 1.83–2.84 per HWY

170. Consider the following sentence:
 Use of oral contraceptive pills confers additional protection against [AIIMS Nov 2005]
 I. Fibroadenoma
 II. Ectopic pregnancy
 III. Ovarian cysts and iron deficiency anemia
Which of these statements are correct?
 (a) I and II
 (b) I and III
 (c) II and III
 (d) I, II and III

171. If a women was taking oral contraceptive pill, then which of the following investigation would be related to the long term consumption of steroidal contraceptives? [AIIMS Nov 2002]
 1. Liver functions test
 2. Cervical pap smear
 3. Wet smear of vaginal secretions for monilial
 4. Endometrial biopsy
 (a) 2, 3 and 4
 (b) 1, 3 and 4
 (c) 1, 2 and 4
 (d) 1, 2 and 3

172. Besides pregnancy the oral contraceptive protect against all except: [AIPGME 1995]
 (a) Fibroadenoma breast
 (b) Iron deficiency anemia
 (c) Ovarian cancer
 (d) Hepatocellular adenoma

173. How much ethinyl estradiol does the new low dose oral contraceptive pill contain (IN MICROGRAMS)? [AIPGME 2005]
 (a) 20
 (b) 25
 (c) 30
 (d) 35

174. Which one of the following is NOT an absolute contraindication for oral contraceptive pills? [AIPGME 2008]
 (a) Nursing mothers
 (b) Cancer of breasts
 (c) Cardiac abnormalities
 (d) History of thrombo-embolism

Review Questions

181. Oral contraceptive cause all side effects except: [DNB 2001]
 (a) Monilial vaginitis
 (b) Pituitary adenoma
 (c) Ca uterus
 (d) None

182. A depot contraceptive DMPA is to be given every: [DNB 2004]
 (a) 1 month
 (b) 2 months
 (c) 3 months
 (d) 6 months

183. Non contraceptive effect of oral contraceptive pills is all except: [UP 2001]
 (a) Protection against benign breast disease
 (b) Prevention of ectopic pregnancy
 (c) Dysmenorrhea protection
 (d) Iron-deficiency anemia
Emergency Methods

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>184. Serious complication of oral contraceptive is:</td>
<td>(a) Leg vein thrombosis (b) Headache (c) Break through bleeding (d) Breast tenderness [UP 2006]</td>
</tr>
<tr>
<td>185. A health worker who distributes O.C. pills — checks all of the following except:</td>
<td>(a) Headache (b) Weight gain (c) Breast tenderness (d) Per vaginal bleeding [AP 2001]</td>
</tr>
<tr>
<td>186. All are non contraceptive advantages of oral contraceptive pills except:</td>
<td>(a) Pelvic inflammatory disease (b) Hepatic adenoma (c) Benign breast cancer (d) Anemia [AP 2004]</td>
</tr>
<tr>
<td>187. The side effects like irregular bleeding, depression are associated with use of:</td>
<td>(a) Mini pill (b) OC pills (c) Mifepristone (d) None [AP 2005]</td>
</tr>
<tr>
<td>188. The dose of ethinyl estradiol in Mala-N is:</td>
<td>(a) 20 µgm (b) 30 µgm (c) 50 µgm (d) 100 µgm [MP 2006]</td>
</tr>
<tr>
<td>189. The absolute contraindication for prescribing normal contraceptive pills in a woman of reproductive age group is:</td>
<td>(a) Epilepsy (b) Diabetes mellitus (c) Milk hypertension (d) Congenital hyperlipidemia [MP 2008]</td>
</tr>
<tr>
<td>190. Mala-N contains NORGESTREL:</td>
<td>(a) 0.15 mg (b) 2 mg (c) 5 mg (d) 10 mg [RJ 2005]</td>
</tr>
<tr>
<td>191. Minipills contain:</td>
<td>(a) Only progesterone is small quantity (b) Progestosterone and estrogen (c) Estrogen in small quantity and progesterone in large (d) Estrogen [RJ 2006]</td>
</tr>
<tr>
<td>192. DMPA is an injectable contraceptive given every:</td>
<td>(a) Three weeks (b) Two months (c) Three months (d) Two years [RJ 2007]</td>
</tr>
<tr>
<td>193. Mini pill contains:</td>
<td>(a) Only progesterone is small quantity (b) Progesterone and estrogen in small quantity [RJ 2007]</td>
</tr>
<tr>
<td>194. All of the following can be used as emergency contraceptive measures except:</td>
<td>(a) Female condoms (b) IUD (c) Minipill (d) Yuzpe and Lancee [AIIMS Nov 1992]</td>
</tr>
<tr>
<td>195. Yuzpe and Lancee Method is used for:</td>
<td>(a) Sterilization with ‘No Scalpel Technique’ (b) Emergency contraception with OCPs (c) Emergency contraception with IUDs (d) Evaluation of newer contraceptives [AIIMS May 1992]</td>
</tr>
<tr>
<td>196. Which of the following is not used as an emergency contraceptive?</td>
<td>(a) LNG- Intrauterine device (b) Oral LNG (c) CuT-Intrauterine device (d) Oral Mifepristone</td>
</tr>
</tbody>
</table>

Review Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>197. Post coital contraceptives are all except:</td>
<td>(a) Norgestrel (b) OCPs (c) RU-486 (d) Copper-T [MP 2000]</td>
</tr>
<tr>
<td>198. Following vasectomy for family planning. A patient should be advised to use some other method of contraception, till:</td>
<td>(a) Removal of all sutures (b) Pain completely sutures (c) Two weeks (d) Eight weeks [RJ 2007]</td>
</tr>
<tr>
<td>199. A case of vasectomy is said to have failed as the vasectomised person’s wife gives birth to a child ten months after the operation. Which one of the following is the most probable cause?</td>
<td>(a) Failure of the husband to use condom after vasectomy (b) Surgical failure (c) Recanalisation (d) Wife had extramarital contact [DPG 2011]</td>
</tr>
<tr>
<td>200. Most common method of sterilization practiced in India:</td>
<td>(a) Female sterilization (b) Male sterilization (c) Both equally common (d) None [Recent Question 2013]</td>
</tr>
</tbody>
</table>
201. Failure rate of Pomeroy’s technique of sterilization?
(a) 0.1-0.5% [Recent Question 2014]
(b) 0.5-1.0%
(c) 1-2%
(d) 5-10%

202. Which of the following statements is incorrect? [AIIMS May 1992]
(a) IUDs predispose to PID and Actinomycosis
(b) OCPs protect against Candidiasis
(c) Condoms are protective against PID
(d) Female condoms protect against STDs and HIV

203. Increased incidence of ectopic is associated with all except: [AIPGME 1995]
(a) IUD
(b) Combined oral pills
(c) Menstrual regulation
(d) Safe period method

204. Most cost effective family planning method is: [AIPGME 1997]
(a) Vasectomy
(b) Tubectomy
(c) Copper T
(d) Oral pills

205. Conventional Contraceptives are those which: [AIPGME 1996]
(a) Were discovered before 1960
(b) Require action after intercourse
(c) Require action at time of intercourse
(d) Require action before intercourse

206. All are Socio-demographic Goals of National Population Policy except: [AIIMS Nov 2004]
(a) Achieve 100 % institutional deliveries
(b) Reduce MMR to < 100 per Lac LBs
(c) Achieve 100 % registration of births, deaths, marriages and pregnancies
(d) Prevent and control communicable diseases

207. The National Population Policy of India has set the following goals except: [AIIMS Nov 2008]
(a) To bring down Total Fertility Rate (TFR) to replacement levels by 2015
(b) To reduce the Infant Mortality Rate to 30 per 1000 live births
(c) To reduce the Maternal Mortality Rate to 100 per 100,000 live births
(d) 100 percent registration of births, deaths, marriages and pregnancies

208. Conventional contraceptive includes one of the following: [AIIMS May 1994]
(a) Condom
(b) Copper-T
(c) Oral pills
(d) Tubectomy

209. The Medical Termination of Pregnancy Act does not protect act of termination of pregnancies after:
(a) 20 weeks [Karnataka 2005]
(b) 24 weeks [Recent Question 2014]
(c) 28 weeks
(d) 30 weeks

210. Best contraceptive for a newly married healthy couple: [AIIMS May 2009]
(a) Barrier method
(b) IUCD
(c) Oral contraceptive pills
(d) Natural methods

211. Regular reporting of health statistics is done for: [AIPGME 2012]
(a) To evaluate trends of a disease
(b) To appreciate health personnel’s efforts
(c) For epidemiological research
(d) All of the above

212. Which of the fertility rates have Mid-year population as denominator? [PGI November 2011]
(a) Crude birth rate
(b) General fertility rate
(c) General marital fertility rate
(d) Age-specific fertility rate
(e) Age-specific marital fertility rate

213. Ideal Contraceptive for lactating women: [AIIMS May 2011]
(a) POP
(b) IUCD
(c) Lactation amenorrhoea
(d) Barrier methods

214. Ideal contraceptive for a couple who are living separately in two cities and meets only occasionally: [AIIMS May 2011]
(a) Barrier methods
(b) OCP’s
(c) IUCD
(d) Inj. DMPA

215. Ideal contraceptive for a newly married couple is: [AIIMS May 2011]
(a) OCP
(b) Barrier method
(c) IUCD
(d) Natural methods

216. Under Medical Termination of Pregnancy Act (MTP) Act 1971 of India, permission for MTP has to be given by: [AIPGME 2012]
(a) Wife only
(b) Husband only
(c) Both wife and husband
(d) Guardian

217. Tubal block constitutes what proportion of female infertility? [Recent Question 2014]
(a) 5-7%
(b) 15-20%
(c) 30-35%
(d) 90-05%
218. Family planning services were voluntary in India from:
 (a) 1956
 (b) 1977
 (c) 1992
 (d) 1997

[Recent Question 2014]

219. The contraceptive method of choice (temporary) for 37 years old well educated woman:
 (a) Mala-N
 (b) Mala-D
 (c) I.U.D.
 (d) Diaphragm

[DNB 2002]

220. Spermicide used in the contraceptive today:
 (a) Norethinsosterol
 (b) Nonoxynol
 (c) DMPA
 (d) NET-EN

[DNB 2006]

221. True regarding MTP act:
 (a) MTP act was passed in 1971
 (b) MTP act has brought down the incidence of illegal abortions
 (c) In an emergency, pregnancy can be terminated by a single doctor even after 20 weeks without consulting a second doctor
 (d) MTP can be done after 20 weeks of gestation, if the two doctors agree together

[TN 2000]

222. Most cost effective contraceptive is:
 (a) Vasectomy
 (b) Tubectomy
 (c) Cu-T
 (d) OCP

[RJ 2008]
DEMOGRAPHY

DEMOGRAPHIC CYCLE AND PROCESSES

1. Ans. (b) Late Stage II [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p156 and K Park 20/e p411]

DEMOGRAPHIC CYCLE

- Demographic cycle is closely related to: Socio-economic progress of a country
- There are 5 stages (phases) of demographic cycle through which a nation passes

<table>
<thead>
<tr>
<th>Stages</th>
<th>Phases</th>
<th>CBR</th>
<th>CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>High stationary</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Stage II</td>
<td>Early expanding</td>
<td>High</td>
<td>Start declining</td>
</tr>
<tr>
<td>Stage III</td>
<td>Late expanding</td>
<td>Low</td>
<td>CDR > CBR</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Low stationary</td>
<td>Low</td>
<td>CDR > CBR</td>
</tr>
<tr>
<td>Stage V</td>
<td>Declining</td>
<td>Low</td>
<td>CDR > CBR</td>
</tr>
</tbody>
</table>

- Demographic cycle is based on: Demographic gap:
 - DG = Crude Birth Rate (CBR) – Crude Death Rate
 - DG starts increasing: Early Stage II (early expanding phase)
 - DG is Maximum: Late Stage II (early expanding phase)
 - DG starts declining: Early Stage III (late expanding phase)
 - DG is Negative: Stage V (Declining phase)
 - DG is Narrow: Stage I (high stationary); Stage IV (low stationary)

Also Remember

- India is in Stage III (Late Expanding Phase) of Demographic cycle
- Stage V (Decline Phase): Germany, Italy, Spain, Portugal, Greece, United Kingdom and Japan (populations are reproducing well < replacement levels)

2. Ans. (c) Death rate declines still further, and the birth rate tends to fall [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p156 and Park 21/e p443, Park 22/e p441]

3. Ans. (c) Early Stage III [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p156 and Park 21/e p443, Park 22/e p441]

4. Ans. (b) Late expanding [Ref. Park 21/e p443, Park 22/e p441]

5. Ans. (b) Morbidity [Ref. Park 21/e p443, Park 22/e p441]

- Demographic Processes: 5 processes continuously on work in a population, thus determining its’ size, composition and distribution
 - Fertility
 - Marriage
 - Mortality
 - Migration
 - Social mobility
Also Remember

IMPORTANT DEFINITIONS IN DEMOGRAPHY:

- **Crude birth rate (CBR):** Annual number of live births per 1000 mid-year population
- **General fertility rate (GFR):** Annual number of live births per 1000 women of childbearing age (15–49 years old, or 15–44 years old) mid-year population
- **General marital fertility rate (GMFR):** Annual number of live births per 1000 married women of childbearing age (15–49 years old, or 15–44 years old) mid-year population
- **Age-specific fertility rates (ASFR):** Annual number of live births per 1000 women in particular age groups (usually age 15–19 years, 20–24 years etc)
- **Crude death rate (CDR):** Annual number of deaths per 1000 people
- **Infant mortality rate (IMR):** Annual number of deaths of children less than 1 year old per 1000 live births
- **Expectation of life (Life expectancy):** The number of years which an individual at a given age could expect to live at present mortality levels
- **Total fertility rate (TFR):** Number of live births per woman completing her reproductive life, if her childbearing at each age reflected current ASFRs
- **Gross reproduction rate (GRR):** Number of daughters who would be born to a woman completing her reproductive life at current ASFRs
- **Net reproduction rate (NRR):** Expected number of daughters, per newborn prospective mother, who may or may not survive to and through the ages of childbearing

6. Ans. (d) Fourth [Ref. Park 21/e p443, Park 22/e p441]
7. Ans. (c) Late expanding stage [Ref. K. Park 20/e p411]
8. Ans. (d) Low stationary [Ref. K. Park 20/e p411; Park 21/e p443, Park 22/e p441]
9. Ans. (d) Birth rate tends to fall and death rate declines further [Ref. K. Park 20/e p411; Park 21/e p443, Park 22/e p441]
10. Ans. (b) Social mobility [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p18]
 - **Social mobility:** Socio-economic status of an individual/family can change/advance over a period of time due to any reason(s), viz attainment of literacy, change in occupation, income change, etc
 - Stories of ‘Rags to riches’ are common examples.
11. Ans. (b) Death rate declines faster than birth rate [Ref. K. Park 21/e p443, Park 22/e p441]

Review Questions

12. Ans. (d) Unchanged birth rate & Decreased death rate [Ref. Park 21/e p443, Park 22/e p441]
13. Ans. (a) Late expanding stage [Ref. Park 21/e p443, Park 22/e p441]
14. Ans. (d) Late expanding [Ref. Park 21/e p443, Park 22/e p441]
15. Ans. (d) Late expanding [Ref. Park 21/e p443, Park 22/e p441]

BIRTH RATE, DEATH RATE, GROWTH RATE

16. Ans. (c) 35-47 years [Ref. Park 21/e p445, Park 22/e p443]
 - **Growth rate (GR):** Is the change in population overtime, and can be quantified as the ‘change in the number of individuals in a population per unit time’
 - **Annual growth rate (AGR):** Crude birth rate (BR) minus crude death rate (DR)
 - **Decadal growth rate (DGR):** Change in population over a decade
 - **Growth rate (India):** [Census 2011]
 - **Annual growth rate (AGR):** 1.64%
 - **Decadal growth rate (DGR):** 17.64%
 - Relation between annual growth rate (AGR) and population:
Demography, Family Planning and Contraception

<table>
<thead>
<tr>
<th>Rating</th>
<th>Annual GR (%)</th>
<th>Population doubling time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary population</td>
<td>None</td>
<td>–</td>
</tr>
<tr>
<td>Slow growth</td>
<td>< 0.5</td>
<td>> 139 years</td>
</tr>
<tr>
<td>Moderate growth</td>
<td>0.5 – 1.0</td>
<td>139 – 70</td>
</tr>
<tr>
<td>Rapid growth</td>
<td>1.0 – 1.5</td>
<td>70 – 47</td>
</tr>
<tr>
<td>Very rapid growth</td>
<td>1.5 – 2.0</td>
<td>47 – 35</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>2.0 – 2.5</td>
<td>35 – 28</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>2.5 – 3.0</td>
<td>28 – 23</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>3.0 – 3.5</td>
<td>23 – 20</td>
</tr>
<tr>
<td>Explosive growth</td>
<td>3.5 – 4.0</td>
<td>20 – 18</td>
</tr>
</tbody>
</table>

* Since India’s AGR is 1.64%, it is in very rapid growth phase; Population of India will double in 35–47 years.

Also Remember

- Population growth models: Malthusian Growth Model: (Simple exponential growth model)
 1. Essentially exponential growth based on a constant rate of compound interest
 2. RULE OF 70: explains the time periods involved in exponential growth at a constant rate. For example, if growth is measured annually then a 1% growth rate results in a doubling every 70 years. At 2% doubling occurs every 35 years.
 - Logistic growth model: The Malthusian growth model is the direct ancestor of the logistic function

17. Ans. (a) Crude birth rate (CBR) minus Crude death rate (CDR) [Ref. Park 21/e p445, Park 22/e p443]
18. Ans. (b) Mid year population [Ref. Park 21/e p451, Park 22/e p450]
- Crude birth rate: Number of live births in a year per 1000 mid-year population
- CBR is simplest indicator of fertility: Total mid-year population is not exposed to child bearing thus it does not give true idea of fertility of a population
19. Ans. (a) Live birth/1000 mid yr. population [Ref. Park 21/e p451, Park 22/e p450]
20. Ans. NONE OF THE CHOICES [Ref. CIA, Website]
- Growth rate of few countries: [2009, CIA]

<table>
<thead>
<tr>
<th>Country</th>
<th>Growth rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAE</td>
<td>3.69 (Highest)</td>
</tr>
<tr>
<td>Kuwait</td>
<td>3.55</td>
</tr>
<tr>
<td>Afghanistan</td>
<td>2.58</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1.56</td>
</tr>
<tr>
<td>India</td>
<td>1.41</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>1.29</td>
</tr>
<tr>
<td>Nepal</td>
<td>1.28</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>0.90</td>
</tr>
<tr>
<td>Myanmar</td>
<td>0.78</td>
</tr>
<tr>
<td>Northern Mariana Islands</td>
<td>– 7.08 (Lowest)</td>
</tr>
</tbody>
</table>

21. Ans. (b) It is actually a ratio not a rate [Ref. K. Park 20/e p412, 418, 420]
- Crude birth rate (CBR): is the natality or childbirths per 1,000 people per year
 - CBR (World): 19.9 per 1000 population (Max 15 Niger; Min 7 Monaco) [2012]
 - CBR (India): 21.8 per 1000 population [2012]
 - Is a measure of fertility
 - CRUDE means it includes all causes and all ages - It is independent of age of population
22. Ans. (a) 2.0% [Ref. K. Park 21/e p445, Park 22/e p443]
23. Ans. (b) 165

https://kat.cr/user/Blink99/
Review Questions

27. Ans. (b) 1.1% [Ref. Park 21/e p445, Park 22/e p443]
28. Ans. (a) Mid year population [Ref. Gupta & Mahajan 3/e p408; Park 21/e p451, Park 22/e p450]
29. Ans. (d) >2.0 [Ref. Park 21/e p445, Park 22/e p443]
30. Ans. (a) Mid year population [Ref. Park 20/e p53, Park 21/e p450, 451]
31. Ans. (a) Mid year population [Ref. Park 20/e p53; Park 21/e p24]
32. Ans. (d) 35-47 year [Ref. Park 21/e p445, Park 22/e p443]
33. Ans. (a) 2.0 [Ref. Park 21/e p445, Park 22/e p443]
34. Ans. (b) 2.0 [Ref. Park 21/e p445, Park 22/e p443]
35. Ans. (a) Broad at base and narrow at apex [Ref. Park 21/e p447, Park 22/e p445]
36. Ans. (a) 2.0% [Ref. Park 22/e p443]

POPULATION PYRAMID

37. Ans. (c) 22 [Ref. NFHS – 3, 2005 – 06; Park 21/e p446, Park 22/e p444]
 • Population composition of India: [NFHS – 3, 2005–06]
 - 0 – 14 years: 34.9% (Children)
 - 15 – 49 years: 49.5% (Reproductive age group)
 - 50 – 59 years: 7.1%
 - >60 years: 8.5% (Geriatric age group)
 • Women in child-bearing (15 – 44 years) age group constitute 22% of population

38. Ans. (d) Limiting resource [Ref. Wikipedia]
 • Carrying capacity: The supportable population of an organism, given the food, habitat, water and other necessities available within an ecosystem is known as the ecosystem’s carrying capacity for that organism
 - Refers to the number of individuals who can be supported in a given area within natural resource limits, and without degrading the natural social, cultural and economic environment for present and future generations
 - For human population more complex variables (sanitation, medical care) are sometimes considered as part of necessary infrastructure
 - Below carrying capacity, populations typically increase; while above, they typically decrease
 - May depend on a variety of factors including food availability; water supply, environmental conditions and living space

39. Ans. (c) 51% [Ref. NFHS – 3, 2005–06, IIPS, Volume 1; p21; Park 21/e p446, Park 22/e p444]

Also Remember

• Population pyramid: (age-sex pyramid and age structure diagram) Is a graphical illustration that shows the distribution of various age groups in a population which normally forms the shape of a pyramid
 - Double Histogram: 2 back-to-back bar graphs
 1. one showing the number of males and
 2. one showing females in a particular population (Males are conventionally shown on left and females on right)
 - The population (%) is plotted on the X-axis and age on the Y-axis (in 5-year age group intervals)

40. (b) Developed country [Ref. K. Park, 22/e p444-45]
SEX RATIO AND DEPENDENCY RATIO

41. Ans. (a) 940 [Now 940 in Census 2011] [Ref. Park 21/e p446, Park 22/e p444]

SEX RATIO

- **Sex Ratio**: Is defined as number of females per thousand males

 \[
 \text{Sex Ratio} = \frac{\text{No. of Female}}{\text{No. of Male}} \times 1000
 \]

- **Sex Ratio (India)**: [Census 2011]

<table>
<thead>
<tr>
<th>CENSUS 2001</th>
<th>Kerala</th>
<th>1084</th>
</tr>
</thead>
<tbody>
<tr>
<td>State with Highest Sex Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State with Lowest Sex Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT with Highest Sex Ratio</td>
<td>Pondicherry</td>
<td>1038</td>
</tr>
<tr>
<td>UT with Lowest Sex Ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>District with Highest Sex Ratio</td>
<td>Mahe (Pondicherry)</td>
<td>1176</td>
</tr>
<tr>
<td>District with Lowest Sex Ratio</td>
<td>Daman (Daman & Diu)</td>
<td>533</td>
</tr>
</tbody>
</table>

42. Ans. (c) Males are less than 5000 [Ref. Park 21/e p446, Park 22/e p444]

In the given question

- Total population is 10,000.
- Also, Ideal sex ratio implies 5000 females for 5000 males
- So, Sex ratio is more than 1000, it implies, Females are more than 1000 per 1000 males,
- Thus, females are > 5000 and males are < 5000

43. Ans. (d) Population under 15 years and 65 and above [Ref. Park 21/e p447, Park 22/e p445]

- **Dependency Ratio (DR)**: The proportion of persons above 65 years of age and children below 15 years of age are considered to be dependent on economically productive age group (15 – 64 years).

 \[
 \text{DR} = \frac{\text{0-15 y population} + \text{> 65 y population}}{\text{15-65 y population}}
 \]

 - **DR (India)** is 62 per 100 or 0.62: It implies 100 earning people in India are supporting 162 people (100 themselves and 62 non-earning dependents on them)

44. Ans. (c) 66.6 % [Ref. Park 21/e p447, Park 22/e p445]

Thus,

\[
\text{DR} = \frac{\text{30\%} + \text{10\%}}{\text{40\%}} = 0.66 \text{ or 66.6\% or 66 per 100}
\]

- **DR of 0.66 or 66/100 or 66% implies**: 100 earning people in that community will have to support 166 people (100 themselves and 66 non-earning dependents on them)

45. Ans. (a) 0-5 yrs age; (b) 6-14 yrs age; (c) 15-45 yrs age; (d) > 65 yrs [Ref. Park 21/e p447, Park 22/e p445]

46. Ans. (c) 914 [Ref. Census of India, 2011]

47. Ans. (a) Less than 15 years and more than 65 years [Ref. K. Park 22/e p446]

48. Ans. (b) Number of persons aged 15 to 65 per one older person aged 7+ = 65 years [Ref. Population and Development: Selected Issues, United Nations Series 161, p115]

- **Potential support ratio (PSR)**

 - Number of persons aged 15 to 65 per one older person aged more than or equal to 65 years
Review of Preventive and Social Medicine

- It gives burden placed on working population
- Is inverse of old age dependency

Review Questions

49. Ans. (b) Haryana
[Ref. Park 21/e p447, Park 22/e p445]

50. Ans. (c) Since 1901 there is steadily decreasing trend
[Ref. Park 21/e p446-47, Park 22/e p444-45]

51. Ans. (c) 15-65 years
[Ref. Park 20/e p415; Park 21/e p449]

LITERACY AND LIFE EXPECTANCY

52. Ans. (b) Population age 7 years or more
[Ref. Park 21/e p449, Park 22/e p447]

 - Literate (India): Any person who can read AND write, WITH understanding, IN ANY ONE language of India AND who is > 7 years if age (definition used in 1991 & 2001 Censuses)
 - Literacy Rate: Denominator is population > 7 years age
 - Crude Literacy Rate: Denominator is total population (used earlier)
 - Literacy Rate (India): 75.04%
 [Census 2011]
 - Literacy rate by sex: Males – 82% & Females – 65%
 - Literacy rate by state: Maximum 94% (Kerala) & Least 64% (Bihar)

Also Remember

- International Literacy Day: 8th September (every year)
- UN definition of Literacy: Ability to read and write a simple sentence in any language
- Functional Literacy: Ability of an individual to use reading, writing, and computational skills efficiently in everyday life situations
- Transliteracy: The ability to read, write and interact across a range of platforms, tools and media from signing and orality through handwriting, print, TV, radio and film, to digital social networks
- Alliteracy: The state of being able to read but being uninterested in doing so

53. Ans. (c) 65.4 %
[Now 75.04% in Census 2011]
[Ref. Park 21/e p449, Park 22/e p447]

54. Ans. (b) Population above 7 years
[Ref. K. Park 20/e p416; Park 21/e p440]

55. Ans. (a) Those above age of 7 years
[Ref. K. Park 22/e p447]

FERTILITY

56. Ans. (b) Completed family size
[Ref. Park 21/e p452, Park 22/e p451]

TOTAL FERTILITY RATE (TFR):

- Is STANDARDIZED INDEX FOR FERTILITY LEVEL
- Average no. of children a woman would bear in her reproductive life span; Also known as ‘Period Total Fertility Rate’
- Gives magnitude of approximately ‘completed family size’ – no. of alive children in a family
- Obtained by summing single-year age-specific rates at a given time
- TFR is a synthetic rate: Is not actually counted, as this would involve waiting until women complete childbearing
- TFR (India): 2.68
 [NFHS – 3, 2005 – 06]
- Replacement level of fertility (TFR = 2.1): TFR at which newborn girls would have an average of exactly 1 daughter over their lifetimes (women have just enough babies to replace themselves)
 - Replacement TFR (industrialized countries) = 2.1
 - Replacement TFR (developing countries) = 2.5 – 3.3
 - Replacement TFR (globally) = 2.33

57. Ans. (a) 18.6 per 1000 population
[Ref. Internet]

 Relationship between Crude birth rate (CBR) and Total fertility rate (TFR):

 \[\text{CBR} = \left(8 \times \text{TFR} \right) + 1 \]
 [approx.]

 In the given question, the total fertility rate in India is 2.2,
Thus, CBR = (8 × 2.2) + 1 = 17.6 + 1 = 18.6

58. Ans. (d) Sample registration system [Ref. Park 21/e p779, Park 22/e p783]
 - Sample Registration System (SRS) was initiated in 1964–65 (on a pilot basis; full scale from 1969–70) to provide national as well as state level reliable estimates of fertility and mortality
 - SRS is a dual record system:
 - Field Investigation: continuous enumeration of births and deaths by an enumerator
 - Independent retrospective survey: every 6 months by an investigator-supervisor
 - Findings of SRS Bulletin: 2013:
 - Crude Birth Rate (CBR): 21.6 per 1000 mid-year population
 - Crude Death Rate (CDR): 7.0 per 1000 mid-year population
 - Natural Growth Rate: 14.5 per 1000 mid-year population
 - Infant Mortality Rate (IMR): 42 per 1000 live births

Also Remember
- Civil Registration System (CRS): Birth and death registration system is technically known as CRS
 - Births, deaths and still-births are required to be each registered to the concerned Registrar within 21 days of its occurrence
- Census: Total process of collecting, compiling, analyzing or otherwise disseminating demographic, economic and social data pertaining, at a specific time, of all persons in a country or a well-defined part of a country
 - Provides snapshot of the country’s population and housing at a given point of time
- Ad-hoc survey: Is a survey without any plan for repetition

59. Ans. (d) General Fertility Rate [Ref. Park 21/e p451, Park 22/e p450]

Also Remember
- General Fertility Rate (GFR): Number of live births per 1000 women in the reproductive age-group 15-49 years in a given year
 - Denominator: takes ‘mid-year population’ of 15-49 years age females into account

60. Ans. (a) 2 [Ref. Park 21/e p452, Park 22/e p451]

61. Ans. (a) Total fertility rate [Ref. Park 21/e p452, Park 22/e p451]

62. Ans. (b) Measure of completed family size; (c) Sum of fertility of all age; (e) Total no. of children born to a mother [Ref. Park 21/e p452]

63. Ans. (a) < 1 [Ref. Park 21/e p452, Park 22/e p451]
 - Replacement level of fertility (TFR = 2.1, i.e. NRR = 1): TFR at which newborn girls would have an average of exactly 1 daughter over their lifetimes (women have just enough babies to replace themselves)
 - Is also known as ‘Adequate level’

64. Ans. (b) G.F.R.; (c) T.F.R. [Ref. Park 21/e p431-52]

65. Ans. (c) Reproductive women in the age group 15-45 [Ref. K. Park 21/e p451, Park 22/e p450]
 - General fertility rate (GFR): Number of live births per 1000 women in the reproductive age-group 15-49 years in a given year
 - Denominator: takes ‘mid-year population’ of 15-49 years age females into account

66. Ans. (c) 60% [Ref. K. Park 21/e p452, Park 22/e p451]
 - To achieve NRR = 1, CPR > 60%
 - Then population will stabilize by 2045

67. Ans. (b) Measure of fertility [Ref. K. Park 22/e p450]

68. Ans. (b) Women in reproductive age group in a given year [Ref. K. Park 22/e p450]
Review of Preventive and Social Medicine

69. Ans. (c) NRR \[Ref. K. Park, 22/e p451\]
70. Ans. (b) GFR \[Ref. K. Park 22/e p450-51\]
71. Ans. (a) TFR \[Ref. K. Park 22/e p450-51\]
72. Ans. (c) 60% \[Ref. K. Park 22/e p454\]
73. Ans. (d) No. of female children a newborn girl has in her life time taking into account mortality \[Ref. Park 22/e p451\]

Review Questions

74. Ans. (a) Midyear population of women of 15-44 years age \[Ref. Park 21/e p451, Park 22/e p450\]
75. Ans. (a) Midyear population of Women of 15-44 years age \[Ref. Park 21/e p451, Park 22/e p450\]
76. Ans. (d) All of the above \[Ref. Park 21/e p451, Park 22/e p450\]
77. Ans. (a) Total population of 15-45 years of female \[Ref. Park 21/e p451, Park 22/e p450\]
78. Ans. (a) Total fertility rate \[Ref. Park 21/e p452, Park 22/e p451\]
79. Ans. (b) NRR \[Ref. Park 21/e p452, Park 22/e p451\]
80. Ans. (a) Women in the reproductive age-group 15-44 years \[Ref. Park 21/e p451, Park 22/e p450\]
81. Ans. (c) NRR \[Ref. Park 21/e p452, Park 22/e p451\]
82. Ans. (c) 60% \[Ref. Park 21/e p451\]
83. Ans. (b) Total fertility rate \[Ref. Park 21/e p452, Park 22/e p451\]
84. Ans. (a) 2 \[Ref. Park’s 20/e p 412\]

MISCELLANEOUS

85. Ans. (c) 21 days \[Ref. Textbook of Community Medicine by Sunder Lal, 2/e p330\]

- **Civil Registration System** (CRS): Birth and death registration system is technically known as CRS

Also Remember

- **Registration of name of the child:**
 - Within 12 months of birth registration: Free of charge
 - After 12 months of birth registration till 15 years: Rupees 5.00
- **Coverage of registration of births and deaths in India:**
 - Coverage of births registration in India: 55%
 - Coverage of deaths registration in India: 46%

86. Ans. (b) 13.8 \[Ref. K. Park 19/e p444, 20/e p479; Park 21/e p514, Park 22/e p516\]

In the given question, a community has a population of 10,000 and a birth rate of 36 per 1000; Since 36 births per 1000, there will be 360 births per 10,000 population in the given year

Also, 5 maternal deaths were reported in the current year,

Thus, \[
\text{MMR} = \frac{\text{No. of maternal deaths}}{\text{Total no.oflivebirthsintheyear}} \times 100,000
\]

\[
\text{MMR} = \frac{5}{360} \times 100,000 = 1388 \text{ per 100,000 LB} = 13.88 \text{ per 1000 LB}
\]

87. Ans. (a) 1st March \[Ref. National Health Programs of India by Dr. J. Kishore, 7/e p572, 662\]

- **Census Stop (Census Movement):** 00.00 hrs 01 March 2011 (The referral time and date at which snapshot of the population is taken)

88. Ans. (b) 22% \[Ref. Park 21/e p649, Park 22/e p651\]

- **Poverty:** Deprivation of those things that determine the quality of life, including food, clothing, shelter and safe drinking water, but also such ‘intangibles’ as the opportunity to learn, to engage in meaningful employment, and to enjoy the respect of fellow citizens
 - **Absolute poverty:** a set standard which is consistent over time and between countries
Demography, Family Planning and Contraception

- **Relative poverty:** as being below some relative poverty threshold

- **Poverty threshold (poverty line):** Is the minimum level of income deemed necessary to achieve an adequate standard of living

- **Definitions of Below Poverty Line (BPL):**
 - Based on per capita caloric intake per day:
 1. **Rural areas:** per capita daily caloric intake < 2400 Kcal
 2. **Urban areas:** per capita daily caloric intake < 2100 Kcal
 - Based on per capita expenditure per month: [New Guideline 2013]
 1. **Rural areas:** Per capita expenditure per day INR 27/-
 2. **Urban areas:** Per capita expenditure per day INR 33/-
 - Based on criteria for international comparisons (World Bank):
 1. **Extreme poverty:** Living on <1.25 $ per person per day
 2. **Moderate poverty:** Living on <2 $ per person per day

- **Poverty in India:**
 - Most obvious problem of India
 - Population living BPL in India:
 1. 28.6% [2003]
 2. 27.5% [2004-05]
 3. 37% [2009]
 4. 29% [2012]
 5. 22% [2013]

89. Ans. (c) Three rounds [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p37; Park 22/e p448-49]

NATIONAL FAMILY HEALTH SURVEY (NFHS)

- Is a large-scale, multi-round survey conducted in a representative sample of households throughout India
- 3 rounds of the survey have been conducted till date,
 - NFHS-1: 1992–93
 - NFHS-3: 2005–06

90. Ans. (c) Population pyramid [Ref. K. Park 19/e p382, 20/e p414; Park 21/e p446-47, Park 22/e p444-45]

- **Population pyramid:** (age-sex pyramid or age-structure diagram) Is a graphical illustration that shows the distribution of various age groups in a population which normally forms the shape of a pyramid
- **Double Histogram:** 2 back-to-back histogram graphs
 1. one showing the number of males and
 2. one showing females in a particular population (Males are conventionally shown on left and females on right)
- The population (%) is plotted on the X-axis and age on the Y-axis (in 5-year age group intervals)

![Figure: Age and sex pyramid](https://kat.cr/user/Blink99/)
Demography, Family Planning and Contraception

Also Remember

- **Life table analysis:** BIOMETER OF POPULATION
 - Core demographic technique to analyze mortality and other non-renewable processes
 - Is a special type of ‘Cohort Analysis’
 - Is an example of ‘Indirect Standardization’
 - Used for:
 1. Mortality (Life expectancy)
 2.Natality
 3. Reproduction (Contraceptive use/failure rates)
 4. Chances of survival (Survival curves)
- **Correlation coefficient** (r): indicates the strength and direction of a linear relationship between two random variables
 - Correlation coefficient (r) lies between -1 and +1 (-1 < r < +1)
- **Bar chart:** is a chart with rectangular bars of lengths proportional to that value that they represent
 - Bar chart is for ‘non-continuous qualitative data’
 - Bar charts are used for comparing two or more values
 - Bars can be horizontally or vertically oriented

91. Ans. (a) 50 [Ref. Park 21/e p523, Park 22/e p525]
- **Infant mortality rate** (IMR): Is the ratio of infant deaths registered in a given year to the total number of live births registered in the same year; IMR is usually expressed as a rate per 1000 live births (LB)

 In the given question, in a town of 36,000 people, there are 1200 live births, and 60 infant deaths,
 Thus, IMR = = 50 per 1000 LB

92. Ans. (b) IMR [Ref. Park 21/e p523, Park 22/e p525]
- Most important indicator of health status of a country: IMR

Also Remember

- **Couple Protection rate** (CPR):
 - CPR is percent of eligible couples effectively protected against one or the other approved methods of family planning, viz. condoms, OCPs, IUDs, sterilization

93. Ans. (c) Hyderabad [Ref. Park 21/e p448, Park 22/e p446]
- **UN Classification of urban agglomerations:**

<table>
<thead>
<tr>
<th>Classification</th>
<th>Population count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mega city</td>
<td>> 10 millions</td>
</tr>
<tr>
<td>Million-plus city</td>
<td>1 – 10 millions</td>
</tr>
<tr>
<td>Major city</td>
<td>0.1 – 1 million (1 – 10 Lac)</td>
</tr>
<tr>
<td>Town</td>
<td>< 0.1 million (<1 Lac)</td>
</tr>
</tbody>
</table>

- **Megacity:** Is defined as a metropolitan area with
 - **Total population:** in excess of 10 million people
 - **A minimum level for population density:** 2,000 persons/square km
- In World (2005), there were 25 megacities
- In India, 3 cities (Delhi, Mumbai, Kolkata) are included in the list of ‘Mega Cities’ (population > 10 millions)
 - Population projections indicate that by 2015, Hyderabad will also become a Mega City
- **Urban area with maximum population the world:** Tokyo
- **Largest mega city in the world:** Tokyo
Also Remember

- **Global city** (World city): Is a city deemed to be an important node point in the global economic system
- **Primate city**: Is a major city that works as the financial, political, and population center of a country and is not rivaled in any of these aspects by any other city in that country
 - Normally, a primate city must be at least twice as populous as the second largest city in the country
 - India has no primate city: It has four main cities of Delhi, Mumbai, Kolkata and Chennai
- **Metropolis**: Is a big city, in most cases with over half a million inhabitants in the city proper, and with a population of at least one million living in its urban agglomeration

94. Ans. (a) 10-19 years of age [Ref. A Picture of Health – A Review and Annotated Bibliography of the Health of Young People in Developing Countries by Goodburn, Elizabeth and Ross (WHO & UNICEF) 1995]
- Adolescence: Is a transitional stage of physical and mental human development that occurs between childhood and adulthood
- The World Health Organization (WHO) defines adolescence as the period of life between 10 and 19 years of age

95. Ans. (c) Population density = 324/km² New Answer = 382/km² [Census 2011] [Ref. K. Park 20/e p415; Park 21/e p448, Park 22/e p446]

96. Ans. (c) 10 [Ref. Park 21/e p779, Park 22/e p783]

97. Ans. (b) Literacy 65%; New Answer = 74% [Census 2011] [Ref. National Health Programs by Dr J. Kishore, 8/e p18-20; Park 21/e p445-50, Park 22/e p443-448-49]

98. Ans. (c) 2005 [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p37]

99. Ans. (c) 5 years [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p37]

100. Ans. (a) 1881 [Ref. K. Park 22/e p783]

101. Ans. (a) High literacy rate; (d) Older age of marriage; (e) Higher Life expectancy [Ref. Multiple documents]

102. Ans. (b) 1998-99 [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p37]

103. Ans. (a) 6 months [Ref. K. Park 22/e p783]

104. Ans. (a) Breast Imaging Reporting and Data System [Ref. Breast Ultrasound by AV Stavros, 1/e p6]

105. Ans. (b) 1871 [Ref. K. Park 22/e p783]

106. Ans. (a) Total population doubled from 1921 to 1971; (b) Annual average growth rate 1.64% in 2011 census; (e) Decadal growth rate 17.64% in 2011 [Ref. Park 22/e p443]

107. Ans. (a) Done by Ministry of Home Affairs; (c) Census Commissioner is the supreme head [Ref. Park 22/e p783]

108. Ans. (d) Within 60 days of arrival into India [Ref. Handbook of Civil Registration, Government of India, p49]

Review Questions

109. Ans. (a) Pyramid [Ref. Park 21/e p446-47, Park 22/e p444-45]

110. Ans. (d) Survey should be done every year [Ref. Park 21/e p779-80, Park 22/e p783-84]

111. Ans. (a) 6 months [Ref. Park 21/e p779, Park 22/e p783]

112. Ans. (a) 5.5% [Now 5.59% in Census 2011] [Ref. Park 21/e p446, Park 22/e p444]

113. Ans. NONE [Now 91.34 million in Census 2011] [Ref. Park 21/e p446, Park 22/e p444]

114. Ans. (b) 1921 [Ref. Park 21/e p445, Park 22/e p443]

115. Ans. (c) Life expectancy at birth is 60yrs [Ref. Park 21/e p450, Park 22/e p448-49]

116. Ans. (b) MDT coverage is 90% [Ref. Park 20/e p277, 278]

117. Ans. None [Both 21 days] [Ref. Park PSM 17/e p605, 20/e p743]
118. Ans. (c) Sample registration surgery [Ref. Park 20/e p743; Park 21/e p779, Park 22/e p783]

119. Ans. (b) Age standardized death rate [Ref. Park 21/e p55, Park 22/e p56]

120. Ans. (a) Sample registration system [Ref. Park 20/e p743; Park 21/e p779, Park 22/e p783]

FAMILY PLANNING AND CONTRACEPTION

CONCEPTS OF FAMILY PLANNING

121. Ans. (c) 10 per HWY [Ref. Park 21/e p472, Park 22/e p471]
 - **PEARL INDEX (PI) as measure of contraceptive efficacy**
 - Pl or Pearl rate: MC technique used in clinical trials for measuring the effectiveness of a birth control method
 - PI is no. of failures per 100 woman years (HWY) of exposure
 \[
 \text{Pearl Index (PI)} = \frac{\text{Total accidental pregnancy}}{\text{Total months of exposure}} \times 1200
 \]
 - In the given question,
 - Total accidental pregnancies = 20
 - Total months of exposure = 100 couples × 24 months each = 2400 months
 - Thus, PI = \(\frac{20}{2400} \times 1200 = 10 \) per HWY

122. Ans. (b) Pearl Index and Life table analysis [Ref. Park 21/e p472, Park 22/e p471]
 - **Contraceptive Efficacy:** Is assessed by measuring the number of unplanned pregnancies that occur during a specified period of exposure and use of a contraceptive method. Two methods used are:
 - Pearl Index
 - Life table analysis
 - **LIFE TABLE ANALYSIS (LTA) as measure of contraceptive efficacy:**
 - LTA calculates a failure rate per month of use
 - Better measure than PI

Also Remember

- **Couple Protection Rate (CPR):** Is an indicator of prevalence of contraceptive practice in a community
 \[
 \text{CPR} = \frac{\text{Total no. of ECs protected by any of 4 approved methods}}{\text{Total no. of ECs in the community}} \times 100
 \]

123. Ans. (c) 150 – 180 [Ref. Park 21/e p455, Park 22/e p454]
 - **Eligible couples (ECs):** A currently married couple with wife in reproductive age group (15–45 years age)
 - ECs are in need of family planning services
 - There are 150 – 180 ECs per 1000 population in India
 - 20% ECs are in age group 20–24 years
 - EC register, a basic document for organizing family planning work, is maintained at Subcentre
 - Total no. of ECs in a community is used (as a denominator) in the calculation of Couple Protection Rate (CPR)

124. Ans. (c) 25% [Ref. Internet; Park 21/e p455, Park 22/e p454]
 - **Couple Protection rate (CPR):**
 - CPR is percent of eligible couples (ECs) protected against one or the other approved methods of family planning, viz. condoms, OCPs, IUDs, sterilization
 - NRR = 1 can be achieved if CPR > 60%
 - CPR (India): 46.5% [2009-10]
 - Goal for CPR in RCH – II (2004 – 09): > 65%
 - CPR is an indicator of prevalence of contraceptive practice in a community
 - **Effective Couple Protection rate (ECPR):**
 - ECPR is percent of eligible couples (ECs) protected against one or the other approved methods of family planning, viz. condoms, OCPs, IUDs, sterilization TAKING INTO ACCOUNT THEIR EFFECTIVITY

https://kat.cr/user/Blink99/
Effectivity of approved contraceptive methods:
1. Condoms: 50%
2. IUDs: 95%
3. OCPs: 100%
4. Sterilization (Vasectomy or Tubectomy): 100%

In the given question, \(ECs = 180 \)

<table>
<thead>
<tr>
<th>Contraceptive methods used</th>
<th>No. of couples using contraception</th>
<th>Effectivity of contraceptive methods</th>
<th>Effectively protected couples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condoms</td>
<td>29</td>
<td>50%</td>
<td>14.5</td>
</tr>
<tr>
<td>IUDs</td>
<td>10</td>
<td>95%</td>
<td>9.5</td>
</tr>
<tr>
<td>Oral Pills</td>
<td>10</td>
<td>100%</td>
<td>10</td>
</tr>
<tr>
<td>Vasectomy</td>
<td>03</td>
<td>100%</td>
<td>03</td>
</tr>
<tr>
<td>Tubectomy</td>
<td>08</td>
<td>100%</td>
<td>08</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>–</td>
<td>45</td>
</tr>
</tbody>
</table>

Thus, \(CPR = \frac{60}{180} = 33.3\% \) and \(ECPR = \frac{45}{180} = \frac{100}{125} = 25\% \)

125. Ans. (c) Screening for HIV infection \([Ref. Park 21/e p454, Park 22/e p453]\)
- Modern concept of family planning: Family planning is not synonymous with birth control only. A WHO Expert Committee (1970) recommends that family planning includes in its’ purview:
 - Proper spacing and limitation of births
 - Advice on sterility
 - Education for parenthood
 - Sex education
 - Screening for pathological conditions related to reproductive system (e.g. Cervical cancer)
 - Genetic counseling
 - Marriage counseling
 - Premarital consultation and examination
 - Carrying out pregnancy tests
 - Preparation of couples for arrival of their 1st child
 - Providing services for unmarried mothers
 - Teaching home economics and nutrition
 - Providing adoption services

126. Ans. (d) In vitro fertilization \([Ref. Park 21/e p454, Park 22/e p453]\)

127. Ans. (b) Total accidental pregnancy \([Ref. Park 21/e p472, Park 22/e p471]\)

128. Ans. (a) Per 100 woman years \([Ref. K. Park 22/e p471]\)

129. Ans. (b) Failures per 100 women-years of exposure \([Ref. K. Park 22/e p471]\)

130. Ans. (b) Accidental pregnancies per 100 women-years of exposure \([Ref. K. Park 22/e p471]\)

Review Questions

131. Ans. (a) Annual general marriage rate \([Ref. Park 21/e p451, Park 22/e p450]\)

132. Ans. (c) 3 \([Ref. Park 21/e p472, Park 22/e p471]\)

133. Ans. (c) 100 women – years of exposure \([Ref. Park 21/e p472, Park 22/e p471]\)

134. Ans. (a) Effectiveness of a contraceptive \([Ref. Park 21/e p472, Park 22/e p471]\)

135. Ans. (a) By spacing between the pregnancies \([Ref. Park 21/e p451, Park 22/e p450]\)

136. Ans. (d) Contraceptive failures \([Ref. Park 21/e p472, Park 22/e p471]\)

137. Ans. (d) All of the above \([Ref. Park 21/e p456, Park 22/e p455]\)
NATURAL METHODS

138. Ans. (a) Terminal Methods [Ref. Park 21/e p470, Park 22/e p469]

NATURAL FAMILY PLANNING METHODS:

- Basal Body Temperature (BBT) Method:
 - Depends on: Rise of temperature (0.3° – 0.5° C) at ovulation
 - Occurs due to: Increased progesterone production

- Cervical Mucus Method:
 - Also known as ‘Billing’s Method’ or ‘Ovulation Method’
 - Based on: Changes in characteristics of cervical mucus
 1. At ovulation: Watery, clear, smooth, slippery, profuse (like Egg white)
 2. After ovulation: Thickens and lessens in quantity

- Symptothermic Method:
 - Combines temperature, cervical mucus and calendar techniques

Also Remember

- Only method of birth control which is completely effective: Sexual abstinence
- Oldest method of voluntary fertility control: Coitus interruptus
- Safe period (Rhythm method/Calendar method):
 - Fertile period: Shortest cycle minus 18 days (Last day of fertile period: Longest cycle minus 10 days)
 - Drawbacks: PROGRAMMED SEX: Abstinence required for ½ month

Review Questions

139. Ans. (c) Symptothermic method [Ref. Park 21/e p470, Park 22/e p469]

BARRIER METHODS

140. Ans. (b) A - II, B - I, C - IV, D – III [Ref. Park 21/e p457-74, Park 22/e p456-473]

- VAGINAL SPONGE: TODAY (brand name)
 - Sponge a barrier method of contraception: It actually combines barrier and spermicidal methods to prevent conception
 - Saturated with 1000 mg of spermicide ‘Non-oxynol-9’
 - Disadvantages of sponge:
 1. Sponge provide no protection from STIs
 2. Can lead to Toxic Shock Syndrome

- NORPLANT: Subdermal implant (Depot formulation)
 - 6 silastic capsules containing 35 mg LNG each
 - Disadvantages: Irregularities of menstrual bleeding

- NET-EN: Norethisterone Enanthate, a Progestogen only Injectable contraceptive (Depot formulation)
 - Dose: 200 mg i/m every 2 months
 - Side effects: Disruptions of normal menstrual cycles

Grafenberg’s ring: 1st Generation (Non-medicated/Inert) IUD [Similar to Lippes loop]

Also Remember

- DIAPHRAGM: Is a cervical barrier type of birth control
 - It must be inserted sometime before sexual intercourse, and remain in the vagina for 6 – 8 hours after a man’s last ejaculation
 - Disadvantages:
 1. Increased risk of UTL, yeast infection & bacterial vaginosis
 2. Toxic Shock Syndrome (if left in-situ > 24 hours)

- DMPA (Depot Medroxy Progesterone Acetate): a Progestogen only Injectable contraceptive (Depot formulation)
 - Dose: 150 mg i/m every 3 months
141. Ans. (d) Lippes loop [*Ref. Park 21/e p457-58, Park 22/e p456-57*

142. Ans. (c) 9-20/100 women years [*Ref. K. Park 22/e p457*

Review Questions

143. Ans. (b) Nonoxynol [*Ref. Park 21/e p458, Park 22/e p457*

144. Ans. (c) 9-Nonoxynol [*Ref. Park 21/e p458, Park 22/e p457*

IUDs

145. Ans. (c) Surface area of copper in sq. mm [*Ref. Park 21/e p459, Park 22/e p458*

 - In CuT 7, CuT 220 B and CuT 380 A or Ag,
 - Numbers (7, 220, 380) represent: Surface area of copper (in sq. mm) on the device
 - B in CuT 220 B represent: Size of IUD (IUDs were earlier available in different sizes – A, B, C and D; D was the largest size)
 - A or Ag in CuT 380 A represent: Silver or Gold (with copper)
 - *IUDs are world’s most widely used method of reversible birth control*

 - *Change of IUD*: (Shelf life of copper IUDs)

<table>
<thead>
<tr>
<th>IUD</th>
<th>Approved years of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper IUDs</td>
<td>3 – 5</td>
</tr>
<tr>
<td>Progestasert</td>
<td>1</td>
</tr>
<tr>
<td>CuT 200</td>
<td>4</td>
</tr>
<tr>
<td>NOVA T</td>
<td>5</td>
</tr>
<tr>
<td>LNG IUD</td>
<td>7 – 10</td>
</tr>
<tr>
<td>CuT 380 A</td>
<td>10</td>
</tr>
</tbody>
</table>

 • Non-hormonal (copper) IUDs are considered safe to use while breastfeeding
 • All 2nd generation copper-T IUDs have failure rates of less than 1% per year

146. Ans. (a) Bleeding [*Ref. Park 21/e p461, Park 22/e p459-60*

SIDE EFFECTS OF IUD (INTRAUTERINE DEVICE) INSERTION:

- **Bleeding:**
 - *MC side effect of woman with IUD*: Increased vaginal bleeding
 - **Management of bleeding:**
 1. Re-assure the female (DO NOT REMOVE IUD)
 2. Ferrous sulphate 200 mg TDS X 1 – 2 months
 3. If bleeding is heavy or persistent: REMOVE IUD

- **Pain:**
 - *Second major side effect of IUD insertion*
 - **MCC requiring removal of IUDs**: Pain (15 – 40% removals)
 - **Management of Pain:**
 1. *Slight pain*: Analgesics like Aspirin or Codeine
 2. *Intolerable pain*: Remove the IUD, insert a copper based device or advise other contraceptives

- **Pelvic infection (Pelvic Inflammatory Disease – PID):**
 - **Management of PID:**
 1. Prompt treatment with broad spectrum antibiotics
 2. If no response to antibiotics in 24 – 48 hours: Remove IUD

- **Uterine perforation:**
 - *More common in*: IUD inserted in 48 hours – 6 weeks postpartum
 - **Management**: Removal of IUD
Review of Preventive and Social Medicine

- *Pregnancy with IUD-in-situ:*
 - **Management:**
 1. If woman requests: Legally induced abortion
 2. If woman wants to continue pregnancy and threads are visible: Remove IUD gently by pulling the threads
 3. If woman wants to continue pregnancy and threads are NOT visible: Carefully examine for possible complications. If any sign of intrauterine infection – evacuation of uterus under broad spectrum antibiotic cover

- *Ectopic pregnancy with IUD-in-situ:*

- *Spontaneous expulsion:*
 - **Higher risk of expulsion:**
 1. Young women
 2. Nullipara women
 3. Women who have had a postpartum insertion
 4. Inert (Non-medicated IUDs)

- *Mortality associated with IUD use:* (Only 1 per 1 lac yars of use)

Also Remember

- IUDs associated with side effects or complications:

<table>
<thead>
<tr>
<th>Side effects or complications</th>
<th>IUD most commonly associated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest pregnancy rate</td>
<td>Lippes Loop</td>
</tr>
<tr>
<td>Lowest pregnancy rate</td>
<td>LNG – IUD</td>
</tr>
<tr>
<td>Highest expulsion rate</td>
<td>Lippes Loop</td>
</tr>
<tr>
<td>Lowest expulsion rate</td>
<td>Progestasert</td>
</tr>
<tr>
<td>Highest removal rate</td>
<td>LNG – IUD</td>
</tr>
<tr>
<td>Lowest removal rate</td>
<td>Progestasert</td>
</tr>
</tbody>
</table>

147. Ans. (c) Progestasert is implanted subdermally [Ref. Park 21/e p459, Park 22/e p458]

PROGESTASERT

- Progestasert is a 3rd Generation IUD (Medicated/Bio-active IUD)
- Progestasert was the ‘first hormonal uterine device’, developed in 1976
- T-shaped device filled with 38 mg progesterone
- Rate of hormone release: 65 mcg per day
- Shelf life: 1 – 1½ years
- Advantages of Progestasert:
 - IUD with ‘Lowest expulsion rate’
 - IUD with ‘Lowest removal rate’

148. Ans. (b) Pain [Ref. Park 21/e p461, Park 22/e p459-460]

149. Ans. (c) Has a history of ectopic pregnancy [Ref. Park 21/e p460, Park 22/e p459]

- Ideal IUD woman candidate (Planned Parenthood Federation of America PPFA):
 - Who has borne atleast one child
 - Has no history of pelvic disease
 - Has normal menstrual periods
 - Is willing to check the IUD tail
 - Has access to follow-up and treatment of potential problems
 - Is in a monogamous relationship

- However, the federation does not rule out women who do not conform to this profile
- American College of Obstetricians and Gynaecologists (1985) stated that ‘IUDs are not recommended for women who have not had children or who have multiple partners, because of the risk of PID and possible infertility’
Also Remember

- Contraindications for IUDs use:
 - Absolute contraindications:
 1. Suspected pregnancy
 2. PID
 3. Vaginal bleeding of undiagnosed etiology
 4. Cancer of cervix, uterus or adnexa and other pelvic tumors
 5. Previous ectopic pregnancy
 - Relative contraindications:
 1. Anemia
 2. Menorrhagia
 3. History of PID since last pregnancy
 4. Purulent cervical discharge
 5. Distortions of uterine cavity due to congenital malformations, fibroids
 6. Unmotivated persons

150. Ans. (a) Multiload Cu-375 is a third generation IUD [Ref. Park 21/e p459-62, Park 22/e p458-60-61]

- Pregnancy rates of IUDs (clinical experience):

<table>
<thead>
<tr>
<th>Device</th>
<th>Pregnancy rate (%)</th>
<th>Expulsion rate (%)</th>
<th>Removal rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lippes Loop</td>
<td>3</td>
<td>12 – 60</td>
<td>12 – 15</td>
</tr>
<tr>
<td>CuT 7</td>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>CuT 200</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>CuT 380 A</td>
<td>0.5 – 0.8</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Progestasert</td>
<td>1.5</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>LNG IUD</td>
<td>0.2</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

- Levonorgestrel releasing IUD (LNG IUD) has an effective life of 10 years: it releases LNG at the rate of 20 mcg per day.

151. Ans. (b) Pain [Ref. Park 21/e p461, Park 22/e p459-460]

152. Ans. (d) 8 weeks [Ref. Park 21/e p460, Park 22/e p459]

TIMINGS OF IUD INSERTION

- During menstruation or within 10 days of beginning of menstrual period:
 - Best time for IUD insertion
 - Cervical canal diameter greatest, lesser expulsion, least risk of pregnancy
- Immediate post-partum insertion: During 1st week after delivery before woman leaves hospital
 - High chance of perforation
 - High chance of expulsion
- Post-partum insertion: 6 – 8 weeks after delivery
 - Can be combined with follow-up visit of mother and child
 - Not recommended after 2nd trimester abortion

153. Ans. (c) Surface area [Ref. Park 21/e p459, Park 22/e p458]

154. Ans. (c) CuT 380 A [Ref. Park 22/e p458]

155. Ans. (a) Bleeding [Ref. K. Park 22/e p459]

156. Ans. (d) 10 yrs [Ref. K. Park 22/e p458]

157. Ans. (c) 1st generation IUDs [Ref. Park 22/e p457]

158. Ans. (b) 5

Review Questions

159. Ans. (a) Bleeding [Ref. Park 21/e p461, Park 22/e p459-60]

160. Ans. (d) 10 years [Ref. Park 21/e p460, Park 22/e p459]

161. Ans. (a) Silver core [Ref. Park 18/e p363, 20/e p426]
162. Ans. (b) Barium sulphate [Internet]
163. Ans. (b) Silver core [Ref. K. Park 20/e p426]
164. Ans. (d) Low risk of ectopic pregnancy [Ref. Park 21/e p459, Park 22/e p458]
165. Ans. (c) Hormonal effect on mucosa of endometrium [Ref. Park 21/e p459, Park 22/e p458]
166. Ans. (c) PID [Ref. Park 21/e p460, Park 22/e p459]
167. Ans. (b) Second generation IUCD [Ref. Park 21/e p459, Park 22/e p458]
168. Ans. (d) ML-Cu 250 [Ref. Park 21/e p459-460, Park 22/e p458-459]

HORMONAL METHODS

169. Ans. (c) Centchroman is useful for females with PCOD [Ref. Shaw’s Textbook of Gynaecology 14/e p213]

CENTCHROMAN
- Synthetic NON-STEROIDAL oral contraceptive
- Brand name: Saheli
- Chemical in Centchroman: ORMELOXIFENE
- Mechanism of Action: Selective estrogen receptor modulators (SERMs) a class of medication which acts on the estrogen receptor
 - Works through a unique combination of weak estrogenic and potent anti-estrogenic properties
- Developed by: Central Drug Research Institute (CDRI), Lucknow, India
- Dosage & frequency: 1 tablet (30 mg) twice a week X 3 months, then 1 tablet per week
- Failure rate (Pearl Index): 1.83 – 2.84 per HWY
- Contraindications of Centchroman:
 - PCOD (Stein Leventhal Syndrome)
 - Cervical hyperplasia
 - Recent history of jaundice
 - Severe allergic disease

Also Remember
- Centchroman is also known as ‘once-a-week pill’
- Centchroman is the ‘only anti-implantation agent approved for clinical use’ globally

170. Ans. (d) I, II & III [Ref. Park 21/e p465, Park 22/e p464]
- Adverse effects of Combined Oral Contraceptive Pills (OCPs):
 - Cardiovascular effects: (due to oestrogenic component)
 1. Myocardial infarction
 2. Cerebral thrombosis
 3. Venous thrombosis (with or without pulmonary embolus)
 4. Hypertension
 - Carcinogenesis:
 1. Cervical cancer (increased risk)
 2. Breast Cancer
 - Metabolic Effects: (due to progesterone component)
 1. Elevated blood pressure (hypertension)
 2. Altered lipid profile (reduced HDL)
 3. Blood clotting
 4. Hyperglycemia and increased plasma insulin
 - Hepatocellular adenoma
 - Gall bladder disease
 - Cholestatic jaundice
 - Monilial vaginitis (candidiasis)
 - Decline milk volume during lactation
 - General effects:
1. Breast tenderness
2. Weight gain (due to water retention)
3. Headache & migraine
4. Bleeding disturbances

• Beneficial effects of Combined Oral Contraceptive Pills (OCPs):
 - Benign breast disorders (Fibrocystic disease, Fibroadenoma)
 - Benign ovarian disease (Ovarian cysts)
 - Malignant ovarian disease (Ovarian cancer)
 - Pelvic Inflammatory Disease (PID)
 - Ectopic pregnancy
 - Iron deficiency anemia
 - Endometrial cancer

171. Ans. (d) 1, 2 & 3 [Ref. Park 21/e p464-65, Park 22/e p463-64]
172. Ans. (d) Hepatocellular adenoma [Ref. Park 21/e p465, Park 22/e p464]
173. Ans. (a) 20 [Ref. Internet, Organon-India website]

- Composition of ‘New Low dose OCP’: (Brand name: Femilon/ Elogen)
 - Ethinyl estradiol: 0.02 mg (20 mcg)
 - Desogestrel: 0.15 mg (150 mcg)
- Composition of Combined OCP: (MALA-N)
 - Ethinyl estradiol: 0.03 mg (30 mcg)
 - Norgestrel: 0.15 mg (150 mcg)

Also Remember

- Composition of few contraceptives:
 - Centchroman (Brand name: Saheli): Ormeloxifene
 - TODAY (vaginal sponge): Non-oxynol-9
 - Male condom (common) : Latex
 - Female condom (common) : Polyurethane
 - Norplant: Levonorgestrel (LNG)
 - CuT 380 A or Ag: Copper + Silver or Copper + Gold
 - Minipill (Brand name: Cerazette) : Progesterone

174. Ans. (a) Nursing mothers [Ref. Park 21/e p465, Park 22/e p465]

- Contraindications for use of oral contraceptive pills (OCPs):

<table>
<thead>
<tr>
<th>Absolute contraindications:</th>
<th>Relative contraindications: (require medical surveillance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Breast Cancer</td>
<td>1. Age > 40 years</td>
</tr>
<tr>
<td>2. Genital Cancer</td>
<td>2. Smoking and age >35 years</td>
</tr>
<tr>
<td>3. Liver disease</td>
<td>3. Mild hypertension</td>
</tr>
<tr>
<td>5. Cardiac abnormalities</td>
<td>5. Epilepsy</td>
</tr>
<tr>
<td>7. Undiagnosed abnormal uterine bleeding</td>
<td>7. Nursing mothers (0 – 6 months)</td>
</tr>
<tr>
<td></td>
<td>9. Gall bladder disease</td>
</tr>
<tr>
<td></td>
<td>10. History of infrequent bleeding</td>
</tr>
<tr>
<td></td>
<td>11. Amenorrhoea</td>
</tr>
</tbody>
</table>

175. Ans. (d) Supplied free of cost [Ref. Park 21/e p463, Park 22/e p462]

<table>
<thead>
<tr>
<th>MALA – N</th>
<th>MALA – D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of contraceptive</td>
<td>Estrogen</td>
</tr>
<tr>
<td>Combined OCP</td>
<td>Ethinyl estradiol (0.03 mg)</td>
</tr>
<tr>
<td>Combined OCP</td>
<td>Ethinyl estradiol (0.03 mg)</td>
</tr>
</tbody>
</table>
176. Ans. (a) Liver disease; (c) Renal disease; (d) Epilepsy [Ref. Park 21/e p465, Park 22/e p464]
177. Ans. (a) Combined OCPs [Ref. K. Park 21/e p465, Park 22/e p464]
178. Ans. (a) Iron deficiency anaemia; (c) Ovarian cancer; (d) PID; (e) Ovarian cysts [Ref. Park 22/e p464]
179. Ans. (b) Lactating females [Ref. K. Park 22/e p462]
180. Ans. (b) PID; (c) Ovarian cysts; (d) Fibrocystic disease of breast; (e) Ectopic pregnancy

Review Questions

181. Ans. (d) None [Ref. Park 21/e p464-65, Park 22/e p463-64]
182. Ans. (c) 3 months [Ref. Park 21/e p466, Park 22/e p465]
183. Ans. None [Ref. Park 21/e p465, Park 22/e p464]
184. Ans. (a) Leg vein thrombosis [Ref. Dutta 6/e p 543,546; Park 21/e p464-65, Park 22/e p463-64]
185. Ans. (d) Pervaginal bleeding [Ref. Park 21/e p464-65, Park 22/e p463-64]
186. Ans. (b) Hepatic adenoma [Ref. Park 21/e p465, Park 22/e p464]
187. Ans. (a) Mini pill [Ref. Park 21/e p463, Park 22/e p462]
188. Ans. (b) 30 µgm [Ref. Park 21/e p463, Park 22/e p462]
189. Ans. (d) Congenital hyperlipidemia [Ref. Park 21/e p465, Park 22/e p464]
190. Ans. (a) 0.15 mg [Ref. Park 21/e p463, Park 22/e p462]
191. Ans. (a) Only progesterone is small quantity [Ref. Park 21/e p463, Park 22/e p462]
192. Ans. (c) Three months [Ref. Park 21/e p466, Park 22/e p465]
193. Ans. (a) Only progesterone is small quantity [Ref. Park 21/e p463, Park 22/e p462]

EMERGENCY METHODS

194. Ans. (a) Female condoms [Ref. National Health Programs of India by Dr. J. Kishore, 8/e p120-22]

Also Remember

- **Female condoms:** A device that is used during sexual intercourse
 - Invented by Danish MD Lasse Hessel
 - It is worn internally by the receptive partner and physically blocks ejaculated semen from entering that person’s body
 - Prevent pregnancy and transmission of STIs
 - Three types:
 1. FC Female condom: made of polyurethane
 2. FC2: made of nitrile polymer
 3. Latex
 - Only tool for HIV prevention that women can initiate & control

Male condoms versus female condoms:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Male condoms</th>
<th>Female condoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material commonly used</td>
<td>Latex</td>
<td>Polyurethane*</td>
</tr>
<tr>
<td>Pearl Index (failure rate)</td>
<td>2–14 per HWY</td>
<td>5–21 per HWY</td>
</tr>
<tr>
<td>No. of rings</td>
<td>1</td>
<td>2 (outer & inner)</td>
</tr>
<tr>
<td>Reusable</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Covering skin around external genitals</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Compatible with oil based lubricants</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Insertion requires male erection</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Prevention of pregnancy</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prevention of STIs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(* Now also made of nitrile polymers, known as FC2)
195. Ans. (b) Emergency contraception with OCPs [Ref. National Health programs of India by Dr J. Kishore, 8/e p121]
 - Phrase ‘morning-after pill’ is figurative. Combined OCPs can be used for up to 72 hours after sexual intercourse
 - Insertion of an IUD is more effective than use of Emergency Contraceptive Pills
 - POP as an Emergency Contraceptive has showed greater efficacy with reduced side effects and has therefore superseded Yuzpe & Lancee method (WHO)
 - A single dose of 100 mg mifepristone is also more effective than the Yuzpe regime
 - MC side effect reported by users of emergency contraceptive pills: Nausea

196. Ans. (a) LNG-Intrauterine device [Ref. Park 21/e p463, Park 22/e p462]

RECOMMENDED METHODS OF POST COITAL (EMERGENCY) CONTRACEPTION

- Intra-uterine devices (IUDs):
 - CuT within 5 days
- Hormonal:
 - LNG oral tablet (0.75 mg): 1st tablet within 72 hours of intercourse and 2nd tablet after 12 hours of first dose
 - Combined OCPs (high estrogen 50 mcg): 2 pills within 72 hours of intercourse + 2 pills after 12 hours
 - Combined OCPs (low estrogen 30 mcg): 4 pills within 72 hours of intercourse + 4 pills after 12 hours
- Oral Mifepristone 10 mg once within 72 hours

Review Questions

197. Ans. (a) Norgestrel [Ref. Park 20/e p431]

STERILIZATION

198. Ans. (d) Eight weeks [correct answer is three months] [Ref. Park 21/e p471, Park 22/e p470]
199. Ans. (b) Surgical failure [Ref. Park 22/e p538]
200. Ans. (a) Female sterilization [Ref. K. Park 22/e p469]
201. Ans. (a) 0.1-0.5% [Ref. Dutta’s Obstetrics, 7/e p558]

MISCELLANEOUS

202. Ans. (b) OCPs protect against Candidiasis [Ref. Shaw’s Textbook of Gynaecology, 14/e p208; Park 22/e p463-64]
 - Oral pills are associated with monolial vaginitis (candidiasis)

Also Remember

 - IUDs and Actinomycosis: Actinomyces is a normal commensal of vagina. In presence of an IUD, it can cause an ‘ascending infection’ through threads of the device.
 - If actinomycosis occurs in a female with IUD-in-situ: Remove IUD and cut and send its threads for culture; Antibiotics should be given to control the infection.

203. Ans. (b) Combined oral pills [Ref. Shaw’s Textbook of Gynaecology, 14/e p208-09 Park 22/e p463-64]
 - Increased incidence of ectopic is associated with:
 - Previous salpingitis due to STD (MCC)
 - Congenital defects ion fallopian tubes
 - Transperitoneal migration of fertilized ovum to other side tube
 - Pelvic abnormalities
 - Tubal reconstructive surgery
 - Tubectomy operation
 - In-vitro fertilization
 - Rapid development of trophoblast
 - Extraneous events like appendicitis & endometriosis
 - IUDs (Progestagen containing IUDs have 9-fold higher risk)
Review of Preventive and Social Medicine

- Induction of ovulation by gonadotropins
- Others: advancing age, smoking, vaginal douching, exposure to diethylstilbestrol (DES) in utero
 - Combined oral pills lead to reduced incidence of ectopic pregnancy, due to
 - Suppression of ovulation
 - Reduction in PID

Also Remember

- MC type of ectopic pregnancy: Tubal pregnancy (Fallopian Tubes)
- MC site of implantation: Ampulla (tubal pregnancy)
- Threshold of discrimination of intrauterine pregnancy: 1500 IU/ml of a-hCG
- Cullen’s sign can indicate a ruptured ectopic pregnancy
- Non-surgical treatment of ectopic pregnancy: Methotrexate

Also Remember

204. Ans. (a) Vasectomy [Ref. Park 21/e p470-71, Park 22/e p469-70]
 - Sterilization is the most cost-effective contraceptive measure
 - Cost wise ratio is 5 vasectomies to 1 tubectomy

205. Ans. (c) Require action at time of intercourse [Ref. Park 21/e p457, Park 22/e p456]
 - Conventional Contraceptives: Methods that require action at the time of coitus
 - Condoms
 - Spermicides
 - Jellies
 - Conventional Contraceptives does not mean older contraceptives

Also Remember

- Oldest methods of contraception (aside from sexual abstinence):
 - coitus interruptus
 - lactational
 - certain barrier methods
 - herbal methods (ammenagogues and abortifacients)

Also Remember

KEY ANC-RELATED FINDINGS OF NFHS – 3, INDIA (2005 – 06)
 - MC health problem experienced in pregnancy: Excessive fatigue (48%)
 - AN Care provided by doctor: 50% (By none: 23%)
 - No. of AN visits (> 4): 37%
 - Took IFA: 65% (Took IFA for 90 days or more: 23%)
 - Received > 2 TT injections: 76%
 - Home delivery: 61% (Delivery at health facility: 39%)
 - Delivery conducted by a skilled provider: 47%

Also Remember

206. Ans. (a) Achieve 100% institutional deliveries [Ref. Park 21/e p456, Park 22/e p455]

207. Ans. (a) To bring down Total Fertility Rate (TFR) to replacement levels by 2015 [Ref. Park 22/e p455]
208. Ans. (a) Condom [Ref. Park 21/e p457, Park 22/e p456]

- **Condom fatigue**: Is a term used by medical professionals and safer sex educators to refer to the phenomenon of decreased condom use
 - Also be used to describe a general weariness of and decreased effectiveness of safer sex messages (*prevention fatigue*)
 - The term has particularly been used to describe men who have sex with men (MSM), though the term applies to people of all genders and sexual orientations
 - Condom fatigue has been partially blamed for an increase in HIV infection rates, though this has not been substantiated in any study

Also Remember

- **Male contraceptives under trials**:
 - **Gossypol** (Chinese cotton derivative; research suspended due to 10-20% permanent azoospermia)
 - **Reversible inhibition of sperm under guidance (RISUG)** consists of injecting ‘styrene maleic anhydride in dimethyl sulfoxide’ into the vas deferens and leads to long lasting sterility (Phase III trial)
 - **Vas-occlusive contraception** consists of partially or completely blocking the vas deferens, the tubes connecting the epididymis to the urethra (intra-vas device IVD and other injectable plugs)
 - **Heat-based contraception**: heating the testicles to high temperature for a short period of time to prevent the formation of sperm.
 - **Adjudin**: A non-toxic analog of ‘lonidamine’ disrupts the junctions between nurse cells (Sertoli cells) in the testes and forming spermatids; the sperm are released prematurely and never become functional gametes
 - **A male hormonal contraceptive combination protocol** has been developed, involving injections of Depo-Provera to prevent spermatogenesis, combined with the topical application of testosterone gel to provide hormonal support
 - **Interference with the maturation of sperm in the epididymis** (under research)

209. Ans. (a) 20 weeks [Ref. Park 21/e p468-69, Park 22/e p467-68]

MEDICAL TERMINATION OF PREGNANCY ACT, 1971

- **Passed in**: April 1972
- **Indications for MTP**:
 - **Humanitarian**: If pregnancy is as a result of rape/sexual assault
 - **Eugenic**: Any genetic/ chromosomal anomaly detected in fetus
 - **Therapeutic**: If carrying out full term pregnancy poses a risk to life of mother
 - **Social**: If pregnancy is a result of contraceptive failure
- **Written consent of guardians**:
 - If woman is a lunatic
 - If woman is less than 18 years age
- **Period of gestation must be ‘less than 20 weeks’**:
 - 0 – 12 weeks: Opinion of one doctor is sufficient
 - 12 – 20 weeks: Opinions of 2 doctors required
- **Who can perform MTP**:
 - **Qualification**: MD (Gyn-Obs) or DGO or 6-months Housemanship in Gyn-Obs
 - **Experience**: Atleast carried out 20 – 25 supervised MTPs
- **Where MTP can be done**: At a place authorised by Government of India

210. Ans. (c) Oral contraceptive pills [Ref. RCH- II Programme document]

- Contraceptive choices for a newly married healthy couple
- **Barrier method**:
 - Has a high failure rate; only consistent use for 2 years reduce it
 - Has advantage of HIV/STI protection but a ‘healthy’ couple may not need it
- **IUCD**
 - Is not a method of first choice for nulliparous female
- **Oral contraceptive pills**
 - Low failure rate
 - Ideal method of choice for newly married healthy couple
- **Natural methods**
 - Has a high failure rate
Review of Preventive and Social Medicine

211. Ans. (d) All of the above [Ref. K. Park 21/e p778, Park 22/e p772]

USES OF REGULAR REPORTING OF HEALTH STATISTICS
- To measure health status of population
- To quantify health related problems
- To evaluate trends of disease in a population
- To compare health data locally, nationally and internationally
- To effective plan health programs, policies, services
- To monitor and evaluate health programs
- To evaluate satisfaction among population
- To appreciate health personnel’s efforts
- To promote epidemiological research

212. Ans. ALL CHOICES [Ref. K. Park 21/e p451-452, Park 22/e p755-56]
- Mid-year population is used as denominator in:
 - Crude birth rate
 - Crude death rate
 - Disease specific death rate
 - Sex specific death rate
 - Age specific death rate
 - Weekly death rate
 - General fertility rate
 - General marital fertility rate
 - Age-specific fertility rate
 - Age-specific marital fertility rate

WHO GUIDELINES FOR CONTRACEPTIVE USE IN LACTATING WOMEN
- Progestin-only methods of contraception (i.e., oral contraceptives, levonorgestrel-IUDs, levonorgestrel implant, Depo-Provera injection) are not usually recommended before 6 weeks postpartum unless other more appropriate methods are not available or not acceptable
- Progestin-only methods can be used in any circumstances after 6 weeks postpartum
- Combined estrogen-progestin contraceptives (i.e., oral contraceptives, transdermal path, or vaginal ring) are not to be used before 6 weeks postpartum
- Combined estrogen-progesterin contraceptives are not usually recommended between 6 weeks and 6 months postpartum unless other more appropriate methods are not available or not acceptable
- Combined estrogen-progesterin contraceptives can be generally used after 6 months postpartum

An IUD is an ideal contraceptive for lactating women because it has no effect on the quality or composition of breast milk
- A post-partum IUD is generally inserted 6-8 weeks after delivery
- IUD is an effective method for long term contraception

214. Ans. (a) Barrier methods [Ref. K. Park 21/e p457]
- Ideal contraceptive for a couple who are living separately in two cities and meets only occasionally is Condom as long term contraception is not desirable
 - Also OCPs, Barrier methods are required for long term contraception and both of them have few side effects too; so they are not desirable in this case
 - Inj. DMPA is an injectable (DEPOT) hormonal formulation which given contraception for 3 months which is not desirable here.

215. Ans. (a) OCP [Ref. K. Park 21/e p463]

216. Ans. (a) Wife only [Ref. MTP Act, GoI]

CONSENT UNDER MTP ACT, 1972
- If pregnant female is 18 years or above: Consent of woman alone is required
- If pregnant female is less than 18 years: Consent of guardian is required
- If pregnant female is lunatic: Consent of guardian is required
Also Refer to Ans. 173

https://kat.cr/user/Blink99/
217 Ans. (c) 30-35% [Ref. Human Reproductive Biology by Lopez & Jones, 4/e p286]
218 Ans. (b) 1977 [Ref. Indian Economy by TR Jain, 2010-11/e, p400]

Review Questions

219. Ans. (d) Diaphragm [Ref. Park 21/e p458, Park 22/e p457]
220. Ans. (b) Nonoxynol [Ref. Park 21/e p458, Park 22/e p457]
221. Ans. (c) None [Ref. Park 21/e p468-69, Park 22/e p467-68]
222. Ans. (a) Vasectomy [Ref. Park 21/e p470-71, Park 22/e p469-70]
Ante-natal and Post-natal Visits (RCH Program)

- Ideal recommended ante-natal visits: 13 – 14

<table>
<thead>
<tr>
<th>Period of gestation</th>
<th>Frequency of visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 7 months</td>
<td>Once every month</td>
</tr>
<tr>
<td>8th month</td>
<td>Twice a month</td>
</tr>
<tr>
<td>9th month onwards</td>
<td>Once a week</td>
</tr>
</tbody>
</table>

- Minimum recommended ante-natal visits: 4

<table>
<thead>
<tr>
<th>Visit</th>
<th>Period of gestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First AN visit</td>
<td>Early registration</td>
</tr>
<tr>
<td>Second AN visit</td>
<td>14-26 weeks POG</td>
</tr>
<tr>
<td>Third AN visit</td>
<td>28-34 weeks POG</td>
</tr>
<tr>
<td>Fourth AN visit</td>
<td>36 weeks POG - Term</td>
</tr>
</tbody>
</table>

- Minimum recommended post-natal visits: 3

<table>
<thead>
<tr>
<th>Visit</th>
<th>Period of gestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First PN visit</td>
<td><3 days</td>
</tr>
<tr>
<td>Second PN visit</td>
<td>1 week</td>
</tr>
<tr>
<td>Third PN visit</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

At Risk Approach

- **At risk approach**: Central purpose is to identify high risk cases (as early as possible) from a large group of all antenatal mothers/infants, and provide specialized care to them, while continuing to provide appropriate care to all antenatal mothers/infants.

- **At risk infants**: Contribute to perinatal, neonatal and infant mortality; so they have to be provided with special intensive care; Basic criteria for identifying these babies include:
 - Birth weight < 2.5 kg (low birth weight)
 - Twins
 - Birth order > 5
 - Artificial feeding
 - Weight < 70% of expected (II and III degrees of malnutrition)
 - Failure to thrive (failure to gain weight in 3 successive months)
 - Children with PEM, diarrhea
 - Working mother/single parent

- **At risk mothers**: Basic criteria for identifying these mothers include:
 - Elderly primi (> 30 years)
 - Short statured primi (< 140 cms)
 - Malpresentations (breech, transverse lie, etc.)
 - Antepartum hemorrhage, threatened abortion
 - Preeclampsia, Eclampsia
 - Anemia
 - Twins, hydramnios
 - Previous still birth, IUD, manual removal of placenta
 - Elderly grandmultipara (≥ 5 parity)
Preventive Obstetrics, Paediatrics and Geriatrics

- Prolonged pregnancy (> 14 days after EDD)
- History of previous CS or instrumental delivery
- Pregnancy associated with general diseases (diabetes, TB, etc.)

- Danger signals during labour: Basic criteria for identifying these mothers (so that they can be transferred to nearest PHC) include:
 - Sluggish or no pains after rupture of membranes
 - No progress after rupture of membranes (only good pains for 1 hour)
 - Prolapse of hand or cord
 - Meconium stained liquor or slow irregular or fast fetal heart sound
 - Excessive show or bleeding during labour
 - Collapse during labour
 - Placenta not separated within half hour after delivery
 - PPH or collapse
 - Temperature > 38° C

Nutritional Requirements

- Recommended daily energy intake: [NEW GUIDELINES 2011]

<table>
<thead>
<tr>
<th>Group</th>
<th>Energy Allowance per day (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infancy</td>
<td></td>
</tr>
<tr>
<td>0-6 months</td>
<td>92 Kcal/kg/day</td>
</tr>
<tr>
<td>6-12 months</td>
<td>80 Kcal/kg/day</td>
</tr>
<tr>
<td>Adult Reference Male (Wt: 60 Kg)</td>
<td></td>
</tr>
<tr>
<td>Sedentary/Light work</td>
<td>2320 Kcal/day</td>
</tr>
<tr>
<td>Moderate Work</td>
<td>2730 Kcal/day</td>
</tr>
<tr>
<td>Heavy Work</td>
<td>3490 Kcal/day</td>
</tr>
<tr>
<td>Adult Reference Female (Wt: 55 kg)</td>
<td></td>
</tr>
<tr>
<td>Sedentary/Light work</td>
<td>1900 Kcal/day</td>
</tr>
<tr>
<td>Moderate Work</td>
<td>2230 Kcal/day</td>
</tr>
<tr>
<td>Heavy Work</td>
<td>2850 Kcal/day</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>+ 350 Kcal/day</td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
</tr>
<tr>
<td>First 6 months</td>
<td>+ 600 Kcal/day</td>
</tr>
<tr>
<td>6-12 months</td>
<td>+ 520 Kcal/day</td>
</tr>
</tbody>
</table>

(+ indicates ‘over and above the daily requirement’)

- Requirements in pregnancy and lactation:

<table>
<thead>
<tr>
<th>Group</th>
<th>Requirement per day</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy (Kcal/day)</td>
</tr>
<tr>
<td>Woman</td>
<td></td>
</tr>
<tr>
<td>Sedentary work</td>
<td>1900</td>
</tr>
<tr>
<td>Moderate work</td>
<td>2230</td>
</tr>
<tr>
<td>Heavy work</td>
<td>2850</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>+ 350</td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
</tr>
<tr>
<td>0 – 6 months</td>
<td>+600</td>
</tr>
<tr>
<td>6 – 12 months</td>
<td>+520</td>
</tr>
</tbody>
</table>

(+ indicates ‘over and above the daily requirement’)

- Other requirements in pregnancy and lactation:

<table>
<thead>
<tr>
<th></th>
<th>Pregnancy</th>
<th>Lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteins</td>
<td>+23 g/day³</td>
<td>+19 g/day⁰</td>
</tr>
<tr>
<td>Calcium</td>
<td>1200 mg/day³</td>
<td>1200 mg/day⁰</td>
</tr>
<tr>
<td>Iron</td>
<td>35 mg/day³</td>
<td>21 mg/day⁰</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>800 mcg/day³</td>
<td>950 mcg/day⁰</td>
</tr>
</tbody>
</table>

(+ indicates ‘over and above the daily requirement’)
Cleans of Safe Delivery

- ‘Five cleans’ (practices) under strategies for elimination of neonatal tetanus include:
 - Clean delivery surface
 - Clean hands (of birth attendants)
 - Clean cord cut (blade or instrument)
 - Clean cord tie
 - Clean cord stump (no applicant)
- Procedures undertaken to ensure 5 cleans:
 - Clean delivery surface: A clean plastic sheet
 - Clean hands: Soap and clean water
 - Clean cord cut: A new razor blade
 - Clean cord tie: A clean piece of thread
 - Clean cord stump: Nothing to be applied to cord
- Sometimes these practices are called as ‘3 cleans’:
 - Clean delivery surface
 - Clean hands
 - Clean cord care (cut, tie and stump)
- Suggested ‘Seven cleans’ (include five cleans)
 - Clean delivery surface
 - Clean hands (of birth attendants)
 - Clean cord cut (blade or instrument)
 - Clean cord tie
 - Clean cord stump (no applicant)
 - Clean water, and
 - Clean towel, for hand washing

IFA Tablets

- An adult tablet of IFA contains: 100 mg elemental Iron and 500 mcg Folic acid (to be given for 100 days minimum in pregnancy)
- Schedule: 1 Tablet per day in 4-5-6 month POG (Total 100 tablets)
- A pediatric tablet of IFA contains: 20 mg elemental Iron and 100 mcg Folic acid (to be given for 100 days minimum every year till 5 years age of child)

TT in Pregnancy

Refer to Chapter 3, Theory

Mother to Child Transmission (MTCT)

Refer to Chapter 5, Theory

Birth Weight

- Birth weight of an infant is the ‘single most important determinant of its chances of survival, healthy growth and development’
- Single best measure to assess physical growth: Weight
- Birth weight preferably be measured within: 1st hour of life
- Average birth weight in India: 2.8 kg (2.7 – 2.9 kg)
- Majority of LBW in India is due to: Maternal malnutrition associated with fetal growth retardation
- Relationship between maternal nutrition and birth weight of babies: Linear
- Smoking during pregnancy reduces birth weight by an average: 170 grams
- LBW is not a contraindication for any vaccination EXCEPT Hepatitis B: Hepatitis B vaccine is contraindicated in preterm children with birth weight <2.0 kg
- Field instrument for measurement of birth weight: Salter’s Scale

https://kat.cr/user/Blink99/
Preventive Obstetrics, Paediatrics and Geriatrics

- Growth chart is plotted between: Weight and Age
- Birth weight doubles at 5 months age, triples at 1 year and quadruples at 2 years age
- Birth weight increments:

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3 months</td>
<td>200 grams per week</td>
</tr>
<tr>
<td>4 – 6 months</td>
<td>150 grams per week</td>
</tr>
<tr>
<td>7 – 9 months</td>
<td>100 grams per week</td>
</tr>
<tr>
<td>10 – 12 months</td>
<td>50 grams per week</td>
</tr>
<tr>
<td>1 – 2 years</td>
<td>2.5 kg per year</td>
</tr>
<tr>
<td>3 – 5 years</td>
<td>2.0 kg per year</td>
</tr>
</tbody>
</table>

Low Birth Weight (LBW)
- Birth weight less than 2500 grams (<2.5 kg) [WHO]. It includes both pre-term (<37 weeks POG) and full-term (>37 weeks POG) babies
- Prevalence of LBW: 15% (World); 28% (India)
 - If cutoff for LBW is reduced to 2.0 kg, expected prevalence of LBW in India will be 5.5%
- LBW is regardless of gestational age
- Depending on the population, the percentage of LBW be based on measurements of atleast 500 babies
- 3 inter-related risk factors for LBW: Malnutrition, Infection and Unregulated fertility
- Goal for LBW in National Health Policy 1983: Reduce LBW to <10% by 2000

Babies according to gestational age:
- Pre-term babies: Born at < 37 weeks POG
- Term babies: Born at 37 – 42 weeks (259 – 293 days)
- Post-term babies: Born at > 42 weeks (> 294 days)

- Low birth weight: ‘Less than 2500 grams IRRESPECTIVE of gestational age’
- Pre-term babies: Born at < 37 weeks POG
- Small-for-date (SFD) babies: Born at term or post-term
 - ‘weigh less than 10th percentile for gestational age’
 - as a result of IUGR
 - high risk of dying in neonatal and infancy period

MCH INDICATORS

Infant Mortality Rate (IMR)
- Infant mortality rate (IMR): Is the ratio of infant deaths registered in a given year to the total number of live births registered in the same year; IMR is usually expressed as a rate per 1000 live births (LB)
 \[
 \text{IMR} = \frac{\text{No. of infant deaths in a given year}}{\text{Total no. of live births in the same year}} \times 1000
 \]
- Infant Mortality Rate (IMR) is the SECOND best indicator of socio-economic development of a country
 - Best indicator of SE development: Under 5 mortality rate (U5MR)
- IMR is most important indicator of
 - health status of a community
 - level of living and
 - effectiveness of MCH services in general

IMR is usually expressed as a rate per 1000 live births (LB)

MCC of IMR in India: Low birth rate and prematurity

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- The infant mortality rate is among ‘the best predictors of state failure’
- Infant Mortality Rate (IMR):
 - Infant Mortality Rate (IMR) is a rate
 - Infant mortality accounts for 18% of total deaths in India
 - MCC of IMR in India: Low birth weight and prematurity
 - MCC of IMR in World: Pneumonia
- IMR (India): 40 per 1000 LB [54 MP/ Assam; 09 Goa]
- IMR (World): 42 per 1000 LB (Monaco: 1.8; Afghanistan: 122) [2012]
- Goal in National Population Policy 2000: 30 per 1000 LB by 2010
- Goal in National Health Policy 2002: 30 per 1000 LB by 2010

Factors Affecting IMR

- Likely factor affecting infant mortality in contemporary India is inadequate prenatal care and infrequent attendance at delivery
- Factors affecting Infant Mortality Rate (IMR):
 - Biological factors:
 - Birth weight (BW): IMR greater in BW < 2.5 kg and > 4.0 kg
 - Age of mother: IMR is greater in age < 19 and > 35 years
 - Birth order: Infant mortality is greatest for birth order 1 and least for 2; It increases from birth order 3 onwards
 - Birth spacing: IMR reduces with wider birth spacing
 - Multiple births: IMR increases in multiple births
 - Family size: IMR increases as family size increases
 - High fertility: IMR increases with high fertility
- Economic factors:
 - Socio-economic status (SES): IMR higher in lower SES
- Cultural and social factors:
 - Breast feeding: IMR higher in early weaning and bottle fed infants living in poor hygienic conditions
 - Religion and caste: IMR is affected by patterns, habits, customs, child care, etc
 - Early marriages: IMR higher in teen age pregnancy
- Other factors:
 - Sex of the child: IMRgirls > IMRboys
 - Quality of mothering: IMR low in good quality of mothering
 - Quality of health care: IMR high in improper obstetric and pediatric care
 - Maternal education: IMR low in mother with high literacy rate
 - Broken family: IMR higher
 - Illegitimacy: IMR higher
 - Brutal habits and customs: IMR high (Not feeding colostrum, applying cow-dung to umbilical-stump, faulty feeding practices)
 - Untrained dai: High IMR
 - Bad environmental sanitation: High IMR

Neonatal Mortality Rate (NNMR)

- Neonatal mortality rate (NNMR): Is the number of neonatal deaths (deaths within completed 28 days after birth) per 1000 live births in that year
 \[
 \text{NNMR} = \frac{\text{No. of neonatal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 1000
 \]
- Early neonatal mortality (ENNM): Neonatal mortality in first week (1-7 days) of life
- Late neonatal mortality (LNNM): Neonatal mortality in first to fourth week (8-28 days) of life
- NNMR (India): 29 per 1000 LB [2014]
- NNMR is directly related with birth weight and gestational age

\[\text{MCC of NNMR in India is preterm birth}\]
• NNMRboys > NNMRgirls

• MCC of NNMR in India is preterm birth
 - MCC of ENNMR: Prematurity and congenital anomalies
 - MCC of LNNMR: Infections (diarrhea and tetanus)

• Causes of Neonatal mortality (0 – 4 weeks):
 - Low birth weight and prematurity
 - Birth injury and difficult labour
 - Sepsis
 - Congenital anomalies
 - Hemolytic diseases of newborn
 - Conditions of placenta and cord
 - Diarrhoeal diseases
 - Acute respiratory infections
 - Tetanus

Maternal Mortality Rate (MMR)

• Maternal Mortality rate (MMR): Maternal deaths expressed as per 100,000 live births, where a ‘maternal death’ is defined as ‘death of a woman while pregnant or during delivery or within 42 days (6 weeks) of termination of pregnancy, irrespective of duration or site of pregnancy, from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes’

- MMR is a ratio (Maternal mortality rate is a misnomer; MMR is not a rate)

\[
\text{MMR} = \frac{\text{No. of maternal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 100,000
\]

• MMR World: 210 per 100,000 live births; Causes of MMR (globally):
 - Hemorrhage (25%)
 - Indirect causes (20%)
 - Infection (15%)
 - Unsafe abortion (13%)
 - Eclampsia (12%)
 - Obstructed labour (8%)

• MMR India: 178 per 100,000 live births [2014]; Causes of MMR (India) [SRS 2001-03]:
 - Hemorrhage (38%)
 - Other conditions (34%)
 - Sepsis (11%)
 - Abortion (8%)
 - Obstructed labour (5%)
 - Hypertensive disorders (5%)

• Millennium Development Goal (MDG) as: Reduce maternal mortality by three-fourths by 2015

• RHIME: ‘Representative, re-sampled, routine household interview of mortality, with medical evaluation’: Is a new method for MMR estimation introduced in India from 2003 SRS
 - RHIME is an enhanced form of verbal autopsy

Child Mortality Rate, CMR (Under 5 mortality rate, U5MR)

\[
\text{CMR} = \frac{\text{No. of deaths of children less than 5 years age in a year}}{\text{No. of live births in a year}} \times 1000
\]
Review of Preventive and Social Medicine

- U5MR (India): 53 per 1000 LB [2013] □
- U5MR (World): 46 per 1000 LB [2013]
- Single MCC of U5MR or CMR is Pneumonia (19%) [diarrhoea – 17%; malaria – 8%] □
- Neonatal conditions lead to 37% of total U5MR or CMR:
 - Infections (MC neonatal condition leading to U5MR)
 - Preterm births
 - Asphyxia

Child Death Rate, CDR (1 – 4 year Mortality Rate)

CDR = \(\frac{\text{No. of deaths of children aged 1 – 4 years in a year}}{\text{Mid year population of children aged 1 – 4 years}} \times 1000 \)

- CDR is a more refined indicator of social situation in a country than infant mortality
- Highest risk of death in 1 – 4 years age: 2nd year of life
- CDR (India): 3.6% of total deaths [2010] □
- MCC CDR (Developing countries): Diarrhoeal diseases and respiratory infections
- MCC CDR (Developed countries): Accidents
- Millennium Development Goal (MDG) 4: Reduce child mortality by two-thirds by 2015
- UNICEF considers U5MR or CMR as ‘single best indicator of socio-economic development and well being’ □

Child Survival Rate (CSR) (Child Survival Index) □

CSR = \(\frac{1000 - \text{U5MR}}{10} \)

- CSR (India): 94.7 [2013]

Post Neonatal Mortality Rate (PNNMR)

- Post-neonatal mortality rate (PNNMR): Is the number of neonatal deaths (deaths within completed 28 days after birth) per 1000 live births in that year □

PNNMR = \(\frac{\text{No. of deaths between age 28 days to 1 year in a given year}}{\text{Total no. of live births in the same year}} \times 1000 \)

Perinatal Mortality Rate (PNMR)

- Perinatal Mortality rate (PNMR): Includes both late fetal deaths (stillbirths) and early neonatal deaths □

PNMR = \(\frac{\text{Late fetal deaths and early neonatal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 1000 \)

- Perinatal period is from 28 weeks period of gestation to 7th completed days of life (But the WHO definition of perinatal period is from 22 completed weeks gestation to 7th completed days of life) □

- PNMR is the sum of the fetal mortality and the neonatal mortality
- PNMR is a major marker to assess the quality of health care delivery □
- PNMR (India): 32 per 1000 LB [2010]
- P List □ (ICD 10): 100 causes of perinatal mortality and morbidity
BREAST FEEDING

WHO Guidelines for India

- WHO recommends, in developing countries, exclusive breast feeding till 6 months age.
- WHO recommends, in developing countries, breast feeding till minimum 2 years age.

Nutritional Importance of Breast-milk

- Energy content of breast milk: 65 Kcal/100 ml
- Protein content of breast milk: 1.1 grams/100 ml
- Mean output of breast milk per day (ml):

<table>
<thead>
<tr>
<th>Months of lactation</th>
<th>Mean output (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>530</td>
</tr>
<tr>
<td>3 – 4</td>
<td>640</td>
</tr>
<tr>
<td>5 – 6</td>
<td>730*</td>
</tr>
<tr>
<td>7 – 8</td>
<td>660</td>
</tr>
<tr>
<td>9 – 10</td>
<td>600</td>
</tr>
<tr>
<td>11 – 12</td>
<td>525</td>
</tr>
</tbody>
</table>

- Nutritive values of milk (per 100 gms):

<table>
<thead>
<tr>
<th></th>
<th>Cow’s milk</th>
<th>Human milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose (g)</td>
<td>4.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>3.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>120</td>
<td>28</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>Water (g)</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>Energy (Kcal)</td>
<td>67</td>
<td>65</td>
</tr>
</tbody>
</table>

- Human Milk is richer in Carbohydrate (lactose), Iron and Water content WHILE Cow’s milk is richer in Fat, Protein, Calcium and energy content.
 - Human milk proteins: More cystine and taurine; less methionine; better digested than cow’s milk proteins.
 - Human milk fats: Higher levels of PUFAs, esp., linoleic acid and -linoleic acid; better digested and absorbed; low calcium content but better absorbed than cow’s milk.
 - Human milk vitamins and minerals: Human milk is richer in Vitamin A, C; richer in copper, cobalt and selenium; richer in iron and higher bioavailability; high calcium/phosphorus ratio; Human milk has lesser sodium.

- Comparative contents of nutrients in different types of milk:
 - Fat content of milk: Buffalo > Goat > Cow > Human
 - Protein content of milk: Buffalo > Goat > Cow > Human
 - Energy content of milk: Buffalo > Goat > Cow > Human
 - Lactose content of milk: Human > Buffalo > Goat > Cow

Colostrum

- Is the most suitable food immediately after birth of the baby; Regular milk comes 3-6 days after birth
- Also known as ‘Beestings’, ‘First milk’ or ‘Immune Milk’
Review of Preventive and Social Medicine

- High in carbohydrates, protein, and antibodies and low in fat
- Contains all five immunoglobulins found in all mammals, IgA, IgD, IgE, IgG and IgM
- Few occasions when breast feeding might harm the infant:
 - Infants with classic galactosemia
 - Mother has untreated pulmonary tuberculosis
 - Mother is taking certain medications that suppress the immune system
 - Mother has had unusually excessive exposure to heavy metals such as mercury
 - Mother has HIV
 - Mother uses potentially harmful substances such as cocaine, heroin, and amphetamines

GROWTH AND DEVELOPMENT

Indicators of Malnutrition

- Indicators of malnutrition:
 - Single best parameter for assessment of physical growth: Weight (and rate of weight gain)
 - Single most sensitive measure of growth: Weight
 - Single most reliable criterion of assessment of health and nutritional status: Weight
 - Weight for height is considered more important than weight alone, for the measurement of physical growth
 - Height is a stable measurement of growth as opposed to body weight
 - Weight: Reflects only present health status
 - Height: Indicates events in past also
- Acute and Chronic Malnutrition:
 - Low weight for age: Is known as 'Underweight' (Acute + Chronic Malnutrition)
 - Low weight for height: Is known as ‘Nutritional wasting’ or ‘Emaciation’ (Acute Malnutrition)
 - Low height for age: Is known as ‘Nutritional stunting’ or ‘Dwarfing’ (Chronic malnutrition)
- Age independent parameters for growth assessment:
 - Weight for height
 - Mid arm circumference (MAC)
 - Thickness of subcutaneous fat
 - Body ratios
 - Weight : Height
 - MAC : Head circumference
- Gomez Classification of malnutrition: Is based on ‘weight for age’

<table>
<thead>
<tr>
<th>Weight for age*</th>
<th>Grade of malnutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 110%</td>
<td>Normal</td>
</tr>
<tr>
<td>75 – 89%</td>
<td>1st degree (MILD)</td>
</tr>
<tr>
<td>60 – 74%</td>
<td>2nd degree (MODERATE)</td>
</tr>
<tr>
<td>< 60%</td>
<td>3rd degree (SEVERE)</td>
</tr>
</tbody>
</table>

- Waterlow classification:

<table>
<thead>
<tr>
<th>Weight/ height</th>
<th>> Mean – 2SD</th>
<th>< Mean – 2SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height/ age</td>
<td>Normal</td>
<td>Wasted</td>
</tr>
<tr>
<td>> Mean – 2SD</td>
<td>Normal</td>
<td>Wasted</td>
</tr>
<tr>
<td>< Mean – 2SD</td>
<td>Stunted</td>
<td>Wasted & Stunted</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Milestones of Development

<table>
<thead>
<tr>
<th>Age</th>
<th>Motor development</th>
<th>Language development</th>
<th>Adaptive development</th>
<th>Socio-personal development</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-8wks</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>look/smile at mother</td>
</tr>
<tr>
<td>3m</td>
<td>holds head erect</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4-5m</td>
<td>–</td>
<td>listening</td>
<td>reach for objects</td>
<td>recognizes mother</td>
</tr>
<tr>
<td>6-8m</td>
<td>sits without support</td>
<td>experiment with noises</td>
<td>hand-transfer object</td>
<td>enjoys hide & seek</td>
</tr>
<tr>
<td>9-10m</td>
<td>crawls</td>
<td>increase sound-range</td>
<td>releases objects</td>
<td>stranger suspicion</td>
</tr>
<tr>
<td>10-11m</td>
<td>stands with support</td>
<td>first words</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>12-14m</td>
<td>walks wide base</td>
<td>–</td>
<td>builds</td>
<td></td>
</tr>
<tr>
<td>18-21m</td>
<td>walks narrow base</td>
<td>joining words</td>
<td>begins to explore</td>
<td></td>
</tr>
<tr>
<td>24m</td>
<td>runs</td>
<td>short sentences</td>
<td>–</td>
<td>dry by day</td>
</tr>
</tbody>
</table>

Birth Weight

- **Average birth weight in India**: 2.8 kg (2.7 – 2.9 kg)²
 - Low Birth Weight (LBW): BW < 2.5 kg²
 - LBW in India: 28%²
- **BW doubles at 5 months, triples by 1 year and quadruples by 2 years age**:²
- **Minimum expected weight gain per month**: 500 grams
- **Weight gain pattern in children**:

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3 months</td>
<td>200 grams per week</td>
</tr>
<tr>
<td>4 – 6 months</td>
<td>150 grams per week</td>
</tr>
<tr>
<td>7 – 9 months</td>
<td>100 grams per week</td>
</tr>
<tr>
<td>10 – 12 months</td>
<td>50 grams per week</td>
</tr>
<tr>
<td>1 – 2 years</td>
<td>2.5 kg per year</td>
</tr>
<tr>
<td>3 – 5 years</td>
<td>2.0 kg per year</td>
</tr>
</tbody>
</table>

Birth Length/ Height

- **Average birth length in India**: 50 cms²
- **BL doubles at**: 4 years age²
- **Height increase pattern in children**:

<table>
<thead>
<tr>
<th>Age</th>
<th>Height increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> year</td>
<td>25 cms per year<sup>2</sup></td>
</tr>
<tr>
<td>2<sup>nd</sup> year</td>
<td>12 cms per year</td>
</tr>
<tr>
<td>3<sup>rd</sup> year</td>
<td>9 cms per year</td>
</tr>
<tr>
<td>4<sup>th</sup> year</td>
<td>7 cms per year</td>
</tr>
<tr>
<td>5<sup>th</sup> year</td>
<td>6 cms per year</td>
</tr>
</tbody>
</table>

- **Near-final height attainment**:²
 - Indian boys attain 98% of final height by 17.75 years
 - Indian girls attain 98% of final height by 16.5 years
Growth Charts

- **Growth Chart (Road-to-health chart):** Is a visible display of child’s physical growth and development.
 - **Growth chart was developed by:** David Morley
 - **Growth chart is designed for:** Longitudinal follow-up (growth monitoring) of a child.
 - **Growth chart is generally plotted between:** Weight and Age.
- **Growth chart provides information on:**
 - Identification and registration
 - Birth date and birth weight
 - Chronological age
 - Weight-for-age
 - Developmental milestones
 - History of sibling health
 - Immunization procedures
 - Introduction of supplementary foods
 - Episodes of sickness
 - Child spacing (Contraceptive/family planning methods used)
 - Reasons for special care

WHO Home Based Growth Chart

- **WHO growth chart has 2 reference curves:**
 - **Upper Reference Curve (URC):** 50th percentile for boys
 - **Lower Reference Curve (LRC):** 3rd percentile for girls
- **Road to Health**: Is the space between two growth curves (weight channel). It includes zone of normality for most populations, i.e., 95% of healthy normal children used as a reference fall in this area.
- **WHO reference curves are based on:** NCHS Standards (National Centre for Health Statistics, USA)
 - The 3rd percentile (LRC) corresponds to approximately 2 SD below the median of weight-for-age reference value (URC).

WHO Service Growth Chart

- **Has 5 reference curves:**
 - 97th percentile of standard reference population
 - 50th percentile of standard reference population
 - 3rd percentile of standard reference population
 - 3rd SD value of standard median population
 - 4th SD value of standard median population

Government of India (GOI) recommended Growth Chart

- **GOI recommended growth chart has 4 reference curves:**
 - 80% of median (50th percentile or URC) of WHO reference standard
 - 70% of median (50th percentile or URC) of WHO reference standard
 - 60% of median (50th percentile or URC) of WHO reference standard
 - 50% of median (50th percentile or URC) of WHO reference standard
 - The 80% of median corresponds to approximately 2 SD below the median of weight-for-age reference value (i.e., URC).
- **Interpretation of plot of weight on GOI recommended growth chart:**
 - Between 80% and 70% lines: 1st degree or Mild malnutrition
 - Between 70% and 60% lines: 2nd degree or Moderate malnutrition
 - Between 60% and 50% lines: 3rd degree or Severe malnutrition
 - Below 50% line: 4th degree or IV grade malnutrition
ICDS Growth Chart (Based on WHO MGRS Child Growth Standards 2006)

- ICDS Growth chart has 3 reference curves:
 - Reference standard
 - 2SD below of reference standard
 - 3SD below reference standard

Key Facts about Growth Charts

- Growth chart was first designed by ‘David Morley’ (and later modified by WHO)
- Growth chart is the ‘passport to child’s health care’
- Best available standards of growth: NCHS standards
- Direction of growth in a growth chart is more important than the position of dots
 - Periodic weight record is more useful than a single weight plot
- Objective in child care: To keep the child above 3rd percentile
- Flattening of a child’s plot: indicates malnutrition
- During states of under-nutrition, weight, height and brain growth are affected in that order
- There are 49 types of growth charts used in India
- Uses of growth chart:
 - Growth monitoring tool
 - Diagnostic tool for identifying high risk children
 - Planning and policy making
 - Educational tool
 - Tool for action
 - Evaluation of corrective measures and impact of a programme
 - Tool for teaching
- Reference or standard values of growth:
 - Harvard (Boston) standards
 - NCHS standards (WHO reference values)
 - Indian standards (ICMR values)

Under Fives Clinic

- Under fives clinic concept: Aims at providing comprehensive health care at a separate facility, within resources available in the country
 - Emblem for U5 Clinic includes its five components:
 - Preventive care
 - Family planning
 - Care in illness
 - Growth monitoring
 - Health education

Figure: Under fives clinic

- Most effective workers in Under-Five Clinics: Mothers
SCHOOL HEALTH

Health Disorders among School Children
- Commonly detected morbidities in school children (in decreasing order of prevalence):
 - Dental defects\(^{(1)}\) (180.3 per 1000)
 - Goiter (123.8 per 1000)
 - Malnutrition (123.5 per 1000)

School Health Examination
- In 1961, ‘Rennuka Roy School Health Committee’ laid the foundations for a comprehensive school health programme in India
 - Recommendation: Medical examination of children ‘at the time of entry and thereafter every 4 years’
 - NRHM [New Guidelines] recommendation: Once every 6 months\(^{(2)}\)
- **School Eye Screening Programme:**
 - Focus on middle schools (V – VIII classes: 10 – 14 years age group)
 - Teachers to do screening; 1 teacher per 150 students\(^{(2)}\)
 - Visual acuity cutoff for referral to PHC: < 6/9\(^{(2)}\)

Healthy School Environment
- **Healthy school environment:** Suggested minimum standards for sanitation of schools and its environs in India include,
 - **Location:** Away from noisy surroundings; kept fenced
 - **Site:** 5 acres for primary schools; 10 acres for higher elementary schools
 - **Structure:** Exterior walls 10 inch thick and heat resistant
 - **Class room:** 1 class room per 40 students maximum\(^{(2)}\)
 - **Per capita space:** >10 sq. feet\(^{(2)}\)
 - **Furniture:** Single desks of ‘minus (-) type’\(^{(2)}\)
 - **Doors and windows:** Doors and windows area > 25% of floor area\(^{(2)}\)
 - **Color:** Inside color of walls should be white
 - **Lighting:** Natural light from left side
 - **Water supply:** Safe and potable and continuous supply through taps
 - **Lavatory:** 1 urinal per 60 students and 1 latrine per 100 students\(^{(2)}\)

ICDS, IMNCI, BFHI
Ten Steps to Successful Breast Feeding (WHO-UNICEF and BFHI 1991 Baby Friendly Hospital Initiative\(^{(3)}\)): Every facility providing maternity services and care to the newborn infants should, [MNEMONIC: SERENDIPITY]
- Have a written breast feeding Policy that is routinely communicated to all health care staff
- Train all health care staff in skills necessary to implement this policy
- Inform all pregnant women about benefits and management of breast feeding
- Help mother Initiate breast feeding ‘within half hour of birth’
- Show mothers how to breast feed, and how to maintain lactation even if they are separated from their infants
- Give newborn infants no food or drink other than breast milk, unless medically indicated
- **Practice Rooming-in:** Allow mothers and infants to remain together 24 hours a day
- Encourage ‘breast feeding on Demand’
- Foster Establishment of breast feeding support groups and refer mothers to them on discharge from the hospital or clinic:
 - Eliminate any support by the manufacturers of infant-formula/ infant-food or feeding bottles
 - Visual acuity cutoff for referral to PHC: < 6/9
 - Desks of ‘minus (-) type’
 - Doors and windows area > 25% of floor area
 - 1 urinal per 60 students and 1 latrine per 100 students
Preventive Obstetrics, Paediatrics and Geriatrics

- Prohibit distribution of free and low-cost supplies of breast milk supplies
- Provide additional lactation assistance to mothers of special cases, i.e. low birth weight, caesarean section
- Assure a safe and, healthy and positive birthing experience for mother and infant

Integrated Management of Neonatal and Childhood Illness (IMNCI)
Refer to Theory, Chapter 6

Integrated Child Development Services (ICDS)

- Integrated Child Development Services (ICDS), 1975: ICDS aims at providing services to pre-school children in an integrated manner so as to ensure proper growth and development of children in rural, tribal and slum areas
 - ICDS is one of the world’s largest programmes for early childhood development
- ICDS is a centrally sponsored scheme
- ICDS provides an integrated package of services:
 - Supplementary nutrition
 - Immunization
 - Health check-up
 - Medical referral services
 - Nutrition and health education for women
 - Non-formal education for children aged 3 – 6 years, and pregnant and nursing mothers in rural, urban and tribal areas
- ICDS Beneficiaries (Irrespective of income of family)
 - Children 0 – 6 years age
 - Pregnant and lactating mothers
 - Women in reproductive age group
 - Adolescent girls 11 – 18 years
- Heart of ICDS system: Anganwadi
 - Focal point for ICDS services delivery is Anganwadi Worker; Each Anganwadi has 1 Anganwadi worker and 1 helper
 - 1 Anganwadi centre per 400–800 population in rural and urban projects
 - 1 Anganwadi centre per 300–800 population in tribal projects
 - 1 Mini-Anganwadi centre per 150 population
- Supplemental nutrition given through ICDS: 300 feeding days in a year [NEW 2014 GUIDELINES]

<table>
<thead>
<tr>
<th>Category</th>
<th>Existing Calories (Kcal)</th>
<th>Existing Protein (g)</th>
<th>Revised Calories (Kcal)</th>
<th>Revised Protein (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (6-72 months)</td>
<td>300</td>
<td>8-10</td>
<td>500</td>
<td>12-15</td>
</tr>
<tr>
<td>Severely malnourished children (6-72 m)</td>
<td>600</td>
<td>20</td>
<td>800</td>
<td>20-25</td>
</tr>
<tr>
<td>Pregnant women and Nursing mothers</td>
<td>500</td>
<td>15-20</td>
<td>600</td>
<td>18-20</td>
</tr>
</tbody>
</table>

- Administrative unit of ICDS: ‘Community Development Block’; each project covering a population of 1,00,000 (rural/urban) or 35,000 (tribal)
 - 1 CDPO (Community Development Project Officer) is in charge of 4 supervisors (Mukhyasevikas) and 100 Anganwadis (each supervisor for 25 Anganwadis)
- Kishori Shakti Yojana: Scheme for adolescent girls in ICDS
- ICDS in India: Implementation by Ministry of Women and Child Development
 - ICDS projects sanctioned: 7073
 - Anganwadis functioning: 12.42 lacs
 - MiniAWCs: 1.13 lacs

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

Kishori Shakti Yojana (KSY)

- KSY is a rename of ‘Adolescent Girl’s Scheme’ under ICDS (Integrated Child Development Services)
- **Aim of KSY:**
 - To improve the nutritional and health status of adolescent girls
 - To promote self-development, awareness of health, hygiene, nutrition, and family life and child care
- KSY covers 2000 ICDS projects
- Options for interventions under KSY:

<table>
<thead>
<tr>
<th>Options for intervention</th>
<th>Activities</th>
</tr>
</thead>
</table>
| Adolescent girls scheme-I | - Preventive health, hygiene & nutrition education
- Working on Anganwadi centre
- Family life education
- Participate in creative activities
- Skill development or vocational training
- Learn about significance of education & life skills, personal hygiene, environmental sanitation, nutrition, home nursing, first aid, communicable diseases, VPDs, family life, child care and development, constitutional rights & their impact on quality of life |
| ‘Girl-to-girl Approach’
11 – 15 years old girls |

| Adolescent girls scheme-II | - Blood sample is collected by heel prick of the baby 7-10 days after birth
- Guthrie Test is negative in first 2 – 3 days of life
- Guthrie test can detect PKU, Galactosemia and Maple syrup urine disease
- Chemicals detected: Phenylalanine, Phenylpyruvate and Phenyllactate
- It is a semi-quantitative test
- Currently, Guthrie test has been replaced by Tandem mass Spectrometry |
| ‘Balika Mandalas’
11 – 18 years old girls |

NEONATAL SCREENING

Neonatal Screening

- Neonatal Screening: Secondary Level of Prevention
 - MC neonatal disorder screened: Neonatal hypothyroidism (NNH)
- Disorders screened among neonates:
 - Neonatal hypothyroidism
 - Phenylketonuria
 - Sickle cell anemia
 - Thalassemia
 - Congenital dislocation of hip
 - Other disorders: G6PD deficiency

Phenylketonuria & Guthrie Test

- PKU is an autosomal recessive trait with a frequency of 1 in 10,000 births
 - Enzyme deficient in PKU: Phenylalanine hydroxylase
 - Treatment of PKU: restricting or eliminating foods high in phenylalanine, such as breast milk, meat, chicken, fish, nuts, cheese, legumes and other dairy products
- Guthrie Test: Is done in neonates for mass screening of Phenylketonuria (PKU)
 - Guthrie test was the first screening test used in neonates
 - Blood sample is collected by heel prick of the baby 7-10 days after birth
 - Guthrie Test is negative in first 2 – 3 days of life
 - Guthrie test can detect PKU, Galactosemia and Maple syrup urine disease
 - Chemicals detected: Phenylalanine, Phenylpyruvate and Phenyllactate
 - It is a semi-quantitative test
 - Currently, Guthrie test has been replaced by Tandem mass Spectrometry
Preventive Obstetrics, Paediatrics and Geriatrics

Neonatal Hypothyroidism

- Most common neonatal disorder to be screened: Neonatal hypothyroidism (NNH)
 - NNH has a frequency of 1 in 4000 birth
 - MCC of congenital hypothyroidism: Iodine deficiency
- Blood sample collected from: Cord’s Blood
- Test involves measurement of: T4 or TSH both simultaneously
 - As a single method, T4 is more useful (greater precision and reproducibility)
- Treatment: Daily dose of thyroid hormone (thyroxine) by mouth

GERIATRICS

- Age group for geriatrics in India: 60 years and above
- Geriatric age group among Indian population: 8.1%
- MC health disorder among Indian geriatrics: Visual impairment (Cataract)
- MCC death among Indian geriatric aged above 70 years: Cardiovascular disorders

MISCELLANEOUS

Semen analysis [NEW WHO Guidelines 2013]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower reference limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semen volume (ml)</td>
<td>1.5</td>
</tr>
<tr>
<td>Total sperm number</td>
<td>39 X 10^6 per ejaculate</td>
</tr>
<tr>
<td>Sperm concentration</td>
<td>15 X 10^6 per ml</td>
</tr>
<tr>
<td>Total motility</td>
<td>40%</td>
</tr>
<tr>
<td>Progressive motility</td>
<td>32%</td>
</tr>
<tr>
<td>Vitality (live spermatozoa)</td>
<td>58%</td>
</tr>
<tr>
<td>Sperm morphology (normal forms)</td>
<td>4%</td>
</tr>
<tr>
<td>pH</td>
<td>>7.2</td>
</tr>
<tr>
<td>Peroxidase-positive leukocytes</td>
<td><1.0 X 10^6 per ml</td>
</tr>
<tr>
<td>MAR test (motile spermatozoa with bound particles)</td>
<td><50%</td>
</tr>
<tr>
<td>Immunobead test (motile spermatozoa with bound beads)</td>
<td><50%</td>
</tr>
<tr>
<td>Seminal zinc</td>
<td>>2.4 micromol/ejaculate</td>
</tr>
<tr>
<td>Seminal fructose</td>
<td>>13 micromol/ejaculate</td>
</tr>
<tr>
<td>Seminal neutral glucosidase</td>
<td>>20 mU/ejaculate</td>
</tr>
</tbody>
</table>

- Grading of sperm motility:
 - Grade I: Immotile (no movement at all)
 - Grade II: Non-progressive motility (no movement but tails move)
 - Grade III: Non-linear motility, curved/ crooked motility (type b)
 - Grade IV: Linear progressive motility (type a)

Child Placement

- Orphanages: For children who have no home or cannot be taken care of by their parents
- Foster Homes: Several types of facilities for rearing children other than in natural families
- Adoption: Legal adoption confers upon child and the adoptive parents, rights and responsibilities similar to that of natural parents
- Borstals: Boys over 16 years who are too difficult to be handled in a certified school or have misbehaved there, are sent to a Borstal. Borstal, as an institution, falls between a certified school and an adult prison:
 - A borstal sentence is usually for 3 years, and is regarded as a method of training and reformation
Review of Preventive and Social Medicine

- **Remand Homes**: Child is placed under the care of doctors, psychiatrists and other trained personnel to improve the mental and physical well being of the child

Borstals

- **Borstal**: Boys over 16 years who are too difficult to be handled in a certified school or have misbehaved there, are sent to a Borstal
 - Borstal, as an institution, falls between a certified school and an adult prison
- **Primary objective of borstal**: Is to ensure care, welfare and rehabilitation of young offenders and to keep them away from the contaminating atmosphere of the prison
 - The emphasis is given on the education, training and moral influence, conducive for their reformation and prevention of crime
 - A borstal sentence is usually for 3 years, and is regarded as a method of training and reformation
- **Borstals in India**: Borstals do not come under the Children Act but are governed by the ‘State Inspector General of Prisons’
 - 12 Borstals in India [2005]
 - Total inmate capacity: 2260
 - Total inmate population: 1106 (Boys 970; Girls 136)
- **Bombay Borstal School Act, 1929**: It authorizes First Class Magistrate and Superior Courts to pass in lieu of imprisonment, an order for detention in a borstal school for not < 3 or > 5 years; It applies to young offenders,
 - Boys: 16 – 21 years age
 - Girls: 18 – 21 years age

Congenital Disorders among Newborns

- **Congenital disorders**: Those diseases that are substantially determined before or during birth and which, in principle, are recognizable in early life
- **Incidence of congenital disorders (World)**: 30 – 70 per 1000 live births
 - MC disorders are of cardiovascular system and nervous system
- **Birth defects in Indian newborns** are seen in 2.5%\(^2\). The figure rises to 4% if they are followed upto age of 5 years
 - **MC birth defect in North India**: Neural tube defects or spina bifida\(^2\)
 - **MC birth defect in rest of India**: Musculoskeletal disorders\(^2\)

Children in Difficult Circumstances\(^3\)

- Homeless children
- Orphaned or abandoned children
- Whose parents cannot take care of them
- Children separated from parents
- Migrant or refugee children
- Street children
- Trafficked children
- Working children
- Children in prostitution
- Children in bondage
- Children of sex workers/ prostitutes
- Children of prisoners
- Children affected by conflicts
- Children affected by natural disasters
- Children affected by HIV/ AIDS
- Children suffering from terminal diseases
- Girl child
- Children with disabilities and special needs
- Children belonging to minorities, SC, ST
- Children in institutional care
- Children in conflict with law
- Children who are victims of crime

I

Birth defects in Indian newborns are seen in 2.5%\(^2\)

https://kat.cr/user/Blink99/
MULTIPLE CHOICE QUESTIONS

MCH

1. The extra energy allowances needed per day during pregnancy is:
 (a) 150 KCals
 (b) 200 KCals
 (c) 300 KCals
 (d) 550 KCals

 [AIPGME 2006]

2. Additional daily energy requirement during the first six months for a lactating woman is:
 (a) 350 K calories
 (b) 450 K calories
 (c) 550 K calories
 (d) 650 K calories

 [AIIMS Nov 03]

3. Under MCH programme, iron and folic acid tablets to be given daily to mother has:
 (a) 60 mg iron + 500 mcg folic acid
 (b) 100 mg iron + 500 mcg folic acid
 (c) 60 mg iron + 100 mcg folic acid
 (d) 100 mg iron + 100 mcg folic acid

 [AIPGME 2003, AIIMS May 04]

4. Which of the following is not included in ‘5 cleans’ in conduct of delivery?
 (a) Clean hands
 (b) Clean perineum
 (c) Clean cutting and care of cord
 (d) Clean surface for delivery

 [AIIMS Dec 1994]

5. “Five clean practices” under strategies for elimination of neonatal tetanus include all except:
 (a) Clean surface for delivery
 (b) Clean hand of the attendant
 (c) New blade for cutting the cord
 (d) Clean airway

 [AIIMS May 94]

6. A 37 weeks pregnant woman attends an antenatal clinic at a Primary Health Centre. She has not had any antenatal care till now. The best approach regarding tetanus immunization in this case would be to:
 (a) Give a dose of Tetanus Toxoid (TT) and explain to her that it will not protect the new born and she should take the second dose after four weeks even if she delivers in the meantime
 (b) Do not waste the TT vaccine as it would anyhow be of no use in this pregnancy
 (c) Given one dose of TT and explain that it will not be useful for this pregnancy
 (d) Give her anti-Tetanus Immunoglobulin along with the TT vaccine

 [AIPGME 04]

7. All are criteria for identifying ‘at risk’ infants except:
 (a) Birth weight less than 2.8 kgs
 (b) Birth order 5 or more
 (c) PEM, diarrhoea
 (d) Working mother

 [AIPGME 1996]

8. Over and above metabolic requirements, a pregnancy in total duration consumes about:
 (a) 10000 kcal
 (b) 20000 kcal
 (c) 40000 kcal
 (d) 60000 kcal

 [AIIMS Dec 1994]

9. Average weight gain during pregnancy in poor Indian women is about:
 (a) 12 kgs
 (b) 10 kgs
 (c) 6.5 kgs
 (d) 2.5 kgs

 [AIIMS Dec 1994]

10. All are true regarding Congenital Syphilis except:
 (a) Procaine Penicillin can prevent it satisfactorily
 (b) Infection of the fetus most commonly occurs in 1st trimester
 (c) Neurological damage with mental retardation can be a serious consequence
 (d) If mother has Late syphilis, chances of transmission decreases

 [AIIMS Dec 1995]

11. A 24 year old primigravida wt 57 kg, Hb 11.0 gm% visits an antenatal clinic during 2nd trimester of pregnancy seeking advice on dietary intake. She should be advised:
 (a) Additional intake of 300 Kcal
 (b) Additional intake of 500 Kcal
 (c) Additional intake of 650 Kcal
 (d) No extra Kcal

 [DPG 2011]

12. MCH care is assessed by
 (a) Death rate
 (b) Birth rate
 (c) Maternal mortality rate
 (d) Anemia in pregnancy

 [Recent Question 2012]

13. Under ICDS, caloric supplement for pregnant women
 (a) 300 Kcal, 8-10 grams of proteins
 (b) 200 Kcal, 6-8 grams proteins
 (c) 600 Kcal, 16-20 grams proteins
 (d) 500 Kcal, 20-25 grams proteins

 [Recent Question 2012]
14. Late pregnancy calorie requirement is
(a) 2800 [DNB December 2011]
(b) 3000
(c) 1500
(d) 2300

15. The daily extra calorie requirement in first trimester of pregnancy is [DNB 2007]
(a) 50
(b) 150
(c) 350
(d) 450

16. For a given population, minimum no. of newborns to be examined for calculating percentage of LBW babies is: [AIIMS Nov 2005]
(a) 100 babies
(b) 500 babies
(c) 1000 babies
(d) 10,000 babies

17. Mean Birth weight of Indian babies is [AIPGME 2001]
(a) 2.5 kgs
(b) 2.8 kgs [Recent Question 2013]
(c) 3.1 kgs
(d) 3.5 kgs

18. By international agreement, low birth weight has been defined as a birth weight when measured within the first hour of life is: [Karnataka 2004]
(a) Less than 2000 grams [Recent Question 2012]
(b) Less than 2500 grams
(c) Less than 2800 grams
(d) Less than 3000 grams

19. As per WHO low birth weight is defined as:
(a) Birth weight less than 2.5 kg [PGI Dec 03]
(b) Birth weight < 10th percentile [Recent Question 2013]
(c) Gestational age < 34 weeks
(d) Gestational age < 28 weeks

20. Which of the following advise should be given for an infant suffering from mild diarrhea? [DPG 2007]
(a) Continue breast feeding
(b) Antibiotics
(c) Stop all breast feed and start ORS
(d) Intravenous fluid administration

21. The term used for babies born as a result of retarded intrauterine fetal growth is: [Karnataka 2005]
(a) Pre-term babies
(b) Low birth weight babies
(c) Small for date babies
(d) Retarded babies

22. Minimum antenatal visit as per MCH is: [PGI Dec 03]
(a) 1
(b) 2

23. Prevalence of low birth weight in India is: [Recent Question 2012]
(a) 26%
(b) 28%
(c) 30%
(d) 32%

24. The outer line of under-5 clinic which touches all others is: [DNB 2002]
(a) Preventive care
(b) Growth monitoring
(c) Health education to mother
(d) Immunisation

25. The best parameter for assessment of chronic malnutrition is: [DNB 2005]
(a) Weight for age
(b) Weight for height
(c) Height for age
(d) Any of the above

26. A boy age 6 years, weight 13 kg. PEM grading: [Bihar 2006]
(a) Grade II
(b) Grade I
(c) Grade III
(d) Grade IV

27. After birth, care of eye of newborn is by: [UP 2002]
(a) Crede’s method
(b) Antibiotics
(c) Normal saline
(d) AgNO3 eye drop

28. Essential criteria for K washiorkor is: [UP 2002]
(a) Body weight is less than 60%
(b) Thin dry brittle hair
(c) Vocarious appetite
(d) Edema in dependent part

29. The energy requirement of women are increased in first 6 months of lactationis: [UP 2005]
(a) 300 Kcal
(b) 400 Kcal
(c) 550 Kcal
(d) 450 Kcal

30. Preterm babies: [UP 2006]
(a) Born before 37 weeks
(b) Born before 40 weeks
(c) Born before 42 weeks
(d) Born before 47 weeks

Review Questions
31. Folic acid supplementation during lactation period is:
 (a) 100 mg/d
 (b) 150 mg/d
 (c) 400 mg/d
 (d) 450 mg/d [UP 2007]

32. Elemental iron supplementation in Iron deficiency anemia is:
 (a) 300 – 400 mg
 (b) 150 – 200 mg
 (c) 100 – 150 mg
 (d) < 100 mg [UP 2008]

33. WHO in which year conceived the idea of Safe Motherhood initiative at a conference in Nairobi, Kenya:
 (a) 1987 [AP 2007]
 (b) 1980
 (c) 1990
 (d) 1997

34. Protective shield is made up of:
 (a) Copper
 (b) Lead
 (c) Iron
 (d) Platinum [MP 2003]

35. Which of the following is age independent indicator of malnutrition?
 (a) Underweight
 (b) Stunting
 (c) Wasting
 (d) MAC [MP 2006]

36. Osteomalacia in pregnancy and lactation is best treated by:
 (a) Vitamin D
 (b) Vitamin D and calcium
 (c) Calcium
 (d) Vitamin D-calcium and phosphorous [MH 2000]

37. Minimum ANC visits during pregnancy should be:
 (a) 3
 (b) 5
 (c) 9
 (d) 12 [MH 2000]

38. Daily need of calories in pregnancy is:
 (a) 1500 kCal
 (b) 2000 kCal
 (c) 2500 kCal
 (d) 3500 kCal [MH 2003]

39. The average weight of newborn in South India is:
 (a) 2.2 kg
 (b) 2.5 kg
 (c) 3.0 kg
 (d) 3.5 kg [TN 2000]

40. The target of ‘Health for All by 2000’ for reduction in the incidence of low birth weight was:
 (a) Less than 10% [MP 2009]

41. For low birth weight of Indian babies the weight criteria is birth weight less than:
 (a) 2.2 kg
 (b) 2.0 kg
 (c) 2.5 kg
 (d) 2.7 kg [MH 2007]

42. Most common cause of low birth wt baby is: [RJ 2004]
 (a) Prematurity
 (b) Infection
 (c) Anemia
 (d) Diabetes

43. All of the following are common cause of post neonatal infant mortality in India, except: [AIPGME 02]
 (a) Tetanus
 (b) Malnutrition
 (c) Diarrhoeal diseases
 (d) Acute respiratory infection

44. Maternal Mortality Rate is calculated by:
 (a) Maternal deaths/live birth
 (b) Maternal deaths/1000 live births
 (c) Maternal deaths/100000 live births
 (d) Maternal deaths/100000 population [Recent Question 2014]

45. Which one of the following is the leading cause of mortality in under five children in developing countries? [AIPGME 2004]
 (a) Malaria
 (b) Acute lower respiratory tract infections
 (c) Hepatitis
 (d) Pre-maturity

46. All of the following deaths are included in as causes of maternal death except: [AIIMS June 1997]
 (a) Following abortion
 (b) During lactation 1st month
 (c) During lactation 8th month
 (d) During the last trimester due to APH

47. All of the following statements are true about the childhood mortality rates in India except: [AIIMS Nov 2005]
 (a) Almost half of infant mortality rate (IMR) occurs in neonatal period.
 (b) Almost 3/4th of the under-five mortality occurs in the first year of life.
 (c) About one in thirteen children die before they reach the age of five years.
 (d) Neonatal mortality is higher among female children as compared to males.
48. Among the following the best indicator of health in a community is: [AIIMS Dec 1994]
 (a) Maternal mortality rate
 (b) Infant mortality rate
 (c) Life expectancy
 (d) Neonatal mortality rate

49. Leading Cause of maternal deaths in India is:
 (a) Anemia [AIIMS May Nov 02- 04, 05,
 (b) Hemorrhage May 08, Nov 02 AIPGME 08]
 (c) Sepsis
 (d) Obstructed labour

50. Of total deaths in India per year, infant deaths contribute about: [AIIMS Dec 1994]
 (a) 6%
 (b) 13%
 (c) 19%
 (d) 44%

51. Infant mortality does not include: [AIPGME 2005]
 (a) Early neonatal mortality [AIIMS November 2014]
 (b) Perinatal mortality
 (c) Post neonatal mortality
 (d) Late neonatal mortality

52. Sensitivity parameter of combined pediatric and obstetric care in our country is: [AIPGME 2006]
 (a) IMR
 (b) PNMR
 (c) NNMR
 (d) NMR

53. Commonest cause of neonatal mortality in India is:
 (a) Diarrheal diseases [AIIMS May 2003]
 (b) Birth injuries
 (c) Low birth weight
 (d) Congenital anomalies

54. Maternal mortality rate (MMR) is expressed as:
 (a) Per 100,000 live births [DPG 2007]
 (b) Per 1000 live births [Recent Question 2014]
 (c) Per 100,000 births
 (d) Per 1000 births

55. The postnatal period extends for: [Karnataka 2005]
 (a) 2 weeks
 (b) 4 weeks
 (c) 6 weeks
 (d) 8 weeks

56. Maternal mortality rate-MMR is defined as number of maternal deaths per:
 (a) 1000 live births [Karnataka 2006]
 (b) 1,00,000 live births
 (c) 10,000 live births
 (d) 100 live births

57. Late foetal deaths and early neonatal deaths are considered in which of the following indices?
 (a) Infant mortality rate [Karnataka 2007]
66. In India maximum maternal mortality is due to:
 (a) Hemorrhage [AIIMS May 2011]
 (b) Anemia
 (c) Abortion
 (d) Sepsis

67. Annual Under-five deaths globally reported are:
 (a) 6 million [AIIMS November 2013]
 (b) 8 million
 (c) 10 million
 (d) 12 million

68. In a certain population, there were 4050 births in the last one year. There were 50 still births. 50 infants died within 7 days whereas 150 died within the first 28 days. What is the neonatal mortality rate?
 (a) 50 [AIIMS May 2012, 2014]
 (b) 62.5
 (c) 12.5
 (d) 49.4

69. Leading cause of neonatal mortality in India is:
 (a) Infections [AIIMS November 2012]
 (b) Birth asphyxia/trauma
 (c) Diarrhoea
 (d) Prematurity and Congenital malformations

70. Extended definition of perinatal mortality includes crown heel length of
 (a) >15 cm at birth [DNB June 2010]
 (b) >25 cm at birth
 (c) >35 cm at birth
 (d) >45 cm at birth

71. 4050 births in a year in a city out of which 50 were still births. 50 died in first 7 days while another 150 died in first 28 days. What is the Neonatal mortality rate of the city?
 (a) 0.5 [AIIMS November 2012]
 (b) 0.625
 (c) 0.125
 (d) 0.05

72. Most common cause of infant mortality in India is:
 (a) Low birth weight [Recent Question 2013]
 (b) Respiratory disease
 (c) Diarrhoeal diseases
 (d) Congenital anomalies

73. Child survival index is calculated by?
 (a) 1000-IMR/10 [Recent Question 2013]
 (b) IMR-1000/10
 (c) 1000-UMMR/10
 (d) UMR-1000/10

74. The current neonatal mortality is:
 (a) 28 [Recent Question 2013]
 (b) 30
 (c) 33
 (d) None

75. Most common cause of infant mortality in India is:
 (a) LBW [Recent Question 2012, 2013]
 (b) Injury
 (c) ARI
 (d) Tetanus

76. Maternal mortality is maximum in period:
 (a) Antepartum [Recent Question 2012, 2013]
 (b) Peripartum
 (c) Postpartum
 (d) None

77. Infant mortality does not include: [DNB 2007]
 (a) Early neonatal mortality [AIIMS May 2014]
 (b) Perinatal mortality
 (c) Post neonatal mortality
 (d) Late neonatal mortality

78. Perinatal mortality includes deaths: [DNB June 2010]
 (a) After 28 weeks of gestation
 (b) First 7 days after birth
 (c) Both
 (d) From period of viability

79. Maternal mortality rate definition include all except:
 (a) Death in pregnancy [NIMHANS 2014]
 (b) Death during delivery
 (c) Death within 6 weeks post delivery
 (d) Death within 6 months post delivery

80. Infant mortality rate does not include
 (a) Early neonatal mortality
 (b) Late neonatal mortality
 (c) Post neonatal mortality
 (d) Still births [AIIMS May 2014; November 2014]

Review Questions

81. In India, the goal is to reduce maternal mortality per 100,000 lives births by 2000 A.D. to:
 (a) 500 [DNB 2000]
 (b) 400
 (c) 200
 (d) 100

82. Perinatal death induces:
 (a) After 28 weeks of pregnancy
 (b) 7 days after birth
 (c) Both
 (d) None

83. Maternal mortality includes:
 (a) Pregnancy
 (b) 42 days of termination of pregnancy
 (c) Both
 (d) None

84. Perinatal death induces:
 (a) After 28 weeks of pregnancy
 (b) 7 days after birth
 (c) Both
 (d) None

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

85. Infant mortality does not include: [DNB 2007]
 (a) Early neonatal mortality
 (b) Perinatal mortality
 (c) Post neonatal mortality
 (d) Late neonatal mortality

86. What is the denominator of perinatal mortality rate?: [Bhil 2003]
 (a) Total live births + still births
 (b) Live births is the same year
 (c) Total live births weighing over 1000 grams at birth
 (d) Late fetal deaths + early neonatal deaths

87. Numerator in infant mortality rate is: [UP 2000]
 (a) Less than 1 year
 (b) 28 days
 (c) 1 months
 (d) Equal to 1 year

88. Perinatal mortality rate includes: [UP 2002]
 (a) 37 weeks to 1st week after birth
 (b) 28 weeks to 1st week after birth
 (c) 20 weeks to 1st week after birth
 (d) Before preterm labour

89. Denominator in, under 5 proportionate mortality rate is: [UP 2002]
 (a) Mid year population
 (b) Mid year population in 5 years age
 (c) Number of live birth in same year
 (d) Total death in same year

90. The denominator in maternal mortality rate: [UP 2004]
 (a) 1,000 live births
 (b) 100 live births
 (c) 10,000 live births
 (d) 1,000,000 live births

91. The following does not suggest Under Five Care in the community: [AP 2005]
 (a) Infant mortality rate
 (b) 1-4 year mortality
 (c) Neonatal tetanus
 (d) Deaths due to diarrhoeal disease between 1-5 years

92. The Infant mortality rate goal set for the year 2000 for India is: [TN 2003]
 (a) 10 per 1000 live births
 (b) 40 per 1000 live births
 (c) 50 per 1000 live births
 (d) 60 per 1000 live births

93. Denominator in MMR: [MP 2000]
 (a) Total no. of live births in the same area and same year
 (b) No. of maternal deaths of reproductive age group
 (c) Total no. of deaths of reproductive age group in the same area and same year
 (d) Mid year population

94. All are the important causes of post neonatal mortality except: [MP 2001]
 (a) Diarrhoea
 (b) ARI
 (c) Malnutrition
 (d) Tetanus

95. Most common cause of maternal death in India: [MP 2005]
 (a) Unsafe abortion
 (b) Obstructed labour
 (c) Perpueral sepsis
 (d) Obstetric hemorrhage

96. In a population of 5000, with birth rate of 30/1000 population, 15 children died during first year life in one year: [MP 2006]
 of these 9 died during first month of life. What is the infant mortality rate in this population?
 (a) 100
 (b) 60
 (c) 150
 (d) 45

97. Infant mortality rate (IMR) is defined as number or deaths of infants under age one per: [MP 2006]
 (a) 1000 births
 (b) 1000 live birth
 (c) 1000 mid year population
 (d) 1000 women of reproductive age group

98. In India, approximately 50% of maternal deaths are caused by: [MP 2009]
 (a) Sepsis and abortion
 (b) Sepsis and obstructed labour
 (c) Sepsis and Hypertension
 (d) Sepsis and hemorrhage

99. In India, Neonatal Mortality Rate per 1000 live births is: [MP 2009]
 (a) 20
 (b) 40
 (c) 60
 (d) 80

100. For international comparison, the WHO expert committee defines ‘still birth’ as birth of dead and under weight of fetus more than —— grams: [MP 2009]
 (a) 500
 (b) 1000
 (c) 1500
 (d) 2000

101. According to international standards, STILL BIRTH is defined as per fetal weight ABOVE? [MH 2008]
 (a) 500 grams
 (b) 800 grams
 (c) 1000 grams
 (d) 2000 grams

102. Denominator of maternal mortality rate is: [R] 2001
 (a) 1000 live birth
 (b) 1000 pregnant woman
 (c) 1000 population
 (d) None
103. Commonest cause of perinatal mortality in India:
(a) Prematurity [R] 2001
(b) Birth injury
(c) Metabolic
(d) Congenital

104. Infant mortality rate is no. of infant death per:
(a) 1000 total birth [R] 2005
(b) 1000 live birth
(c) 1000 pregnancy
(d) None

105. MMR should be expressed in terms of: [R] 2005
(a) Per 1000 live births
(b) Per 1000 births
(c) Per 1000 pregnancy
(d) Per 100 live births

106. All are true about DOTS excepts: [R] 2006
(a) Alternate day treatment
(b) Improve compliance
(c) Continuation phase drugs are given in a multiblister combipack
(d) Medication is to be taken in presence of a health worker

107. In population of 1 lac, with 4000 live birth per annum and under 5 population is 15000 with infant death per annum is 1/28. So the less than 5 mortality rate is:
(a) 40% [R] 2006
(b) 100%
(c) 26.5%
(d) 69%

BREAST FEEDING

108. The following statements about breast milk are true except: [AIPGME 2004]
(a) The maximum milk output is seen at 12 months
(b) The coefficient of uptake of iron in breast milk is 70%
(c) Calcium absorption of human milk is better than that of cow’s milk
(d) It provides about 70 K cals per 100 ml

109. The current recommendation for breast-feeding is that: [AIPGME 1999, 2004]
(a) Exclusive breast-feeding should be continued till 6 months of age followed by supplementation with additional foods
(b) Exclusive breast-feeding should be continued till 4 months of age followed by supplementation with additional foods
(c) Colostrum is the most suitable food for a new born baby but it is best avoided in first 2 days
(d) The baby should be allowed to breast-feed till one year of age

110. As compared to Cow’s milk, human milk has:
(a) More proteins [AIIMS May 07, Nov 07]
(b) Less carbohydrates

111. Mean output of breast milk per day is maximum during the following months of lactation: [AIIMS Nov 2008]
(a) 0-2 months
(b) 3-4 months
(c) 5-6 months
(d) 7-8 months

112. As compared to cow milk, breast milk contains more:
(a) Energy [DPG 2005]
(b) Fat
(c) Lactose
(d) Proteins

113. Not true about breast milk is: [AIIMS May 2011]
(a) Maximum output is at 12 months of lactation
(b) Coefficient of iron absorption is 70%
(c) Calcium utilization more than cows milk
(d) Breast milk contains high amounts of lactose

114. Human breast milk has more of: [PGI May 2011]
(a) Lipids
(b) Carbohydrates
(c) Proteins
(d) Iron
(e) Calcium

115. Compared with unprocessed cow’s milk, human breast milk contains more of: [Karnataka 2011]
(a) Lipids [Recent Question 2012]
(b) Proteins
(c) Minerals
(d) Carbohydrates

116. In normal delivery, breast feeding should be started within: [Recent Question 2012]
(a) ½ hour of delivery
(b) 1 hour of delivery
(c) 4 hour of delivery
(d) 6 hour of delivery

Review Questions

117. Amount of calcium in human milk in 100ml: [Bihar 2003]
(a) 28 mg
(b) 48 mg
(c) 34 mg
(d) 60 mg

118. Why casein ratio in breast milk is: [TN 2000]
(a) 1:1
(b) 2:1
(c) 3:8
(d) 7:3

119. World breast feeding week is celebrated in month of: [MP 2003]
(a) January
(b) August
(c) October
(d) April
120. The uppermost line of the ‘road to health card’ is equivalent to: [AIIMS Jan 1998]
(a) 80% for boys
(b) 50% for girls
(c) 50th percentile for boys
(d) 3rd percentile for girls

121. Deficit in weight for height in a 3-year-old child indicates: [AIIMS Nov 2005]
(a) Acute malnutrition
(b) Chronic malnutrition
(c) Concomitant acute and chronic malnutrition
(d) Under weight

122. The milestone of development not matched correctly with age: [AIPGME 2006]
(a) Sits without support: 6 – 8 months
(b) Looks at mother and smiles: 6 – 8 weeks
(c) Holds head erect: 6 months
(d) Transfers objects hand to hand: 6 – 8 months

123. If the birth weight is 3 kg. by the end of one year of age it should become: [AIIMS May 2001]
(a) 6 kg
(b) 9 kg
(c) 12 kg
(d) 15 kg

124. At birth head circumference is about: [AIIMS May 1994]
(a) 32 cms
(b) 34 cms
(c) 36 cms
(d) 38 cms

125. WHO Growth Chart has got information for all except: [AIIMS Nov 1992]
(a) Immunisation procedures
(b) Child spacing
(c) History of sibling health
(d) History of maternal health

126. Around whole symbol for Under-five’s clinic there is a border touching all other areas. This border represents: [AIPGME 1994]
(a) Preventive Care
(b) Care in Illness
(c) Growth Monitoring
(d) Health education

127. In WHO growth chart ‘Lower reference curve’ represents: [Karnataka 2006]
(a) 3rd percentile
(b) 50th percentile
(c) 80th percentile
(d) 95th percentile

128. All are true about growth chart except: [AIIMS Nov 09]
(a) It is a tool for educating mothers
(b) The position of dots is more important than direction
(c) Between top 2 lines, it shows ‘Road-to-Health’ or zone of normality
(d) Lowermost line corresponds to children below 3 percentile

129. Which of the following does not indicate poor nutrition in children? [AIPGME 2010]
(a) Low birth weight
(b) Infection
(c) Hemoglobin > 11 gm%
(d) Malnutrition

130. Best indicator for growth measurement is: [Recent Question 2013]
(a) Height
(b) Weight
(c) Arm circumference
(d) None

131. Type of Growth Charts used by Anganwadi workers (ICDS) for growth monitoring [AIIMS May 2013]
(a) NCHS
(b) IAP
(c) MRGS
(d) CDC

132. Age independent anthropometric measure of malnutrition is [DNB June 2009]
(a) Weight/height
(b) Mid arm circumference
(c) Head circumference
(d) Mid arm circumference/height

133. The best parameter for assessment of chronic malnutrition is [DNB 2007]
(a) Weight for age
(b) Weight for height
(c) Height for age
(d) Any of the above

134. In WHO “Road to Health” chart, upper and lower limit of represents [AIIMS May 2012]
(a) 30 percentile for boys and 3 percentile for girls
(b) 50 percentile for boys and 3 percentile for girls
(c) 30 percentile for boys and 5 percentile for girls
(d) 50 percentile for boys and 5 percentile for girls

135. According to NFHS 3, percentage of wasting in India is [DNB June 2010]
(a) 23%
(b) 35%
(c) 40%
(d) 50%

Review Questions

136. The upper line in the road to health card corresponds to: [DNB 2001]
(a) 95th percentile
(b) 50th percentile
(c) 3rd percentile
(d) 90th percentile
137. Upper reference curve in growth chart of WHO is:
 (a) 50th percentile
 (b) 60th percentile
 (c) 70th percentile
 (d) 80th percentile

138. The upper line in the road to health card corresponds to:
 (a) 95th percentile
 (b) 50th percentile
 (c) 3rd percentile
 (d) Any of the above

139. The best parameter for assessment of chronic malnutrition is:
 (a) Weight for age
 (b) Weight for height
 (c) Height for age
 (d) Any of the above

140. The best parameter for assessment of Acute malnutrition is:
 (a) Weight for age
 (b) Weight for height
 (c) Height for age
 (d) Any of the above

141. Mid-arm Circumference is constant during:
 (a) 0-6 months
 (b) 1-5 years
 (c) 5-10 years
 (d) 10 years

142. WHO growth chart is:
 (a) International based
 (b) National Based
 (c) Home based
 (d) Community based

143. Bad prognosis in PEM is indicated by all except:
 (a) Keratomalacia
 (b) Hypothermia
 (c) Hepatomegaly
 (d) Hypoalbuminemia

144. Road to health card or the growth chart was first designed by:
 [Recent Question 2013] [MP 2003]
 (a) Edwin Chadwick
 (b) David Morley
 (c) C. Gopalan
 (d) C.E. Winslow

145. The lower limit of the normal range in a growth chart curve is:
 [MP 2007]
 (a) 80% median weight
 (b) 70% median weight
 (c) 60% median weight
 (d) 85% median weight

146. True about WHO growth chart is:
 [MH 2000]
 (a) Used for monitoring growth and development of child
 (b) Has 3 lines
 (c) Highest line corresponds to 80th percentile and above
 (d) Lowest line corresponds to 50th percentile and above

147. In WHO ‘Road to health card’ (growth chart) the upper reference line corresponds to:
 (a) 3rd percentile for girls
 (b) 50th percentile for boys
 (c) 80th percentile for girls
 (d) 97th percentile for boys

148. Growth chart used in India has curves:
 [RJ 2003]
 (a) Two
 (b) Three
 (c) Four
 (d) Five

SCHOOL HEALTH

149. The commonest morbidity in schools is:
 (a) dental ailments
 (b) worm infestations
 (c) malnutrition
 (d) skin diseases

150. All of the following are minimum standards for sanitation of schools and its environs in India except:
 [AIPGME 2003]
 (a) Desks to be of ‘Minus type’
 (b) Combined doors + windows area = 25 % of floor space area
 (c) Maximum 40 students per classroom
 (d) One urinal for 10 students and one latrine for 25 students

151. With reference to school health, which one of the following statements is NOT correct? [AIPGME 2004]
 (a) Per capita space for students in classroom should not be less than 10 sq. ft.
 (b) Desks should be of plus type
 (c) Classroom should have sufficient natural light preferably from the left
 (d) There should be one urinal for 60 students and one latrine for 100 students

152. Desk for student is [DNB June 2009]
 (a) Minus desk
 (b) Plus desk
 (c) Zero desk
 (d) All the desks

153. Maximum recommended number of students in a school class room: [Recent Question 2014]
 (a) 30
 (b) 35
 (c) 40
 (d) 50
Review Questions

154. A – Sex education should not be given in school R – It will lead to increased incidence of sexual promiscuity:
(a) A and R correct and R explains A [DNB 2000]
(b) A and R correct and R does not explain A
(c) A is correct, R is incorrect
(d) A is incorrect, R is correct

155. A – Sex education should not be given in school R – It will lead to increased incidence of sexual promiscuity:
(a) A and R correct and R explains A [DNB 2000]
(b) A and R correct and R does not explain A
(c) A is correct, R is incorrect
(d) A is incorrect, R is correct

156. True about Mid-day meal given in school is:

<table>
<thead>
<tr>
<th>Calories</th>
<th>Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>(b) 1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>(c) 1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>(d) 1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

157. Student desk is of which type:
(a) Positive
(b) Negative
(c) Both
(d) None [UP 2001]

158. Ideal desk recommended for a school child is:
(a) ‘Plus’ desk [UP 2001][UP 2007]
(b) ‘Minus’ desk
(c) Lysine and Leucine
(d) Zero desk

159. According to Healthful school environmental criteria, per cent of doors and windows to floor area should be:
(a) 15% [MP 2009]
(b) 20%
(c) 25%
(d) 30%

ICDS, IMNCI, BFHI

160. The guidelines according to Baby Friendly Hospital Initiative includes all except: [AIPGME 2009]
(a) Mothers and infant to be together for 24 hours a day
(b) Mother to initiate breast feeding within 4 hours of normal delivery
(c) Giving newborn infants no food or drink other than breast milk
(d) Encouraging breast feeding on demand

161. Which of the following is the nodal ministry for Integrated Child Development Services (ICDS)? [AIIMS May 04]
(a) Ministry for Human Resource Development
(b) Ministry for Rural Development
(c) Ministry for Health and Family Welfare
(d) Ministry for Social Justice

162. Integrated Management of Childhood Illness (IMCI) was taken to prevent morbidity and mortality from all except: [AIPGME 2008]
(a) Malaria
(b) Malnutrition
(c) Otitis media
(d) Neonatal tetanus

163. Under ICDS, supplementary nutrition for children below 1 yr age is aimed at providing: [AIIMS Nov 01, June 2000]
(a) 200 cal and 8-10 gms protein
(b) 300 cal and 15 gms protein
(c) 500 cal and 25 gms protein
(d) There is no provision for this age group

164. What are the amounts of calories and proteins received by a pregnant woman from the anganwadi worker? [AIIMS May 01]
(a) 300, 15 gm protein
(b) 500, 15 gm protein
(c) 300, 25 gm protein
(d) 500, 25 gm protein

165. Which of the following is known as ‘Heart of ICDS system’? [AIIMS Feb 1997]
(a) Mother and Children
(b) CDPO
(c) Primary Health Centre
(d) Anganwadi

166. Administrative unit of the ICDS project in rural areas is: [Recent Question 2013][Karnataka 2007]
(a) PHC
(b) Community development block
(c) Zilla parishad
(d) Gram panchayat

167. Population covered by Anganwadi in tribal area is: [DNB June 2009]
(a) 1000
(b) 700
(c) 400
(d) 100

168. Mother friendly childbirth initiative was launched in: [Recent Question 2014]
(a) India
(b) Britain
(c) Australia
(d) USA

169. Diet given to a pregnant lady under ICDS is: [AIIMS November 2014]
(a) 200 Kcal + 10 grams proteins
(b) 250 Kcal + 12 grams proteins
(c) 300 Kcal + 15 grams proteins
(d) 350 Kcal + 15 grams proteins

170. ICDS include children up to age of years: [Recent Question 2014]
(a) 3
(b) 5
(c) 6
(d) 14
Review Questions

171. All are true about Anganwadi workers Except:
(a) Covers population of 5000
(b) Time part workers
(c) Supply nutrition, educate to vaccination
(d) Under controls ICDS

172. In ICDS all of the following are included except:
(a) Immunization
(b) Health Education
(c) Prevention of iodine deficiency disorders
(d) Supplementary nutrition

173. ICDS does not cover:
(a) Nutritional supplementation
(b) Formal education
(c) Health education
(d) Immunization

174. IMNCI includes all except:
(a) Tetanus
(b) Acute respiratory tract infection
(c) Measles
(d) Malaria

175. In plains, generally how much population is allocated to an AW Centre?
(a) 500
(b) 1000
(c) 2000
(d) 2500

176. According to ICDS programme, children should be supplemented with which of the following?
(a) 200 cal + 20 g proteins
(b) 300 cal + 15 g proteins
(c) 500 cal + 25 g proteins
(d) 300 cal + 10 g proteins

177. According to IMNCI Programme the term “YOUNG INFANTS” includes children below the what age?
(a) Seven days
(b) 28 days
(c) Two months
(d) Six months

NEONATAL SCREENING

178. ‘Guthrie Test’ is done in neonates for mass screening of:
(a) Neonatal Hypothyroidism
(b) Phenylketonuria
(c) Hemoglobinopathies
(d) Congenital Dislocation of Hip

179. Most common neonatal disorder screened is:
(a) Neonatal Hypothyroidism
(b) Phenylketonuria
(c) Hemoglobinopathies
(d) Congenital Dislocation of Hip

180. According to WHO criteria, all are true in a normal person except:
(a) Sperm count >20 million
(b) Volume >1 ml
(c) Normal morphology in >15% (strict criteria)
(d) Aggressive forward motility in >25%

181. Kishori Shakti Yojana (KSY) is:
(a) Empowerment of females under Maternity Benefit Scheme
(b) Adolescent girl’s scheme under ICDS
(c) Free and compulsory education for girl child
(d) Child care home scheme for female juvenile delinquents

182. Which of the following is known as ‘the medical discovery of 20th century’?
(a) Zidovudine
(b) Smallpox vaccine
(c) ORS
(d) Penicillin

183. At PHC level, a women who complains of spotting following IUCD insertion should be advised:
(a) Analgesic and observation
(b) Antibiotic and observation
(c) Iron supplements and observation
(d) Removal of IUCD

184. Hb of less than what value is the cut off used by WHO guidelines to label an infant under 6 months of age as being anemic?
(a) 100 g/L
(b) 105 g/L
(c) 110 g/L
(d) 115 g/L

185. In which one of the following situations is Amniocentesis NOT called for?
(a) Mother’s age is 35 years or more
(b) Parents who are known to have chromosomal translocation
(c) Raised alpha fetoprotein in amniotic fluid during earlier pregnancy
(d) A Rh –ve multipara mother aged 30 years with two live healthy boys

186. When an abandoned child is legally accepted by a couple, it is called as:
(a) Remand home placement and Foster home placement
(b) Remand home placement and Borstal placement
(c) Adoption and Foster home placement
(d) Adoption and Remand home placement

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

187. Boys over 16 years who are difficult to be handled in a certified school are sent for training and reformation, for 3 yrs, to a: [AIIMS Nov 1993]
 (a) Orphanage
 (b) Foster Home
 (c) Borstal
 (d) Remand Home

188. Birth defects in Indian newborns are seen in:
 (a) 2-3 % of newborns [AIPGME 2003]
 (b) 5 % of newborns
 (c) 8 % of newborns
 (d) 12-14 % of newborns

189. Boys over 16 years who are too difficult to be handled in a certified school or have misbehaved are sent to:
 (a) Remand home [DPG 2005]
 (b) Borstal
 (c) Foster home
 (d) Prison

190. Child rights are guaranteed in which article of the constitution:
 (a) Article 24
 (b) Article 28
 (c) Article 35
 (d) Article 42
 (e) Article 45 [PGI Dec 01]

191. Ujjwala scheme is for prevention of:
 (a) Child abuse [Recent Question 2013]
 (b) Child trafficking
 (c) Child labour
 (d) Child marriage

192. A place where children are kept in care of doctor and psychiatrist is:
 (a) Borstal [Recent Question 2012]
 (b) Foster home
 (c) Remand home
 (d) Orphanage

193. All are included in Kangaroo Mother Care except:
 (a) Skin to skin contact [AIIMS May 2014]
 (b) Early discharge and follow up
 (c) Free nutritional supplements
 (d) Exclusive Breast feeding

Review Questions

194. Under 1971, MTP act, MTP is allowed up to:
 (a) 12 weeks [R 2002]
 (b) 16 weeks
 (c) 20 weeks
 (d) 24 weeks
1. Ans. (c) 300 KCals [Now + 350 kcals] [Ref. Park 21/e p588, Park 22/e p590]
 • The recommended daily energy intake: [NEW GUIDELINES 2011]

<table>
<thead>
<tr>
<th>Group</th>
<th>Energy Allowance per day (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infancy</td>
<td></td>
</tr>
<tr>
<td>0-6 months</td>
<td>92 Kcal/kg/day</td>
</tr>
<tr>
<td>6-12 months</td>
<td>80 Kcal/kg/day</td>
</tr>
<tr>
<td>Adult Reference Male (Wt: 60 Kg)</td>
<td></td>
</tr>
<tr>
<td>Sedentary/Light work</td>
<td>2320</td>
</tr>
<tr>
<td>Moderate Work</td>
<td>2730</td>
</tr>
<tr>
<td>Heavy Work</td>
<td>3490</td>
</tr>
<tr>
<td>Adult Reference Female (Wt: 55 kg)</td>
<td></td>
</tr>
<tr>
<td>Sedentary/Light work</td>
<td>1900</td>
</tr>
<tr>
<td>Moderate Work</td>
<td>2230</td>
</tr>
<tr>
<td>Heavy Work</td>
<td>2850</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>+ 350</td>
</tr>
<tr>
<td>Lactation</td>
<td></td>
</tr>
<tr>
<td>First 6 months</td>
<td>+ 600</td>
</tr>
<tr>
<td>6-12 months</td>
<td>+ 520</td>
</tr>
</tbody>
</table>

(+ indicates 'over and above the daily requirement')

2. Ans. (c) 550 K calories [Now 600 kcalories] [Ref. Park 21/e p588, Park 22/e p590]

3. Ans. (b) 100 mg iron + 500 mcg folic acid [Ref. Park 21/e p486, Park 22/e p487]
 • An adult tablet of IFA contains: 100 mg elemental Iron and 500 mcg Folic acid (to be given for 100 days minimum in pregnancy)
 • A pediatric tablet of IFA contains: 20 mg elemental Iron and 100 mcg Folic acid (to be given for 100 days minimum every year till 5 years age of child)

Also Remember

- At MCH centres several supplements are provided free of cost to expectant mothers:
 - IFA tablets
 - 2 doses of tetanus toxoid
 - Fresh milk (or skimmed milk)
 - Capsules of Vitamin A and D
- Body stores of folate (Vitamin B9) are not large (about 5 – 10 mg), therefore folate deficiency can develop quickly
- Requirement of Iron and Folic Acid: Pregnancy > Lactation
- Recommended daily intake values of folate:

<table>
<thead>
<tr>
<th>Group</th>
<th>Intake per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy adults</td>
<td>200 mcg</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>500 mcg</td>
</tr>
<tr>
<td>Lactation</td>
<td>300 mcg</td>
</tr>
<tr>
<td>Children</td>
<td>100 mcg</td>
</tr>
</tbody>
</table>
4. Ans. (b) Clean perineum [National Health Programs of India by Dr. J. Kishore, 7/e p108 and 8/e p128, Park 21/e p287, Park 22/e p286]

CLEANS OF SAFE DELIVERY:
- ‘Five cleans’ (practices) under strategies for elimination of neonatal tetanus include,
 - Clean delivery surface
 - Clean hands (of birth attendants)
 - Clean cord cut (blade or instrument)
 - Clean cord tie
 - Clean cord stump (no applicant)

Also Remember

- 5 F’s of Sanitation Barrier:
 - Fingers
 - Flies
 - Fomites
 - Food
 - Faeces

- 5 D’s of Ill-health:
 - Disease
 - Discomfort
 - Disability
 - Dissatisfaction
 - Death

- 4 D’s of Pellagra:
 - Diarrhoea
 - Dermatitis
 - Dementia
 - Death

- 5 I’s of Ageing (old age):
 - Impairment
 - Instability
 - Incontinence
 - Immobility
 - Isolation

5. Ans. (d) Clean airway [National Health Programs of India by Dr. J. Kishore, 8/e p128, Park 21/e p287, Park 22/e p286]

6. Ans. (a) Give a dose of Tetanus Toxoid (TT) and explain to her that it will not protect the new born and she should take the second dose after four weeks even if she delivers in the meantime [Ref. Park 22/e p487]

Also Remember

- In developing countries, antenatal mothers should be given TT irrespective of period of gestation (as she may not return); There is no evidence to suggest that TT is dangerous or harmful to fetus
- Infants born to unimmunized mothers or partially immunized mothers should be given: 750 IU antitoxin (heterologous serum) within 6 hours of birth (for prevention of neonatal tetanus)

7. Ans. (a) Birth weight less than 2.8 kgs [Ref. Park 21/e p493, Park 22/e p494]

At risk approach: Central purpose is to identify high risk cases (as early as possible) from a large group of all antenatal mothers/infants, and provide specialized care to them, while continuing to provide appropriate care to all antenatal mothers/infants

At risk infants: Contribute to perinatal, neonatal and infant mortality; so they have to be provided with special intensive care; Basic criteria for identifying these babies include:
 - Birth weight < 2.5 kg (low birth weight)
 - Twins
 - Birth order > 5
 - Artificial feeding
 - Weight < 70% of expected (II and III degrees of malnutrition)
 - Failure to thrive (failure to gain weight in 3 successive months)
 - Children with PEM, diarrhea
 - Working mother/single parent

Also Remember

- At risk approach: Central purpose is to identify high risk cases (as early as possible) from a large group of all antenatal mothers/infants, and provide specialized care to them, while continuing to provide appropriate care to all antenatal mothers/infants

8. Ans. (d) 60000 kcal [Ref. Park 21/e p485, Park 22/e p486]

A pregnancy in total consumes about 60,000 Kcal over and above normal metabolic requirements

Also Remember

- On an average normal healthy adult Indian woman gains 12 kg during pregnancy BUT Weight gain of poor Indian women average 6.5 kg
9. Ans. (c) 6.5 kgs [Ref. Park 21/e p485, Park 22/e p486]
 - On an average normal healthy adult Indian woman gains 12 kg during pregnancy; Most of this weight gain is in II trimester (5kg) and III trimester (5kg)
 - Weight gain of poor Indian women average 6.5 kg

Also Remember

Chest circumference overtakes head circumference at 9 months - 1 year age BUT in malnourished children of poor Indian women it overtakes at 2 – 3 years age
- Children born to hypothyroid mothers have IQ lower by 13 points on an average
- Women who smoke in pregnancy deliver babies with an average birth weight less by 170 grams

10. Ans. (b) Infection of the fetus most commonly occurs in 1st trimester [Ref. Park 21/e p486, Park 22/e p487]
 - When the mother is suffering from syphilis, transmission occurs to fetus, but not before the 4th month of pregnancy; It is most likely to occur after 6th month, when Langhan's cell layer has completely atrophied
 - Infection of fetus is most likely to occur when mother has primary or secondary stages of syphilis than late syphilis
 - Clinical features include Hutchinson's Triad (deafness, Hutchinson's teeth – centrally notched, widely-spaced peg-shaped upper central incisors and interstitial keratitis), snuffles (rhinitis) and Mulberry Molars (sixth year molars with multiple poorly developed cusps)
 - Neurological damage with mental retardation is one of the most serious consequences of congenital syphilis
 - Ten daily injections of Procaine Penicillin (600,000 Units) are almost adequate.
 - According to the CDC, 40% of births to syphilitic mothers are stillborn and 30% are infected

Also Remember

MOTHER TO CHILD TRANSMISSION (MTCT):
- Rubella: Any trimester; MC and most serious in I trimester
- Varicella: Any trimester; MC and most serious in I trimester
- Syphilis: Any trimester; More common in Late II trimester or III trimester
- Toxoplasmosis: Any trimester; MC in III trimester; Most serious in I trimester
- Herpes simplex: During delivery (from infected genital secretions)
- HIV: during delivery (30% chance in developing countries, 20% in developed countries), breast feeding (16%)
- Hepatitis B: 90% (in presence of HBsAg); 20% (in presence of HBsAg); MC in III trimester and through breast feeding
- Cytomegalovirus: Any trimester (MC third trimester)

11. Ans. (a) Additional intake of 300 Kcal [new guidelines 350 + kcal/d] [Ref. K. Park 21/e p588, Park 22/e p590]

12. Ans. (c) Maternal mortality rate [Ref. K. Park 22/e p517]

13. Ans. (d) 500 Kcal, 20-25 grams proteins [NOW REVISED TO 600 Kcal, 18-20 grams proteins] [Ref. K. Park 22/e p547]

14. Ans. (d) 2300 [Ref. K. Park 22/e p587]

15. Ans. (b) 150 [Ref. Manual of Nutritional Therapeutics by Alpers, Taylor, Bier & Stenson, 5/e p90]

LBW

16. Ans. (b) 500 babies [Ref. Park 21/e p494, Park 22/e p495]
 - Low Birth Weight (LBW): Birth weight less than 2500 grams (<2.5 kg) [WHO]. It includes both pre-term (<37 weeks POG) and full-term (≥37 weeks POG) babies
 - Prevalence of LBW: 15% (World); 28% (India); If cutoff for LBW is reduced to 2.0 kg, expected prevalence of LBW in India will be 5.5%
 - LBW is regardless of gestational age
 - Depending on the population, the percentage of LBW be based on measurements of atleast 500 babies
 - Goal for LBW in National Health Policy 1983: Reduce LBW to <10% by 2000
Also Remember

- Birth weight of an infant is the 'single most important determinant of its chances of survival, healthy growth and development'
- Single best measure to assess physical growth: Weight
- Birth weight preferably be measured within: 1st hour of life (Salter’s Scale)
- Average birth weight in India: 2.8 kg (2.7 – 2.9 kg)
- LBW is not a contraindication for any vaccination EXCEPT Hepatitis B: Hepatitis B vaccine is contraindicated in preterm children with birth weight <2.0 kg.
- Field instrument for measurement of birth weight: Salter’s Scale

17. Ans. (b) 2.8 kgs [Ref. Park 21/e p494, Park 22/e p495]
 - Average birth weight in India: 2.8 kg (2.7 – 2.9 kg)
 - Prevalence of LBW (BW < 2.5 kg) in India: 28%

18. Ans. (b) Less than 2500 grams [Ref. Park 21/e p494, Park 22/e p495]

19. Ans. (a) Birth weight less than 2.5 kg [Ref. Park 21/e p494, Park 22/e p495]

20. Ans. (a) Continue breast feeding [Ref. Park 21/e p205, Park 22/e p206]
 - Breast feeding during diarrhoea:
 - Newborns with diarrhoea who have little or no signs of dehydration can be treated by breast feeding alone
 - Newborns with diarrhoea who have moderate or severe dehydration should be given ORS; breast feeding is continued along with ORS given after each liquid stool
 - Breast feeding rehydrates, provides nutrients to help recovery and prevents further infection

21. Ans. (c) Small for date babies [Ref. Park 21/e p494, Park 22/e p495]
 - Babies according to gestational age:

Type	Gestational age
Pre-term babies	< 37 weeks (< 259 days)
Term babies	37 – 42 weeks (259 – 293 days)
Post-term babies	> 42 weeks (> 294 days)

 - Low birth weight: ‘Less than 2500 grams IRRESPECTIVE of gestational age’
 - Pre-term babies: Born at < 37 weeks POG
 - Small-for-date babies: Born at term or post-term
 1. weigh ‘less than 10th percentile for gestational age’
 2. as a result of IUGR
 3. high risk of dying in neonatal and infancy period

22. Ans. (d) 4 [Ref. Park 21/e p484, Park 22/e p483]
 - Minimum recommended ante-natal visits: 4

<table>
<thead>
<tr>
<th>Visit</th>
<th>Period of gestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First AN visit</td>
<td>Early registration</td>
</tr>
<tr>
<td>Second AN visit</td>
<td>14-26 weeks POG</td>
</tr>
<tr>
<td>Third AN visit</td>
<td>28-34 weeks POG</td>
</tr>
<tr>
<td>Fourth AN visit</td>
<td>36 weeks POG - Term</td>
</tr>
</tbody>
</table>

23. Ans. (b) 28% [Ref. K. Park 22/e P592]

Review Question

24. Ans. (c) Health education to mother [Ref. Park 17/e p383]

25. Ans. (c) Height for age [Ref. Park 21/e p501, Park 22/e p503]

26. Ans. (a) Grade II [Ref. Park 21/e p501, Park 22/e p506]

27. Ans. (d) AgNO3 eye drop [Ref. Park 21/e p491, Park 22/e p492]
28. Ans. (d) Edema in dependent part [Ref. Park 21/e p591, Park 22/e p593]
29. Ans. (c) 550 Kcal [Now 600 kcal] [Ref. Park 21/e p588, Park 22/e p590]
30. Ans. (a) Born before 37 weeks [Ref. Park 21/e p494, Park 22/e p495]
31. Ans. (b) 150 mg/d [Now 300 mg/d] [Ref. Park 21/e p588, Park 22/e p590]
32. Ans. (c) 100 – 150 mg [Ref. Park 21/e p594, Park 22/e p596]
33. Ans. (a) 1987 [Ref. Internet]
34. Ans. (b) Lead [Ref. Park 21/e p687, Park 22/e p691]
35. Ans. (d) MAC [Ref. Internet, Park 21/e p600, Park 22/e p602]
36. Ans. (b) Vitamin D and calcium [Ref. Park 20/e p538, 553]
37. Ans. (a) 3 [Ref. Park 21/e p484, Park 22/e p483]
38. Ans. (c) 2500 KCal [Ref. Park 21/e p588, Park 22/e p590]
39. Ans. (b) 2.5 kg [Ref. Park 21/e p494, Park 22/e p495]
40. Ans. (a) Less than 10% [Ref. Park 21/e p493, Park 22/e p494]
41. Ans. (c) 2.5 kg [Ref. Park 21/e p494, Park 22/e p495]
42. Ans. (a) Prematurity [Ref. Park 21/e p494, Park 22/e p495]

MCH INDICATORS

43. Ans. (a) Tetanus [Ref. Park 21/e p524, Park 22/e p526]
 NEONATAL MORTALITY RATE (NNMR):
 - Neonatal mortality is the ‘most difficult’ part of IMR to alter
 - NNMR (India): 33 per 1000 LB [2010]
 - MCC of NNMR in India is preterm birth
 - MCC of ENNMR: Prematurity and congenital anomalies
 - MCC of LNNMR: Infections (diarrhea and tetanus)
 - NNMR_{boys} > NNMR_{girls}
 - Causes of Neonatal mortality (0 – 4 weeks):
 - Low birth weight and prematurity
 - Sepsis
 - Hemolytic diseases of newborn
 - Diarrhoeal diseases
 - Tetanus
 - Birth injury and difficult labour
 - Congenital anomalies
 - Conditions of placenta and cord
 - Acute respiratory infections

44. Ans. (c) Maternal deaths/100000 live births [Ref. Park 21/e p514, Park 22/e p516]
 - Maternal Mortality rate (MMR): Maternal deaths expressed as per 100,000 live births, where a ‘maternal death’ is defined as ‘death of a woman while pregnant or during delivery or within 42 days (6 weeks) of termination of pregnancy, irrespective of duration or site of pregnancy, from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes’
 - Maternal deaths expressed as per 100,000 live births (earlier it was expressed per 1000 live births but that yielded fractions like 4.08 maternal deaths per 1000 LB; so denominator was extrapolated to 100,000 to make MMR value more sensible)

Also Remember

- MMR is a ratio (Maternal mortality rate is a misnomer; MMR is not a rate)
- MMR World: 210 per 100,000 live births.
 - MCC of MMR (globally): Hemorrhage (25%)
- MMR India: 178 per 100,000 live births (Assam: 390; Kerala : 81; 2009-10)
 - MCC of MMR (India) [SRS 2001-03]: Hemorrhage (38%)
- Millennium Development Goal (MDG) 5: Reduce maternal mortality by three-fourths by 2015
45. **Ans. (b) Acute lower respiratory tract infections** [Ref. Park 21/e p528, Park 22/e p530]
 - Child mortality rate, CMR (Under 5 mortality rate, U5MR):
 \[
 \text{CMR} = \frac{\text{No. of deaths of children less than} \times 1000}{\text{No. of live births in a year}}
 \]
 - U5MR (India): 53 per 1000 LB [2011]
 - U5MR (World): 46 per 1000 LB [2011]
 - *Single MCC of U5MR or CMR is Pneumonia (19%)* [diarrhoea – 17%; malaria – 8%]
 - Neonatal conditions lead to 37% of total U5MR or CMR:
 1. Infections (MC neonatal condition leading to U5MR)
 2. Preterm births
 3. Asphyxia
 - Child death rate, CDR (1 – 4 year mortality rate):
 \[
 \text{CDR} = \frac{\text{No. of deaths of children aged} \times 1000}{\text{Mid year population of children aged} \times 1000}
 \]
 - CDR is a more refined indicator of social situation in a country than infant mortality
 - *Highest risk of death in 1 – 4 years age: 2nd year of life*
 - CDR (India): 3.6% of total deaths [2010]
 - MCC CDR (Developing countries): Diarrhoeal diseases and respiratory infections
 - MCC CDR (Developed countries): Accidents

Also Remember

- *Millennium Development Goal (MDG) 4: Reduce child mortality by two-thirds by 2015*
- UNICEF considers U5MR or CMR as ‘single best indicator of socio-economic development and well being’
- Child Survival Rate (CSR) [Child Survival Index]:
 \[
 \text{CSR} = \frac{1000 – \text{U5MR}}{10}
 \]
 - CSR (India): 94.7 [2014]

46. **Ans. (c) During lactation 8th month** [Ref. Park 21/e p514, Park 22/e p516]
 - Maternal death: Is defined as ‘Death of a woman while pregnant or during delivery or within 42 days (6 weeks) of termination of pregnancy, irrespective of duration or site of pregnancy, from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes’
 - Late maternal death: If death due to obstetric or related complication(s) occurs after 42 days of delivery but within 1 year
 - Late maternal death is not included in MMR
 So a mother dying due to any cause at 8 months lactation will not be included in Maternal Mortality Rate (MMR), since it occurs after 6 weeks of delivery
 Refer to Ans. 39

47. **Ans. (d) Neonatal mortality is higher among female children as compared to males** [Ref. State of World’s Children 2011, UNICEF and NFHS – 3, IIPS]
 - Under five Mortality Rate of India: 69 per 1000 LB (2008)
 - Infant Mortality Rate (IMR) of India: 47 per 1000 LB (2011)
 - Neonatal Mortality Rate (NNMR) of India: 36 per 1000 LB (SRS 2007)
 Thus, 47/69 or almost 3/4th of the under-five mortality occurs in the 1st year of life and 36/69 or half of under 5 mortality rate occurs in neonatal period
 Thus 69/1000 or about 1 in 13 children die before they reach the age of five years
Also Remember

- Infant mortality accounts for about 1/5th (18.7%) of total deaths in India
- Neonatal mortality is the ‘most difficult’ part of IMR to alter
- When no survey or registration data point is available, the NNMR is estimated from the under-5 mortality using a regression adjusted for AIDS

48. Ans. (b) Infant mortality rate [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p276, Park 21/e p523, Park 22/e p525]
- Infant Mortality Rate (IMR) is the second best indicator of socio-economic development of a country
 - Ultimate solution for lowering IMR lies in socio-economic development [U5MR is even better]
- IMR is most important indicator of
 - health status of a community
 - level of living and
 - effectiveness of MCH services in general
- The infant mortality rate is among ‘the best predictors of state failure’
- IMR in India:
 - Infant Mortality Rate (IMR) is a rate
 - MCC of IMR in India: Low birth rate and prematurity (57%)
 - MCC of IMR in World: Pneumonia
 - IMR (India): 40 per 1000 LB (MP: 54; Goa: 09) [2014]
 - IMR (World): 42 per 1000 LB [2012]
 - Goal in National Population Policy 2000: 30 per 1000 LB by 2010
 - Goal in National Health Policy 2002: 30 per 1000 LB by 2010

49. Ans. (b) Hemorrhage [Ref. Park 21/e p516-17, Park 22/e p518-19]
- MCC of Maternal Mortality Rate (MMR in World): Obstetric hemorrhage (25%)
- MCC of MMR in India [SRS 2001-03]: Obstetric hemorrhage (38%)

Also Remember

- Maternal Mortality rate (MMR): Maternal deaths expressed as per 100,000 live births, where a ‘maternal death’ is defined as ‘death of a woman while pregnant or during delivery or within 42 days (6 weeks) of termination of pregnancy, irrespective of duration or site of pregnancy, from any cause related to or aggravated by the pregnancy or its management but not from accidental or incidental causes’

\[
\text{MMR} = \frac{\text{No. of maternal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 100,000
\]

- MMR World: 210 per 100,000 live births. Causes of MMR (globally):
 - Hemorrhage (25%)
 - Indirect causes (20%)
 - Infection (15%)
 - Unsafe abortion (13%)
 - Eclampsia (12%)
 - Obstructed labour (8%)
- MMR India: 178 per 100,000 live births [2011]. Causes of MMR (India) [SRS 2001-03]:
 - Hemorrhage (38%)
 - Other conditions (34%)
 - Sepsis (11%)
 - Abortion (8%)
 - Obstructed labour (5%)
 - Hypertensive disorders (5%)

50. Ans. (c) 19 % [Ref. Park 21/e p524, Park 22/e p526]
- Deaths in the age group 0 – 1 year (infants) account for 18.7% of total deaths in the country
- About two-fifths (61%) of infant deaths occur in neonatal period. Of these two-thirds (41%) occur in first week of life (early neonatal period)
Review of Preventive and Social Medicine

- The risk of death in infancy is greatest during the first 24 – 48 hours after birth
 Refer to Ans. 42

Also Remember

- Infant Mortality Rate (IMR):
 - Infant Mortality Rate (IMR) is a rate
 - Is the second best indicator of socio-economic development of a country [BEST : U5MR]
 - Is most important indicator of health status of a community, level of living and effectiveness of MCH services in general
 - The infant mortality rate is among ‘the best predictors of state failure’
 - MCC of IMR in India: Low birth rate and prematurity (57%)
 - MCC of IMR in World: Pneumonia

51. Ans. (b) Perinatal mortality [Ref. Park 21/e p519, 523, Park 22/e p521-25]

- Infant mortality rate (IMR): Is the ratio of infant deaths registered in a given year to the total number of live births registered in the same year; IMR is usually expressed as a rate per 1000 live births (LB)
 \[
 \text{IMR} = \frac{\text{No. of infant deaths in a given year}}{\text{Total no. of live births in the same year}} \times 1000
 \]

- Neonatal mortality rate (NNMR): Is the number of neonatal deaths (deaths within completed 28 days after birth) per 1000 live births in that year
 \[
 \text{NNMR} = \frac{\text{No. of neonatal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 1000
 \]
 - Early neonatal mortality (ENNM): Neonatal mortality in first week (1 – 7 days) of life
 - Late neonatal mortality (LNNM): Neonatal mortality in first to fourth week (8 – 28 days) of life

- Post-neonatal mortality rate (PNNMR): Is the number of neonatal deaths (deaths within completed 28 days after birth) per 1000 live births in that year
 \[
 \text{PNNMR} = \frac{\text{No. of deaths between age 28 days to 1 year i a given year}}{\text{Total no. of live births in the same year}} \times 1000
 \]
 - Thus, IMR = NNMR + PNNMR = ENNM + LNNM + PNNMR

- Perinatal Mortality rate (PNMR): Includes both late fetal deaths (stillbirths) and early neonatal deaths
 \[
 \text{PNMR} = \frac{\text{Late fetal deaths and early neonatal deaths in a given year}}{\text{Total no. of live births in the same year}} \times 10000
 \]
 - Perinatal period is from 28 weeks period of gestation to 7th completed days of life (But the WHO definition of perinatal period is from 22 completed weeks gestation to 7th completed days of life)

Also Remember

- Perinatal Mortality rate (PNMR):
 - PNR is the sum of the fetal mortality and the neonatal mortality
 - PNMR is usually reported on an annual basis
 - PNMR is a major marker to assess the quality of health care delivery
 - PNMR (India): 32 per 1000 LB [2014]
 - P List (ICD 10): 100 causes of perinatal mortality and morbidity

52. Ans. (a) IMR [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p92, Park 21/e p523, Park 22/e p525]

- Likely factor affecting infant mortality in contemporary India is inadequate prenatal care and infrequent attendance at delivery
 1. Sex of the child: IMR_{girls} > IMR_{boys}
 \[\text{NNMR}_{girls} > \text{NNMR}_{boys} \]
 \[\text{PNNMR}_{girls} > \text{PNNMR}_{boys} \]
 2. Quality of mothering: IMR low in good quality of mothering
3. *Quality of health care:* IMR high in improper obstetric and pediatric care

53. Ans. (c) Low birth weight *[Ref. Park 21/e p524, Park 22/e p526]*
 - MCC of NNMR in India is preterm birth (low birth weight and prematurity)
 - MCC of ENNMR in World: Prematurity and congenital anomalies
 - MCC of LNNMR in World: Infections (diarrhea and tetanus)
 - NNMR is directly related with birth weight and gestational age

Also Remember

- MCC of IMR in India: Low birth rate and prematurity (57%)
- MCC of IMR in World: Pneumonia
- MCC of Child (1 – 4 yr) death rate in developing countries: Diarrhoeal diseases and respiratory infections
- MCC of Child (1 – 4 yr) death rate in developed countries: Accidents
- MCC of Under 5 Mortality Rate (Child Mortality Rate): Pneumonia (19%)
- MCC of Maternal Mortality Rate (MMR in World): Obstetric hemorrhage (25%)
- MCC of MMR in India: Obstetric hemorrhage (38%)

54. Ans. (a) Per 100,000 live births *[Ref. Park 21/e p514, Park 22/e p516]*
55. Ans. (c) 6 weeks *[Ref. Park 21/e p488, Park 22/e p489]*
 - Post-natal period: 0 – 6 weeks post delivery
56. Ans. (b) 1,00,000 live births *[Ref. Park 21/e p514, Park 22/e p516]*
57. Ans. (b) Perinatal mortality rate *[Ref. Park 21/e p519, Park 22/e p521]*
58. Ans. (a) Madhya Pradesh *[Ref. Park 21/e p524, Park 22/e p526]*
 - IMR of few states in India: [2011]

<table>
<thead>
<tr>
<th>State</th>
<th>IMR (per 100 live births)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madhya Pradesh</td>
<td>62</td>
</tr>
<tr>
<td>Orissa</td>
<td>61</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>61</td>
</tr>
<tr>
<td>Rajastan, Assam</td>
<td>55, 58</td>
</tr>
<tr>
<td>Bihar</td>
<td>48</td>
</tr>
<tr>
<td>Kerala</td>
<td>13</td>
</tr>
<tr>
<td>Goa</td>
<td>10</td>
</tr>
</tbody>
</table>

59. Ans. (d) Under 5 mortality *[Ref. Park 21/e p530, Park 22/e p532]*
60. Ans. (c) Delivery by trained personnel 42% *[Ref. Park 21/e p514-530, Park 22/e p516-32]
 - Key MCH Indicators: [2012-13]
 - IMR: 42 per 1000 live births
 - MMR: 212 per 100,000 live births
 - PNMR: 32 per 1000 live births
 - NNMR: 33 per 1000 live births
 - U5MR: 59 per 1000 live births
 - Delivery by skilled personnel: 47%

61. Ans. (b) Per/100,000 live births *[Ref. Park 21/e p514, Park 22/e p516]*
62. Ans. (c) Deaths from 28 weeks to with first week of life *[Ref. Park 21/e p519, Park 22/e p521]*
63. Ans. (b) 50

In the given question,
Total neonatal deaths = Total early neonatal deaths + Total late neonatal deaths = 50 + 150 = 200
Total live births = Total births – Total stillbirths = 4050 – 50 = 4000
Thus, Neonatal mortality rate, NNMR = 200/4000 × 1000 = 50 per 1000 live births

64. Ans. (b) Congenital malformations *[Ref. K. Park 21/e p524-525, Park 22/e p526-27]*
 - Congenital malformations are most common cause of Neonatal mortality in developed countries
65. Ans. (c) Total number of live births *[Ref. K. Park 21/e p514, Park 22/e p516]*

https://kat.cr/user/Blink99/
Review Questions

81. Ans. (c) 200 [Ref. Park 20/e p423]
82. Ans. (c) Both [Ref. Park 21/e p519, Park 22/e p521]
83. Ans. (c) Both [Ref. Park 21/e p514, Park 22/e p516]
84. Ans. (c) Both [Ref. Park 21/e p519, Park 22/e p521]
85. Ans. (b) Perinatal mortality [Ref. Park 21/e p519, 523, Park 22/e p521, 525]
86. Ans. (c) Total live births weighing over 1000 grams at birth [Ref. Park 21/e p519, Park 22/e p521]
87. Ans. (a) Less than 1 year [Ref. Park 21/e p523, Park 22/e p525]
88. Ans. (b) 28 weeks to 1st week after birth [Ref. Park 21/e p519, Park 22/e p521]
89. Ans. (d) Total death in same year [Ref. Park 21/e p528, Park 22/e p530]
90. Ans. (d) 100,000 live births [Ref. Park 21/e p514, Park 22/e p516]
91. Ans. (b) 1-4 year mortality [Ref. Park 21/e p527, Park 22/e p529]
92. Ans. (d) 60 per 1000 live births [Ref. Internet, Park 21/e p830, Park 22/e p834]
93. Ans. (a) Total no. of live births in the same area and same year [Ref. Park 22/e p516]
94. Ans. (d) Tetanus [Ref. Park 21/e p524, Park 22/e p526]
95. Ans. (d) Obstetric hemorrhage [Ref. Park 21/e p516-17, Park 22/e p518-19]
96. Ans. (a) 100 [Ref. Park 21/e p523, Park 22/e p525]
97. Ans. (b) 1000 live birth [Ref. Park 21/e p523, Park 22/e p525]
98. Ans. (d) Sepsis and hemorrhage [Ref. Park 21/e p517, Park 22/e p0519]
99. Ans. (b) 40 [Now 36 in 2011] [Ref. Park 21/e p522, Park 22/e p524]
100. Ans. (b) 1000 [Ref. Park 21/e p519, Park 22/e p521]
101. Ans. (c) 1000 grams [Ref. Park 21/e p519, Park 22/e p521]
102. Ans. (d) None [Ref. Park 21/e p514, Park 22/e p516]
103. Ans. (a) Prematurity [Ref. Park 21/e p520, Park 22/e p522]
104. Ans. (b) 1000 live birth [Ref. Park 21/e p523, Park 22/e p525]
105. Ans. (a) Per 1000 live births [Ref. Park 21/e p514, Park 22/e p516]
106. Ans. NONE OF THE CHOICES [Ref. Park 21/e p172, Park 22/e p174]
107. Ans. (c) 26.5% [Ref. Park 21/e p528, Park 22/e p530]

BREAST FEEDING

108. Ans. (a) The maximum milk output is seen at 12 months [Ref. Park 22/e p469, 489, 492, 498]

* Mean output of breast milk per day (ml) is maximum towards the end of 1st half of lactation (5 – 6 months)

<table>
<thead>
<tr>
<th>Months of lactation</th>
<th>Mean output (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 2</td>
<td>530</td>
</tr>
<tr>
<td>3 – 4</td>
<td>640</td>
</tr>
<tr>
<td>5 – 6</td>
<td>730 (Maximum)</td>
</tr>
<tr>
<td>7 – 8</td>
<td>660</td>
</tr>
<tr>
<td>9 – 10</td>
<td>600</td>
</tr>
<tr>
<td>11 – 12</td>
<td>525</td>
</tr>
</tbody>
</table>

* Human Milk is richer in iron and has better bioavailability than cow’s milk. Human milk has coefficient of iron uptake around 70%; It is only 30% in cow’s milk and infant formulas

Also Remember

* Nutritive values of milk (per 100 gms):

<table>
<thead>
<tr>
<th></th>
<th>Cow’s milk</th>
<th>Human milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose (g)</td>
<td>4.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>3.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>120</td>
<td>28</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td>Water (g)</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>Energy (Kcal)</td>
<td>67</td>
<td>65</td>
</tr>
</tbody>
</table>

* Human Milk is richer in Carbohydrate (lactose), Iron and Water content WHILE Cow’s milk is richer in Fat, Protein, Calcium and energy content
 - Human milk proteins: More cystine and taurine; less methionine; better digested than cow’s milk proteins
 - Human milk fats: Higher levels of PUFAs, esp., linoleic acid and a-linoleic acid; better digested and absorbed; low calcium content but better absorbed than cow’s milk
 - Human milk vitamins and minerals: Human milk is richer in Vitamin A, C; richer in copper, cobalt and selenium; richer in iron and higher bioavailability; high calcium/phosphorus ratio. Human milk has lesser sodium

109. Ans. (a) Exclusive breast-feeding should be continued till 6 months of age followed by supplementation with additional foods [Ref. Park 21/e p488, 89, Park 22/e p489, 90]
WHO recommends, in developing countries, exclusive breast feeding till 6 months age
WHO recommends, in developing countries, breast feeding till minimum 2 years age

Also Remember

COLOSTRUM:
- Is the most suitable food immediately after birth of the baby; Regular milk comes 3 – 6 days after birth
- Also known as ‘Beestings’, ‘First milk’ or ‘Immune Milk’
- High in carbohydrates, protein, and antibodies and low in fat
- Contains all five immunoglobulins found in all mammals, IgA, IgD, IgE, IgG and IgM

Few occasions when breast feeding might harm the infant:
- Infants with classic galactosemia
- Mother has untreated pulmonary tuberculosis
- Mother is taking certain medications that suppress the immune system
- Mother has had unusually excessive exposure to heavy metals such as mercury
- Mother has HIV
- Mother uses potentially harmful substances such as cocaine, heroin, and amphetamines

110. Ans. (c) More iron [Ref. Park 21/e p582, Park 22/e p584]

Also Remember

- Comparative contents of nutrients in different types of milk:
 - Fat content of milk: Buffalo > Goat > Cow > Human
 - Protein content of milk: Buffalo > Goat > Cow > Human
 - Energy content of milk: Buffalo > Goat > Cow > Human
 - Lactose content of milk: Human > Buffalo > Goat > Cow

111. Ans. (c) 5-6 months [Ref. Park 21/e p489, Park 22/e p490]
112. Ans. (c) Lactose [Ref. Park 21/e p582, Park 22/e p584]
113. Ans. (a) Maximum output is at 12 months of lactation [Ref. Park 22/e p469, 489, 492, 498]
114. Ans. (b) Carbohydrates; (d) Iron [Ref. K. Park 21/e p497, Park 22/e p499]
115. Ans. (d) Carbohydrates [Ref. K. Park 21/e p497, Park 22/e p499]
116. Ans. (b) 1 hour of delivery [Ref. K. Park 22/e P469, 490, 492, 497]

Review Questions

117. Ans. (a) 28mg [Ref. Park 21/e p582, Park 22/e p584]
118. Ans. (d) 7:3 [Ref. Park 21/e p496-97, Park 22/e p498-99]
119. Ans. (b) August [Ref. Internet]

GROWTH AND DEVELOPMENT

120. Ans. (c) 50th percentile for boys [Ref. K. Park 19/e p435, 20/e p468]
121. Ans. (a) Acute malnutrition [Ref. Park 21/e p501, Park 22/e p503]
 - Low weight for age: Is known as ‘Underweight’ [Acute and Chronic Malnutrition]
 - Low weight for height: Is known as ‘Nutritional wasting’ or ‘Emaciation’ (Acute Malnutrition)
 - Low height for age: Is known as ‘Nutritional stunting’ or ‘Dwarfing’ (Chronic malnutrition)

https://kat.cr/user/Blink99/
FOR CHILDREN:
- Single best parameter for assessment of physical growth: Weight (and rate of weight gain)
- Single most sensitive measure of growth: Weight
- Single most reliable criterion of assessment of health and nutritional status: Weight
- Height is a stable measurement of growth as opposed to body weight
 - Weight: reflects only present health status
 - Height: indicates events in past also
- Age independent parameters for growth assessment:
 - Weight for height
 - Mid arm circumference (MAC)
- Thickness of subcutaneous fat
- Body ratios
 1. Weight : Height
 2. MAC : Head circumference

122. Ans. (c) Holds head erect: 6 months [Ref. Park 21/e p502, Park 22/e p504]
- A normal child holds head erect by 3 months age

Behavioral development of children are assessed in 4 fields: Developmental milestones
- Motor development
- Language development
- Adaptive development
- Socio-personal development

123. Ans. (b) 9 kg [Ref. Park 21/e p500, Park 22/e p502]
- Average birth weight in India: 2.8 kg (2.7 – 2.9 kg)
- BW doubles at 5 months, triples by 1 year and quadruples by 2 years age
 - So BW of 3 kg will become 6 kg, 9 kg and 12 kg at 5 months, 1 year and 2 years age respectively
- Weight gain pattern in children:

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight increments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3 months</td>
<td>200 grams per week</td>
</tr>
<tr>
<td>4 – 6 months</td>
<td>150 grams per week</td>
</tr>
<tr>
<td>7 – 9 months</td>
<td>100 grams per week</td>
</tr>
<tr>
<td>10 – 12 months</td>
<td>50 – 75 grams per week</td>
</tr>
<tr>
<td>0 – 1 year</td>
<td>7.0 kg per year</td>
</tr>
<tr>
<td>1 – 2 year</td>
<td>2.5 kg per year</td>
</tr>
<tr>
<td>3 – 5 year</td>
<td>2.0 kg per year</td>
</tr>
</tbody>
</table>

Height increase pattern in children:
- Indian boys attain 98% of final height by 17.75 years
- Indian girls attain 98% of final height by 16.5 years

Also Remember

• Weight reflects only present status of the child, whereas height indicates events in the past also
• Near-final height attainment:
 - Indian boys attain 98% of final height by 17.75 years
 - Indian girls attain 98% of final height by 16.5 years
124. Ans. (b) 34 cms [Ref. Park 21/e p501, Park 22/e p503]

- At birth the head circumference is about 34 cms, about 2 cms more than the chest circumference
- By 6 – 9 months, Head circumference (HC) = Chest circumference (CC)
- Normal children: CC overtakes HC at around 1 year age
 - Malnourished children: CC may overtake HC at around 3 – 4 years age

Also Remember
- HC should be measured in Occipito-frontal diameter, with a fibre-glass tape
- HC growth velocity in 0 – 3 months age: 2 cms per month
- During 1st year there is increase in HC by 12 cms; Adult head size is achieved by 5 – 6 years age

125. Ans. (d) History of maternal health [Ref. Park 21/e p504, Park 22/e p506]

GROWTH CHART:
- Growth Chart (Road-to-health chart): Is a visible display of child’s physical growth and development
- Growth chart is designed for: Longitudinal follow-up (growth monitoring) of a child
- Growth chart is generally plotted between: Weight and Age
- Growth chart provides information on:
 - Identification and registration
 - Birth date and birth weight
 - Chronological age
 - Weight-for-age
 - Developmental milestones
 - History of sibling health
 - Immunization procedures
 - Introduction of supplementary foods
 - Episodes of sickness
 - Child spacing (Contraceptive/family planning methods used)
 - Reasons for special care

WHO HOME BASED GROWTH CHART:
- WHO growth chart has 2 reference curves:
 - Upper Reference Curve (URC): 50th percentile for boys
 - Lower Reference Curve (LRC): 3rd percentile for girls
- Road to Health: Is the space between two growth curves (weight channel). It includes zone of normality for most populations, i.e. 95% of healthy normal children used as a reference fall in this area
- WHO reference curves are based on: NCHS Standards (National Centre for Health Statistics, USA)
- The 3rd percentile (LRC) corresponds to approximately 2 SD below the median of weight-for-age reference value (i.e. URC)

Also Remember
- Growth chart was first designed by ‘David Morley’ (and later modified by WHO).
- Growth chart is the ‘passport to child’s health care’
- Best available standards of growth: NCHS standards
- Direction of growth in a growth chart is more important than the position of dots
- Periodic weight record is more useful than a single weight plot
- Objective in child care: To keep the child above 3rd percentile
- Flattening of a child’s plot: indicates malnutrition
- REFERENCE OR STANDARD VALUES OF GROWTH:
 - WHO 2006 (MGRS) Child Growth Standards
 - Harvard (Boston) standards
 - NCHS standards (WHO reference values)
 - Indian standards (ICMR values)

126. Ans. (d) Health education [Ref. K. Park 17/e p383]

- Under fives clinic concept: Includes
 - Preventive care
Preventive Obstetrics, Paediatrics and Geriatrics

- Care in illness
- Growth monitoring
- Family planning
- Health education

127. Ans. (a) 3rd percentile [Ref. K. Park 20/e p468]
128. Ans. (b) The position of dots is more important than direction [Ref. Park 21/e p502-05, Park 22/e p504-07]
129. Ans. (a) Low birth weight [Ref. Park 21/e p493-95, Park 22/e p494-96]
 • Low birth weight is associated with ‘Maternal malnutrition’
130. Ans. (b) Weight [Ref. K. Park 22/e p502]
131. Ans. (c) MRGS [Ref. K Park 22/e p504-506]

ICDS GROWTH CHART
- In NRHM and ICDS, Government of India has adopted WHO Child Growth Standards 2006 (also known as MGRS ‘Multicentre Growth Reference Study’ Standards)
 - Normal zone
 - Below -2 SD: Malnutrition
 - Below -3 SD: Severe Malnutrition

132. Ans. (b) Mid arm circumference [Ref. Nutrition in Children in Developing Countries by P Choudhary, 1/e p190]
133. Ans. (c) Height for age [Ref. K Park 22/e p503]
134. Ans. (b) 50 percentile for boys and 3 percentile for girls [Ref. K Park 22/e p504-08]
135. Ans. (a) 23% [CORRECT ANSWER 20%] [Ref. NFHS-3 document, IIPS, Mumbai, Government of India]

Review Questions

136. Ans. (b) 50th percentile [Ref. Park 20/e p468]
137. Ans. (a) 50th percentile [Ref. Park 20/e p468]
138. Ans. (b) 50th percentile [Ref. Park 20/e p468]
139. Ans. (c) Height for age [Ref. Park 21/e p501, Park 22/e p503]
140. Ans. (b) Weight for Height [Ref. Park 21/e p501, Park 22/e p503]
141. Ans. (b) 1-5 years [Ref. Park 21/e p592, Park 22/e p594]
142. Ans. (c) Home based [Ref. Park 21/e p502-05, Park 22/e p504-07]
143. Ans. (a) Keratomalacia [Ref. Park 21/e p590-92, Park 22/e p592-94]
144. Ans. (b) David Morley [Ref. Park 21/e p502, Park 22/e p504]
145. Ans. (a) 80% of median weight [Ref. Park 21/e p502-03, Park 22/e p504-05]
146. Ans. (a) Used for monitoring growth and development of a child [Ref. Park 21/e p502-03, Park 22/e p504-05]
147. Ans. (b) 50th percentile for boys [Ref. Park 20/e p468]
148. Ans. (c) Four [Ref. Park 21/e p503, Park 22/e p0505]

SCHOOL HEALTH

 • Commonly detected morbidities in school children (in decreasing order of prevalence):
 - Dental defects (180.3 per 1000)
 - Goiter (123.8 per 1000)
 - Malnutrition (123.5 per 1000)
Also Remember

- School age children represent > 25% of total Indian population
- School health committee (1961) in India recommended medical examination of children ‘at the time of entry and thereafter every 4 years’ [New NRHM guideline: Once every 6 months]
- School Eye Screening Programme:
 - Focus on middle schools (V – VIII classes: 10 – 14 years age group)
 - Teachers to do screening: 1 teacher per 150 students
 - Visual acuity cutoff for referral to PHC: < 6/9
- In 1961, ‘Renuka Roy School Health Committee’ laid the foundations for a comprehensive school health programme in India

150. Ans. (d) One urinal for 10 students and one latrine for 25 students [Ref. Park 22/e p535-36]

151. Ans. (b) Desks should be of plus type [Ref. Park 21/e p533-34, Park 22/e p533-36]

Also Remember

- Minus (-) type desks: Desks where sitting table slides under the front portion (writing board)

152. Ans. (a) Minus desk [Ref. K Park 22/e P535]
153. Ans. (c) 40 [Ref. Park, 22/e, p535]

Review Questions

154. Ans. None (Both are incorrect statements) [Ref. Logical reasoning]
155. Ans. NONE [Ref. Logical reasoning]
156. Ans. (a) 1/3; 1/2 [Ref. Park 21/e p611, Park 22/e p613]
157. Ans. (b) Negative [Ref. Park 21/e p534, Park 22/e p536]
158. Ans. (b) ‘Minus’ desk [Ref. Park 21/e p534, Park 22/e p536]
159. Ans. (c) 25% [Ref. Park 21/e p534, Park 22/e p0536]

ICDS, IMNCI, BFH

160. Ans. (b) Mother to initiate breast feeding within 4 hours of normal delivery [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p177, Park 21/e p497-98, Park 22/e p499-500]

161. Ans. None [Ref. K. Park 19/e p527, 20/e p574]

Ministries to combat malnutrition:
<table>
<thead>
<tr>
<th>Programme</th>
<th>Ministry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A prophylaxis programme</td>
<td>Ministry of Health and Family Welfare</td>
</tr>
<tr>
<td>Prophylaxis against nutritional anemia</td>
<td>Ministry of Health and Family Welfare</td>
</tr>
<tr>
<td>Iodine deficiency disorders control programme</td>
<td>Ministry of Health and Family Welfare</td>
</tr>
<tr>
<td>Special nutrition programme</td>
<td>Ministry of Social Welfare</td>
</tr>
<tr>
<td>Balwadi nutrition programme</td>
<td>Ministry of Women and Child Development</td>
</tr>
<tr>
<td>ICDS programme</td>
<td>Ministry of Education</td>
</tr>
<tr>
<td>Midday meal programme</td>
<td></td>
</tr>
</tbody>
</table>

Also Remember

- Employees State Insurance (ESI) Scheme is under: ‘Ministry of Labour’

162. Ans. (d) Neonatal tetanus [Ref: Textbook of Community Medicine by Sunder Lal, 2/e p135-36, Park 22/e p547-48]

INTEGRATED MANAGEMENT OF NEONATAL AND CHILDHOOD ILLNESS (IMNCI):
- IMNCI is a ‘strategy for reducing morbidity and mortality associated with major causes of childhood illness’
 - Curative component includes management of:
 1. Diarrhoea
 2. Measles
 3. Pneumonia
 4. Malaria
 5. Severe malnutrition and nutritional counseling

Also Remember

- IMNCI is the Indian adaptation of IMCI; major highlights of Indian adaptation are,
 - Inclusion of early neonatal age (0 – 7 days age) in programme
 - Incorporating national guidelines on malaria, anemia, Vitamin-A supplementation and immunization schedule
 - Training of health workers begin with sick young infants up to 2 months
 - Proportion of training time devoted to sick young infant and sick child is almost equal
 - Is skill based

163. Ans. None [Now 500 Cal and 12 – 15g protein] [Ref. National Health Programs of India by Dr.J. Kishore, 8/e p405, Park 21/e p611, Park 22/e p613]

Also Remember

- Currently ICDS is the ‘most important scheme in field of child welfare’; It is ‘both a preventive and a developmental effort’
- 1 Mini-Anganwadi Centre is for population of 150 – 500 population (rural/urban) or 150 – 300 population (tribal)
- Kishori Shakti Yojana: Scheme for adolescent girls in ICDS
- Wheat Based Nutrition Programme (WBNP): The Government of India allocates food grains (wheat and rice) at BPL rates to the States for providing supplementary nutrition to beneficiaries under the ICDS Scheme
- UDISHA: A World Bank assisted countrywide training programme for all ICDS functionaries; 3 main components:
 - Regular training
 - Other training
 - IEC
- ICDS in India: Implementation by Ministry of Women and Child Development:
 - ICDS projects sanctioned: 5671
 - ICDS projects functioning: 5422
 - Anganwadis functioning: 578,457

164. Ans. NONE (Now 600 cals, 18 – 20 gm protein) [Ref. Park 21/e p611, Park 22/e p613]

165. Ans. (d) Anganwadi [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p17, Park 22/e p546-48]

166. Ans. (b) Community development block [Ref. Park 21/e p545, Park 22/e p547]

- Administrative unit of an ICDS project is ‘Community Development Block’; each project covering a population of 1,00,000 (rural/urban) or 35,000 (tribal)
Preventive Obstetrics, Paediatrics and Geriatrics

167. Ans. (b) 700 [CURRENT GUIDELINES: 300-800] [Ref. K Park 22/e P546]
168. Ans. (d) USA [Ref. Birthing Normally After A Caesarean or Two, H Vadeboncoeur, 2/e, 21]

MOTHER FRIENDLY CHILDBIRTH INITIATIVE (MFCI)

Description: To improve care throughout the childbearing continuum in order to save lives, prevent illness and harm from the overuse of obstetric technologies, and promote health for mothers and babies around the world
Launched: 1996, USA

10 Steps of MFCI:
Step 1: Treat every woman with respect and dignity, providing her right to informed consent and refusal
Step 2: Possess and routinely apply midwifery knowledge and skills related to normal physiology
Step 3: Inform the mother of the benefits of continuous support during labour and birth, Step 4: Provide drug-free comfort and pain-relief methods during labour
Step 5: Provide specific evidence-based practices proven to be beneficial
Step 6: Avoid potentially harmful procedures and practices that have no scientific support
Step 7: Implement measures that enhance wellness and prevent emergencies, illness, and death of Mother and Baby
Step 8: Provide access to evidence-based skilled emergency treatment for life-threatening complications
Step 9: Provide a continuum of collaborative maternal and newborn care with all relevant health care providers, institutions and organizations
Step 10: Strive to achieve the 10 Steps to Successful Breastfeeding (WHO/UNICEF Baby-friendly Hospital Initiative BFHI)

- Revised norms for free food supplementation under ICDS:

<table>
<thead>
<tr>
<th>Category</th>
<th>Existing Calories (Kcal)</th>
<th>Revised Calories (Kcal)</th>
<th>Existing Protein (g)</th>
<th>Revised Protein (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (6-72 months)</td>
<td>300</td>
<td>500</td>
<td>8-10</td>
<td>12-15</td>
</tr>
<tr>
<td>Severely malnourished children (6-72 m)</td>
<td>600</td>
<td>800</td>
<td>20</td>
<td>20-25</td>
</tr>
<tr>
<td>Pregnant women and Nursing mothers</td>
<td>500</td>
<td>600</td>
<td>15-20</td>
<td>18-20</td>
</tr>
</tbody>
</table>

170. Ans. (c) 6 [Ref. Park 22/e p546]

Review Questions

171. Ans. (a) Covers population of 5000 [Ref. Park 21/e p545-46, Park 22/e p547-48]
172. Ans. (c) Prevention of iodine deficiency disorders [Ref. Park 21/e p544-46, Park 22/e p546-548]
173. Ans. (b) Formal education [Ref. Park 21/e p544-46, Park 22/e p546-48]
174. Ans. (a) Tetanus [Ref. Park 21/e p530-531, Park 22/e p532-533]
175. Ans. (b) 1000 [Now 400-800] [Ref. Park 21/e p544, Park 22/e p546]
176. Ans. None [Now 500 Kcal + 12 – 15 g proteins] [Ref. Park 21/e p545, Park 22/e p547]
177. Ans. (c) Two months [Ref. Park 21/e p550, Park 22/e p552]

NEONATAL SCREENING

178. Ans. (b) Phenylketonuria [Ref. Park 21/e p493, Park 22/e p494]

Guthrie Test:
- Guthrie Test: Is done in neonates for mass screening of Phenylketonuria (PKU)
- Guthrie test was the first screening test used in neonates
- Blood sample is collected by heel prick of the baby 7 -10 days after birth
- Guthrie Test is negative in first 2 – 3 days of life
- Guthrie test can detect PKU, Galactosemia and Maple syrup urine disease
- Chemicals detected: Phenylalanine, Phenylpyruvate and Phenyllactate
- It is a semi-quantitative test

https://kat.cr/user/Blink99/
Also Remember

- Neonatal Screening is primarily a Secondary Level of Prevention
- Most common neonatal disorder to be screened is Neonatal hypothyroidism (NNH)
- PKU is an autosomal recessive trait with a frequency of 1 in 10,000 births
- Enzyme deficient in PKU: Phenylalanine hydroxylase
- Treatment of PKU: restricting or eliminating foods high in phenylalanine, such as breast milk, meat, chicken, fish, nuts, cheese, legumes and other dairy products
- Currently, Guthrie test has been replaced by Tandem mass Spectrometry

179. Ans. (a) Neonatal Hypothyroidism [Ref. Park 21/e p493, Park 22/e p494]
- Most common neonatal disorder to be screened is Neonatal hypothyroidism (NNH)
- Blood sample is collected from Cord’s Blood
- Test involves measurement of T_4 or TSH both simultaneously. As a single method, T_4 is more useful (greater precision and reproducibility)

Also Remember

- NNH has a frequency of 1 in 4000 births
- The most common cause of congenital hypothyroidism is iodine deficiency
- Treatment of NNH consists of a daily dose of thyroid hormone (thyroxine) by mouth

GERIATRICS

MISCELLANEOUS

180. Ans. (b) Volume >1 ml [NEW GUIDELINES > 1.5 ml] [Ref. Internet; www.who.int]

Also Remember

- Aspermia: Absence of semen
- Azoospermia: Absence of sperms
- Oligospermia: Low no. of sperms
- Asthenozoospermia: Poor sperm motility
- Teratozoospermia: Sperms carry more morphological defects than usual

181. Ans. (b) Adolescent girl’s scheme under ICDS [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p17 and Park 21/e p545, Park 22/e p443]

KISHORI SHAKTI YOJANA (KSY):
- KSY is rename of ‘Adolescent Girl’s Scheme’ under ICDS (Integrated Child Development Services)
- Aim of KSY:
 - To improve the nutritional and health status of adolescent girls
 - To promote self-development, awareness of health, hygiene, nutrition, and family life and child care
 - KSY covers 2000 ICDS projects

182. Ans. (c) ORS [Ref. Park 21/e p529, Park 22/e p531]
- Oral Rehydration Therapy (ORT), a cheap and effective way to tackle mortality from diarrhoea is ‘the discovery of the century’

Also Remember

- Smallpox vaccine was the first successful vaccine ever to be developed; It was first perfected in 1796 by ‘Edward Jenner’
- Penicillin: The discovery of penicillin is usually attributed to Scottish scientist ‘Sir Alexander Fleming’ (1928) and the development of penicillin for use as a medicine is attributed to the Australian Nobel Laureate ‘Howard Walter Florey’
- Zidovudine (INN) or azidothymidine (AZT) (also called ZDV) is an antiretroviral drug, the first approved for treatment of HIV

183. Ans. (c) Iron supplements and observation [Ref. Park 21/e p461, Park 22/e p459-60]
184. Ans. (b) 105 g/L [Ref. Internet]

Also Remember

- **Bleeding on IUD insertion**: Reassure + Iron supplementation
- **Pain on IUD insertion**: Remove the IUD
- **Pregnancy with IUD-in-situ**:
 - Legally induced abortion
 - If woman wants to continue pregnancy: Remove IUD by pulling threads
 - If signs of intra-uterine infection: Evacuation under broad spectrum antibiotic cover

185. Ans. (d) A Rh –ve multipara mother aged 30 years with two live healthy boys [Ref. Park 21/e p532, 768, Park 22/e p534, 772]

- **Amniocentesis**: Amniotic Fluid Test or AFT is a medical procedure used in prenatal diagnosis of genetic risk factors; In AFT, a small amount of amniotic fluid, which contains fetal tissues, is extracted from the amnion or amniotic sac surrounding a developing fetus, and the fetal DNA is examined for genetic abnormalities
- **Amniocentesis can be performed ‘usually after the 14th week of pregnancy’ (and not before 12 weeks of POG)**
- **Indications for Amniocentesis**:
 - Advanced maternal age (> 35 years) for risk of Down’s Syndrome
 - Previous child with Down’s Syndrome or other chromosomal anomalies
 - Parents with known chromosomal translocation
 - Previous child with a metabolic defect (neural tube defects, anencephaly and spina bifida) – raised alpha fetoprotein
 - Sex determination is warranted (history of sex linked genetic diseases)

Also Remember

- Through amniocentesis, the ‘three most common abnormalities tested’ for are:
 - Down’s syndrome
 - Trisomy 18
 - Spina bifida

186. Ans. (c) Adoption and Foster home placement [Ref. Park 21/e p543, Park 22/e p545]

CHILD PLACEMENT:

- **Orphanages**: For children who have no home or cannot be taken care of by their parents
- **Foster Homes**: Several types of facilities for rearing children other than in natural families
- **Adoption**: Legal adoption confers upon child and the adoptive parents, rights and responsibilities similar to that of natural parents
- **Borstals**: Borstal: Boys over 16 years who are too difficult to be handled in a certified school or have misbehaved there, are sent to a Borstal. Borstal, as an institution, falls between a certified school and an adult prison
 - A borstal sentence is usually for 3 years, and is regarded as a method of training and reformation
- **Remand Homes**: Child is placed under the care of doctors, psychiatrists and other trained personnel to improve the mental and physical well being of the child
Also Remember

- Law relevant to adoption in India: 'The Hindu Adoptions and Maintenance Act, 1956'

187. Ans. (c) Borstal [Ref. Park 21/e p543, Park 22/e p545]

188. Ans. (a) 2-3 % of newborns [Ref. Park 21/e p531, Park 22/e p533]
- Congenital disorders: Those diseases that are substantially determined before or during birth and which, in principle, are recognizable in early life
- Incidence of congenital disorders (World): 30 – 70 per 1000 live births
 - MC disorders are of cardiovascular system and nervous system
- Birth defects in Indian newborns are seen in 2.5%. The figure rises to 4% if they are followed up to age of 5 years
 - MC birth defect in North India: Neural tube defects or spina bifida
 - MC birth defect in rest of India: Musculoskeletal disorders

189. Ans. (b) Borstal [Ref. Park 21/e p543, Park 22/e p545]

190. Ans. (a) Article 24; (e) Article 45 [Ref. Park 21/e p508, Park 22/e p510]
- Articles on Child rights in our Constitution:

<table>
<thead>
<tr>
<th>Article</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article 24</td>
<td>Prohibits employment of children below 14 years in factories</td>
</tr>
<tr>
<td>Article 24</td>
<td>Prevents abuse of children at tender age</td>
</tr>
<tr>
<td>Article 24</td>
<td>Provides for free and compulsory education for all children till 14 yrs age</td>
</tr>
</tbody>
</table>

Also Remember

- NPAC 2005 definition of Child (adopted by India):
 - All persons up to the age of 18 years
 - All rights apply to all age-groups, including before birth
- National Policy 1974 mandate: State takes responsibility for children ‘both before and after birth’

HEALTH OF ADOLESCENTS:
- Definitions:
 - Adolescents: 10 – 19 years age
 - Youth: 15 – 24 years age
 - Young people: 10 – 24 years age

191. Ans. (b) Child trafficking [Ref. K Park 22/e P544]

192. Ans. (c) Remand home [Ref. K Park 22/e P544-45]

193. Ans. (c) Free nutritional supplements [Ref. Park 22/e p496]
- KANGAROO MOTHER CARE for prevention of neonatal hypothermia in low birth weight/premature newborns:
 - Skin-to-skin positioning of newborn on mother’s chest
 - Adequate nutrition through breast feeding
 - Early discharge and ambulatory care
 - Support for mother and family for child care

Review Questions

194. Ans. (c) 20 weeks [Ref. Park 21/e p468, Park 22/e p467]
Energy and Protein Requirements

Nutrients in Diet

- **Macronutrients**: Proximate principles which form the bulk of the diet
 - Carbohydrates
 - Fats
 - Proteins
- **Micronutrients**: Vitamin and Minerals (which are required in small quantities).
 - *Major minerals*: Sodium, Potassium, Magnesium, Calcium, Phosphorus
 - *Trace elements*: Iron, Iodine, Fluorine, Zinc, Copper, Cobalt, Selenium, Chromium, Manganese, Molybdenum, Nickel, Tin, Silicon, Vanadium
 - *Trace contaminants* (no known function in body): Lead, Mercury, Barium, Boron, Aluminium.

Proximate Principles of Diet

- Energy yield of macro-nutrients (Proximate principles):

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Energy yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Proteins</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Fats</td>
<td>9 Kcal per gram (37 KJ)</td>
</tr>
</tbody>
</table>

- Carbohydrates, fats and proteins form the main bulk of food; thus they are known as ‘Macronutrients’ or ‘Proximate principles’
- In ‘Balanced Diet’,
 - Proteins should constitute 10-15% of total daily energy intake
 - Fats should constitute 15-30% of total daily energy intake
 - Carbohydrates constitute remaining 50-70% of energy.

Recommended Daily Energy and Protein Intake [New Guidelines 2011]

<table>
<thead>
<tr>
<th>Group</th>
<th>Particulars</th>
<th>Energy (Kcal/d)</th>
<th>Proteins (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Male</td>
<td>Sedentary worker</td>
<td>2320</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>2730</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>3490</td>
<td>60</td>
</tr>
<tr>
<td>Adult Female</td>
<td>Sedentary worker</td>
<td>1900</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>2230</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>2850</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Pregnancy Q</td>
<td>+350</td>
<td>+23</td>
</tr>
<tr>
<td></td>
<td>Lactation (0 – 6 m) Q</td>
<td>+600</td>
<td>+19</td>
</tr>
<tr>
<td></td>
<td>Lactation (6 – 12 m) Q</td>
<td>+520</td>
<td>+13</td>
</tr>
<tr>
<td>Infants</td>
<td>0- 6 months Q</td>
<td>92/kg</td>
<td>1.16/kg</td>
</tr>
<tr>
<td></td>
<td>6-12 months Q</td>
<td>80/kg</td>
<td>1.69/kg</td>
</tr>
</tbody>
</table>
Consumption Units

- **Definition**: A ‘Consumption Unit’ is a coefficient of dietary intake, which varies between individuals based on the basis of their age, sex and physical activity.
 - Appraisal of dietary intake of very family by weighment method is worked out in terms of consumption units

- **Consumption Unit Coefficients (CUC):**

<table>
<thead>
<tr>
<th>Group</th>
<th>Particulars</th>
<th>CUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Male</td>
<td>Sedentary worker</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>1.6</td>
</tr>
<tr>
<td>Adult Female</td>
<td>Sedentary worker</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>1.2</td>
</tr>
<tr>
<td>Adolescents</td>
<td>12 – 21 years</td>
<td>1.0</td>
</tr>
<tr>
<td>Children</td>
<td>9 – 12 years</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>7 – 9 years</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>5 – 7 years</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>3 – 5 years</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1 – 3 years</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Recommended Dietary Allowance (RDA)

- **Definition**: Recommended Dietary Allowance (RDA): Is a level of intake corresponding to Mean + 2 Standard Deviation, which covers requirement of 97.5% of population
 - RDA is safe level of intake which is likely to be inadequate in not more than 2.5% population
 - RDA is decided by a panel of experts and is based on scientific research
- **RDA is often higher than the recommended minimum requirement**: RDA includes both daily requirement and some additional requirement for periods of growth or illness
 - RDA is based on Estimated Average Requirement
- **RDA ‘safe level approach’ is not used for energy** since excess energy intake is undesirable.
 - For energy, only mean or average requirement is defined as RDA.

Reference Indian Man & Woman

<table>
<thead>
<tr>
<th>Reference Indian Man</th>
<th>Reference Indian Woman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age*</td>
<td>18-29 years</td>
</tr>
<tr>
<td>Weight</td>
<td>60 kg</td>
</tr>
<tr>
<td>Height</td>
<td>1.73 metres</td>
</tr>
<tr>
<td>BMI</td>
<td>20.3</td>
</tr>
<tr>
<td>Others</td>
<td>Free from disease, fit for active work; engaged in 8 hours of occupation (usually moderate activity), 8 hours in bed, 4-6 hours in sitting & moving about and 2 hours in walking and in active recreation or household duties</td>
</tr>
</tbody>
</table>

(*Calculation Average of values of age category 18-19 y, 20-24 y and 25-29 y).
Protein Energy Ratio (PE Ratio)

- Assessment of protein quantity is done by ‘Protein-Energy Ratio’ (PE)
 \[\text{PE percent} = \frac{\text{Energy from protein}}{\text{Total energy in diet}} \times 100 \]
 - It is recommended that protein should account for approximately 15 - 20 % of total daily energy intake
 - If PE is less than 4 percent, then the subject will be unable to eat enough to satisfy protein requirements.

- **Recommended PE Ratios:**
<table>
<thead>
<tr>
<th>Group</th>
<th>PE Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference adult man</td>
<td>8.3</td>
</tr>
<tr>
<td>Reference adult woman</td>
<td>9.1</td>
</tr>
<tr>
<td>Pregnant woman</td>
<td>10.4</td>
</tr>
<tr>
<td>Lactating woman</td>
<td>10.9</td>
</tr>
<tr>
<td>Adolescent 16 – 18 yr boys</td>
<td>11.4</td>
</tr>
<tr>
<td>Adolescent 16 – 18 yr girls</td>
<td>11.7</td>
</tr>
</tbody>
</table>

- **PE Ratios of food items:**
<table>
<thead>
<tr>
<th>Food Item</th>
<th>PE % (Kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>80</td>
</tr>
<tr>
<td>Milk (cow)</td>
<td>20</td>
</tr>
<tr>
<td>Dal (pulses)</td>
<td>24</td>
</tr>
<tr>
<td>Rice</td>
<td>8</td>
</tr>
</tbody>
</table>

Methods of Assessing Protein Quality

- Digestible Indispensable Amino Acid Score (DIAAS):
 - FAO has recommended DIAAS replace PDCAAS as preferred method of measuring protein quality
 \[\text{DIAAS} = \frac{\text{Digestible dietary indispensable amino acid mg in 1 g of dietary protein}}{\text{Same dietary indispensable amino acid mg in 1 g of reference protein}} \times 100 \]

- **Protein Digestibility Corrected Amino Acid Score (PDCAAS):**
 - PDCAAS is Amino Acid Score with an added digestibility component
 - PDCAAS is closely compares to determinations done with animals

- **Amino Acid Score (AAS):**
 - A chemical technique considered fast, consistent, and inexpensive

DIAAS is the ‘current accepted measure of protein quality’

Nutrition and Health

- It measures the indispensable amino acids present in a protein and compares the values with a reference protein
- The protein is rated based upon the most limiting indispensable amino acid

Protein Efficiency Ratio (PER):
- It represents the ratio of weight gain to the amount of protein consumed
- This method may not be applied to growing infants and children
- Also PER measures growth but not maintenance so it may be of limited use in determining the protein needs of adults

Biological Value (BV):
- Measures the amount of nitrogen retained in comparison to the amount of nitrogen absorbed
- The BV and the NPU methods reflect both availability and digestibility and they give an accurate appraisal of maintenance needs

Net Protein Utilization (NPU): The ratio of the nitrogen used for tissue formation versus the amount of nitrogen digested.

Net Protein Utilization (NPU)
- Net Protein Utilization (NPU): Is the proportion of ingested proteins that is retained in the body under specified conditions for the maintenance and/or growth of the tissues
 - In calculating protein quality, 1 gram of protein is assumed to be equivalent to 6.25 grams of nitrogen
 - **Importance:** NPU is the best indicator of protein quality for recommending the dietary protein requirement
 - **Net Protein Utilization (NPU):** Provides a complete expression of 'protein quality'
 \[
 \text{NPU} = \frac{\text{Nitrogen retained by body}}{\text{Nitrogen intake}} \times 100
 \]
 \[
 \text{NPU} = \frac{\text{Biological value} \times \text{Digestibility coefficient}}{100}
 \]

NPU of selected food items:

<table>
<thead>
<tr>
<th>Food Item</th>
<th>Net Protein Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg (hen)</td>
<td>96*</td>
</tr>
<tr>
<td>Milk (cow)</td>
<td>81</td>
</tr>
<tr>
<td>Meat</td>
<td>79</td>
</tr>
<tr>
<td>Fish</td>
<td>77</td>
</tr>
<tr>
<td>Rice</td>
<td>65</td>
</tr>
<tr>
<td>Soyabean</td>
<td>55</td>
</tr>
<tr>
<td>Wheat</td>
<td>51</td>
</tr>
<tr>
<td>Grams (pulses)</td>
<td>45-50</td>
</tr>
<tr>
<td>Groundnut</td>
<td>50</td>
</tr>
</tbody>
</table>

(*NPU of egg is 96. Since egg is 'reference protein', its NPU is taken as 100 for comparison*)

Limiting Amino Acids
- **Definition:** Amino acids most deficient in proteins of a food item are ‘Limiting amino acids’

https://kat.cr/user/Blink99/
Supplementary action of proteins: Deficiency develops due to only consumption of a particular type of food item with limiting amino acids (for e.g. wheat); Thus two or more food items are eaten together so that their proteins supplement one another; this is known as ‘Supplementary Action of Proteins’.

Essential Amino acids

- **Essential Amino Acids (EAA):** Amino acids which are not synthesized in adequate amounts in the human body; so they have to be supplemented in diet from outside to prevent deficiency.
- **10 EAA [Mnemonic: PVT TIM HALL or Any Help In Learning These Little Molecules Proves Truly Valuable] Q**
 - Phenylalanine
 - Valine
 - Threonine
 - Tryptophan
 - Isoleucine
 - Methionine
 - Histidine (Semi-essential)
 - Arginine (Semi-essential)
 - Leucine
 - Lysine

FATS AND CARBOHYDRATES

Essential Fatty Acids (EFA)

- **Essential Fatty Acids (EFA):** Are those that cannot be synthesized completely in human body; they can only be supplemented from the food.
 - Most important EFA: Linoleic Acid, which serves as a basis for production of other EFA.
 - EFA deficiency lead to ‘Phrenoderma’ (Toad Skin): Rough rash like eruptions on back and sides of arms and legs, back, and buttocks
- **Types of EFAs:**

<table>
<thead>
<tr>
<th>Type of fatty acids</th>
<th>Type of chain</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω-3 Fatty Acids</td>
<td>Short chain</td>
<td>α-Linolenic acid</td>
</tr>
<tr>
<td></td>
<td>Long chain</td>
<td>Eicosapentanoic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>ω-6 Fatty Acids</td>
<td>Short chain</td>
<td>Linoleic Acid</td>
</tr>
<tr>
<td></td>
<td>Long chain</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-Linolenic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dihomo-γ-Linolenic acid</td>
</tr>
</tbody>
</table>

- ω-9 Fatty Acids are non-essential in human beings
- ω-3 Fatty Acids are derived from α-Linolenic acid; ω-6 Fatty Acids are derived from Linoleic Acid and ω-9 Fatty Acids are derived from Oleic Acid.
- EFA were earlier known as ‘Vitamin F’
- ω-3 Fatty Acids have been shown to reduce the incidence of Coronary Heart Disease
- ω-6: ω-3 Fatty Acids ratio in diet is ideally recommended to be 1:1 to 4:1 (IDEAL FAT)
• Dietary sources of EFA:

<table>
<thead>
<tr>
<th>EFA</th>
<th>Dietary source</th>
<th>% content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linoleic Acid</td>
<td>Safflower Oil</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Corn Oil</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Sunflower Oil</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Soyabean oil</td>
<td>51</td>
</tr>
<tr>
<td>Arachidonic Acid</td>
<td>Meat, Eggs</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Milk (fat)</td>
<td>0.5</td>
</tr>
<tr>
<td>Linolenic Acid</td>
<td>Soyabean oil</td>
<td>7</td>
</tr>
<tr>
<td>Eicosapentanoic Acid</td>
<td>Fish oil</td>
<td>10</td>
</tr>
</tbody>
</table>

• Fatty acid content of different fats (%):

<table>
<thead>
<tr>
<th>Fats</th>
<th>SFA*</th>
<th>MUFA*</th>
<th>PUFA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safflower oil</td>
<td>10</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Sunflower seed oil</td>
<td>8</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>Soya bean oil</td>
<td>14</td>
<td>24</td>
<td>62</td>
</tr>
<tr>
<td>Margarine</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Groundnut oil</td>
<td>19</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>Palm oil</td>
<td>46</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Butter</td>
<td>60</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>Coconut oil</td>
<td>92</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

VITAMINS

Vitamins and Vitamin Deficiencies

<table>
<thead>
<tr>
<th>Vitamins</th>
<th>Chemical Name(s)</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>Retinol</td>
<td>Xerophthalmia</td>
</tr>
<tr>
<td></td>
<td>Retinoid</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carotenoid</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₁</td>
<td>Thiamine</td>
<td>Beri-beri</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wernicke Korsauff Psychosis</td>
</tr>
<tr>
<td>Vitamin B₂</td>
<td>Riboflavin</td>
<td>Aniboflavinosis</td>
</tr>
<tr>
<td>Vitamin B₃</td>
<td>Niacin</td>
<td>Pellagra</td>
</tr>
<tr>
<td></td>
<td>Niacinamide</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₅</td>
<td>Pantothenic Acid</td>
<td>Burning feet Syndrome</td>
</tr>
<tr>
<td>Vitamin B₆</td>
<td>Pyridoxine</td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td>Pyridoxamine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyridoxal</td>
<td></td>
</tr>
<tr>
<td>Vitamin B₇</td>
<td>Biotin</td>
<td>Dermatitis, Enteritis</td>
</tr>
<tr>
<td>Vitamin B₉</td>
<td>Folic Acid</td>
<td>Megaloblastic Anemia</td>
</tr>
<tr>
<td></td>
<td>Folinic Acid</td>
<td>Neural tube defects</td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>Cyanocobalamin</td>
<td>Megaloblastic Anemia</td>
</tr>
<tr>
<td></td>
<td>Hydroxycobalamin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylcobalamin</td>
<td></td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Ascorbic Acid</td>
<td>Scurvy</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Ergocalciferol</td>
<td>Rickets</td>
</tr>
<tr>
<td></td>
<td>Cholecalciferol</td>
<td>Osteomalacia</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Tocopherols</td>
<td>Hemolytic anemia in newborn</td>
</tr>
<tr>
<td></td>
<td>Tocotrienols</td>
<td></td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Phylloquinone</td>
<td>Hemorrhagic disease of new born</td>
</tr>
<tr>
<td></td>
<td>Menaquinone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menadione</td>
<td></td>
</tr>
</tbody>
</table>
Recommended Daily Requirements of Vitamins

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Recommended daily requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>600 mcg retinol</td>
</tr>
<tr>
<td>Vitamin B₁ (Thiamine)</td>
<td>0.5 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B₂ (Riboflavin)</td>
<td>0.5 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B₃ (Niacin)</td>
<td>6.6 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B₅ (Pantothenic Acid)</td>
<td>10 mg</td>
</tr>
<tr>
<td>Vitamin B₆ (Pyridoxine)</td>
<td>2 mg</td>
</tr>
<tr>
<td>Vitamin B₉ (Folic Acid)</td>
<td>100 mcg</td>
</tr>
<tr>
<td>Vitamin B₁₂ (Cobalamin)</td>
<td>1 mcg</td>
</tr>
<tr>
<td>Vitamin D³</td>
<td>100 IU (2.5 mcg calciferol)</td>
</tr>
<tr>
<td>Vitamin E (Tocopherol)</td>
<td>0.8 mg per gm of essential fatty acids</td>
</tr>
<tr>
<td>Vitamin K³</td>
<td>0.03 mg per kg</td>
</tr>
</tbody>
</table>

Vitamin A

- **Recommended daily requirement of Vitamin-A:**
 - **Group** | **Retinol (mcg) OR** | **β-carotene (mcg)** |
 - Adults | Man³ | 600 | 4800 |
 - Adults | Woman | 600 | 4800 |
 - Adults | Pregnancy³ | 600 | 4800 |
 - Adults | Lactation | 600 | 4800 |
 - Infants | 0–12 months | 350 | 2800 |
 - Children | 1–6 years | 400 | 3200 |
 - Children | 7–12 years | 600 | 4800 |
 - Adolescents | 13–19 years | 600 | 4800 |

- **Under National Immunization Schedule (NIS), Vitamin-A is given:**
 - 1 lac IU at 9 months age (along with measles vaccine),
 - 2 lac IU every six months thereafter, till the age of 5 years (at 18, 24, 30, 36, 42, 48, 54, 60 months of age),
 - A total of 17 lac IU is given³
 - Vitamin-A is administered by a ‘2 ml spoon’³
 - **Strength of Vitamin-A solution: 1 lac IU per ml³**

Vitamin A Deficiency: Xerophthalmia

- **Ocular manifestations of Vitamin-A deficiency³: ‘Xerophthalmia’ (Dry Eye)**
- **Xerophthalmia** is most common in children aged 1-3 years
 - **‘First clinical sign’ of Vitamin-A deficiency³**: Conjunctival xerosis
 - A conjunctival xerosis in Xerophthalmia has a characteristic appearance of ‘emerging like sand banks at receding tide’
 - **‘First clinical symptom’ of Vitamin-A deficiency³**: Night blindness
 - ‘Bitot’s Spots’ are triangular, pearly-white or yellowish, foamy spots on bulbar conjunctiva, on either side of cornea; In young children they indicate Vitamin-A deficiency, whereas in adults they are often inactive sequelae of earlier disease
 - Corneal xerosis is a serious manifestation of Vitamin-A deficiency
 - Keratomalacia (liquefaction of corne(a) is a ‘grave medical emergency’
- **Extraocular manifestations of Vitamin-A deficiency**: Follicular hyperkeratosis, anorexia, growth retardation, etc
- **Prevalence criteria for determining the Xerophthalmia problem in a community**: (Preschool children 6 months–6 years).
Nutrition and Health

Criteria	Prevalence
Night blindness | > 1.0%
Bitot’s spots | > 0.5%
Corneal xerosis/ corneal ulceration/ keratomalacia | > 0.01%
Corneal ulcer | > 0.05%
Serum retinol (< 10 mcg/dl) | > 5.0%

WHO recommended strategy for prevention of Xerophthalmia:

- **Short term action**: Vitamin-A prophylaxis to vulnerable groups.
 - Individual Dose* (IU) Timing
 - Child <12 months age: 1,00,000 Once every 4 – 6 months
 - Child >12 months age: 2,00,000 Once every 4 – 6 months
 - Newborn: 50,000 At birth
 - Women 15 – 49 years: 3,00,000 Within 1 month of delivery
 - Pregnancy and Lactation: 5000 OR Every day 20,000 Once every week

 (* Oral dose of retinol palmitate, where 55 mg = 1,00,000 IU)

- **Medium term action**: Fortification of certain foods with Vitamin-A.
- **Long term action**: Promotion of consumption of green leafy vegetables, promotion of breast feeding for as long as possible, improvements in environmental health, immunization against measles, prompt treatment of diarrhoeal infections, social and health education, etc.

Vitamin B3 (Niacin) Deficiency: Pellagra

- Pellagra occurs due to Vitamin B3 (Niacin) deficiency:
 - *Pellagra is characterized by 4 D’s*:
 - Diarrhoea
 - Dementia
 - Death
 - Dermatitis
 - Skin rash in pellagra may appear as pigmented and scaly in areas exposed to sunlight. Esp. neck when it is known as ‘Casal’s Necklace’
- Pellagra is common in maize/jowar eating populations:
 - Limiting amino acid in maize is Tryptophan
 - 60 mg Tryptophan is converted to 1 mg Niacin in the body
 - ‘Excess of leucine’ in such populations appears to interfere in conversion of tryptophan to niacin

Vitamin B9 (Folic Acid)

- Body stores of folate are not large (about 5 - 10 mg), therefore folate deficiency can develop quickly
- **Recommended daily intake values of folate**:

<table>
<thead>
<tr>
<th>Group</th>
<th>Intake per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy adults</td>
<td>200 mcg</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>500 mcg</td>
</tr>
<tr>
<td>Lactation</td>
<td>300 mcg</td>
</tr>
<tr>
<td>Children</td>
<td>100 mcg</td>
</tr>
</tbody>
</table>

- An adult tablet of IFA contains: 100 mg elemental Iron and 500 mcg Folic acid (to be given for 100 days minimum in pregnancy)
- A pediatric tablet of IFA contains: 20 mg elemental Iron and 100 mcg Folic acid (to be given for 100 days minimum every year till 5 years age of child)
IRON

Iron Status Evaluation

- Hemoglobin concentration: A relatively insensitive index of nutrient depletion
- Serum iron concentration: Normal range is 0.80-1.80 mg/L
- Serum ferritin: ‘Most sensitive tool for evaluation of iron status’, especially in populations with low prevalence of anemia
- Serum transferrin saturation: Normal value is 30%

Cut-off for Diagnosis of Anemia (WHO)

<table>
<thead>
<tr>
<th>Group</th>
<th>Hb (g/dl)</th>
<th>MCHC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult males</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>Adult females, non-pregnant</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Adult females, pregnant</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Children, 6 m – 6 y</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Children, 6 – 14 y</td>
<td>12</td>
<td>34</td>
</tr>
</tbody>
</table>

Iron Requirements (mg per day) [New Guidelines]

<table>
<thead>
<tr>
<th>Groups</th>
<th>Particulars</th>
<th>Iron to be absorbed (mg per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult male</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Adult female</td>
<td>Menstruating</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Pregnancy 1st half</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Pregnancy 2nd half</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Lactation</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Post menopause</td>
<td>0.7</td>
</tr>
<tr>
<td>Infant</td>
<td>6 – 12 months</td>
<td>0.7</td>
</tr>
<tr>
<td>Child</td>
<td>1 – 12 years</td>
<td>0.6</td>
</tr>
<tr>
<td>Adolescent</td>
<td>Boys 13 – 16 years</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Girls 13 – 16 years</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Iron Intake Recommended (RDA in mg per day) [New Guidelines]

<table>
<thead>
<tr>
<th>Groups</th>
<th>Particulars</th>
<th>Iron intake (mg per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult male</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Adult female</td>
<td>Menstruating</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Pregnancy</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Lactation</td>
<td>21</td>
</tr>
<tr>
<td>Infant</td>
<td>6 – 12 months</td>
<td>5</td>
</tr>
<tr>
<td>Adolescent</td>
<td>Boys 13 – 15 years</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Girls 13 – 15 years</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Boys 16 – 18 years</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Girls 16 – 18 years</td>
<td>26</td>
</tr>
</tbody>
</table>

National Iron PLUS Initiative

- Description: an attempt to look at Iron Deficiency Anaemia in which beneficiaries will receive iron and folic acid supplementation irrespective of their Iron/Hb status
- Importance: Will bring together existing programs (IFA supplementation for: pregnant and lactating women and; children in the age group of 6–60 months) and introduce new age groups.
IODINE & FLUORINE

Fluorine
- **Recommended level in drinking water in India**: 0.5 - 0.8 mg/litre (ppm)
 - In temperate countries where water intake is low, the optimum level of fluorides in drinking water is accepted as 1-2 mg/litre
 - **Major source of fluorine to man**: Drinking water
- ‘Fluorine is a double edged sword’: Inadequate intake is associated with ‘dental caries’ whereas excess intake with ‘dental and skeletal fluorosis’
 - Level > 1.5 ppm: Dental fluorosis (mottling)
 - Level 3.0 - 6.0 ppm: Skeletal fluorosis
 - Level > 10.0 ppm: Crippling fluorosis

Fluorosis
- Dental fluorosis occurs when excess fluoride is ingested during first 7 years of life (years of tooth calcification)
 - It occurs at levels above 1.5 mg/litre intake
 - It is characterized by ‘Mottling’, which is best seen on incisors of upper jaw

Nalgonda Technique
- ‘Nalgonda Technique’ has been developed by National Environmental Engineering Research Institute (NEERI), Nagpur for defluoridation of water
- It involves addition of (in sequence): Lime, Alum (major role), Bleaching powder, Flocculation, Sedimentation, Filtration
- **Household level de-fluoridation can be done by**: Nalgonda Technique, Alumina, Phosphates

Iodine
- **Iodine requirement**: 150 mcg per day
- **WHO/UNICEF/ICCIDD recommended daily iodine intake**:

<table>
<thead>
<tr>
<th>Group</th>
<th>Recommended daily intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschool children (0 – 59 months)</td>
<td>90 mcg</td>
</tr>
<tr>
<td>School children (6 – 12 years)</td>
<td>120 mcg</td>
</tr>
<tr>
<td>Adults (>12 years)</td>
<td>150 mcg</td>
</tr>
<tr>
<td>Pregnancy and lactation</td>
<td>250 mcg</td>
</tr>
</tbody>
</table>

Iodised Salt
- Iodisation of salt is the ‘most widely used prophylactic measure against prevention of goiter’
- Iodised salt is most convenient, effective and economical method of mass prophylaxis in endemic areas
- According to Prevention of Food Adulteration (PFA) Act’ 1954:
 - **Level of iodisation in salt (PFA Act’ 1954)**:
 - *30 ppm at production level
 - *15 ppm at consumer level
Review of Preventive and Social Medicine

- Moisture content: < 6.0% by weight
- Sodium chloride: > 96.0% by weight

Double Fortified/ Twin Fortified Salt (DFS/TFS)

- Developed by: National Institute of Nutrition (Hyderabad)
- DFS contains Iron and Iodine:
 - DFS provides 40 mcg Iodine and 1 mg Iron per gram of salt
 - DFS contains salt, potassium iodate, ferrous sulphate and sodium hexa meta phosphate

District IDD/ Goitre Survey

- Age group: 6-12 years age group
- Sampling:
 - 30 villages/wards or schools are selected from district by ‘Cluster Sampling Technique’
 - Proportionate to Size Sampling (PPS)
 - Sample of 90 children (45 boys and 45 girls) from school
 - Salt sample collection: From the house of every 5th child selected in earlier steps for goiter survey
 - Sample collection for urinary iodine excretion (UIE): Every alternate child out of those selected earlier for salt samples has to be taken
- Monitoring: 50 salt samples per month, 25 UIE samples per month
- Classification of Goitre:
 - Grade 0: No palpable or visible goiter (No Goitre)
 - Grade I: A mass in neck that is consistent with enlarged thyroid, that is ‘palpable but not visible’; moves up in neck as one swallows (Goitre palpable but not visible)
 - Grade II: A swelling in neck that is visible when the neck is in a normal position, and is consistent with an enlarged thyroid when neck is palpated (Goitre visible and palpable)

Criteria & Indicators in IDD Control and Elimination

- **IDD Elimination criteria:**

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with enlarged thyroid (age 6 – 12 years)</td>
<td>< 5 %</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 100 mcg/litre</td>
<td>< 50 %</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 50 mcg/litre</td>
<td>< 20 %</td>
</tr>
<tr>
<td>Proportion of houses consuming adequately iodised salt</td>
<td>> 90 %</td>
</tr>
</tbody>
</table>

- **Indicators for epidemiological assessment of iodine deficiency:**
 - Prevalence of goitre
 - Prevalence of cretinism
 - Urinary iodine excretion
 - Measurement of thyroid function (T4, TSH)
 - Prevalence of neonatal hypothyroidism

- **Epidemiological criteria for assessing severity of IDD:**
 - Total Goitre Rate (TGR) - Grade I + Grade II
 - Median Urinary Iodine Excretion
 - Thyroid volume (ultrasound)
 - Salt iodine content

- **Criteria for Sustainable Elimination of IDD:**
 - Median Urinary Iodine Excretion 100 mcg/l
 - Level of iodization

https://kat.cr/user/Blink99/
Nutrition and Health

*30 ppm at production level
*15 ppm at consumer level
- Total Goitre Rate (TGR) < 5%

• Indicators to monitor success of IDD control programme:
 - Process Indicators: Indicators to monitor and evaluate the salt iodization process
 * Salt iodine content at the production site
 * Salt iodine content at point of packaging
 * Salt iodine content at wholesale and retail levels
 * Salt iodine content in households
 - Impact Indicators: Indicators to assess baseline (Iodine Deficiency Disorders) IDD status and to monitor and evaluate the impact of salt iodization on the target population
 * Urinary Iodine Levels: The ‘principal impact indicator’ recommended once a salt iodization programme has been initiated (changes in goitre prevalence lag behind changes in iodine status and therefore cannot be relied upon to reflect accurately current iodine intake, although they may be useful in following trends)
 * Goitre assessment: (by palpation or by ultrasoun(d) should remain a component of surveys to establish the baseline severity of IDD
 * Neonatal thyroid stimulating hormone (TSH) levels: may also play a role here if a country already has in place a screening programme for hypothyroidism
 - Sustainability Indicators: Indicators to assess whether iodine deficiency has been successfully eliminated and to judge whether achievements can be sustained and maintained for the decades to come
 * Median urinary iodine levels in the target population
 * Availability of adequately iodized salt at the household level
 * Set of programmatic indicators (as evidence of sustainability)

Nutrition and Health

Dietary Fibre

• Description: Dietary fibre is a non-starch polysaccharide and a physiologically important component of diet; there are two types of dietary fibres:
 - Insoluble fibres: Cellulose, hemicellulose and lignin
 - Soluble fibres: Pectins, gums and mucilages
• Recommended intake: A daily intake of about 40 grams of fibre is desirable
 - Indian diets provide about 50-100 grams of fibre per day
 - Cereals and pulses are good sources of fibre (>10 gm fibre per 100 gms)
• Functions/uses of dietary fibre:
 - Forms bulk of stool; reduces tendency of constipation
 - By reducing intestinal transit time of stools, it reduces toxicity
 - Inhibits fecal mutagen synthesis
 - Reduces incidence of colonic polyps and invasive colon cancer
 - Reduces incidence of stomach, breast and prostate cancers
 - Reduces incidence of coronary heart disease
 - Reduces blood levels of glucose and cholesterol
 - Used in the management of irritable bowel syndrome and recurrent diverticulitis

Zinc Deficiency

• Growth failure
• Sexual infantilism
• Impaired immunity
Review of Preventive and Social Medicine

- Decreased insulin synthesis
- Delayed wound healing
- Loss of taste (Aguesia)
- Liver disease (Hepatomegaly + Splenomegaly), Pernicious anemia, Thalassemia, Myocardial infarction
- Megaloblastic anemia (due to reduced absorption of Foly-glutamates)
- *Maternal zinc deficiency*: Spontaneous abortion, Congenital malformation (Anencephaly), Low birth weight, IUGR, Preterm delivery

EGG

Egg

- An egg (60 grams) contain:
 - 6 gm proteins
 - 6 gm fat
 - 30 mg calcium
 - 1.5 mg iron
 - 250 mg cholesterol
 - 70 kcal energy
- Egg protein is best among proteins (NPU = 96), thereby making it ‘Reference Protein’

- Egg is a poor source of Vitamin C and Carbohydrates

MILK

Types of Milk

- Fat content of milk: Buffalo > Goat > Cow > Human
- Protein content of milk: Buffalo > Goat > Cow > Human
- Lactose content of milk: Human > Buffalo > Goat > Cow
- Energy content of milk: Buffalo > Goat > Cow > Human

Types of Commercially Available Milk in India

<table>
<thead>
<tr>
<th>Milk Type</th>
<th>Fat content</th>
<th>SNF (Solid-not-fat) content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full cream</td>
<td>6.0 %</td>
<td>9.0 %</td>
</tr>
<tr>
<td>Standardised</td>
<td>4.5 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>Toned</td>
<td>3.0 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>Double toned</td>
<td>1.5 %</td>
<td>9.0 %</td>
</tr>
<tr>
<td>Skimmed</td>
<td>0.5 %</td>
<td>8.7 %</td>
</tr>
</tbody>
</table>

Methods of Pasteurization

<table>
<thead>
<tr>
<th>Method</th>
<th>Temp</th>
<th>Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holder/Vat Method</td>
<td>63-66°C</td>
<td>>30 min</td>
<td>For small and rural communities</td>
</tr>
<tr>
<td>HTST Method</td>
<td>72°C</td>
<td>>15 sec</td>
<td>Most widely used; for large quantities</td>
</tr>
<tr>
<td>HHST Method</td>
<td>68°C</td>
<td>30 min</td>
<td>‘Batch Pasteurization’</td>
</tr>
<tr>
<td>UHT Method</td>
<td>125°C</td>
<td>Few sec</td>
<td>Heating in 2 stages; 2nd stage under pressure</td>
</tr>
</tbody>
</table>

(*Flash Pasteurization)

Tests of Pasteurized Milk (for adequacy/sufficiency of pasteurization)

- Phosphatase Test: Widely used test
- Standard Plate Count: Enforced limit is 30,000 bacterial count per ml of pasteurized milk
- Coliform Count: Standard is coliforms be absent in 1 ml of milk.
MILK BORNE DISEASES

<table>
<thead>
<tr>
<th>Infections of animals transmitted to man<sup>1</sup></th>
<th>Lesser importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary importance<sup>1</sup></td>
<td>Anthrax</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Cow pox</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Foot and mouth disease</td>
</tr>
<tr>
<td>Streptococcal infections</td>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Staphylococcal poisoning</td>
<td>Tick-borne encephalitis</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td></td>
</tr>
<tr>
<td>Q fever</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infections primary to man</th>
<th>Non-diarrhoeal diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoeal diseases</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Typhoid and para-typhoid fevers</td>
<td>Diphtheria</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>Streptococcal infections</td>
</tr>
<tr>
<td>Cholera</td>
<td>Staphylococcal food poisoning</td>
</tr>
<tr>
<td>E. coli</td>
<td>Entero viral infections</td>
</tr>
<tr>
<td></td>
<td>Hepatitis viral</td>
</tr>
</tbody>
</table>

OTHER FOOD ITEMS

Foods as Sources of Nutrients

- **Food Items as Poor Sources of nutrients**:
 - Milk is a poor source of Vitamin C and Iron
 - Meat is a poor source of Calcium
 - Fish is a poor source of Carbohydrates
 - Egg is a poor source of Vitamin C and Carbohydrates

- **Food Items as Rich Sources of nutrients**:
 - Halibut Liver Oil is richest source of Vitamin A and Vitamin D
 - Indian Gooseberry (amla) is richest source of Vitamin B1 (Thiamine)
 - Sheep liver is richest source of Vitamin B2 (Riboflavin)
 - Ragi (millet) is a rich source of calcium
 - Pistachio is the richest source of iron

Pulses

<table>
<thead>
<tr>
<th>Pulse</th>
<th>Energy (Kcal)</th>
<th>Proteins (g)</th>
<th>Fats (g)</th>
<th>Calcium (mg)</th>
<th>Iron (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bengal Gram</td>
<td>360</td>
<td>17</td>
<td>5</td>
<td>202</td>
<td>5</td>
</tr>
<tr>
<td>Black Gram</td>
<td>347</td>
<td>24</td>
<td>1</td>
<td>154</td>
<td>4</td>
</tr>
<tr>
<td>Red Gram</td>
<td>335</td>
<td>22</td>
<td>2</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>Soya Bean<sup>2</sup></td>
<td>432</td>
<td>43</td>
<td>20</td>
<td>240</td>
<td>10</td>
</tr>
</tbody>
</table>

Soyabean

- Soyabean is richest among pulses
 - It contains 43.2% proteins², 20% fats and 4% of minerals
 - Proteins of soya bean are of high nutritive value
- Soyabean is also relatively richer in Calcium, Iron and Vitamin B as compared to other pulses²
- NPU of Soya bean is 55²
- Limiting amino acid in soya bean is Methionine²
Review of Preventive and Social Medicine

Fish
- Richest source of Vitamin A and D is fish liver oils (especially Halibut fish).
- Rich source of proteins (15-20%)
- Rich source of Calcium, phosphorus, fluorides
- Good source of iron
- Poor source of Carbohydrates
- Poor source of iodine (barring few sea fish)

FOOD ADULTERATION

Food Adulteration Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Toxin</th>
<th>Adulterant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lathyrium</td>
<td>BOAA</td>
<td>Khesari Dal (Lathyrus sativus)</td>
</tr>
<tr>
<td>Epidemic Dropsy Q</td>
<td>Sanguinarine</td>
<td>Argemone mexicana (oil)</td>
</tr>
<tr>
<td>Endemic Ascites Q</td>
<td>Pyrrolizidine alkaloids</td>
<td>Crotalaria seeds (Jhunjhunia)</td>
</tr>
<tr>
<td>Aflatoxicosis Q</td>
<td>Aflatoxin</td>
<td>Aspergillus flavus/parasiticus</td>
</tr>
<tr>
<td>Ergotism Q</td>
<td>Clavine alkaloids</td>
<td>Claviceps fusiformis</td>
</tr>
</tbody>
</table>

Lathyism
- Lathyism is of two types:
 - Neurolathyism Q: In human beings
 - Osteolathyism (Odoratism Q): In animals
 * Neurolathyism is caused by eating the pulse ‘Khesari Dal (Lathyrus sativus)’. Diets containing over 30% of this dal consumed over a period of 2-6 months result in neurolathyism
 * Lathyism affects 15-45 years of age
- Toxin: present in lathyrus seeds is ‘Beta oxalyl amino alanine (BOAA)’
- It manifests as following stages:
 - Latent stage
 - No-stick stage
 - One-stick stage
 - Two-stick stage
 - Crawler stage
- Interventions for prevention and control of Lathyism:
 - Vitamin C prophylaxis
 - Banning the crop
 - Removal of toxin: Steeping method and Parboiling
 - Education
 - Genetic approach
 - Socio-economic changes.

Epidemic Dropsy
- Description: Is caused by contamination of mustard oil with ‘Argemone oil’
- Toxin: ‘Sanguinarine’ is the toxin contained in argemone oil
- Mechanism Q: Sanguinarine interferes with oxidation of ‘pyruvic acid’, which accumulates in blood: It may lead to sudden non-inflammatory edema of bilateral lower limbs, diarrhea, dyspnoea, cardiac failure and death; It can also lead to glaucoma; It may sometimes manifest as ‘Sarcoids’ (dilatation of skin capillaries)
 - Epidemic dropsy may occur in all ages except breast-fed infants
 - The mortality of epidemic dropsy varies from 5-50%
 - Edema in Epidemic dropsy occurs due to proteinuria (specifically loss of albumin).
Nutrition and Health

- Argemone oil may be detected by following tests:
 - Nitric acid test
 - Paper chromatography test: Most sensitive test

Endemic Ascites
- Toxin: Pyrrolizidine alkaloids (Hepatotoxins)
- Adulterant: Crotalaria plant (Jhunjhunia)

Ergotism
- Description: Occurs due to food toxicant - ergot fungus ‘Claviceps fusiformis’
- Food items having a tendency for ergotism:
 - Bajra
 - Rye
 - Sorghum
 - Wheat
- Removal of ergot:
 - Float them in 20% salt water
 - Hand-picking
 - Air-floatation
- Upper safe limit for ergot: 0.05 mg per 100 grams food material

MISCELLANEOUS

Food Standards
- Codex Alimentarius: Joint FAO/WHO standards for international markets; Food standards in India are based on Codex Alimentarius
- PFA standards: Laid under ‘Prevention of Food Adulteration Act 1954’; to obtain a minimum level of quality of food stuffs attainable under Indian conditions
- Bureau of Indian Standards: Purely voluntary; express degree of excellence above PFA standards
- Agmark standards: Purely voluntary; express degree of excellence above PFA standards.

Mid-day Meal Programme (MDMP) & Scheme (MDMS)
- Mid-day meal programme (MDMP): Also known as ‘School Lunch Programme’, it has been in operation since 1961
 - The major objective of MDMP: To attract more children for admission to schools and retain them so that literacy improvement of children could be brought about.
 - The meal is a supplement and not a substitute to the home diet
 - The meal should supply 1/3 of the total energy requirement and 1/2 of the total protein requirement
 - MDMP is being operationalised under the Ministry of Education
 - National Institute of Nutrition, Hyderabad is of the view that minimum number of feeding days in year be 250 to have the desired impact on children
- Mid-day meal scheme (MDMS) (National Programme of Nutritional Support to Primary Education): Launched in 1995
 - Main objective: Universalisation of primary education by increasing enrolment, retention and attendance and simultaneously impacting on nutrition of students in primary classes
 - The mid-day meal should supply 1/3 of the total energy requirement and 1/2 of the total protein requirement

Meal should supply 1/3 of the total energy requirement and 1/2 of the total protein requirement

Toxin: Pyrrolizidine alkaloids in Endemic Ascites
Food toxicant - ergot fungus ‘Claviceps fusiformis’

https://kat.cr/user/Blink99/
A model menu for mid-day school meal:

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity per child per day</th>
<th>Primary</th>
<th>Upper primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food grains</td>
<td>100 grams</td>
<td>150 grams</td>
<td></td>
</tr>
<tr>
<td>Pulses</td>
<td>20 grams</td>
<td>30 grams</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>50 grams</td>
<td>75 grams</td>
<td></td>
</tr>
<tr>
<td>Oils & fats</td>
<td>5 grams</td>
<td>7.5 grams</td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>As per need</td>
<td>As per need</td>
<td></td>
</tr>
<tr>
<td>TOTAL calories</td>
<td>450 Kcal</td>
<td>700 Kcal</td>
<td></td>
</tr>
<tr>
<td>TOTAL proteins</td>
<td>12 grams</td>
<td>20 grams</td>
<td></td>
</tr>
</tbody>
</table>

Principles for formulating mid-day meals:
* Meal should be a supplement only not a substitute for home diet
* Meal should provide 1/3 calories and 1/2 proteins
* Meal cost should be low
* Complicated cooking process must not be involved
* Use locally available foods
* Keep changing menu frequently

Prudent Diet
Refer to Chapter 5, Theory.

Nutritional Status Assessment
- Assessment of dietary intake (Diet Survey): Dietary Cycle (weighment of raw foods done over a period of 7 days)
- Assessment of nutritional status: [Mnemonic: CABFAVE]
 - Clinical examination
 - Anthropometry
 - Laboratory and Biochemical evaluation
 * Laboratory tests
 1. Hemoglobin
 2. Stools and urine
 * Biochemical tests
 - Functional assessment
 - Assessment of dietary intake
 * Weighment of raw foods (Dietary cycle - 7 days)
 * Weighment of cooked foods
 * Oral questionnaire method
 - Vital and health statistics
 - Ecological studies
 * Food balance sheet
 * Socio-economic factors
 * Health and educational services
 * Conditioning influences

Food Fortification
- Food fortification: Is a public health, measure where nutrients are added to food (in relatively small quantities), to maintain/improve the quality of diet of a group, community or a population
- Examples of Food Fortification:
 - Iodisation of salt
 - Vitamin A and Vitamin D in Vanaspati
Nutrition and Health

- Vanaspati is fortified with ‘2500 IU Vitamin A and 175 IU Vitamin D’ per 100 grams
 - Fluoridation of water
- Food Fortification is an example of ‘Primary Level of Prevention’

Criteria for food fortification:
- Vehicle to be fortified must be consumed regularly in diet by populations
- Amount of nutrient added must not cause deficiency or toxicity in consumers
- On addition of nutrient, there should be no change in taste, odour, consistency or appearance
- Cost of fortification must be affordable by consumers

Mid-arm Circumference (MAC)
- MAC is measured for age group 1 - 5 years (as it remains practically constant during this age)
- Shakir’s Tape: A useful field instrument for measurement of nourishment status of a child, through measurement of MAC

Interpretation of Shakir’s tape findings:

<table>
<thead>
<tr>
<th>MAC (cms)</th>
<th>Color Zone</th>
<th>Interpretation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 13.5°</td>
<td>Green</td>
<td>Satisfactory nutritional status</td>
<td>-</td>
</tr>
<tr>
<td>12.5 – 13.5</td>
<td>Yellow</td>
<td>Mild-moderate malnutrition</td>
<td>At home; through diet</td>
</tr>
<tr>
<td>< 12.5</td>
<td>Red</td>
<td>Severe malnutrition</td>
<td>Refer; Institutional</td>
</tr>
</tbody>
</table>

Nutritional Surveillance
- *Nutritional surveillance*: Keeping a watch over nutrition, in order to make decisions that will lead to improvement in nutrition of population
- Main strategy: Detection of malnutrition (nutritional survey)
- Approach: Diagnostic-interventional
- Sample: Representative, 50 - 100 size group
- Objectives:
 - To aid health and development
 - To provide input for program management and evaluation (to policy makers)
 - To give timely warning and intervention (to prevent short-term food crises).
MULTIPLE CHOICE QUESTIONS

ENERGY AND PROTEIN REQUIREMENTS

1. The recommended daily energy intake of an adult pregnant woman with heavy work is: [AIPGME 05]
 (a) 2100 kcal
 (b) 2500 kcal
 (c) 3200 kcal
 (d) 2900 kcal

2. Extra calories required by lactating mother during first six months over and above daily requirement is: [AIIMS Nov 2003, Dec 1997, AIPGME 2000]
 (a) 550 kcal
 (b) 400 kcal
 (c) 300 kcal
 (d) 250 kcal

3. The recommended daily energy intake of an adult woman with heavy work is: [AIIMS Nov 2000]
 (a) 1800 kcal
 (b) 2100 kcal
 (c) 2300 kcal
 (d) 2900 kcal

4. Consumption Unit, the coefficient of Dietary Intake, for an adolescent is of value: [AIIMS Dec 1994]
 (a) 0.9
 (b) 1.0
 (c) 1.2
 (d) 1.7

5. Protein requirement of an adult is: [AIPGME 2001]
 (a) 0.7 gm/kg in terms of Egg protein & 0.7 gm/kg in terms of mixed vegetable protein
 (b) 1.0 gm/kg in terms of Egg protein & 1.0 gm/kg in terms of mixed vegetable protein
 (c) 1.0 gm/kg in terms of Egg protein & 0.7 gm/kg in terms of mixed vegetable protein
 (d) 0.7 gm/kg in terms of Egg protein & 1.0 gm/kg in terms of mixed vegetable protein

6. In calculating RDA for a particular nutrient, 2 SD are not added for: [AIIMS Nov 2006]
 (a) Iron
 (b) Calcium
 (c) Energy
 (d) Vitamin A

7. For a 60 kg Indian male, the minimum daily protein requirement has been calculated to be 40 g (mean) ± 10 (Standard deviation). The recommended daily allowance of protein would be: [AIPGME 2002]
 (a) 60 g/day
 (b) 70 g/day
 (c) 40 g/day
 (d) 50 g/day

8. The recommended daily energy intake of an adult woman with heavy work is: [AIPGME 2004]
 (a) 1800 kcal
 (b) 2100 kcal
 (c) 2300 kcal
 (d) 2900 kcal

9. For an adult Indian male the daily requirement of protein is expressed as: [Karnataka 2004]
 (a) 0.5 g/kg body weight
 (b) 0.75 g/kg body weight
 (c) 1 gm/kg body weight
 (d) 1.50 g/kg body weight

10. In 13-15 year female child, recommended daily protein intake (gm/kg/day) is: [AIIMS May 2012]
 (a) 0.68
 (b) 0.95
 (c) 1
 (d) 1.33

11. Energy requirement in late pregnancy for a moderate worker is: [Recent Question 2013]
 (a) 2500 cal
 (b) 1400 cal
 (c) 1000 cal
 (d) 500 cal

12. Indian reference man: [DNB 2008]
 (a) 55 kg
 (b) 60 kg
 (c) 65 kg
 (d) 70 kg

13. Reference weight of Indian men and women is: [DNB December 2009]
 (a) 60 and 50 kg
 (b) 55 and 50 kg
 (c) 65 and 55 kg
 (d) 45 and 50 kg

14. Extra calories per day in lactating mothers in first six months: [Recent Question 2012]
 (a) 300
 (b) 500
 (c) 600
 (d) 1000
Review Questions

15. The daily extra calorie requirement is first trimester of pregnancy is:
 (a) 50
 (b) 150
 (c) 350
 (d) 450
 [DNB 2000]

16. Which of the following trace element cannot be completely supplemented by diet during pregnancy:
 (a) Fe
 (b) Ca++
 (c) Zn
 (d) Mn
 [UP 2000]

17. Additional Calories regarding for lactation:
 (a) 550
 (b) 440
 (c) 300
 (d) 130
 [AP 2007]

18. True statement regarding RNTCP includes all except:
 (a) Sputum microscopy
 (b) Exclusion of private practitioners
 (c) Participation of all health workers
 (d) Provide latest equipments
 [Kolkata 2007]

19. Energy requirement of a sedentary female is:
 (a) 2200-2400 Kcal
 (b) 2400-2800 Kcal
 (c) >2800 Kcal
 (d) <2000 Kcal
 [MP 2004]

20. Indian reference man weighs:
 (a) 60 kg
 (b) 70 kg
 (c) 40 kg
 (d) 50 kg
 [MH 2002]

21. According to ICMR the ‘Cereals and pulses’ requirement for a sedentary strict vegetarian male is:
 (a) 200 and 50 grams
 (b) 300 and 60 grams
 (c) 460 and 40 grams
 (d) 560 and 50 grams
 [MH 2008]

22. Calories required for 0-6 m infant is (Kcal/kg):
 (a) 150
 (b) 100
 (c) 300
 (d) 400
 [RJ 2004]

23. Energy requirement in early lactation is:
 (a) 550 Kcal
 (b) 300 Kcal
 (c) 400 Kcal
 (d) 850 Kcal
 [RJ 2009]

PROTEINS

24. Which one of the following is the best indicator of protein quality for recommending the dietary protein requirement?
 (a) Protein-efficiency ratio
 (b) Biological value
 (c) Digestibility coefficient
 (d) Net protein utilization
 [AIIMS Nov 2005]

25. The optimum calories to be provided by proteins should be:
 (a) 5-10%
 (b) 10-15%
 (c) 15-20%
 (d) 20-30%
 [A 1999]

26. Qualitative assessment of proteins can be done by:
 (a) Net Protein Utilization
 (b) Protein Energy ratio
 (c) Amount of proteins consumed daily
 (d) Weight gained on a monthly basis
 [AIPGME 1998]

27. Conditionally Essential amino acids are:
 (a) Leucine & Lysine
 (b) Histidine & Arginine
 (c) Tyrosine & Cysteine
 (d) Phenylalanine & Tryptophan
 [AIIMS Nov 2005]

28. The Protein Efficiency Ratio (PER) is defined as:
 (a) The gain in weight of young animals per unit weight of protein-consumed
 (b) The product of digestibility coefficient and biological value
 (c) The percentage of protein absorbed into the blood
 (d) The percentage of nitrogen absorbed from the protein absorbed from the diet
 [AIPGME 1994, AIPGME 2003]

29. Highest protein content is in:
 (a) Red gram
 (b) Black gram
 (c) Bengal gram
 (d) Soya bean
 [AIIMS May 2005]

30. Limiting Amino acids in wheat are:
 (a) Methionine and Lysine
 (b) Lysine and threonine
 (c) Threonine and methionine
 (d) Arginine and lysine
 [AIPGME 1997]

31. Pulse protein is deficient in which of the following Essential Amino Acid?
 (a) Lysine
 (b) Methionine
 (c) Threonine
 (d) Tryptophan
 [Karnataka 2009][Recent Question 2013]

32. All are true about Net protein utilization (NPU) except:
 (a) Defined as Nitrogen retained by Nitrogen consumed X 100
 (b) Good for estimating protein quality
 (c) Egg has the highest NPU value
 (d) 1 gram protein is equivalent to 1 gram Nitrogen
 [AIIMS May 2011]
33. What is known as “poor man’s meat”?
(a) Milk
(b) Pulses
(c) Fish
(d) Egg

34. Semi essential amino acids are:
(a) Tryptophan, Tyrosine
(b) Leucine, Lysine
(c) Histidine, Arginine
(d) Phenylalanine, Valine

35. Lysine is deficient in:
(a) Pulse
(b) Wheat
(c) Both
(d) None

36. Biological value is maximum of:
(a) Egg
(b) Milk
(c) Soyabean
(d) Pulses

37. Pulses are deficient in:
(a) Lysine and threonine
(b) Lysine and tryptophan
(c) Methionine and cysteine
(d) Lysine and methionine

38. Pulse proteins are poor in:
(a) Methionine
(b) Lysine
(c) Threonine
(d) Alanine

39. The protein quality indicator adopted by ICMR in recommending dietary protein requirement is:
(a) Amino acid score
(b) Net protein utilization
(c) Biological value
(d) Protein efficiency ratio

40. Among the pulses, the highest quantity of protein is present in:
(a) Green gram
(b) Red gram
(c) Soyabean
(d) Black gram

42. Lysine is deficient in:
(a) Pulse
(b) Wheat
(c) Both
(d) None

43. Amino acid lesser in rice is:
(a) Lysine
(b) Methionine
(c) Both
(d) None

44. Biological value is maximum of:
(a) Egg
(b) Milk
(c) Soyabean
(d) Pulses

45. Net protein utilization is highest in:
(a) Egg
(b) Wheat
(c) Milk
(d) Fish

46. The protein quality indicator adopted by ICMR in recommending dietary protein requirements is:
(a) Amino acid score
(b) Net protein utilization
(c) Biological value
(d) Protein efficiency ratio

47. Highest content of protein is found in:
(a) Soya bean
(b) Red gram
(c) Bengal gram
(d) Black gram

48. The limiting amino acid in the wheat is:
(a) Leucine
(b) Lysine
(c) Methionine
(d) Tryptophan

49. The limiting amino acids in wheat is:
(a) Lysine and threonine
(b) Lysine and tryptophan
(c) Lysine and Leucine
(d) Tyrosine and tryptophan

50. The limiting amino acid in wheat is:
(a) Alanine & threonine
(b) Lysine & threonine
(c) Alanine
(d) Tyrosine & Methionine

51. Protein content is highest in:
(a) Bengal gram
(b) Lentils
(c) Pulses
(d) Soyabean
52. Reference protein is:
(a) Milk
(b) Meat
(c) Egg
(d) Pulses

53. Maize is deficient in:
(a) Methionine
(b) Lysine
(c) Lucine
(d) All

54. Daily requirement of protein is:
(a) 1 g/kg body weight
(b) 1.2 g/kg body weight
(c) 0.9 g/kg body weight
(d) 1.5 g/kg body weight

55. Which method of assessment of quality of proteins gives more complete assessment of protein quality?
(a) Biological value
(b) Net protein utilization
(c) Digestibility co-efficient
(d) Amunoacid score

56. Biological value of Rice protein is:
(a) 52
(b) 67
(c) 80
(d) 100

57. Reference protein is:
(a) Egg
(b) Milk
(c) Pulses
(d) Fish

58. Which is known as reference protein?
(a) Soyabean
(b) Milk
(c) Orange
(d) Potato

FATS AND CARBOHYDRATES

59. Which of the following is a w-3 Fatty Acid?
(a) Linoleic Acid
(b) a-Linolenic acid
(c) Arachidonic acid
(d) g-Linolenic acid

60. The highest percentage of polyunsaturated fatty acids is present in:
(a) Groundnut oil
(b) Soya bean oil
(c) Margarine
(d) Palm oil

61. Suggested intake of dietary fat per day in pregnancy is:
(a) 20 gms
(b) 22 gms
(c) 30 gms
(d) 45 gms

62. Most important Essential Fatty Acid is:
(a) Linoleic Acid
(b) Linolenic Acid
(c) Arachidonic Acid
(d) Eicosapentanoic Acid

63. Rank the food items in descending order of their energy yield per 100 grams Carbohydrate – A, Fats – B, Alcohol – C:
(a) A B C
(b) B C A
(c) C A B
(d) C B A

64. Cereals and proteins are considered complementary since:
(a) Cereals are deficient in methionine
(b) Cereals are deficient in methionine and pulses are deficient in lysine
(c) Cereals are deficient in lysine and pulses are deficient in methionine
(d) Both cereals and pulses contain threonine

65. Highest fat content is present in:
(a) Rice
(b) Wheat
(c) Bajra
(d) Jowar

66. The highest content of saturated fatty acid is in:
(a) Palm oil
(b) Butter
(c) Coconut oil
(d) Margarine

67. Which among the following is a cardio-protective fatty acid?
(a) Palmitic acid
(b) Stearic acid
(c) Omega-3 fatty acids
(d) Oleic acid

68. Amount of cereals provided in Mid-day meal program is:
(a) 50 grams
(b) 75 grams
(c) 100 grams
(d) 150 grams

69. Low glycemic index is for:
(a) Sucrose
(b) Potato
(c) White bread
(d) Fruits

Review Questions

70. Linoleic acid is maximum in:
(a) Groundnut oil
(b) Safflower oil
(c) Mustard oil
(d) Coconut oil
71. Richest source of cholesterol is: [DBN 2004]
(a) Egg
(b) Hydrogenated oil
(c) Butter
(d) Cheese

72. The daily extra calorie requirement in first trimester of pregnancy is: [DNB 2006]
(a) 50
(b) 150
(c) 350
(d) 450

73. The daily additional calories first trimester of pregnancy is: [DNB 2007]
(a) 50
(b) 150
(c) 350
(d) 450

(a) Safflower oil
(b) Sunflower oil
(c) Coconut oil
(d) Palm oil

75. Linoleic acid highest in: [Kolkata 2002]
(a) Safflower oil
(b) Corn oil
(c) Sunflower oil
(d) Coconut oil

76. Maximum amount of essential fatty acids is found in: [Kolkata 2005]
(a) Coconut oil
(b) Sunflower oil
(c) Mustard oil
(d) Groundnut oil

77. Highest amount of linoleic acid is in: [R] 2004
(a) Sunflower
(b) Safflower oil
(c) Corn oil
(d) Coconut oil

78. What % of total calorie should be from Fat & EFA: [R] 2009
(a) 10-30
(b) 7-15
(c) 65-80
(d) 1-7

81. Recommended Daily Allowance of free folate in pregnancy is: [AIIMS Feb 1997]
(a) 500 mcg
(b) 150 mcg
(c) 300 mcg
(d) 400 mcg

82. Under National Programme for Prevention of Nutritional Blindness, a child in the age group of 6-11 months is given a mega dose of vitamin A equal to:
(a) 50,000 IU [AIPGME 1992]
(b) 1 Lakh IU
(c) 1.5 Lakh IU
(d) 2 Lakh IU

83. First clinical sign of Vitamin-A deficiency is:
(a) Night blindness [AIIMS May 2007]
(b) Conjunctival xerosis
(c) Bitot’s spots
(d) Keratomalacia

84. Under National Immunisation Schedule, total dose of Vitamin-A given to a child is: [AIPGME 1992]
(a) 5 lac IU
(b) 6 lac IU
(c) 9 lac IU
(d) 13.5 lac IU

85. Vitamin-A solution contains: [AIPGME 2006]
(a) 25,000 IU per ml
(b) 50,000 IU per ml
(c) 1,00,000 IU per ml
(d) 2,00,000 IU per ml

86. Xerophthalmia is a problem in a community if the prevalence of Bitot’s spots is more than:
(a) 1 % [AIIMS Jan 1999]
(b) 0.5 % [Recent Question 2013]
(c) 5 % [Recent Question 2014]
(d) 25 %

87. Daily requirement of Vitamin-A by an adult man is: [AIIMS Jan 1999]
(a) 350 mcg
(b) 100 mcg
(c) 600 mcg
(d) 2000 mcg

88. Minimum amount of sunlight exposure necessary for adequate synthesis of Vitamin-D in the human body is: [AIIMS Dec 1994]
(a) 5 min
(b) 30 min
(c) 2 hrs
(d) 5 hrs

89. Besides 3 D’s (Diarrhoea, Dermatitis & Dementia) of Niacin deficiency, 4th D indicates: [AIPGME 1995-96]
(a) Disability
(b) Destruction
(c) Debilitating
(d) Death

80. Vitamin A deficiency is considered a public health problem if prevalence rate of night blindness in children between 6 months to 6 years is more than:
(a) 0.01% [AIIMS May 2006]
(b) 0.05%
(c) 0.1%
(d) 1.0%

89. Besides 3 D’s (Diarrhoea, Dermatitis & Dementia) of Niacin deficiency, 4th D indicates: [AIPGME 1995-96]
(a) Disability
(b) Destruction
(c) Debilitating
(d) Death
90. ‘Burning Sole Syndrome’ is seen in deficiency of:
 (a) Riboflavin
 (b) Pyridoxine
 (c) Pantothenic acid
 (d) Vitamin B12

91. Dose of vitamin A prophylaxis in 6-11 months old child is:
 (a) 2,00,000 IU
 (b) 30,000 IU
 (c) 60,000 IU
 (d) 1,00,000 IU

92. Niacin deficiency can result in:
 (a) Pellagra
 (b) Anemia
 (c) Peripheral neuropathy
 (d) Beri beri

93. Incidence of Bitot spots to label it as a public health problem is:
 (a) 0.1%
 (b) 0.5%
 (c) 1%
 (d) 5%

94. Vitamin A deficiency can cause all of the following except:
 (a) Night blindness
 (b) Seborrheic dermatitis
 (c) Respiratory infection
 (d) Bitot spots

95. Vit. A deficiency is characterized by:
 (a) Bitot’s spot
 (b) Xerophthalmia
 (c) Night blindness
 (d) Tranta’s spot

96. Daily requirement of Vitamin K
 (a) 3 mg/kg
 (b) 0.3 mg/kg
 (c) 0.03 mg/kg
 (d) 30 mg/kg

97. Vitamin A deficiency in 18 months old child what is recommended dose:
 (a) 200 IU
 (b) 2,000 IU
 (c) 200,000 IU
 (d) 20,000 IU

98. Vitamin A requirement in infant is:
 (a) 350 mcg
 (b) 600 mcg
 (c) 800 mcg
 (d) 1000 mcg

99. Vitamin D is maximum in:
 (a) Milk
 (b) Fish fat
 (c) Eggs
 (d) Cod liver oil

100. False statement regarding folic acid supplementation?
 (a) Fortified in all wheat products in India like in USA
 (b) Preconceptionally given for prevention of neural tube defects
 (c) It is present in leafy vegetables, spinach, paneer
 (d) Requirement per day in pregnancy is 500 mcg

101. Pellagra in Jowar eating population is due to:
 (a) Niacin in bound form
 (b) Deficiency of Tryptophan
 (c) Excess of Leucine
 (d) High consumption of milk and milk products

102. Avidin has affinity for:
 (a) Folic acid
 (b) Thiamine
 (c) Biotin
 (d) Riboflavin

103. Physiologically most active form of Vitamin D is:
 (a) Calciferol
 (b) Cholecalciferol
 (c) Ergocalciferol
 (d) Calcitriol

104. Bitot’s spots are seen in:
 (a) Conjunctiva
 (b) Cornea
 (c) Retina
 (d) Vitreous

105. In Xerophthalmia, what is X1B:
 (a) Conjunctival xerosis
 (b) Bitot’s spot
 (c) Corneal xerosis
 (d) Corneal ulcer

106. Prevalence of Vitamin A deficiency in a community is assessed as:
 (a) Night blindness-10%
 (b) Corneal ulcer-0.01%
 (c) Bitot spots-0.5%
 (d) Decreased serum retinol level-0.05%

107. Earliest feature of vitamin A deficiency is:
 (a) Dryness of conjunctiva
 (b) Nyctalopia
 (c) Keratomalacia
 (d) Hyphema

108. Earliest feature of vitamin A deficiency is:
 (a) Dryness of conjunctiva
 (b) Nyctalopia
 (c) Keratomalacia
 (d) Hyphema
109. Which of the following is supposed to prevent congenital neural tube defect: [UP 2000]
 (a) Thiamine
 (b) Riboflavin
 (c) Pyridoxin
 (d) Folic acid

110. Vitamin E rich Foods are: [UP 2002]
 (a) Sunflower oil
 (b) Wheat germ oil
 (c) Soya bean
 (d) All of the above

111. Daily requirement of vitamin D in children: [UP 2002]
 (a) 100 IU
 (b) 200 IU
 (c) 400 IU
 (d) 600 IU

112. Papilledema is caused by: [UP 2006]
 (a) Vitamin A intoxication
 (b) Vitamin D intoxication
 (c) Vitamin E intoxication
 (d) Vitamin B intoxication

113. Vitamin C content of which of the following is >5 mg per 100 grams? [AP 2005]
 (a) Human milk
 (b) Dates
 (c) Egg
 (d) Sitaphal

114. Vitamin D is least in: [AP 2007]
 (a) Milk
 (b) Eggs
 (c) Fish fat
 (d) Shark liver oil

 (a) Carcinoma stomach
 (b) Spinal degeneration
 (c) Changes in central nervous system
 (d) Megaloblastic anaemia

116. The daily requirement of Vitamin D in infants and children is: [NIMHANS 1993, TN 2003]
 (a) 2.5 mcg (100 IU)
 (b) 5.0 mcg (200 IU)
 (c) 10.0 mcg (400 IU)
 (d) 20.0 mcg (800 IU)

117. In measles which vitamin deficiency occurs: [Kolkata 2005]
 (a) Vitamin A
 (b) Vitamin B
 (c) Vitamin C
 (d) Vitamin D

118. Richest source of vitamin B1: [Kolkata 2008]
 (a) Rice
 (b) Milk
 (c) Egg
 (d) Groundnut

119. What is the characteristic feature of vitamin “A” deficiency? [MP 2006]
 (a) Bitot’s spot
 (b) Koplik’s spots
 (c) Erythema marginatum
 (d) Aschoff’s nodules

120. Peripheral neuritis is deficiency sign of: [MP 2007]
 (a) Folic acid
 (b) Niacin
 (c) Thiamine
 (d) Tocopherol

121. Which of the following is NOT a criteria for determining xerophthalmia problem in the community? [MP 2008]
 (a) Bitot’s spots 0.05%
 (b) Corneal xerosis 0.01%
 (c) Corneal ulcer 0.05%
 (d) Serum retinoal level less than 10 mcg/dl 10%

122. Which of the Following vitamin deficiency diseases occurs in maize eating population? [MH 2002]
 (a) Beriberi
 (b) Megaloblastic anaemia
 (c) Pellagra
 (d) Night blindness

123. Bitot’s spots are found in: [R] 2000
 (a) Measles
 (b) Mumps
 (c) Vit. A deficiency
 (d) Diphtheria

124. Vit. A requirement in adult male is (Microgram per day): [R] 2003
 (a) 400
 (b) 600
 (c) 800
 (d) 1000

125. Highest amount of vit. C is found in: [R] 2004
 (a) Orange
 (b) Lemon
 (c) Indian goose berry
 (d) Grapes

126. Decreased level of serum Vit B6 is seen in: [R] 2009
 (a) CRF
 (b) CHF
 (c) INH therapy
 (d) Alcohol

127. Best test to detect iron deficiency in community is: [AIPGME 2001, 1995]
 (a) Serum transferrin
 (b) Serum ferritin
 (c) Serum iron
 (d) Hemoglobin
Nutrition and Health

128. An adult pregnant female is termed anemic if her hemoglobin (venous blood) is: [AIIMS Nov 1999]
(a) Less than 11 g/dl (b) 24 mg/d
(b) Less than 12 g/dl (c) 34 mg/d
(c) Less than 13 g/dl (d) 40 mg/d
(d) Less than 14 g/dl

129. Which one of the following pulses has the highest content of iron? [AIPGME 2006]
(a) Bengal gram
(b) Black gram
(c) Red gram
(d) Soya bean

130. Iron absorption from habitual Indian diets is approx: [AIPGME 1992]
(a) < 5 %
(b) 15 -20%
(c) 40 -50%
(d) 70 –80%

131. Most sensitive tool for evaluating iron status of the body is: [AIPGME 1997-2001]
(a) Hb level
(b) Serum iron
(c) Serum transferring saturation
(d) Serum ferritin

132. Lowest iron content is present in: [DPG 2008]
(a) Milk
(b) Liver
(c) Meat
(d) Fist

133. Oral iron pills or iron injections must be taken along with: [AIPGME 2012]
(a) High doses of Vitamin A
(b) High doses of Vitamin C
(c) High doses of Essential fatty acids
(d) High doses of Vitamin D

134. Total Iron requirement in pregnancy: [Recent Question 2013]
(a) 1000 mg
(b) 35 mg
(c) 500 mg
(d) 800 mg

135. Iron is maximum in: [Recent Question 2013]
(a) Pista
(b) Cashew nut
(c) Meat
(d) Milk

136. Poor man’s iron source is: [DNB June 2009]
(a) Almond
(b) Grapes
(c) Soya
(d) Jaggery

137. Daily dose of Fe for adult man: [DNB 2001]
(a) 18 mg/d [Recent Question 2012]
(b) 24 mg/d
(c) 34 mg/d
(d) 40 mg/d

138. Fluoride content in drinking H₂O normally safe is: [AIPGME 1994]
(a) 0.5-0.8 mg/l
(b) 0.8-1.0 mg/l
(c) 0.2-0.8 mg/l
(d) 0.2-0.5 mg/l

139. Dental fluorosis is best seen in: [AIIMS Nov 2007]
(a) Central & Lateral Incisors
(b) Central Incisors & 1st Molars
(c) 1st & 2nd Molars
(d) Canines

140. ‘Twin fortified salt’ contains: [AIIMS Dec 1995]
(a) Iodine + Fluorine
(b) Iodine + Calcium
(c) Iodine + Iron
(d) Iodine + Chlorine

141. 1 gram of ‘Twin fortified salt’ provides:
(a) 1 mcg Iodine + 40 mg Iron [AIIMS Dec 1997]
(b) 40 mcg Iodine + 40 mg Iron
(c) 1 mcg Iodine + 1 mg Iron
(d) 40 mcg Iodine + 1 mg Iron

142. PFA Act’1954 has laid down standard for level of Iodisation of salt: [AIIMS June 1997]
(a) 90 ppm at Production level & 60 ppm at Consumer level
(b) 60 ppm at Production level & 15 ppm at Consumer level
(c) 30 ppm at Production level & 60 ppm at Consumer level
(d) 30 ppm at Production level & 15 ppm at Consumer level

143. Iodised oil (usual dose of 1 ml i/m) gives protection for: [AIPGME 2005]
(a) 3-4 weeks
(b) 3-4 months
(c) 3-4 years
(d) 10-12 years

144. Daily requirement of Iodine in adults is: [AIIMS Sep 1996]
(a) 50 mcg [Recent Question 2013]
(b) 100 mcg
(c) 150 mcg
(d) 200 mcg

145. As per the World Health Organization guidelines, iodine deficiency disorders are endemic in a community if the prevalence of goiter in school age children is more than: [AIIMS Nov 02]
(a) 1% (b) 5%
(c) 10% (d) 15%
146. Acceptable fluoride concentration in drinking water is: [DPG 2007]
(a) 1 ppm
(b) 2 ppm
(c) 3 ppm
(d) 4 ppm

147. Under the Prevention of Food Adulteration (PFA) Act, the expected level of iodine in iodized salt at production level is NOT less than: [Karnataka 2011]
(a) 30 ppm
(b) 25 ppm
(c) 20 ppm
(d) 15 ppm

148. Recommended Iodine dose in pregnancy is: [AIIMS November 2013]
(a) 15 mcg
(b) 100 mcg
(c) 150 mcg
(d) 250 mcg

149. Endemic cretinism is seen when iodine uptake is less than: [DNB December 2011]
(a) 5 micro gram/day
(b) 20 micro gram/day
(c) 50 micro gram /day
(d) 75 micro gram/day

150. Iodine comes in iodine salt. Requirement in humans at consumer level: [Recent Question 2013]
(a) 5 PPM
(b) 15 PPM
(c) 25 PPM
(d) 35 PPM

151. Prevalence of iodine deficiency in India: [Recent Question 2012]
(a) 1:100
(b) 1:10
(c) 3:100
(d) 3:10

152. Maximum Permitted level of fluoride in drinking water is — — meq/L: [DNB 2000]
(a) 0.5
(b) 0.8
(c) 1.0
(d) 1.5

153. The Iodine content in iodized salt at production point should be: [DNB 2001]
(a) 10 ppm
(b) 20 ppm
(c) 30 ppm
(d) 40 ppm

154. In Iron deficiency anemia, after haemoglobin level has returned to normal so that iron stores are replenished. The Iron tablets should be recommended for:[UP 2008]
(a) 0 – 3 months
(b) 3 – 6 months
(c) 6 – 12 months
(d) 12 – 24 months

155. Poor source of Iron is in: [AP 2002]
(a) Butter
(b) Green leafy vegetable
(c) Jaggery
(d) Meat

156. In pregnancy content of Iron in IFA tablet is: [RJ 2001]
(a) 100 mg
(b) 200 mg
(c) 500 mg
(d) 800 mg

157. How much amount of energy is yielded by one ml of alcohol in the body? [AIIMS Dec 1995]
(a) 1 cal
(b) 4 cal
(c) 7 cal
(d) 9 cal

158. Daily requirement for Dietary Fibre by an adult is approx: [AIIMS Nov 2005]
(a) 1 gm
(b) 4 gms
(c) 40 gms
(d) 100 gms

159. Which of the following is the non-essential micro-nutrient? [AIIMS Nov 2010]
(a) Iron
(b) Manganese
(c) Lead
(d) Sodium

160. One of the following is not reported to be a clinical manifestation of Zinc deficiency in children:
(a) Dwarfism and hypogonadism
(b) Liver and spleen enlargement
(c) Impaired cell-mediated immunity
(d) Macrocytic anaemia [Recent Question 2013]

161. Zinc supplement given in 12 month baby: [Recent Question 2013]
(a) 20 mg/day
(b) 10 mg/day
(c) 5 mg/day
(d) 15 mg/day

162. Adult non-pregnant female requires, calcium per day: [Recent Question 2013]
(a) 400 mg
(b) 600 mg
(c) 800 mg
(d) 1000 mg

163. Daily calcium requirement of infants is: [Recent Question 2012]
(a) 300 mg
(b) 500 mg
(c) 600 mg
(d) 1200 mg
164. Keshan cardiomegaly occur due to deficiency of:
(a) Selenium [Recent Question 2013]
(b) Copper
(c) Zinc
(d) Iron

165. RDA of calcium in normal adult male is:
(a) 800 mg [DNB June 2011]
(b) 400 mg
(c) 1200 mg
(d) 100 mg

166. Daily elemental calcium requirement for an elderly woman is:
(a) 1200 mg [AP 2014]
(b) 300 mg
(c) 2000 mg
(d) 2500 mg

167. Acrodermatitis enteropathica is: [Recent Question 2014]
(a) Inherited disorder of excessive excretion of zinc from body
(b) Inherited disorder of impaired uptake of zinc from body
(c) Inherited disorder of excessive excretion of copper from body
(d) Inherited disorder of impaired uptake of copper from body

168. Trace element is what percent of body weight:
(a) 0.001% [Recent Question 2014]
(b) 0.01%
(c) 0.1%
(d) 1%

Review Questions

169. Which of the following trace element has vitamin E like action: [DNB 2002]
(a) Selenium
(b) Cheomicin
(c) Copper
(d) Zinc

170. Under the prevention of Food Adulteration Act (PFA) the level of iodine salt at consumer level is: [UP 2008]
(a) 0 - 5 ppm
(b) 5 - 10 ppm
(c) 5 - 15 ppm
(d) 5 - 30 ppm

171. Spectrum of IDD cretin does not include: [AP 2005]
(a) Still births
(b) Hyperactivity
(c) Deafness
(d) Delayed development

172. The daily requirement of Iodine for adults is placed at:
(a) 10 mg [TN 1997, TN 2003]
(b) 100 mg

173. The recommended level of fluorides in drinking water in this Country is accepted as: [TN 2003]
(a) 0.5 to 0.8 mg per litre
(b) 1 to 2 mg per litre
(c) 3 to 6 mg per litre
(d) 7 to 12 mg per litre

174. The level of fluorine in drinking water highly associated with dental fluorosis is: [MP 2008]
(a) 0.5 mg/L.
(b) 1.0 mg/L.
(c) 1.5 mg/L.
(d) 2.0 mg/L.

175. In drinking water fluoride levels should be less than _____mg/L: [MH 2007]
(a) 1.5
(b) 1
(c) 0.5
(d) 0.1

176. In drinking water recommended fluoride level is _____ ppm: [MH 2008]
(a) 0.5
(b) 0.5 - 0.8
(c) 1.5
(d) 1.1

177. Iodine requirement of adult male is (Micro gram/day): [RJ 2001]
(a) 150
(b) 300
(c) 500
(d) 700

178. Recommended fluoride level in drinking water is (mg/Liter): [RJ 2002]
(a) .3 - .5
(b) .5 - .8
(c) 1 - 2
(d) 2 - 5

179. Defloridation of water is done by which technique: [RJ 2003]
(a) Nalgonda
(b) Nagpur
(c) Patna
(d) Kasauli

180. Water fluoride is removed by: [RJ 2004]
(a) Boiling
(b) Nalgonda technique
(c) Patna. Technique
(d) Filtration

181. Daily requirement of iodine is: [RJ 2008]
(a) 50 - 100
(b) 100 - 200
(c) 200 - 300
(d) 25 - 50
182. Micronutrient associated with rash and diarrhea:
 (a) Manganese
 (b) Copper
 (c) Zinc
 (d) Iron

183. Highest calcium concentration is present in:
 (a) Dates
 (b) Guava
 (c) Amla
 (d) Mango

184. Zinc deficiency is characterized by:
 (a) Sexual infantilism
 (b) Poor growth
 (c) Poor wound healing
 (d) All of the above

185. Copper deficiency is characterized by:
 (a) Myelopathy
 (b) Neutropenia
 (c) Anemia
 (d) All of the above

186. Egg are “reference protein” because:
 (a) High caloric content
 (b) Increased protein/100 gms
 (c) Increased biological value and +NPU
 (d) Decreased digestibility coefficient

187. Egg is poor in:
 (a) Proteins
 (b) Carbohydrate & Vitamin C
 (c) Calcium & Iron
 (d) Fats

188. NPU value for Egg is:
 (a) 140
 (b) 96
 (c) 81
 (d) 52

189. Egg has all vitamins except:
 (a) B1
 (b) B6
 (c) C
 (d) E

190. Egg is deficient in which of the following:
 (a) Fat
 (b) Protein
 (c) Carbohydrate
 (d) Vitamin

191. Egg are “reference protein” because:
 (a) High caloric content
 (b) Increased protein/100 gms
 (c) Increased biological value and +NPU
 (d) Decreased digestibility coefficient

192. Egg is ideal protein because it has:
 (a) High digestibility
 (b) It has best quality of protein
 (c) High proteins
 (d) High protein and fats

193. Egg lacks the following:
 (a) Protein
 (b) Cholesterol
 (c) Carbohydrate
 (d) Vitamins

194. In Egg, Egg white contributes:
 (a) 50%
 (b) 58%
 (c) 30%
 (d) 70%

195. One egg yield about kcal of energy:
 (a) 50
 (b) 60
 (c) 70
 (d) 80

196. What is not found in egg?
 (a) Cholesterol
 (b) Vit. C
 (c) Calcium
 (d) Fat

197. Egg has all vitamin except:
 (a) B1
 (b) B6
 (c) C
 (d) E

198. Pasteurization by Holder method is heating milk at:
 (a) 60° C for 45 minutes
 (b) 65° C for 30 minutes
 (c) 100° C for 15 minutes
 (d) 136° C for 15 minutes

199. Which one of the following is NOT used in testing for adequate pasteurization of milk?
 (a) Phosphatase test
 (b) Coliform count
 (c) Standard plate count
 (d) Methylene blue reduction test

200. Milk is a good source of all vitamins except:
 (a) Vitamin A
 (b) Vitamin B
 (c) Vitamin C
 (d) Vitamin D

201. Level of proteins in human milk (per 100 ml) is:
 (a) 0.5 gms
 (b) 2.6 gms
 (c) 1.1 gms
 (d) 4.7 gms
202. The following tests are used to check the efficiency of pasteurization of milk except:
(a) Phosphatase test
(b) Standard plate count
(c) Coliform count
(d) Methylene blue reduction test

203. Milk is rich in all except:
(a) Vitamin A
(b) Vitamin D
(c) Iron
(d) Vitamin E
(e) Vitamin C

204. True about cow’s milk are all except:
(a) Cow’s milk contains 80% whey protein and not casein
(b) Has more protein than breast milk
(c) Has more K+ and Na+ than breast milk
(d) Has less carbohydrates than mothers milk

205. Pasteurised milk is most commonly tested by:
(a) Phosphatase test
(b) Coliform test
(c) Catalase test
(d) Oxidase test

206. Milk borne diseases are:
(a) Brucellosis
(b) Tuberculosis
(c) Chickenpox
(d) Q-fever
(e) Leptospirosis

207. Human’s breast milk is essential for the newborn as it contains:
(a) Linoleic acid
(b) Linolenic acid
(c) Docosahexanoic acid
(d) Arachidonic acid

208. Colostrum has in compared to normal milk:
(a) Decreased Vitamin A
(b) Decreased Na+
(c) Increased proteins
(d) Increased calories

209. What is absent in breast milk?
(a) Vitamin K
(b) Vitamin C
(c) Vitamin D
(d) Vitamin A

210. Phosphatase test in milk is done to know:
(a) Quality of pasteurization
(b) Contamination of milk
(c) Nutritive value
(d) Coliform count

211. According to WHO, exclusive breast milk is given upto:
(a) 6 months
(b) 4 months

212. Pasteurization of milk is achieved by boiling at:
(a) 65°C for 30 min
(b) 72°C for 10 sec
(c) 100°C for 20 sec
(d) 136°C for 30 sec

Review Questions

213. A child is exclusively fed on cow’s milk, the deficiency seen in:
(a) Iron
(b) Riboflavin
(c) Vitamin A
(d) Thiamine

214. Phosphatase test in Milk is done to know:
(a) Quality of Pasteurization
(b) Contamination of Milk
(c) Nutritive value
(d) Coliform count

215. All are true about human milk except:
(a) Low lactose
(b) Contains more Vitamin-D
(c) Higher percentage of linoleic acid and oleic acid
(d) Better iron bioavailability

216. Milk transmits all except:
(a) Q fever
(b) Typhoid fever
(c) Brucellosis
(d) Endemic typhus

217. Which of the following contains least amount of protein in 100 gm of milk:
(a) Human milk
(b) Cow milk
(c) Buffalo milk
(d) Goat milk

218. Milk is deficient in the following:
(a) Tryptophan containing amino acids
(b) Linoleic acid
(c) Ascorbic acid
(d) Calceferol

219. Percentage of lactose in human milk is:
(a) 2.5 gm
(b) 5 gm
(c) 7.2 gm
(d) 10 gm

220. Compared with cow’s milk, mother’s milk has more:
(a) Lactose
(b) Vitamin D
(c) Protein
(d) Fat
OTHER FOOD ITEMS

221. Match List I correctly with List D and select your answer using the codes given below:

<table>
<thead>
<tr>
<th>List I</th>
<th>List D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Papaya fruit</td>
<td>I. Calcium</td>
</tr>
<tr>
<td>b. Soya beans</td>
<td>II. Vitamin C</td>
</tr>
<tr>
<td>c. Ragi</td>
<td>III. Protein</td>
</tr>
<tr>
<td>d. Amla fruit</td>
<td>IV. Vitamin A</td>
</tr>
</tbody>
</table>

(a) a-I, b-III, c-II, d-IV
(b) a-IV, b-I, c-III, d-II
(c) a-IV, b-III, c-I, d-II
(d) a-I, b-III, c-IV, d-II

[AIPGME 1993]

222. Rice is poor in all except:

(a) Calcium
(b) Iron
(c) Vitamins A, D, C
(d) Lysine

[AIIMS Sep 1996]

223. Soyabean contains protein to the tune of:

(a) 20 %
(b) 40 %
(c) 60 %
(d) 80 %

[AIIMS Dec 1995]

224. Fish is the source of all except?

(a) Iron
(b) Iodine
(c) Vitamin A
(d) Phosphorus

[AIIMS May 2011]

225. Nutritional value(s) of dates (per 100 grams) include:

(a) Iron 10 mg
(b) Calcium 39 mg
(c) Beta carotene 6 micrograms
(d) Calories 280 Kcal
(e) Vitamin C 100 mg

[PGI May 2012]

226. Tomatoes are rich in:

(a) Oxalic acid
(b) Citric acid
(c) Acetic acid
(d) Formic acid

[DNB 2008]

227. Banana is good source of:

(a) Calcium
(b) Phosphorus
(c) Vitamin B6
(d) Vitamin C
(e) Potassium

[PGI November 2014]

Review Questions

228. Which of the following has highest protein content?

(a) Mutton
(b) Soyabean
(c) Egg
(d) Milk

[DNB 2005]

229. Lysine is deficient in:

(a) Pulse
(b) Wheat
(c) Both
(d) None

[DNB 2007]

230. Tomatoes are rich in:

(a) Oxalic acid
(b) Citric acid
(c) Acetic acid
(d) Formic acid

[DNB 2008]

231. Among the pulses, the highest quantity of protein is present in?

(a) Green gram
(b) Red gram
(c) Soyabean
(d) Black gram

[DNB 2008]

232. Which amino acid is deficient is wheat?

(a) Lysine
(b) Methionine
(c) Tryptophan
(d) None

[Bihar 2004]

233. One of the following contains maximum calcium:

(a) Rice
(b) Wheat
(c) Ragi
(d) Jowar

[AP 2000]

234. Paraboiling of rice reduces:

(a) Beriberi
(b) Pellagra
(c) Dermatitis
(d) All of the above

[AP 2002]

235. Dates are rich source of:

(a) Calcium
(b) Iron
(c) Vitamin C
(d) Carotene

[AP 2004]

236. Highest calorie content is found in:

(a) Banana
(b) Apple
(c) Guava
(d) Orange

[MP 2002]

237. The food item rich in calcium is:

(a) Rice
(b) Wheat
(c) Jowar
(d) Ragi

[MP 2008]

238. An amino acid found in excess in some strains of maize is:

(a) Leucine
(b) Valine
(c) Lysine
(d) Tryptophan

[MP 2008]
293. Lysine is deficient in: [MH 2000]
(a) Cereals
(b) Pulses
(c) Jowar
(d) Soyabean

294. Which of the following is deficient in maize? [MH 2002]
(a) Leucine
(b) Lysine
(c) Tryptophan
(d) Methionine

295. Sorghum is pellagrogenic due to excess content of: [MH 2006]
(a) Lysine
(b) Threonine
(c) Leucine
(d) Tryptophan

296. Maize is pellagrogenic due to excess of: [MH 2007]
(a) Lysine
(b) Leucine
(c) Tryptophan
(d) Methionine

297. Maximum calories per 100 gm are in: [RJ 2000]
(a) Jaggery
(b) Pulses
(c) Green vegetables
(d) Egg

298. Pulses are deficient in: [RJ 2003]
(a) Lysine
(b) Leucine
(c) Methionine
(d) All

FOOD ADULTERATION

299. Endemic ascites is caused by: [AIIMS Nov 06, May 08]
(a) Aflatoxin
(b) Sanguinarine
(c) Pyrrolizidine
(d) Ergot alkaloid

(a) Sanguinarine
(b) BOAA
(c) Pyruvic Acid
(d) Mustard oil

301. BOAA is the toxin responsible for: [AIPGME 92, AIIMS June 1997]
(a) Epidemic Dropsy
(b) Neurolathyrism
(c) Endemic Ascitis
(d) Fluorosis

302. BOAA, the toxin responsible for Neurolathyrism, contains which amino acid? [AIPGME 1992,1996]
(a) Aspartate
(b) Arginine
(c) Alanine
(d) Butyrate

303. The active principle responsible for causing epidemic dropsy is: [DPG 2005]
(a) Pyruvic acid
(b) BOAA
(c) Sanguinarine
(d) Phenylpyruvic acid

304. Ingestion of which of the following can result in ergotism? [DPG 2007]
(a) Bajra
(b) Maize
(c) Kesari dal
(d) Mustard

305. Lathyrism is due to consumption of: [Karnataka 2004]
(a) Red gram dhal
(b) Contaminated ground nuts
(c) Bengal gram dhal
(d) Khesari dhal

306. Which of the following statement (s) is/are true about Lathyrism: [PGI May 2011]
(a) Vitamin C prophylaxis
(b) Banning of crop
(c) Flaccid paralysis
(d) Parboiling detoxicate pulses
(e) BOAA is causative toxin

307. Manifestation(s) of Epidemic dropsy is/are: [PGI May 2011]
(a) Glaucoma
(b) CHF
(c) GI bleed
(d) Gut telangiectasia
(e) Dyspnoea

308. Ergotism is due to toxic alkaloids produced by fungus: [DNB December 2011, NUPGET 2013]
(a) Trichophyton
(b) Claviceps purpurea
(c) Fusarium species
(d) Absidia

309. Endemic ascites is caused by: [PGI May 2012]
(a) Argemone Mexicana seed
(b) Khesari dal
(c) Jhunjhunia seeds
(d) Ergot poisoning
(e) Aspergillus flavus

310. Argemone oil contamination of mustard oil can be detected by: [Recent Question 2012]
(a) Phosphatase test
(b) Nitric acid test
(c) Coliform test
(d) Methylene blue test

311. Most sensitive test for sanguinarine is: [Recent Question 2013]
(a) FeC13
(b) Paper chromatography
(c) HCl
(d) Nitric Acid
258. Cause of epidemic dropsy is: [DNB June 2011]
(a) Pyrolizidine
(b) Sanguinarine
(c) Fusarium toxin
(d) BOAA

259. Lathyrism results due to: [DNB 2000, 2005]
(a) Aflatoxin [Recent Question 2013]
(b) BOAA [MH 2003][R] 2000
(c) Pyruvic acid
(d) Sanguinarine

260. Neuro lathyrism results due to: [DNB 2006]
(a) Aflatoxin
(b) BOAA
(c) Pyruvic acid
(d) Sanguinarine

261. Cause of endemic ascites is: [UP 2001][MP 2008]
(a) Pyrolizidine
(b) Beta-oxaloacetate
(c) Sanguinarine
(d) Aflatoxin

(a) Sanguinarine oil [R] 2000, 2004
(b) BOAA
(c) Drug induced
(d) Ergot alkaloids

263. Toxin present in lathyrus sativa: [MP 2000]
(a) Pyrazolone alkaloids
(b) Sanguinarine
(c) BOAA
(d) Aflatoxin

264. Lathyrism from Khesari dal can be prevented by which process: [MP 2003]
(a) Parboiling
(b) Heating
(c) Soaking
(d) Filtration

265. Test to detect contamination of mustard oil with argemone oil? [MH 2008]
(a) Nitric acid test
(b) Sulphuric acid test
(c) Chromic acid test
(d) All of the above

266. Indian reference man is: [AIPGME 2009, AIIMS May 08]
(a) 55 kg
(b) 60 kg
(c) 65 kg
(d) 70 kg

267. Which of the following statements about Recommended Dietary Allowance is false? [AIIMS Nov 2007; AIPGME 2008]
(a) RDA is decided by a panel of experts and is based on scientific research
(b) RDA caters to dietary requirements of all people
(c) RDA is often higher than the recommended minimum requirement
(d) RDA is based on Estimated Average Requirement

268. A man weighing 68 kg, consumes 325 gm carbohydrate, 65 gm protein and 35 gms fat in his diet. The most applicable statement here is:
(a) His total calorie intake is 3000 kcal
(b) The proportion of proteins, fats and carbohydrates is correct and in accordance with a balanced diet
(c) He has a negative nitrogen balance (AIPGME 01)
(d) 30% of his total energy intake is derived from fat

269. Food standards in India have to achieve a minimum level of quality under: [AIIMS Jan 1999]
(a) Codex Alimentarius
(b) Bureau of Indian Standards
(c) Agmark standards
(d) PFA standards

270. Weight of an Indian reference woman is: [AIIMS Nov 04,08]
(a) 45 Kg
(b) 50 Kg
(c) 55 Kg
(d) 60 Kg

271. True about midday meal programme: [AIPGME 1997]
(a) Provides 1/2 the total energy requirement & 1/3 the total protein requirement in a child
(b) A substitute for home diet
(c) Main objective of this scheme is to eliminate malnutrition
(d) None of the above

272. Mid day meal contains proteins and calories in what proportions: [AIPGME 1997]
(a) 1/2 proteins and 1/2 calories
(b) 1/2 proteins and 1/3rd calories
(c) 1/3rd proteins and 1/3rd calories
(d) 2/3rd calories and 1/3rd proteins

273. Dietary changes advocated by WHO for prevention of heart diseases include all of the following except: [AIIMS Dec 1995]
(a) A decrease in complex carbohydrate consumption.
(b) Reduction in fat intake to 20-30 per cent of caloric intake.
(c) Consumption of saturated fats be limited to less than 10% of total energy intake.
(d) Reduction of cholesterol to below 100mg per 1000 kcal per day.
274. ‘One Dietary Cycle’ comprises of:
(a) 24 hrs [AIIMS Dec 1992]
(b) 48 hrs
(c) 7 days
(d) 1 month

275. All are examples of Food Fortification except:
(a) Iodisation of salt [AIIMS May 1991]
(b) Vitamin A in Vanaspati
(c) Fluoridation of water
(d) Saffron colour in milk

276. Nalgonda Technique is used for: [AIPGME 1999]
(a) Chlorination of water
(b) Defluoridation of water
(c) Iodisation of salt
(d) Detoxification of contaminated mustard oil

277. Shakir’s tape is a useful method employed in the field to measure: [AIIMS May 1994]
(a) Head Circumference
(b) Mid arm Circumference
(c) Height/Length
(d) Chest circumference

278. Salter’s Scale is a useful method employed in the field to measure: [AIIMS May 1994]
(a) Mid arm Circumference
(b) Length at birth
(c) Skin fold thickness
(d) Birth weight

279. What will be the BMI of a male whose weight is 89 kg and height is 172 cm? [AIIMS Nov 1993]
(a) 27
(b) 30
(c) 33
(d) 36

280. Which of the following poisonings can result in spastic paraplegia? [DPG 2005]
(a) Lathyrus
(b) Strychnine
(c) Sanguinarine
(d) Organophosphates

281. Pellagra: [Karnataka 2008]
(a) Is due to pyridoxine deficiency
(b) Occurs with diet chiefly on maize
(c) Night blindness is a presenting feature
(d) Causes high output cardiac failure

282. Why cereals and pulses are combined: [DPG 2006]
(a) 10% cereals contain protein and pulses contain 40%
(b) Cereals are deficient in methionine and lysine is deficient in pulses
(c) Cereals are deficient in lysine and methionine is deficient in pulses
(d) Cereals are rich in essential AA

283. What is/are components of Nutrition surveillance?
(a) Policy maker [PGI Nov 2010]

284. Weight of Indian reference man: [AIIMS May 2010]
(a) 60
(b) 55
(c) 50
(d) 45

285. Regular drinking of which of the following can help prevent Urinary tract infection (UTI)?
(a) Grape juice [AIIMS November 2011]
(b) Orange juice
(c) Cranberry juice
(d) Raspberry juice

286. Which of the following are true regarding principles suggested for Mid-day meal programme?
(a) Meal should be a supplement only not a substitute for home diet [PGI November 2011]
(b) Meal should provide 1/2 calories and 1/3 proteins
(c) Meal cost should be low
(d) Complicated cooking process must not be involved
(e) Keep same menu of meals for longer periods

287. Common to both acute and chronic malnutrition is: [AIIMS May 2012]
(a) Weight for age
(b) Weight for height
(c) Height for age
(d) BMI

288. Food with maximum cholesterol content:
(a) Egg [AIIMS May 2012]
(b) Coconut oil
(c) Hydrogenated fats
(d) Ghee (hydrogenated)

289. True about Indian reference male is: [AIIMS May 2012]
(a) Age 18-29 yrs
(b) Weight 65 kg
(c) Work is mainly sedentary
(d) Works for 10 hrs

290. For Indian reference male is true:
(a) Weight 60 kg [Recent Question 2012]
(b) Works for 15 hours
(c) Age 20-25 yrs
(d) Daily exercise

291. International food standards include: [JIPMER 2014]
(a) BIS standards
(b) Codex alimentarius standards
(c) AgMark standards
(d) PFA standards

292. Acute severe malnutrition diagnostic criteria include all except:
(a) Bipedal edema [AIIMS May 2014]
(b) Visible severe wasting
(c) Mid arm circumference below 115 mm
(d) Weight for height below 2SD of WHO Growth Standards 2006
Review Questions

293. Biological value is maximum of: [DNB 2000]
 (a) Egg
 (b) Milk
 (c) Soyabean
 (d) Pulses

294. True about Mid-day meal given in school is: [DNB 2000]
 Calories
 (a) 1/3
 (b) 1/3
 (c) 1/2
 (d) 1/2
 Proteins
 (a) 1/2
 (b) 1/3
 (c) 1/2
 (d) 1/3

295. About protein energy malnutrition, following are true except: [DNB 2001]
 (a) Optimal protein supplementation is 1.5-2g/kg/day
 (b) Hepatomegaly is an essential feature
 (c) Hypothermia may be a cause of death
 (d) Common in developing countries

296. The best parameter for assessment of chronic malnutrition is: [DNB 2002]
 (a) Weight for age
 (b) Weight for height
 (c) Height for age
 (d) Any of the above

297. Richest source of cholesterol is: [DNB 2006]
 (a) Egg
 (b) Hydrogerated oil
 (c) Butter
 (d) Cheese

298. True about Mid-day meal given in school is: [DNB 2007]
 Calories
 (a) 1/3
 (b) 1/3
 (c) 1/2
 (d) 1/2
 Proteins
 (a) 1/2
 (b) 1/3
 (c) 1/2
 (d) 1/3

299. Biological value is maximum of: [DNB 2007]
 (a) Egg
 (b) Milk
 (c) Soyabean
 (d) Pulses

300. Indian reference man? [DNB 2008]
 (a) 55 Kg
 (b) 60 Kg
 (c) 65 Kg
 (d) 70 Kg

301. In assessing the nutritional status of community the following are used except: [UP 2002]
 (a) Mortality in 1-4 years age group
 (b) Low birth weight
 (c) Weight/height index in preschool children
 (d) Percentage of pregnant lady with less than 11.5% Hb

302. Vitamin A prophylaxis includes all except: [UP 2002]
 (a) For infant 1,00,000 I.U. at 6 month interval
 (b) For more than 1 years 2,00,000 I.U at 6 month interval
 (c) For postpartum 3,00,000 I.U
 (d) 50,000 I.U at birth

303. Dental caries is due to deficiency of: [AP 2002]
 (a) Fluorine
 (b) Zinc
 (c) Lead
 (d) Calcium

304. Nutritional status of community is measured by all except: [AP 2007]
 (a) Mid-arm circumference in 0-1 year age group
 (b) Anemia detection in pregnancy
 (c) Child birth weight <2500 gms
 (d) Height and weight calculated in < 5 years age group

305. Methylene blue test is used to detect: [Kolkata 2007]
 (a) Microorganisms
 (b) Lactose
 (c) Protein
 (d) Sugar

306. Calcium content is highest in: [MP 2001]
 (a) Jowar
 (b) Bajra
 (c) Ragi
 (d) Cereals

307. Nalgonda technique is used in: [MP 2003]
 (a) Epidemic dropsy
 (b) Endemic ascites
 (c) Endemic fluorosis
 (d) Chlorination of water

308. Prudent diet is: [MH 2005]
 (a) Diet for dietary goal achievement
 (b) Diet, which contains variety of foods to safe guard from deficiencies
 (c) Diet on which a person or group lives
 (d) Diet, which fulfills recommended daily allowances

309. Standardization of food by the directorate of marketing and inspection of government of India is known as: [HPMER 2005; MH 2006]
 (a) PFA standards
 (b) Codex Alimentarius
 (c) AGMARK standard
 (d) Bureau of India standards

310. A patient has microcytic Anemia, least likely diagnosis is: [RJ 2003]
 (a) Iron deficiency
 (b) Thalassemia
 (c) Sideroblastic anemia
 (d) B12 deficiency
1. Ans. (c) 3200 kcal [Ref. Park 21/e p588, Park 22/e p20]
 - Recommended daily energy and protein intake:

<table>
<thead>
<tr>
<th>Group</th>
<th>Particulars</th>
<th>Energy (Kcal/d)</th>
<th>Proteins (g/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult Male</td>
<td>Sedentary worker</td>
<td>2320</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>2730</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>3490</td>
<td>60</td>
</tr>
<tr>
<td>Adult Female</td>
<td>Sedentary worker</td>
<td>1900</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Moderate Worker</td>
<td>2230</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Heavy Worker</td>
<td>2850</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Pregnancy</td>
<td>+350</td>
<td>+23</td>
</tr>
<tr>
<td></td>
<td>Lactation (0 - 6 m)</td>
<td>+600</td>
<td>+19</td>
</tr>
<tr>
<td></td>
<td>Lactation (6 - 12 m)</td>
<td>+520</td>
<td>+13</td>
</tr>
<tr>
<td>Infants</td>
<td>0 - 6 months</td>
<td>92/kg</td>
<td>1.16/kg</td>
</tr>
<tr>
<td></td>
<td>6 - 12 months</td>
<td>80/kg</td>
<td>1.69/kg</td>
</tr>
</tbody>
</table>

 In the given question, for an adult pregnant woman with heavy work recommended daily energy intake will be:
 \[2850 + 300 = 3150\] Kcal
 Similarly, daily protein intake for such a woman will be 78 gm
 - Total additional energy requirement in a pregnancy, over and above normal metabolic requirements is + 60,000 Kcal
 - On an average a healthy adult woman gains 12 kg in pregnancy (6.5 kg in poor Indian women).

2. Ans. (a) 550 kcal (Now 600 kcal) [Ref. Park 21/e p588, Park 22/e p590]

 Also Remember
 - Requirement of Iron and Folic Acid: Pregnancy > Lactation
 - Requirement of Calcium and Pyridoxine: Pregnancy = Lactation
 - Requirement of other Nutrients: Pregnancy < Lactation
 - Requirement of Iron: Non-pregnant state = Lactation
 - Requirement of Vitamin B12 and C: Non-pregnant state = Pregnancy

3. Ans. (d) 2900 [Ref. Park 21/e p588, Park 22/e p590]

4. Ans. (b) 1.0 [Ref. Foundations of Community Medicine, 1/e p369]
 - A 'Consumption Unit' is a coefficient of dietary intake, which varies between individuals based on the basis of their age, sex and physical activity
 - Appraisal of dietary intake of very family by weighment method is worked out in terms of consumption units
 - Consumption Unit Coefficients (CUC) of an adolescent = 1.0

5. Ans. (d) 0.7 gm/kg in terms of Egg protein & 1.0 gm/kg in terms of mixed vegetable protein [Ref. Foundations of Community Medicine, 1/e p369]
 - Protein requirement of an adult:
 - 0.7 gm/kg/day in terms of Egg protein or
 - 1.0 gm/kg/day in terms of mixed vegetable protein (NEW GUIDELINE: 0.83 g/kg/d)
 - Egg protein has the highest NPU of 96
 - Indian Council of Medical Research (ICMR) has recommended 1.0 gm protein per kg of body weight for an Indian adult, assuming a NPU of 65 for dietary proteins.
6. Ans. (c) Energy \[\text{Ref. Nutrient Requirements and RDAs for Indians, ICMR; p4; Park 21/e p585, Park 22/e p587}\]
 - **Recommended Dietary Allowance (RDA):** Is a level of intake corresponding to Mean + 2 Standard Deviation, which covers requirement of 97.5% of population
 - RDA is safe level of intake which is likely to be inadequate in not more than 2.5% population
 - RDA ‘safe level approach’ is NOT USED FOR ENERGY since excess energy intake is undesirable; For energy only mean or average requirement is defined as RDA.

<table>
<thead>
<tr>
<th>Also Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Indian Man</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Height</td>
</tr>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>Calculation</td>
</tr>
</tbody>
</table>

7. Ans. (a) 60 g/day \[\text{Ref. Nutrient Requirements and RDAs for Indians, ICMR; p4; Park 21/e p583-84, Park 22/e p858-586}\]
 - In the given question, For a 60 kg Indian male, the minimum daily protein requirement with 40 g (mean) ± 10 (Standard deviation), will be,
 - Mean + 2 SD = 40 + 2(10) = 60 g/day
 - RDA ‘safe level approach’ is Not used for energy since excess energy intake is undesirable; For energy only mean or average requirement is defined as RDA.

8. Ans. (d) 2900 kcal \[\text{Ref. K. Park 19/e p502, 20/e p548, Park 21/e p588, Park 22/e p590}\]
 - Reference Man requires daily energy intake of 45 Kcal/kg
 - Reference Woman requires daily energy intake of 40 Kcal/kg.

<table>
<thead>
<tr>
<th>Also Remember</th>
</tr>
</thead>
<tbody>
<tr>
<td>• WHO recommends reduction in energy intake after age of 40 years</td>
</tr>
<tr>
<td>- 5% per each decade till age 60 years and</td>
</tr>
<tr>
<td>- 10% per each decade thereafter</td>
</tr>
</tbody>
</table>

9. Ans. (c) 1 gm/kg body weight (Now 0.83g/kg by body weight) \[\text{Ref. Park 21/e p586, Park 22/e p588}\]
10. Ans. (b) 0.95 [0.86 ACTUAL VALUE] \[\text{Ref. RDA Draft Guidelines, NIN< Government of India, 2010}\]
11. Ans. (a) 2500 cal \[\text{Ref. K. Park 22/e p590}\]
12. Ans. (b) 60 kg \[\text{Ref. K. Park 22/e p586}\]
13. Ans. (a) 60 and 50 kg [NEW GUIDELINES: 60 and 55 Kg] \[\text{Ref. K. Park 22/e p586}\]
14. Ans. (c) 600 \[\text{Ref. K. Park 22/e p590}\]

Review Questions

15. Ans. (b) 150 \[\text{Ref. Park 21/e p585, Park 22/e p587}\]
16. Ans. (a) Fe \[\text{Ref. Gupta & Mahajan 3/e p 358; Park 21/e p575-76, Park 22/e p577-79}\]
17. Ans. (a) 550 (Now 600) \[\text{Ref. Park 21/e p588, Park 22/e p590}\]
18. Ans. (b) Exclusion of private practitioners \[\text{Ref. Park 21/e p390-91, Park 22/e p394-95}\]
19. Ans. (d) <2000 Kcal \[\text{Ref. Park 21/e p588, Park 22/e p590}\]
20. Ans. (a) 60 kg \[\text{Ref. Park 21/e p584, Park 22/e p586}\]
21. Ans. (c) 460 and 40 grams \[\text{Ref. Park 21/e p613, Park 22/e p615}\]
22. Ans. (b) 100 (Now 92) \[\text{Ref. K. Park 20/e p552}\]
23. Ans. (a) 550 Kcal (Now 600) \[\text{Ref. Park 21/e p588, Park 22/e p589}\]
PROTEINS

24. **Ans. (d) Net protein utilization** [Ref. Park 21/e p586, Park 22/e p588]
 - Net Protein Utilization (NPU): Is the proportion of ingested proteins that is retained in the body under specified conditions for the maintenance and/or growth of the tissues
 - NPU is the best indicator of protein quality for recommending the dietary protein requirement.

Also Remember

- **Methods of Assessing Protein Quality:**
 - Digestible indispensable Amino Acid Score (DIAAS) BEST indicator
 - Protein Digestibility Corrected Amino Acid Score (PDCAAS)
 - Amino Acid Score (AAS)
 - Protein Efficiency Ratio (PER): It represents the ratio of weight gain to the amount of protein consumed
 - Biological Value (BV): Measures the amount of nitrogen retained in comparison to the amount of nitrogen absorbed
 - Net Protein Utilization (NPU): The ratio of the nitrogen used for tissue formation versus the amount of nitrogen digested.

25. **Ans. (c) 15-20%** [Ref. Park 21/e p586, Park 22/e p588]
 - Assessment of protein quantity is done by 'Protein-Energy Ratio' (PE).
 - PE percent = \(\frac{\text{Energy from protein}}{\text{Total energy in diet}} \times 100 \)
 - It is recommended that protein should account for approximately 15 - 20% of total daily energy intake
 - If PE is less than 4 percent, then the subject will be unable to eat enough to satisfy protein requirements.

26. **Ans. (a) Net Protein Utilization** [Ref. Park 21/e p586, Park 22/e p588]

27. **Ans. (c) Tyrosine & Cysteine** [Ref. & Foundations of Community Medicine, 1/e p369]
 - Conditionally Essential Amino Acids (CEAA): Non-essential amino acids may turn essential if their precursors are limited in the body
 - There are 2 CEAA, namely, Tyrosine (derived from Phenylalanine) and Cysteine (derived from methionine)

Also Remember

- Other CEAA include Arginine, Glutamine, Taurine and Glycine.

28. **Ans. (a) The gain in weight of young animals per unit weight of protein-consumed** [Ref. Dictionary of Public Health, Dr. Jugal Kishore; p423-24, Park 21/e p586, Park 22/e p588]
 - Protein efficiency ratio (PER) is based on the weight gain of a test subject divided by its intake of a particular food protein during the test period
 - From 1919 until very recently, the PER had been a widely used method for evaluating the quality of protein in food

29. **Ans. (d) Soya bean** [Ref. Park 21/e p580, Park 22/e p582]
 - Soya bean is richest among pulses. It contains 43.2 % proteins (other pulses contain 17 - 25 % proteins)
 - 100 gms Soya bean contain 43 gms proteins, 20 gms fat and 4 gms minerals
 - Limiting amino acid in soya bean is methionine
 - NPU of soya bean is 55.
 - Soyabean also has higher fats, calcium, iron, vitamin B1/B2/B3 than other pulses.

Also Remember

- 'Egg is the reference protein' having NPU of 96.

30. **Ans. (b) Lysine and threonine** [Ref. Park 21/e p562, Park 22/e p564]
 - Amino acids most deficient in proteins of a food item are 'Limiting amino acids'

<table>
<thead>
<tr>
<th>Food Item</th>
<th>Limiting Amino Acid(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals</td>
<td>Threonine (& Lysine)</td>
</tr>
<tr>
<td>Pulses</td>
<td>Methionine (& Cysteine)</td>
</tr>
<tr>
<td>Maize</td>
<td>Tryptophan (& Lysine)</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

- Deficiency develops due to only consumption of a particular type of food item with limiting amino acids (for e.g. wheat); Thus two or more food items are eaten together so that their proteins supplement one another; this is known as 'Supplementary Action of Proteins'

Also Remember

- **Essential Amino Acids (EAA):** Amino acids which are not synthesized in adequate amounts in the human body; so they have to be supplemented in diet from outside to prevent deficiency.
 - There are 10 EAA, namely, Phenylalanine, Valine, Threonine, Tryptophan, Isoleucine, Methionine, Histidine, Arginine, Leucine, Lysine
 (Mnemonic: PVT TIM HALL or Any Help In Learning These Little Molecules Proves Truly Valuable)
 - Histidine and Arginine are semi-essential amino acids.

Review Questions

31. Ans. (b) Methionine [Ref. Park 21/e p562, Park 22/e p564]
32. (d) 1 gram protein is equivalent to 1 gram Nitrogen [Ref. K. Park 21/e p586, Park 22/e p588]
 - 1 gram of proteins is equivalent to: 6.25 grams Nitrogen
 - NPU of India diets: 50-80
33. Ans. (b) Pulses [Ref. K. Park 22/e p582]
34. Ans. (c) Histidine, Arginine [Ref. K. Park 22/e p564]
35. Ans. (b) Wheat [Ref. K. Park 22/e p564]
36. Ans. (a) Egg [Ref. K. Park 22/e p584]
37. Ans. (c) Methionine and cysteine [Ref. K. Park 22/e p564]
38. Ans. (a) Methionine [Ref. K. Park 22/e p564]
39. Ans. (b) Net protein utilization [Ref. K. Park 22/e p588]
40. Ans. (c) Soyabean [Ref. K. Park 22/e p582]
56. Ans. (b) 67 [Ref. OP Ghai Paediatrics, 6/e p94]

57. Ans. (a) Egg [Ref. Park 21/e p582, Park 22/e p584]

58. Ans. (b) Milk [Ref. Park 21/e p581, Park 22/e p584]

FATS AND CARBOHYDRATES

59. Ans. (b) α-Linolenic acid [Ref. Internet 3]
 - **Essential fatty Acids (EFA):**

 !Type of fatty acids

<table>
<thead>
<tr>
<th>Type of fatty acids</th>
<th>Type of chain</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω-3 Fatty Acids</td>
<td>Short chain</td>
<td>α-Linolenic acid</td>
</tr>
<tr>
<td></td>
<td>Long chain</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>ω-6 Fatty Acids</td>
<td>Short chain</td>
<td>Linoleic Acid</td>
</tr>
<tr>
<td></td>
<td>Long chain</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ-Linolenic acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dihomo-γ-Linolenic acid</td>
</tr>
</tbody>
</table>

60. Ans. (b) Soya bean oil [Ref. Park 21/e p563, Park 22/e p565]
 - **Fatty acid content of different fats (%):**

 !Fats

<table>
<thead>
<tr>
<th>Fats</th>
<th>SFA*</th>
<th>MUFA*</th>
<th>PUFA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coconut oil</td>
<td>92</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Safflower oil</td>
<td>10</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>Sunflower seed oil</td>
<td>8</td>
<td>27</td>
<td>65</td>
</tr>
<tr>
<td>Soya bean oil</td>
<td>14</td>
<td>24</td>
<td>62</td>
</tr>
<tr>
<td>Margarine</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>Groundnut oil</td>
<td>19</td>
<td>50</td>
<td>31</td>
</tr>
<tr>
<td>Palm oil</td>
<td>46</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>Butter</td>
<td>60</td>
<td>37</td>
<td>3</td>
</tr>
</tbody>
</table>

(*SFA: Saturated Fatty Acids; MUFA: Mono-unsaturated Fatty Acids; PUFA: Poly-unsaturated Fatty Acids)

61. Ans. (c) 30 gms [Ref. Park 21/e p566, Park 22/e p568]
 - **Suggested intake of dietary fat:**

 !Group

<table>
<thead>
<tr>
<th>Group</th>
<th>Fat intake (g/d)</th>
<th>EFA (energy %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult (Man/Woman)</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>Pregnant woman</td>
<td>30</td>
<td>4.5</td>
</tr>
<tr>
<td>Lactating mother</td>
<td>45</td>
<td>5.7</td>
</tr>
<tr>
<td>Older children</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Young children</td>
<td>25</td>
<td>3</td>
</tr>
</tbody>
</table>

62. Ans. (a) Linoleic Acid [Ref. Park 21/e p564, Park 22/e p566]
 - **Essential Fatty Acids (EFA):** Are those that cannot be synthesized in human body; they can only be derived from the food.
The most important EFA is Linoleic Acid, which serves as a basis for production of other EFA.

Dietary sources of EFA:

<table>
<thead>
<tr>
<th>EFA</th>
<th>Dietary source</th>
<th>% content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linoleic Acid</td>
<td>Safflower Oil</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Corn Oil</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Sunflower Oil</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Soyaabean oil</td>
<td>51</td>
</tr>
<tr>
<td>Arachidonic Acid</td>
<td>Meat, Eggs</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Milk (fat)</td>
<td>0.5</td>
</tr>
<tr>
<td>Linolenic Acid</td>
<td>Soyaabean oil</td>
<td>7</td>
</tr>
<tr>
<td>Eicosapentanoic Acid</td>
<td>Fish oil</td>
<td>10</td>
</tr>
</tbody>
</table>

Also Remember

- EFA deficiency lead to 'Phrenoderma' (Toad Skin): It is characterized by rough rash like eruptions on the back and sides of arms and legs, the back, and the buttocks. It can be cured by giving 'linseed of safflower oil' which are rich in EFAs.

63. Ans. (b) B C A [Ref. Park 21/e p585, Park 22/e p587]

Also Remember

- Energy yield of macro-nutrients (Proximate principles):

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Energy yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Proteins</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Fats</td>
<td>9 Kcal per gram (37 KJ)</td>
</tr>
</tbody>
</table>

- Alcohol yields 7 kcal per gram
- Carbohydrates, fats and proteins form the main bulk of food; thus they are known as 'Macronutrients' or 'Proximate principles'
- In 'Balanced Diet',
 - Proteins should constitute 10 - 15 % of total daily energy intake
 - Fats should constitute 15 - 30 % of total daily energy intake
 - Carbohydrates, rich in fibre, should constitute the remaining of energy.

64. Ans. (c) Cereals are deficient in lysine and pulses are deficient in methionine [Ref. Park 22/e p564]

65. Ans. (c) Bajra [Ref. Park 21/e p579, Park 22/e p581]

- Fat content of food items:

<table>
<thead>
<tr>
<th>Food item</th>
<th>Fat content (per 100 grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jowar</td>
<td>1.9</td>
</tr>
<tr>
<td>Bajra</td>
<td>5.0</td>
</tr>
<tr>
<td>Ragi</td>
<td>1.3</td>
</tr>
<tr>
<td>Rice</td>
<td>0.5</td>
</tr>
<tr>
<td>Wheat</td>
<td>1.5</td>
</tr>
<tr>
<td>Maize</td>
<td>3.6</td>
</tr>
</tbody>
</table>

66. Ans. (c) Coconut oil [Ref. Park 21/e p563, Park 22/e p564]

67. Ans. (c) Omega-3 fatty acids [Ref. Internet, Wikipedia]

- Omega-3 fatty acids reduce incidence of CHD.

68. Ans. (c) 100 grams [Ref. K. Park 22/e p614]

69. Ans. (d) Fruits [Ref. K. Park 22/e p568]
Review Questions

70. Ans. (b) Safflower oil [Ref. Park 21/e p563, Park 22/e p565]
71. Ans. (a) Egg [Ref. Park 21/e p582, Park 22/e p584]
72. Ans. (b) 150 [Ref. Park 21/e p588, Park 22/e p590]
73. Ans. (b) 150 [Ref. Park 21/e p588, Park 22/e p590]
74. Ans. (a) Safflower oil [Ref. Park 21/e p563, Park 22/e p565]
75. Ans. (a) Safflower oil [Ref. Park 21/e p563, Park 22/e p565]
76. Ans. (b) Sunflower oil [Ref. Park 21/e p563, Park 22/e p565]
77. Ans. (b) Safflower oil [Ref. Park 21/e p563, Park 22/e p565]
78. Ans. (a) 10-30 [Ref. Park 21/e p565, Park 22/e p567]

VITAMINS

79. Ans. (b) Vitamin B3 [Ref. Harrison, 15/e p463; Park 21/e p572, Park 22/e p574]

PELLAGRA
- Pellagra occurs due to Vitamin B3 (Niacin) deficiency
- Pellagra is characterized by 4 D's:
 - Diarrhoea
 - Dermatitis
 - Dementia
 - Death
- Skin rash in pellagra may appear as pigmented and scaly in areas exposed to sunlight. Esp. neck when it is known as 'Casal's Necklace'

Also Remember
- Pellagra is common in maize/jowar eating populations:
 - Limiting amino acid in maize is Tryptophan. 60 mg Tryptophan is converted to 1 mg Niacin in the body
 - Excess of leucine' in such populations appears to interfere in conversion of tryptophan to niacin

80. Ans. (d) 1.0% [Ref. Park 21/e p569, Park 22/e p571]

Prevalence criteria for determining the Xerophthalmia problem in a community

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night blindness</td>
<td>> 1.0%</td>
</tr>
<tr>
<td>Bitot's spots</td>
<td>> 0.5%</td>
</tr>
<tr>
<td>Corneal xerosis/corneal ulceration/keratomalacia</td>
<td>> 0.01%</td>
</tr>
<tr>
<td>Corneal ulcer</td>
<td>> 0.05%</td>
</tr>
<tr>
<td>Serum retinol (< 10 mcg/dl)</td>
<td>> 5.0%</td>
</tr>
</tbody>
</table>

- Prevalence is measured in population at risk, i.e., pre-school children 6 months - 6 years.

81. Ans. (a) 500 mcg [Ref. Park 21/e p573, Park 22/e p575]

- Body stores of folate are not large (about 5 - 10 mg), therefore folate deficiency can develop quickly
- Recommended daily intake values of folate:

<table>
<thead>
<tr>
<th>Group</th>
<th>Intake per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy adults</td>
<td>200 mcg</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>500 mcg</td>
</tr>
<tr>
<td>Lactation</td>
<td>300 mcg</td>
</tr>
<tr>
<td>Children</td>
<td>100 mcg</td>
</tr>
</tbody>
</table>

- An adult tablet of IFA contains: 100 mg elemental Iron and 500 mcg Folic acid (to be given for 100 days minimum in pregnancy)
Recommended daily requirements:

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Recommended daily requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>600 mcg retinol</td>
</tr>
<tr>
<td>Vitamin B1 (Thiamine)</td>
<td>0.5 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B2 (Riboflavin)</td>
<td>0.5 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B3 (Niacin)</td>
<td>6.6 mg per 1000 Kcal of energy intake</td>
</tr>
<tr>
<td>Vitamin B5 (Pantothenic Acid)</td>
<td>10 mg</td>
</tr>
<tr>
<td>Vitamin B6 (Pyridoxine)</td>
<td>2 mg</td>
</tr>
<tr>
<td>Vitamin B9 (Folic Acid)</td>
<td>100 mcg</td>
</tr>
<tr>
<td>Vitamin B12 (Cobalamin)</td>
<td>1 mcg</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>100 IU (2.5 mcg calciferol)</td>
</tr>
<tr>
<td>Vitamin E (Tocopherol)</td>
<td>0.03 mg per kg</td>
</tr>
<tr>
<td>Vitamin K</td>
<td></td>
</tr>
</tbody>
</table>

88. Ans. (a) 5 min [Ref. Park 21/e p569, Park 22/e p571]

- Vitamin D can be synthesized in the body in adequate amounts by simple exposure to sunlight even for 5 minutes per day
- Vitamin D is synthesized in sunlight when '7-dehydrocholesterol (present in abundance in skin) is converted to cholecalciferol'
- 'UV-B rays' (wavelength 270 - 300 nm) play an important role in Vitamin D synthesis
- Vitamin D is 'Kidney Hormone'

650

https://kat.cr/user/Blink99/
• Two major forms of Vitamin D are D2 (Ergocalciferol/ calciferol) and D3 (Cholecalciferol)
• There is no plant source for Vitamin D (and Vitamin B12)
• Vitamin D deficiency leads to rickets, osteomalacia, osteoporosis and colon cancer.

89. Ans. (d) Death [Ref. Harrison, 15/e p463]
90. Ans. (c) Pantothenic acid [Ref. Harrison, 15/e p465]
• Pantothenic acid deficiency was thought to be cause of 'Burning Feet/Sole Syndrome' among prisoners of World War II
• Pantothenic acid is required by adrenal cortex.
91. Ans. (d) 1,00,000 IU [Ref. K. Park 20/e p532; Park 21/e p569, Park 22/e p571]
• Community based intervention against nutritional blindness:
 - Evolved by National Institute of Nutrition (NIN), Hyderabad
 - Strategy:
 - Administer a single massive dose of 200,000 IU of Vitamin A (Retinol palmitate) orally every six months to pre-school children (1 - 6 years age)
 - Half that dose (100,000 IU) be administered to children between 6 months - 1 year age
 - Also known as 'Immunization against Xerophthalmia'
 - Incidence of Keratomalacia reduced by 80%.
92. Ans. (a) Pellagra [Ref. Park 21/e p572, Park 22/e p574]
93. Ans. (b) 0.5% [Ref. Park 21/e p569, Park 22/e p571]
94. Ans. (b) Seborrhoeic dermatitis [Ref. Park 21/e p568, Park 22/e p570]
95. Ans. (a) Bitot's spot; (b) Xerophthalmia; (c) Night blindness [Ref. Park 21/e p568, Park 22/e p570]
96. Ans. (c) 0.03 mg/kg [Ref. K. Park 22/e p572]
97. Ans. (c) 200,000 IU [Ref. Maternal Child Nursing Care by SE Perry, 5/e p973]
98. Ans. (a) 350 mcg [Ref. K. Park 22/e p571]
99. Ans. (d) Cod liver oil [BUT Richest source is Halibut liver oil] [Ref. K. Park 22/e p572]
100. Ans. (a) Fortified in all wheat products in India like as in USA [Ref. K Park 22/e p574]
FOLIC ACID
• India has NOT YET adopted recommendation of fortification of all wheat products in India with Folic acid
• Preconceptionally given for prevention of neural tube defects
• It is present in leafy vegetables, spinach, paneer
• Requirement per day in pregnancy is 500 mcg
101. Ans. (c) Excess of Leucine [Ref. K. Park 22/e p574]
102. Ans. (c) Biotin [Ref. Vitamin Binding Proteins by Dakshinamurti, 1/e p214]
103. Ans. (d) Calcitriol [Ref. William's Basic Nutrition & Diet Therapy, 14/e p99]
104. Ans. (a) Conjunctiva [Ref. Park 22/e p570]
105. Ans. (b) Bitot's spot [Ref. Postgraduate Xerophthalmia (Volume 2) by Zia Choudhary, 1/e p591]

WHO Classification of Xerophthalmia

<table>
<thead>
<tr>
<th>Primary signs</th>
<th>Secondary signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1A Conjunctival xerosis</td>
<td>XN Night blindness</td>
</tr>
<tr>
<td>X1B Bitot spots</td>
<td>XF Xerophthalmic fundus</td>
</tr>
<tr>
<td>X2 Corneal xerosis</td>
<td>XS Xerophthalmic scarring</td>
</tr>
<tr>
<td>X3A Corneal ulceration</td>
<td></td>
</tr>
<tr>
<td>X3B Keratomalacia</td>
<td></td>
</tr>
</tbody>
</table>
Review Questions

106. Ans. (c) Bitot spots-0.5% [Ref. Park 21/e p569, Park 22/e p571]
107. Ans. (a) Dryness of conjunctiva [Ref. Park 21/e p568, Park 22/e p570]
108. Ans. (a) Dryness of conjunctiva [Ref. Park 21/e p568, Park 22/e p570]
109. Ans. (d) Folic acid [Ref. Park 21/e p572, Park 22/e p574]
110. Ans. (d) All of the above [Ref. Gupta & Mahajan 3/e p335; Park 21/e p570, Park 22/e p572]
111. Ans. (b) 200 IU [Ref. Park 20/e p533, Park 22/e p535]
112. Ans. (a) Vitamin A intoxication [Ref. Park 21/e p569, Park 22/e p571]
113. Ans. (d) Sitaphal [Ref. Park 21/e p581, Park 22/e p583]
114. Ans. (a) Milk [Ref. Park 21/e p570, Park 22/e p572]
115. Ans. (d) Megaoblastic anaemia [Ref. Park 21/e p572, Park 22/e p574]
116. Ans. (b) 5.0 mcg (200 IU) [Ref. Park 22/e p538]
117. Ans. (a) Vitamin A [Ref. Park 21/e p138]
118. Ans. (d) Groundnut [Ref. Park 20/e p534, Park 21/e p571]
119. Ans. (a) Bitot's spot [Ref. Park 21/e p568, Park 22/e p570]
120. Ans. (c) Thiamine [Ref. Park 22/e p573]
121. Ans. (a) Bitot's spots 0.05% [Ref. Park 21/e p569, Park 22/e p571]
122. Ans. (c) Pellagra [Ref. Park 21/e p572, Park 22/e p574]
123. Ans. (c) Vit. A deficiency [Ref. Park 21/e p568, Park 22/e p570]
124. Ans. (b) 600 [Ref. Park 21/e p569, Park 22/e p571]
125. Ans. (c) Indian goose berry [Ref. Park 21/e p573, Park 22/e p575]
126. Ans. (c) INH therapy [Ref. Park 21/e p572, Park 22/e p574]

IRON

127. Ans. (b) Serum ferritin [Ref. Park 21/e p576, Park 22/e p578]
 - Evaluation of iron status in the body can be done by:
 - Hemoglobin concentration: A relatively insensitive index of nutrient depletion
 - Serum iron concentration: Normal range is 0.80 - 1.80 mg/L
 - Serum ferritin: 'Most sensitive tool for evaluation of iron status', especially in populations with low prevalence of anemia
 - Serum transferring saturation: Normal value is 30%
128. Ans. (a) less than 11 g/dl [Ref. Park 21/e p575, Park 22/e p577]
 - Cut-off points for diagnosis of anemia (WHO):

<table>
<thead>
<tr>
<th>Group</th>
<th>Hb (g/dl)</th>
<th>MCHC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult males</td>
<td>13</td>
<td>34</td>
</tr>
<tr>
<td>Adult females, non-pregnant</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>Adult females, pregnant</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Children, 6 m - 6 y</td>
<td>11</td>
<td>34</td>
</tr>
<tr>
<td>Children, 6 y - 14 y</td>
<td>12</td>
<td>34</td>
</tr>
</tbody>
</table>

129. Ans. (d) Soya bean [Ref. Park 21/e p580, Park 22/e p582]
 - Only Bengal gram contains Vitamin C among the common pulses
Also Remember

- **Iron requirements (mg per day):** (New Guidelines 2011)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Particulars</th>
<th>Iron intake</th>
<th>Iron to be absorbed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult male</td>
<td></td>
<td>17</td>
<td>0.84</td>
</tr>
<tr>
<td>Adult female</td>
<td>Menstruating</td>
<td>21</td>
<td>1.65</td>
</tr>
<tr>
<td></td>
<td>Pregnancy 1st half</td>
<td>35</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Pregnancy 2nd half</td>
<td>35</td>
<td>2.80</td>
</tr>
<tr>
<td>Infant</td>
<td>6 - 12 months</td>
<td>05</td>
<td>0.7</td>
</tr>
<tr>
<td>Children</td>
<td>1 - 12 years</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Adolescent</td>
<td>Boys 13 - 16 years</td>
<td>32</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Girls 13 - 16 years</td>
<td>27</td>
<td>1.4</td>
</tr>
</tbody>
</table>

- Iron absorption from Indian diets is less than 5%.

130. Ans. (a) < 5% [Ref. Park 21/e p575, Park 22/e p577]

- Iron absorption from habitual Indian diets is less than 5%
- Iron absorption is low in Indian diets due to presence of inhibitors (phytates, tannates, oxalates, calcium)
- Vitamin C (Ascorbic acid) is a facilitator of iron absorption

131. Ans. (d) Serum ferritin [Ref. Park 21/e p576, Park 22/e p578]

132. Ans. (a) Milk [Ref. Park 21/e p581-82, Park 22/e p583-84]

- Iron content of food items:

<table>
<thead>
<tr>
<th>Food item</th>
<th>Iron content (mg per 100 grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jowar</td>
<td>4.1</td>
</tr>
<tr>
<td>Bajra</td>
<td>8.0</td>
</tr>
<tr>
<td>Ragi</td>
<td>3.9</td>
</tr>
<tr>
<td>Bengal gram</td>
<td>4.6</td>
</tr>
<tr>
<td>Horse gram</td>
<td>6.7</td>
</tr>
<tr>
<td>Peas dry</td>
<td>7.0</td>
</tr>
<tr>
<td>Soyabean</td>
<td>10.4</td>
</tr>
<tr>
<td>Banana</td>
<td>0.5</td>
</tr>
<tr>
<td>Mango</td>
<td>1.3</td>
</tr>
<tr>
<td>Sitaphal</td>
<td>4.3</td>
</tr>
<tr>
<td>Raisins</td>
<td>7.7</td>
</tr>
<tr>
<td>Dates</td>
<td>7.3</td>
</tr>
<tr>
<td>Milk</td>
<td>0.2 - 0.3</td>
</tr>
</tbody>
</table>

133. Ans. (b) High doses of Vitamin C [Ref. K. Park 21/e p575, Park 22/e p577]

134. Ans. (a) 1000 mg [Ref. Nutrition during Pregnancy by National Academy press, p282]

135. Ans. (a) Pista [Ref. Multiple sources]

136. Ans. (d) Jaggery [Ref. Multiple sources]

Review Questions

137. Ans. (a) 18 mg/d [Ref. Park 21/e p588, Park 22/e p590]
138. Ans. (a) 0.5-0.8 mg/l [Ref. Park 21/e p577, Park 22/e p579]
 • The recommended level of fluorides in drinking water in India is accepted as ‘0.5 - 0.8 mg/litre’ (0.5 - 0.8 ppm)
 • In temperate countries where water intake is low, the optimum level of fluorides in drinking water is accepted as 1 - 2 mg/litre
 • ‘Fluorine is a double edged sword’: Inadequate intake is associated with ‘dental caries’ whereas excess intake with ‘dental and skeletal fluorosis’.

Also Remember
• Daily requirement for Iodine for adults: > 150 mcg.

139. Ans. (b) Central Incisors & 1st Molars [Ref. Park 21/e p595, Park 22/e p597]
 • Dental fluorosis occurs when excess fluoride is ingested during first 7 years of life (years of tooth calcification)
 - It occurs at levels above 1.5 mg/litre intake
 - It is characterized by ‘Mottling’, which is best seen on incisors of upper jaw.

Also Remember
• Major source of fluorine to man: Drinking water
• Optimum level of fluorine in drinking water: 0.5 - 0.8 ppm (0.5 - 0.8 mg/litre)
 - Level > 1.5 ppm: Dental fluorosis (mottling)
 - Level 3.0 - 6.0 ppm: Skeletal fluorosis
 - Level > 10.0 ppm: Crippling fluorosis

140. Ans. (c) Iodine + Iron [Ref. Park 21/e p595, Park 22/e p597]
 • National Institute of Nutrition (Hyderabad) developed 'Twin Fortified Salt' also known as 'Double Fortified Salt' (DFS)
 - DFS contains Iron and Iodine
 - DFS contains salt, potassium iodate, ferrous sulphate and sodium hexa meta phosphate
 - DFS provides 40 mcg Iodine and 1 mg Iron per gram of salt.

Also Remember
• Iodised Salt: Level of iodisation in salt (PFA Act' 1954) is ‘30 ppm at production level and 15 ppm at consumer level'
• Iodised salt is most convenient, effective and economical method of mass prophylaxis in endemic areas
 - DEC Medicated Salt: 1 - 4 gm DEC (diethylcarbamazine) per kg salt is used for mass treatment of Filariasis; Treatment should be continued for 6 - 9 months.

141. Ans. (d) 40 mcg Iodine + 1 mg Iron [Ref. Internet]

142. Ans. (d) 30 ppm at Production level & 15 ppm at consumer level [Ref. Park 22/e p597]
 • Iodisation of salt is the ‘most widely used prophylactic measure against prevention of goiter’
 - Iodised salt is most convenient, effective and economical method of mass prophylaxis in endemic areas
 • According to Prevention of Food Adulteration (PFA) Act' 1954:
 - Level of iodisation: Minimum‘30 ppm at production level and 15 ppm at consumer level'
 - Moisture content: < 6.0% by weight
 - Sodium chloride: > 96.0% by weight.

https://kat.cr/user/Blink99/
Nutrition and Health

Also Remember

- **Iodine requirement:** 150 mcg per day (<1 teaspoon over lifetime)
- Salt containing compound potassium iodide is termed 'Iodised salt' whereas salt containing compound potassium iodate is termed 'Iodated salt'
- **Global Iodine Deficiency Disorders (IDD) Day:** 21st October
- **Criteria for tracking progress towards IDD elimination:**
<table>
<thead>
<tr>
<th>Indicator</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with enlarged thyroid (age 6 - 12 years)</td>
<td>< 5%</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 100 mcg/litre</td>
<td>< 50%</td>
</tr>
<tr>
<td>Urinary Iodine Excretion below 50 mcg/litre</td>
<td>< 20%</td>
</tr>
<tr>
<td>Proportion of houses consuming adequately iodised salt</td>
<td>> 90%</td>
</tr>
</tbody>
</table>

143. **Ans. (c) 3-4 years**
[Ref. Park 21/e p595, Park 22/e p597]
• Intramuscular Iodised Oil (poppy-seed oil): Average dose 1 ml injection provided protection for 4 years
• Oral Iodised Oil: 2 ml dose is effective for 2 years

144. **Ans. (c) 150 mcg**
[Ref. Park 21/e p577, Park 22/e p579]
• The daily requirement of iodine is 150 mcg supplied normally by well balanced diets and drinking water.

Also Remember

- **Indicators for epidemiological assessment of iodine deficiency:**
 - Prevalence of goitre
 - Prevalence of cretinism
 - Urinary iodine excretion
 - Measurement of thyroid function (T4, TSH)
 - Prevalence of neonatal hypothyroidism
- **Some noteworthy daily requirements:**
<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Recommended daily requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>400 - 500 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>17 mg (males); 21 mg (females)</td>
</tr>
<tr>
<td>Iodine</td>
<td>150 mcg</td>
</tr>
<tr>
<td>Fluorine</td>
<td>0.5 - 0.8 mg/litre</td>
</tr>
</tbody>
</table>

145. **Ans. (c) 10%**
[Ref. Assessment of IDD and monitoring their elimination, WHO, 3rd Ed.]
• Epidemiological criteria for assessing severity of IDD:
 - Total Goitre Rate (TGR) - Grade I + Grade II
 - Median Urinary Iodine Excretion
 - Thyroid volume (ultrasound)
 - Salt iodine content
• **Criteria for Sustainable Elimination of IDD:**
 - Median Urinary Iodine Excretion 100 mcg/l
 - Level of iodization:
 1. 30 ppm at production level
 2. 15 ppm at consumer level
 - Total Goitre Rate (TGR) < 5%.

146. **Ans. (a) 1 ppm**
[Ref. Park 21/e p577, Park 22/e p579]

147. **Ans. (a) 30 ppm**
[Ref. K. Park 21/e p595, Park 22/e p597]

148. **Ans. (d) 250 mcg**
[Ref. K Park 22/e p578]
• India has recently adopted WHO guideline of 250 mcg per day in pregnancy
• Iodine requirement in Adult: 150 mcg per day

149. **Ans. (b) 20 micro gram/day**
[Ref. Mechanism of Iodine Deficiency, UN System documents, Chapter 6]

150. **Ans. (b) 15 PPM**
[Ref. K Park 22/e p597]

Review Questions

152. Ans. (d) 1.5 [Ref. Park 21/e p577, Park 22/e p579]
153. Ans. (c) 30 ppm [Ref. Park 21/e p595, Park 22/e p597]
154. Ans. (a) 0 - 3 months [Ref. Park 20/e p556]
155. Ans. (a) Butter [Ref. Park 20/e p538]
156. Ans. (a) 100 mg [Ref. Park 21/e p588, Park 22/e p590]

OTHER NUTRIENTS

157. Ans. (c) 7 cal [Ref. Park 21/e p583, Park 22/e p585]

- Alcohol supplies about 7 Kcal/gm
- Energy yield of macro-nutrients (Proximate principles):

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Energy yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Proteins</td>
<td>4 Kcal per gram (17 KJ)</td>
</tr>
<tr>
<td>Fats</td>
<td>9 Kcal per gram (37 KJ)</td>
</tr>
</tbody>
</table>

158. Ans. (c) 40 gms [Ref. Park 21/e p567, Park 22/e p569]

- Dietary fibre is a non-starch polysaccharide and a physiologically important component of diet; there are two types of dietary fibres:
 - Insoluble fibres: Cellulose, semi-cellulose and lignin
 - Soluble fibres: Pectins, gums and mucilages
- A daily intake of about 40 grams of fibre is desirable
- Indian diets provide about 50-100 grams of fibre per day
- Cereals and pulses are good sources of fibre (>10 gm fibre per 100 gms).

159. Ans. (c) Lead [Ref. K. Park 21/e p562, 574-75, Park 22/e p564, 576-77]

- **Macronutrients:** Proximate Principles which form the bulk of the diet
 - Carbohydrates
 - Fats
 - Proteins
- **Micronutrients:** Vitamin and Minerals (which are required in small quantities).
 - Major minerals: Sodium, Potassium, Magnesium, Calcium, Phosphorus
 - Trace elements: Iron, Iodine, Fluorine, Zinc, Copper, Cobalt, Selenium, Chromium, Manganese, Molybdenum, Nickel, Tin, Silicon, Vanadium
- **Trace contaminant with no known function in body:** Lead, Mercury, Barium, Boron, Aluminium.

160. Ans. None of the choices [Ref. Vitamins-the fundamental aspects in nutrition and health by Gerald F. Combs, 3/e p 376]

- Zinc deficiency
- Growth failure
- Sexual infantilism
- Impaired immunity
- Decreased insulin synthesis
- Delayed wound healing
- Loss of taste (Aguesia)
- Liver disease (Hepatomegaly + Splenomegaly), Pernicious anemia, Thalassemia, Myocardial infarction
- Megaloblastic anemia (due to reduced absorption of Folyl-glutamates)
- Maternal zinc deficiency: Spontaneous abortion, Congenital malformation (Anencephaly), Low birth weight, IUGR, Preterm delivery.

161. Ans. (a) 20 mg/day [Ref. Neonatal Formulary, 5/e p270]
162. Ans. (b) 600 mg [Ref. K Park 22/e p576]
163. Ans. (b) 500 mg [Ref. K Park 22/e p590]
164. Ans. (a) Selenium [Ref. Selenium in Food and Health by C Reilly, 5/e p91]

165. Ans. (b) 400 mg [NEW GUIDELINE: 600 mg] [Ref. K Park 22/e p590]

166. Ans. (a) 1200 mg [Though Indian Guidelines Recommend 800 mg] [Ref. Pathy’s Principles of Geriatric Medicine 5/e p225]

 Calcium Requirements (Indian Guidelines)
 • Adult male: 600 mg
 • Adult female: 600 mg
 • Pregnancy: 1200 mg
 • Lactation: 1200 mg
 • Post-menopausal: 800 mg
 • Infants: 500 mg
 • Children: 600 mg
 • Adolescents: 800 mg

167. Ans. (b) Inherited disorder of impaired uptake of zinc from body [Ref. NUTR by Beerman, 1/e p217]

168. Ans. (b) 0.01% [Recent Question 2014]

Review Questions

169. Ans. (a) Selenium [Ref. Park 21/e p578, Park 22/e p580]

170. Ans. (c) 5-15 ppm [Ref. Park 21/e p595, Park 22/e p597]

171. Ans. (b) Hyperactivity [Ref. Park 21/e p576, Park 22/e p578]

172. Ans. (d) 150 microgram [Ref. Park 21/e p577, Park 22/e p579]

173. Ans. (a) 0.5 to 0.8 mg per litre [Ref. Park 21/e p577, Park 22/e p579]

174. Ans. (d) 2.0 mg/L [Ref. Park 21/e p577,595, Park 22/e p597]

175. Ans. (b) 1 [Ref. Park 21/e p577, Park 22/e p579]

176. Ans. (b) 0.5-0.8 [Ref. Park 21/e p577, Park 22/e p579]

177. Ans. (a) 150 [Ref. Park 21/e p577, Park 22/e p579]

178. Ans. (b) .5-.8 [Ref. Park 21/e p577]

179. Ans. (a) Nalgonda [Ref. Park 21/e p596, Park 22/e p598]

180. Ans. (b) Nalgonda technique [Ref. Park 21/e p596, Park 22/e p598]

181. Ans. (b) 100-200 [Ref. Park 21/e p576, Park 22/e p578]

182. Ans. (c) Zinc [Ref. Park 21/e p577, Park 22/e p579]

183. Ans. (a) Dates [Ref. Park 21/e p581, Park 22/e p583]

184. Ans. (d) All of the above [Ref. Park 21/e p577, Park 22/e p579]

185. Ans. (d) All of the above [Ref. Park 21/e p577, Park 22/e p579]

186. Ans. (c) Increased biological value and +NPU [Ref. Park 21/e p562, Park 22/e p564]

EGG

187. Ans. (b) Carbohydrate & Vitamin C [Ref. Park 21/e p582, Park 22/e p584]

 Food Items as Poor Sources of Nutrients:
 • Milk is a poor source of Vitamin C and Iron
 • Meat is a poor source of Calcium
 • Fish is a poor source of Carbohydrates
 • Egg is a poor source of Vitamin C and Carbohydrates
Also Remember

- An egg (60 grams) contains: 6 gm proteins, 6 gm fat, 30 mg calcium, 1.5 mg iron, 250 mg cholesterol and 70 kcal energy
- Egg protein is best among proteins (NPU = 96), thereby making it ‘Reference Protein’

188. Ans. (b) 96 [Ref. Foundations of Community Medicine, 1/e p369; Park 21/e p582, Park 22/e p584]

- Net Protein Utilization (NPU): Provides a complete expression of ‘protein quality’

\[
NPU = \frac{\text{Nitrogen retained by body}}{\text{Nitrogen intake}} \times 100
\]

\[
NPU = \frac{\text{Biological value} \times \text{Digestibility coefficient}}{100}
\]

- NPU of selected food items:

<table>
<thead>
<tr>
<th>Food Item</th>
<th>Net Protein Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg (hen)</td>
<td>96*</td>
</tr>
<tr>
<td>Milk (cow)</td>
<td>81</td>
</tr>
<tr>
<td>Meat</td>
<td>79</td>
</tr>
<tr>
<td>Fish</td>
<td>77</td>
</tr>
<tr>
<td>Rice</td>
<td>65</td>
</tr>
<tr>
<td>Soyabean</td>
<td>55</td>
</tr>
<tr>
<td>Wheat</td>
<td>51</td>
</tr>
<tr>
<td>Grams (pulses)</td>
<td>45-50</td>
</tr>
<tr>
<td>Groundnut</td>
<td>50</td>
</tr>
</tbody>
</table>

(*NPU of egg is 96. Since egg is ‘reference protein’, its NPU is taken as 100 for comparison)

189. Ans. (c) C [Ref. K Park 22/e p584]

Review Questions

190. Ans. (c) Carbohydrate [Ref. Park 21/e p582, Park 22/e p584]

191. Ans. (c) Increased biological value and +NPU [Ref. Park 21/e p562, Park 22/e p564]

192. Ans. (b) It has best quality of protein [Ref. Park 21/e p562, Park 22/e p564]

193. Ans. (c) Carbohydrate [Ref. Park 21/e p582, Park 22/e p584]

194. Ans. (b) 58% [Ref. Park 21/e p582, Park 22/e p584]

195. Ans. (c) 70 [Ref. Park 21/e p582, Park 22/e p584]

196. Ans. (b) Vit. C [Ref. Park 21/e p582, Park 22/e p584]

197. Ans. (c) C [Ref. Park 21/e p582, Park 22/e p584]

MILK

198. Ans. (b) 65°C for 30 minutes [Ref. Park 21/e p606, Park 22/e p608]

- Methods of Pasteurization:

<table>
<thead>
<tr>
<th>Method</th>
<th>Temp</th>
<th>Time</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holder/Vat Method</td>
<td>63-66°C</td>
<td>>30 min</td>
<td>For small and rural communities</td>
</tr>
<tr>
<td>HTST Method</td>
<td>72°C</td>
<td>>15 sec</td>
<td>Most widely used; for large quantities; ‘Flash Pasteurization’</td>
</tr>
<tr>
<td>HHST Method</td>
<td>68°C</td>
<td>30 min</td>
<td>‘Batch Pasteurization’</td>
</tr>
<tr>
<td>UHT Method</td>
<td>125°C</td>
<td>Few sec</td>
<td>Heating in 2 stages; 2nd stage under pressure</td>
</tr>
</tbody>
</table>
Also Remember

Some other noteworthy temperatures:

<table>
<thead>
<tr>
<th>Method/Procedure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration</td>
<td>Primary Chamber: 800° ± 50°C
Secondary Chamber: 1050° ± 50°C</td>
</tr>
<tr>
<td>Autoclave</td>
<td>121°C at 15 psi for 15 min
135°C at 3 - 10 psi for 30 min</td>
</tr>
<tr>
<td>Cold Chain</td>
<td>+2° to +8°C</td>
</tr>
<tr>
<td>OPV (Long term storage)</td>
<td>–20° to –40°C</td>
</tr>
<tr>
<td>Yellow fever vaccine</td>
<td>–30° to +5°C</td>
</tr>
<tr>
<td>Reverse Cold Chain</td>
<td>+2° to +8°C</td>
</tr>
<tr>
<td>Parboiling (Hot Soaking)</td>
<td>65° - 70°C</td>
</tr>
<tr>
<td>Comfort Zone (Effective temp)</td>
<td>25 - 27°C</td>
</tr>
<tr>
<td>Heat exhaustion</td>
<td>> 102°F</td>
</tr>
<tr>
<td>Heat hyperpyrexia</td>
<td>> 106°F</td>
</tr>
<tr>
<td>Heat stroke</td>
<td>> 110°F</td>
</tr>
</tbody>
</table>

199. Ans. (d) Methylene blue reduction test [Ref. Park 21/e p606, Park 22/e p608]
- Tests of Pasteurized Milk (for adequacy/sufficiency of pasteurization):
 - Phosphatase Test: Widely used test
 - Standard Plate Count: Enforced limit is 30,000 bacterial count per ml of pasteurized milk
 - Coliform Count: Standard is coliforms be absent in 1 ml of milk
- 'Methylene Blue Reduction Test':
 - Is an indirect method for detection of microorganisms in milk
 - The test is 'carried out on milk accepted for pasteurization'
 - Blue colour disappears from milk when held at a uniform temperature of 37° C: Milk which remains blue the longest is of best quality

200. Ans. (c) Vitamin C [Ref. Park 21/e p582, Park 22/e p584]
- Milk is a good source of all vitamins except Vitamin C.

Also Remember

Milks available in India:

<table>
<thead>
<tr>
<th>Milk Type</th>
<th>Fat content</th>
<th>SNF (Solid-not-fat) content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full cream</td>
<td>6.0 %</td>
<td>9.0 %</td>
</tr>
<tr>
<td>Standardised</td>
<td>4.5 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>Toned</td>
<td>3.0 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>Double toned</td>
<td>1.5 %</td>
<td>9.0 %</td>
</tr>
<tr>
<td>Skimmed</td>
<td>0.5 %</td>
<td>8.7 %</td>
</tr>
</tbody>
</table>

201. Ans. (c) 1.1 gms [Ref. Park 21/e p582, Park 22/e p584]

202. (d) Methylene blue reduction test [Ref. Park 21/e p606, Park 22/e p608]
- Methylene Blue Reduction Test' (MBRT): Is an indirect method for detection of microorganisms in milk
 - MBRT test is 'carried out on milk accepted for pasteurization'
- 'Cold Pasteurization': The use of ionizing radiation or other means (e.g. chemical) to kill bacteria in food
- 'Electronic pasteurization': Food irradiation

203. Ans. (c) Iron; (e) Vitamin C [Ref. Park 21/e p582, Park 22/e p584]

204. Ans. (a) Cow’s milk contains 80% whey protein and not casein [Ref. K. Park 20/e p462-63]

205. Ans. (a) Phosphatase test [Ref. K. Park 21/e p606, Park 22/e p608]

https://kat.cr/user/Blink99/
206. **Milkborne Diseases**

<table>
<thead>
<tr>
<th>Infections of animals transmitted to man</th>
<th>Lesser importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary importance</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Anthrax</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Cowpox</td>
</tr>
<tr>
<td>Streptococcal infections</td>
<td>Foot and mouth disease</td>
</tr>
<tr>
<td>Staphylococcal poisoning</td>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>Tick-borne encephalitis</td>
</tr>
<tr>
<td>Q fever</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infections primary to man</th>
<th>Non-diarrhoeal diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoeal diseases</td>
<td></td>
</tr>
<tr>
<td>Typhoid and para-typhoid fevers</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>Shigellosis</td>
<td>Diphtheria</td>
</tr>
<tr>
<td>Cholera</td>
<td>Streptococcal infections</td>
</tr>
<tr>
<td>E. coli</td>
<td>Staphylococcal food poisoning</td>
</tr>
</tbody>
</table>

207. (c) **Docosahexanoic acid** [Ref. Nutrition and Metabolism, 1/e, Section 8.5]
- Breast milk contains higher amounts of Docosahexanoic acid (DHA)
- DHA is an omega-3 fatty acid required for brain development
- Levels in breast milk depend on mother’s consumption of foods rich in omega-3 fatty acids namely, flax and fish
- Longer the duration of breast feeding, higher the DHA levels in infants.

208. Ans. (c) Increased proteins [Ref. Nutrition through Life Cycle by Judith E Brown, 3/e p160]
209. Ans. (c) Vitamin D [Ref. Understanding Nutrition by Whitney & Rolfes, 12/e p533]
210. Ans. (a) Quality of pasteurization [Ref. K Park 22/e p608]
211. Ans. (a) 6 months [Ref. K Park 22/e p490]
212. Ans. (a) 65°C for 30 min [Ref. K Park 22/e p608]

Review Questions

213. Ans. (a) Iron [Ref. Park 21/e p582, Park 22/e p584]
214. Ans. (a) Quality of Pasteurization [Ref. Park 21/e p606, Park 22/e p608]
215. Ans. (a) Low lactose [Ref. Park 21/e p581-82, Park 22/e p583-84]
216. Ans. (d) Endemic typhus [Ref. Park 21/e p605, Park 22/e p607]
217. Ans. (a) Human milk [Ref. Park 21/e p582, Park 22/e p584]
218. Ans. (c) Ascorbic acid [Ref. Park 21/e p582, Park 22/e p584]
219. Ans. (c) 7.2 gm [Ref. Park 21/e p582, Park 22/e p584]
220. Ans. (a) Lactose [Ref. Park 21/e p582, Park 22/e p584]

Other Food Items

221. Ans. (c) a-IV, b-III, c-I, d-II [Ref. Park 22/e p570,575,581,582]

Also Remember

- Among common vegetables, cabbage is the richest source of Vitamin C. (But also a Goitrogen)
222. Ans. (d) Lysine [Ref. Park 21/e p579, Park 22/e p581]

- Rice is a poor source of Thiamine, Calcium, Iron and Vitamins A, D, C
- Protein content of rice varies from 6 - 9%
 - ‘Rice proteins are better than other cereal proteins’ as rice is richer in lysine
- Rice is staple food of > 50 % population globally.

Also Remember

- Food Items as Rich Sources of nutrients:
 - Halibut Liver Oil is richest source of Vitamin A and Vitamin D
 - Indian Gooseberry (amla) is richest source of Vitamin C
 - Gingelly seeds are richest source of Vitamin B1 (Thiamine)
 - Sheep liver is richest source of Vitamin B2 (Riboflavin)
 - Ragi (millet) is a rich source of calcium
 - Pistachio is the richest source of iron.

223. Ans. (b) 40% [Ref. Park 21/e p580, Park 22/e p582]

Also Remember

- Protein content of some foods:

<table>
<thead>
<tr>
<th>Food Item</th>
<th>Protein content (gm % per 100 gms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soyabean</td>
<td>43</td>
</tr>
<tr>
<td>Pulses</td>
<td>22-25</td>
</tr>
<tr>
<td>Fish</td>
<td>21</td>
</tr>
<tr>
<td>Meat</td>
<td>20</td>
</tr>
<tr>
<td>Egg (hen)</td>
<td>13</td>
</tr>
<tr>
<td>Wheat</td>
<td>12</td>
</tr>
<tr>
<td>Rice</td>
<td>7</td>
</tr>
<tr>
<td>Milk (cow)</td>
<td>3</td>
</tr>
</tbody>
</table>

224. (b) Iodine [Ref. K. Park 21/e p582, Park 22/e p584]

- Richest source of Vitamin A and D is fish liver oils (especially Halibut fish)
- Rich source of proteins (15-20%)
- Rich source of Calcium, phosphorus, fluorides
- Good source of iron
- Poor source of Carbohydrates
- Poor source of iodine (barring few sea fish)

225. Ans. (b) Calcium 39 mg; (c) Beta carotene 6 micrograms; (d) Calories 280 Kcal [Ref. Multiple sources]

226. Ans. (b) Citric acid [Ref. Food Processing by Arthur & Ashurst, 1/e p32]

227. Ans. (b) Phosphorus; (c) Vitamin B6; (d) Vitamin C; (e) Potassium [Ref. Encyclopedia of Foods: A Guide to Healthy Nutrition, 1/e p158]

- Banana is a good source of:
 - Vitamins A, B6, C
 - Carbohydrates, Energy
 - Fibre
 - Potassium, Phosphorus
- Banana is NOT a good source of:
 - Calcium, Iron (Due to presence of phytates)
 - Zinc
Review Questions

228. Ans. (b) Soyabean [Ref. Park 21/e p580, Park 22/e p582]
229. Ans. (b) Wheat [Ref. Park 21/e p578, Park 22/e p580]
230. Ans. (b) Citric Acid [Ref. Internet.]
231. Ans. (c) Soyabean [Ref. Park 21/e p580, Park 22/e p582]
232. Ans. (c) Lysine [Ref. Park 21/e p578, Park 22/e p580]
233. Ans. (c) Ragi [Ref. Park 21/e p579, Park 22/e p581]
234. Ans. (a) Beriberi [Ref. Park 21/e p579, Park 22/e p581]
235. Ans. (b) Iron [Ref. Park 21/e p581, Park 22/e p583]
236. Ans. (a) Banana [Ref. Elizabeth’s nutrition & child development 2/e p67; Park 21/e p581, Park 22/e p583]
237. Ans. (d) Ragi [Ref. Park 21/e p579, Park 22/e p581]
238. Ans. (a) Leucine [Ref. Park 21/e p578, Park 22/e p580]
239. Ans. (a) Cereals [Ref. Park 21/e p578, Park 22/e p580]
240. Ans. (b) Lysine; (c) Tryptophan [Ref. Park 21/e p578, Park 22/e p580]
241. Ans. (c) Leucine [Ref. Park 21/e p578, Park 22/e p580]
242. Ans. (b) Leucine [Ref. Park 21/e p578, Park 22/e p580]
243. Ans. (a) Jaggery [Ref. K Park 20/e p576]
244. Ans. (c) Methionine [Ref. Park 21/e p562, Park 22/e p564]

FOOD ADULTERATION

245. Ans. (c) Pyrrolizidine [Ref. Park 21/e p608, Park 22/e p610]
 - Food Adulteration diseases:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Toxin</th>
<th>Adulterant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lathyrism</td>
<td>BOAA</td>
<td>Khesari Dal (Lathyrus sativus)</td>
</tr>
<tr>
<td>Epidemic Dropsy</td>
<td>Sanguinarine</td>
<td>Argemone mexicana (oil)</td>
</tr>
<tr>
<td>Endemic Ascites</td>
<td>Pyrrolizidine alkaloids</td>
<td>Crotolaria seeds (Jhunjhunia)</td>
</tr>
<tr>
<td>Aflatoxicosis</td>
<td>Aflatoxin</td>
<td>Aspergillus flavus/parasiticus</td>
</tr>
<tr>
<td>Ergotism</td>
<td>Clavine alkaloids</td>
<td>Claviceps fusiformis</td>
</tr>
</tbody>
</table>

Also Remember

Lathyrism
- Lathyrism is of two types:
 - Neurathlathyrism: In human beings
 - Osteolathyrism (Odomatism): In animals
- Neurathlathyrism is caused by eating the pulse ‘Khesari Dal (Lathyrus sativus)’. Diets containing over 30% of this dal consumed over a period of 2-6 months result in neurathlathyrism
- Toxin: present in lathyrus seeds is ‘Beta oxalyl amino alanine (BOAA)’
- Interventions for prevention and control of lathyrism:
 - Vitamin C prophylaxis
 - Banning the crop
 - Removal of toxin: Steeping method and Parboiling
 - Education
 - Genetic approach
 - Socio-economic changes
Epidemic Dropsy
• Is caused by contamination of mustard oil with 'Argemone oil'
• Toxin: 'Sanguinarine' is the toxin contained in argemone oil
• Sanguinarine interferes with oxidation of 'pyruvic acid', which accumulates in blood: It may lead to sudden non-inflammatory edema of bilateral lower limbs, diarrhea, dyspnoea, cardiac failure and death; It can also lead to glaucoma; It may sometimes manifest as 'Sarcoids' (dilatation of skin capillaries)
• Epidemic dropsy may occur in all ages except breast-fed infants.

Endemic Ascites:
• Toxin: Pyrrolizidine alkaloids (Hepatotoxins)
• Adulterant: Crotolaria plant (Jhunjhunia)

246. Ans. (a) Sanguinarine [Ref. Park 21/e p608, Park 22/e p610]
• Edema in Epidemic dropsy occurs due to proteinuria (specifically loss of albumin).
• Argemone oil may be detected by following tests:
 - Nitric acid test
 - Paper chromatography test: Most sensitive test

247. Ans. (b) Neurolathyism [Ref. Park 21/e p608, Park 22/e p610]
• Neurolathyism is caused by eating the pulse 'Khesari Dal (Lathyrus sativus)'; Diets containing over 30 % of this dal consumed over a period of 2 - 6 months result in neurolathyism
• Toxin present in lathyrus seeds is 'Beta oxalyl amino alanine (BOAA)'

248. Ans. (c) Alanine [Ref. Park 21/e p608, Park 22/e p610]
249. Ans. (c) Sanguinarine [Ref. Park 21/e p608, Park 22/e p610]
250. Ans. (a) Bajra [Ref. Park 21/e p608, Park 22/e p610]
• Ergotism:
 - Occurs due to food toxicant - ergot fungus 'Claviceps fusiformis'
 - Food items having a tendency for ergotism:
 • Bajra
 • Rye
 • Sorghum
 • Wheat
 - Removal of ergot:
 • Float them in 20% salt water
 • Hand-picking
 • Air-floatation
 - Upper safe limit for ergot: 0.05 mg per 100 grams food material

251. Ans. (d) Khesari dhal [Ref. Park 21/e p608, Park 22/e p610]
252. Ans. All Choice [Ref. Park 21/e p596,608, Park 22/e p598, 610]
253. Ans. All Choices [Ref. K. Park 21/e p608, Park 22/e p610]
254. Ans. (b) Claviceps purpurea [Ref. K Park 22/e p610]
255. Ans. (c) Jhunjhunia seeds [Ref. K Park 22/e p610]
256. Ans. (b) Nitric acid test [Ref. K Park 22/e p610]
257. Ans. (b) Paper chromatography [Ref. K Park 22/e p610]
258. Ans. (b) Sanguinarine [Ref. K Park 22/e p610]

Review Questions
259. Ans. (b) BOAA [Ref. Park 21/e p596,608, Park 22/e p598, 610]
260. Ans. (b) BOAA [Ref. Park 21/e p608, Park 22/e p610]
261. Ans. (a) Pyrolizidine [Ref. Park 21/e p608, Park 22/e p610]
262. Ans. (a) Sanguinarine oil [Ref. Park 21/e p608, Park 22/e p610]
263. Ans. (c) BOAA [Ref. Park 21/e p596,608, Park 22/e p598, 610]
264. Ans. (a) Parboiling [Ref. Park 21/e p596,608, Park 22/e p598, 610]
265. Ans. (a) Nitric acid test [Ref. Park 21/e p608, Park 22/e p610]

MISCELLANEOUS

266. Ans. (b) 60 kg [Ref. Park 21/e p584, Park 22/e p586]
267. Ans. (b) RDA caters to dietary requirements of all people [Ref. Nutrient Requirements and RDAs for Indians, ICMR; p4; Park 21/e p583-584, Park 22/e p585-86]

Also Remember

- RDA ‘safe level approach’ is not used for energy since excess energy intake is undesirable; for energy only mean or average requirement is defined as RDA

268. Ans. (b) The proportion of proteins, fats and carbohydrates is correct and in accordance with a balanced diet [Ref. Park 21/e p586-89, Park 22/e p588-91]

In the given question, a man weighing 68 kg, consumes 325 gm carbohydrate, 65 gm protein and 35 gms fat in his diet

<table>
<thead>
<tr>
<th></th>
<th>Energy (Kcal per gram)</th>
<th>Amount consumed (grams)</th>
<th>Energy consumed (Kcal)</th>
<th>% of total energy consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>4</td>
<td>325</td>
<td>1300</td>
<td>68%</td>
</tr>
<tr>
<td>Fats</td>
<td>4.2</td>
<td>65</td>
<td>275</td>
<td>15%</td>
</tr>
<tr>
<td>Proteins</td>
<td>9.0</td>
<td>35</td>
<td>315</td>
<td>17%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1890 Kcal</td>
<td></td>
</tr>
</tbody>
</table>

His total energy intake is 1890 Kcal
15% of his energy is derived from fats
Thus, the proportion of proteins, fats and carbohydrates is correct and in accordance with a balanced diet.

269. Ans. (d) PFA standards [Ref. Park 21/e p610, Park 22/e p612]

- Food Standards:
 - Codex Alimentarius: Joint FAO/WHO standards for international markets; Food standards in India are based on Codex Alimentarius
 - PFA standards: Laid under Prevention of Food Adulteration Act 1954; to obtain a minimum level of quality of food stuffs attainable under Indian conditions
 - Bureau of Indian Standards: Purely voluntary; express degree of excellence above PFA standards
 - Agmark standards: Purely voluntary; express degree of excellence above PFA standards

270. Ans. (c) 55kg [Ref. Park 21/e p584, Park 22/e p586]

Also Remember

- Reference body weights of Infants (both male and female):
 - 0 - 6 months: 5.4 kg
 - 6 - 12 months: 8.4 kg

271. Ans. (d) None of the above [Ref. Park 21/e p611-12, Park 22/e p613-14]

- Mid-day meal programme (MDMP): Also known as ‘School Lunch Programme’, it has been in operation since 1961
272. Ans. (b) 1/2 proteins and 1/3rd calories [Ref. Park 21/e p611, Park 22/e p613]

- The mid-day meal should supply 1/3 of the total energy requirement and 1/2 of the total protein requirement.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity per child per day</th>
<th>Primary</th>
<th>Upper primary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food grains</td>
<td>100 grams</td>
<td>150 grams</td>
<td></td>
</tr>
<tr>
<td>Pulses</td>
<td>20 grams</td>
<td>30 grams</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td>50 grams</td>
<td>75 grams</td>
<td></td>
</tr>
<tr>
<td>Oils & fats</td>
<td>5 grams</td>
<td>7.5 grams</td>
<td></td>
</tr>
<tr>
<td>Salt</td>
<td>As per need</td>
<td>As per need</td>
<td></td>
</tr>
<tr>
<td>TOTAL calories</td>
<td>450 Kcal</td>
<td>700 Kcal</td>
<td></td>
</tr>
<tr>
<td>TOTAL proteins</td>
<td>12 grams</td>
<td>20 grams</td>
<td></td>
</tr>
</tbody>
</table>

273. Ans. (a) A decrease in complex carbohydrate consumption [Ref. Park 21/e p341, Park 22/e p341]

274. Ans. (c) 7 days [Ref. Park 21/e p601, Park 22/e p603]

- Assessment of dietary intake (Diet Survey) can be carried out by 'Dietary Cycle', where 'weighment of raw foods is done over a period of 7 days'.

275. Ans. (d) Saffron colour in milk [Ref. Park 21/e p609, Park 22/e p611]

- Food fortification: Is a public health, measure where nutrients are added to food (in relatively small quantities), to maintain/improve the quality of diet of a group, community or a population
- Examples of Food Fortification:
 - Iodisation of salt
 - Vitamin A and Vitamin D in Vanaspati
 - Fluoridation of water

276. Ans. (b) Defluoridation of water [Ref. Park 21/e p596, Park 22/e p598]

- 'Nalgonda Technique' has been developed by National Environmental Engineering Research Institute (NEERI), Nagpur for defluoridation of water. It involves 'addition of lime, alum and bleaching powder' followed by flocculation, sedimentation and filtration. In Nalgonda technique, aluminium is major de-fluoridating agent.
- Household level de-fluoridation can be done by:
 - Nalgonda Technique
 - Alumina
 - Phosphates

277. Ans. (b) Mid arm Circumference [Ref. Pediatric Clinic Methods by Meharban Singh, 2/e p59]

- Shakir's Tape is a useful field instrument for measurement of nourishment status of a child, through measurement of...
Mid-arm-circumference (MAC)

- MAC is measured for age group 1 - 5 years (as it remains practically constant during this age)
- Interpretation of Shakir’s tape findings:

<table>
<thead>
<tr>
<th>MAC (cms)</th>
<th>Color Zone</th>
<th>Interpretation</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 13.5</td>
<td>Green</td>
<td>Satisfactory nutritional status</td>
<td>–</td>
</tr>
<tr>
<td>12.5 - 13.5</td>
<td>Yellow</td>
<td>Mild-moderate malnutrition</td>
<td>At home; through diet</td>
</tr>
<tr>
<td>< 12.5</td>
<td>Red</td>
<td>Severe malnutrition</td>
<td>Refer; Institutional</td>
</tr>
</tbody>
</table>

Also Refer to Annexure 3.

Also Remember

- ‘Bangle Test’ (4 cm diameter) is also used for quick assessment of MAC
- ‘Quac Stic’ measures malnourishment by comparing MAC with height.

278. Ans. (d) Birth weight
[Ref. Pediatric Clinic Methods by Meharban Singh, 2/e p51]

- Bathroom weighing scale is unreliable instrument for measuring weight of children; For field conditions, Salter’s Spring Scale is quite satisfactory as it is easy to carry.

279. Ans. (b) 30
[Ref. Park 21/e p369, Park 22/e p369]

- Body Mass Index (BMI): A simple index of weight-for-height that is commonly used to classify under-weight, overweight and obesity in adults.
 - BMI is also known as ‘Quetelet’s Index’

 \[
 \text{BMI} = \frac{\text{Weight (Kg)}}{\text{Height}^2 \ (m^2)}
 \]

 In the given question, weight = 89 kg and height = 172 cm,

 Thus, BMI = \(\frac{89}{1.72^2} = 30.08\).

280. Ans. (a) Lathyrus
[Ref. Park 21/e p596-97, Park 22/e p598-99]

- Neurolathyrism is a crippling disease of nervous system, characterized by gradually developing spastic paralysis of lower limbs, occurring mostly in adults.

281. Ans. (b) Occurs with diet chiefly on maize
[Ref. K. Park 20/e p535; Park 21/e p572, Park 22/e p675]

282. Ans. (c) Cereals are deficient in lysine and methionine is deficient in pulses
[Ref. Park 22/e p564]

283. Ans. (a) Policy maker; (b) Nutritional survey
[Ref. Park 21/e p604-05, Park 22/e p606-07]

- Nutritional surveillance: Keeping a watch over nutrition, in order to make decisions that will lead to improvement in nutrition of population
 - Main strategy: Detection of malnutrition (nutritional survey)
 - Approach: Diagnostic-interventional
 - Sample: Representative, 50 - 100 size group
 - Objectives:
 1. To aid health and development
 2. To provide input for program management and evaluation (to policy makers)
 3. To give timely warning and intervention (to prevent short-term food crises)

284. Ans. (a) 60
[Ref. K. Park 20/e p547]

285. Ans. (c) Cranberry juice
[Ref. How Cranberry Juice can prevent Urinary Tract Infections, Science Daily, July 21, 2008]

Cranberry Juice

- Mechanism for prevention of UTI: Proanthocyanidins in Cranberry juice prevent bacterial fimbriae from attaching to wall of urinary bladder and urinary tract.

286. Ans. (a) Meal should be a supplement only not a substitute for home diet; (c) Meal cost should be low; (d) Complicated cooking process must not be involved
[Ref. K. Park 21/e p611-612, Park 22/e p613-614]

Principles for Formulating Mid-Day Meals:

- Meal should be a supplement only not a substitute for home diet
- Meal should provide 1/3 calories and 1/2 proteins
- Meal cost should be low
Nutrition and Health

- Complicated cooking process must not be involved
- Use locally available foods
- Keep changing menu frequently

287. Ans. (a) Weight for age [Ref. WHO Malnutrition Document]
288. Ans. (a) Egg [Ref. K Park 22/e p584]
289. Ans. (a) Age 18-29 yrs [Ref. K Park 22/e p586]
290. Ans. (a) Weight 60 kg [Ref. K Park 22/e p586]
291. Ans. (b) Codex alimentarius standards [Ref. Park 22/e p612]
292. Ans. (d) Weight for height below 2SD of WHO Growth Standards 2006 [Ref. Partha’s Fundamental of Paediatrics, 2/e p69]

WHO & UNICEF’s Acute Malnutrition Criteria
- Presence of Bipedal edema
- Visible severe wasting
- Mid arm circumference below 115 mm
- Weight for height below 3SD of WHO Growth Standards 2006

Review Questions

293. Ans. (a) Egg [Ref. Park 21/e p586, Park 22/e p588]
294. Ans. (a) 1/3 1/2 [Ref. Park 21/e p611-12, Park 22/e p613-14]
295. Ans. (a) Optimal protein supplementation is 1.5-2g/kg/day [Ref. Park 21/e p590-92, Park 22/e p592-94]
296. Ans. (c) Height for age [Ref. Park 21/e p501, Park 22/e p503]
297. Ans. (a) Egg [Ref. Park 21/e p582, Park 22/e p584]
298. Ans. (a) 1/3 1/2 [Ref. Park 21/e p611-12, Park 22/e p613-14]
299. Ans. (a) Egg [Ref. Park 21/e p582, Park 22/e p584]
300. Ans. (b) 60 kg [Ref. Park 21/e p584, Park 22/e p586]
301. Ans. (d) Percentage of pregnant lady with less than 11.5% hamoglobin [Ref. Gupta & Mahajan 3/e p362; Park 22/e p601-603]
302. Ans. (c); (d) 50,000 I.U at birth [Ref. Park 20/e p555]
303. Ans. (a) Fluorine [Ref. Park 21/e p577, Park 22/e p579]
304. Ans. (a) Mid-arm circumference in 0-1 year age group [Ref. Park 21/e p599-601, Park 22/e p601-603]
305. Ans. (a) Microorganisms [Ref. Park 21/e p606, Park 22/e p608]
306. Ans. (c) Ragi [Ref. Park 21/e p574,579, Park 22/e p576-581]
307. Ans. (c) Endemic fluorosis [Ref. Park 21/e p596, Park 22/e p598]
308. Ans. (a) Diet for dietary goal achievement [Ref. Park 21/e p589, Park 22/e p591]
309. Ans. (c) AGMARK standard [Ref. Park 21/e p610, Park 22/e p612]
310. Ans. (d) B12 deficiency [Ref. Park 21/e p573, Park 22/e p575]

Concepts in Sociology

Definitions in Sociology

- **Society**: Is a group of individuals who have organized themselves and follow a way of life
 - *Outstanding feature of society is a System, a system of relationships between individuals*
- **Community**: A social group determined by geographical boundaries and/or common values or interests
- **Sociology**: Study of individuals as well as groups in a society. It can be viewed as from 2 angles:
 - Study of relationships between human beings
 - Study of human behaviour
- **Socialisation**: Process by which an individual gradually acquires culture and becomes member of a social group
- **Social structure**: Patterns of inter-relationships between persons in a society
- **Medical sociology**: Includes studies of medical profession, of the relationship of medicine to public, and of the social factors in the aetiology, prevalence, incidence and interpretation of disease
- **Socialism**: Any economic doctrine that favours the use of property and resources of the country for public welfare
 - Based on social ownership for raising the living standard of working class
- **Social epidemiology**: When the objective of the research is to study the role of social factors in the etiology of the disease, epidemiological survey and social survey are merged together
- **Socialised medicine**: Provision of medical service and professional education by the State (as in state medicine), but the programme is operated and regulated by professional groups rather than by government
- **Social medicine**: Study of the social, economical, environmental, cultural, psychological and genetic factors, which have a bearing on health
- **Social defence**: Covers preventive, therapeutic and rehabilitative services for the protection of society from antisocial, criminal or deviant conduct of man

Social and Behavioural Sciences

- **Social Sciences**: Comprises of those disciplines which are committed to the scientific examination of human behaviour; these are economics, political science, sociology, social psychology and social anthropology
- **Behavioural Sciences**: Applied to last three, viz., sociology, social psychology and social anthropology, because they directly deal with human behaviour
 - **Economics**: Deals with human relationships in specific context of production, distribution, consumption and ownership of scarce resources, goods and services
 - **Political Science**: Study of systems of laws and institutions which constitute government of whole societies
 - **Sociology**: Study of human relationships and human behaviour for a better understanding of pattern of life
 - **Social psychology**: Concerned with psychology of individuals living in human society or groups
 - **Social anthropology**: Study of development and various types of social life
Anthropology

- Anthropology\(^{\text{2}}\): Study of physical social and cultural history of man
 - Physical (Biological) anthropology: Study of human evolution, racial differences, inheritance of bodily traits, growth and decay
 - Social anthropology: Study of development and various types of social life
 - Cultural anthropology: Study of total way of life of contemporary primitive man, his ways of thinking, feelings and action
 - Medical anthropology: Deals with cultural component in ecology of health and disease
 - Linguistic anthropology: Seeks to understand the processes of human communications, verbal and non-verbal, including language

Social Pathology

- Social Pathology\(^{\text{2}}\): Is the study of social problems which undermine the social, psychological or economical health of the populations; it is used to describe relationship between disease and social conditions
- Social pathology is uncovered by ‘Social Surveys’
- Social Problems studied under social pathology:
 - Social constraints:
 - Poverty and destitution
 - Illiteracy and ignorance
 - Migration and environmental crisis
 - Industrialization and Urbanization
 - Social evils:
 - Smoking and drinking
 - Caste and casteism
 - Gender bias and gender discrimination
 - Child neglect and child abuse
 - Child labour and child abandonment
 - Stress and stress behaviour
 - Crime and corruption
 - Prostitution and STDs
 - Social deviance:
 - Drug abuse
 - Juvenile delinquency
 - Suicide

Culture and Acculturation

- Culture\(^{\text{2}}\): Is the learned behaviour which is socially acquired
- Acculturation\(^{\text{2}}\): Is ‘cultural contact’ or mixing of two cultures. It can occur through
 - Trade and commerce
 - Industrialization
 - Propagation of religion
 - Education
 - Conquest
- Customs\(^{\text{2}}\): The established patterns of behavior that can be objectively verified within a particular social setting
 - Folkways\(^{\text{2}}\): Right ways of doing things in less vital areas of human conduct
 - Mores\(^{\text{2}}\): More stringent customs

Theories in Sociology

- Feminist Theory: Focuses on how gender inequality has shaped social life
 - Disease is due to social role of women enforced by men
- Parsonsian theory: States that illness did not simply imply a ‘biologically altered state, but also a socially altered state
 - Disease is due to social strain caused by social demands
Review of Preventive and Social Medicine

- Marxist theory: Is concerned with the relationship between health and illness and capitalist social organization
 - Cause of disease is putting profit ahead of health
- Foucauldian Theory: medical discourse plays an important role in the management of individual bodies (anatomopolitics) and bodies en masse (biopolitics)
 - Disease is labels to segregate population to make it easier to control

PSYCHOLOGY

Definitions and Concepts

- Emotions: Strong feelings of whole organism, which motivate human behaviour
- Value: The ideals, customs, institutions of a society toward which the people of the group have an affective regard
 - May be positive (cleanliness, freedom, or education) or negative (cruelty, crime, or blasphemy)
- Opinions: Views held by people on a point of dispute
 - Are ‘temporary, provisional’
 - Is ‘subjective in nature’
- Belief: Views derived from parents, grand parents and other people we respect
 - Are ‘permanent, unstable, almost unchanging’
 - Is ‘subjective in nature’
- Attitude: Relatively enduring organization of beliefs around an object or subject which predisposes one to respond in a preferential manner
 - Acquired characteristics of an individual
 - Is more or less ‘permanent ways of behaving’
 - Is ‘caught, not taught’
 - Is ‘objective in nature’
- Habits: An accustomed way of doing things
 - Habits are acquired through repetitions, are automatic and can be performed only under similar circumstances

Emotions

- Definition: Strong feelings of whole organism, which motivate human behaviour
- Types of emotions:
 - Fear: MC emotion of man
 - Phobia: when fear becomes exaggerated or unnecessary
 - Anger (Rage): Reaction of offensive type; destructive in nature
 - Anxiety: may lead to tension or pain
 - Love: Feeling of attachment to some person

Learning

- Definition: Any relative permanent change in behaviour that occurs as a result of practice or experience
- Conditions affecting learning:
 - Intelligence
 - Age
 - Learning situation
 - Motivation
 - Physical health
- Types of learning:

<table>
<thead>
<tr>
<th>Type of learning</th>
<th>Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive learning</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Affective learning</td>
<td>Attitudes</td>
</tr>
<tr>
<td>Psychomotor learning</td>
<td>Skills</td>
</tr>
</tbody>
</table>
Intelligence Quotient (IQ)

- **Intelligence Quotient (IQ):** Is a score derived from one of several different standardized tests attempting to measure intelligence
- **First intelligence tests were developed by:** Binet and Simon (1896)
- **Stern’s IQ Test:** Originally IQ was calculated for children

\[
IQ = \frac{\text{Mental age}}{\text{Chronological age}} \times 100
\]

- **Wechsler Adult Intelligence Scale (WAIS):** David Wechsler (1939) published the first intelligence test designed for an adult population; It was the ‘first IQ test based on Normal/Gaussian distribution’
- **Levels of Intelligence based on IQ levels:**

<table>
<thead>
<tr>
<th>Levels of Intelligence</th>
<th>IQ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiot</td>
<td>0 – 24</td>
</tr>
<tr>
<td>Imbecile(^a)</td>
<td>25 – 49</td>
</tr>
<tr>
<td>Moron(^a)</td>
<td>50 – 69</td>
</tr>
<tr>
<td>Borderline</td>
<td>70 – 79</td>
</tr>
<tr>
<td>Low normal</td>
<td>80 – 89</td>
</tr>
<tr>
<td>Normal(^a)</td>
<td>90 – 109</td>
</tr>
<tr>
<td>Superior</td>
<td>110 – 119</td>
</tr>
<tr>
<td>Very superior</td>
<td>120 – 139</td>
</tr>
<tr>
<td>Near Genius(^a)</td>
<td>140 and over</td>
</tr>
</tbody>
</table>

- **Categories of mental retardation based on IQ levels:**

<table>
<thead>
<tr>
<th>Mental status</th>
<th>IQ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal IQ(^a)</td>
<td>70 and over</td>
</tr>
<tr>
<td>Mild mental retardation</td>
<td>50 – 69</td>
</tr>
<tr>
<td>Moderate mental retardation</td>
<td>35 – 49</td>
</tr>
<tr>
<td>Severe mental retardation</td>
<td>21 – 34</td>
</tr>
<tr>
<td>Profound mental retardation</td>
<td>20 or below</td>
</tr>
</tbody>
</table>

FAMILY

Family Cycle

A normal family cycle is conceived as having 6 phases:

<table>
<thead>
<tr>
<th>Phases of family life cycle</th>
<th>Beginning of phase</th>
<th>End of phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Formation</td>
<td>Marriage</td>
<td>Birth of 1st child</td>
</tr>
<tr>
<td>II Extension</td>
<td>Birth of 1st child</td>
<td>Birth of last child</td>
</tr>
<tr>
<td>III Complete extension</td>
<td>Birth of last child</td>
<td>1st child leaves home</td>
</tr>
<tr>
<td>IV Contraction</td>
<td>1st child leaves home</td>
<td>Last child leaves home</td>
</tr>
<tr>
<td>V Completed contraction</td>
<td>Last child leaves home</td>
<td>1st spouse dies</td>
</tr>
<tr>
<td>VI Dissolution</td>
<td>1st spouse dies</td>
<td>Death of survivor (extinction)</td>
</tr>
</tbody>
</table>

Definitions and Concepts

- **Nuclear Family (Elementary/Unitary Family):** Consists of a married couple and their children while they are still regarded as dependents
- **Joint Family:** Consists of no. of married couples and their children who live together in the same household
 - All males are related by blood while females are wives, daughters, sisters and widows
SOCIO-ECONOMIC STATUS

Socio-economic Status (SES) Scales

<table>
<thead>
<tr>
<th>Urban SES scales:</th>
<th>Rural SES scales:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Kuppuswami Scale</td>
<td>Udai Pareek Scale</td>
</tr>
<tr>
<td>Kulshreshtha Scale</td>
<td>Modified B. G. Prasad Scale</td>
</tr>
<tr>
<td>Srivastava Scale</td>
<td>Radhukar Scale</td>
</tr>
<tr>
<td>Jalota Scale</td>
<td>Shirpurkar Scale</td>
</tr>
<tr>
<td>Student’s Scale:</td>
<td>Non-Indian SES scales:</td>
</tr>
<tr>
<td>Bhardwaj Scale</td>
<td>Hollingshead (Occupation based)</td>
</tr>
<tr>
<td></td>
<td>Scale</td>
</tr>
<tr>
<td></td>
<td>Henderson Scale</td>
</tr>
</tbody>
</table>

Modified Kuppuswami Scale

- Is used for Urban families
- Is based on 3 parameters:
 - Education status of head of family (Score 1 to 7)
 - Occupation of head of family (Score 1 to 10)
 - Income of the family per month (Score 1 to 12)
- Scoring: Each component is given a weighted score and summed up
• Socio-economic classes based on scores:

<table>
<thead>
<tr>
<th>Score</th>
<th>Socio-economic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 43</td>
<td>I</td>
</tr>
<tr>
<td>33 – 42</td>
<td>II</td>
</tr>
<tr>
<td>24 – 32</td>
<td>III</td>
</tr>
<tr>
<td>13 – 23</td>
<td>IV</td>
</tr>
<tr>
<td>< 13</td>
<td>V</td>
</tr>
</tbody>
</table>

(Minimum score 3; Maximum score 29)

Udai Pareek Scale

• Is for Rural families
• Is not dependent on income
• Is based on 9 parameters:
 - Caste
 - Occupation
 - Education
 - Land
 - Social participation
 - Family members
 - House
 - Farm power
 - Material possession

• Scoring: Each component is given a weighted score and summed up

• Socio-economic classes based on scores:

BG Prasad Scale

• Is for Rural families
• Is based on per capita monthly income
• Socio-economic classes based on scores:

<table>
<thead>
<tr>
<th>Per capita monthly income (INR)</th>
<th>BG Prasad’s Classification (1961)</th>
<th>Modified BG Prasad’s Classification (1991) Proposed by Kumar</th>
<th>Socio-economic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 100</td>
<td>≥ 1000</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>50 – 99</td>
<td>500 – 999</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>30 – 49</td>
<td>300 – 499</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>15 – 29</td>
<td>150 – 299</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>< 15</td>
<td>< 150</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

ECONOMICS

Definitions

• Gross National Income (GNI)/ Gross National Product (GNP): Is gross income generated from within the country as also net income received from abroad
• Gross Domestic Product (GDP): Gross income generated within a country (excludes net income received)
Review of Preventive and Social Medicine

• **Net National Product (NNP):** GNP minus capital we consume
• **Net Domestic Product (NDP):** GDP minus value of depreciation on fixed assets
• **Purchasing Power Parity (PPP):** No. of units of a country’s currency required to buy the same amount of goods and services in domestic market, as 1 dollar would buy in USA

Below Poverty Line (BPL)

• **Below Poverty Line (BPL)**: Is defined on the basis of following definitions in India,

<table>
<thead>
<tr>
<th>BPL Criteria</th>
<th>Rural areas</th>
<th>Urban areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita caloric intake</td>
<td>< 2400 Kcal per day</td>
<td>< 2100 Kcal per day</td>
</tr>
<tr>
<td>Per capita income</td>
<td>< 27/- INR per day</td>
<td>< 33/- INR per day</td>
</tr>
<tr>
<td>Per capita income#</td>
<td>< 1.25 $ per day</td>
<td></td>
</tr>
</tbody>
</table>

• **BPL population in India:** 37% (Tendulkar Committee, 2009); 29% (2012); 22% (2013)

Social Security and Social Safety Net

• **Social security:** primarily refers to a social insurance program providing social protection, or protection against socially recognized conditions, including poverty, old age, disability, unemployment and others
 - Bismarck introduced a system of social insurance in Germany in 1883: It became a model for other European countries to introduce similar social security systems

• **Approaches to social security system:**
 - **Social assistance:** Non-contributory benefit extended to vulnerable groups
 - **Social insurance:** Contributory benefit extended to individuals as a matter of right

• **Social Security measures for Industrial workers:**
 - Workmen’s Compensation Act 1923
 - The Factory’s Act 1948
 - Employees State Insurance Act 1948 (including Disablement Benefit)
 - Central Maternity Benefit Act 1961
 - The Family Pension Scheme 1971

• **Social safety net:** is a term used to describe a collection of services provided by the state, such as welfare, unemployment benefit, universal healthcare, homeless shelters, the minimum wage and sometimes subsidized services such as public transport, which prevent individuals from falling into poverty beyond a certain level

INTERVIEWING

Interview

• **Interview:** A technique for investigation and an instrument for research

• **Types of Interview:**
 - **Direct (structured) Interview:** Pre-determined questions are asked
 - **Non directive (unstructured) Interview:** Collection of information by free discussion; no pre-determined questions
 - **Focussed Interview:** Focussing attention on a particular aspect of a problem
 - **Repetitive Interview:** To note the gradual influence of some social or psychological process

Steps of Interview

• **Establishing contact:** First requisite before conducting an interview
• Starting an interview
• Securing rapport
• Recall
• Probe questions
• Encouragement
• Guiding the interview
• Closing the interview
• Report

MISCELLANEOUS

Group Dynamics

- **Family**: Is a group of biologically related individuals living together and eating from a common kitchen
 - Family is the primary unit of all societies
 - Family is the ‘most powerful example of social cohesion’
- **Crowd**: A group of people coming together temporarily for a short period, motivated by a common interest or curiosity
 - Crowd lacks internal organization and leadership
- **Mob**: A group of people coming together temporarily for a short period, having a leader who forces members into action
 - Mob is more emotional than crowd
 - Like crowd, mob is unstable and lacks internal organization
- **Herd**: Is a crowd with a leader, where members of the group have to follow the orders of the leader without question
- **Band**: Most elementary community of a few families living together
 - Group has organized itself and follows a pattern of life
- **Village**: A small collection of people permanently settled down in a locality with their homes and cultural equipments
- **Towns and Cities**: A relatively large, dense and permanent settlement of socially heterogeneous individuals
 - Community is subdivided into smaller groups on the basis of wealth and social class
- **State**: An ecological social group based on territory
 - State is more stabilised and formalized
 - State is heterogeneous in nature
 - Indian Union is a large state

Family is the ‘most powerful example of social cohesion’
CONCEPTS IN SOCIOLOGY

1. Pattern of interrelationships between persons in a society is known as: [AIIMS June 1997]
 (a) Socialism
 (b) Socialization
 (c) Social structure
 (d) Medical sociology

2. ‘Learned behaviour which is socially acquired’ is known as: [AIIMS Dec 1992, May 2000]
 (a) Customs
 (b) Acculturation
 (c) Standard of living
 (d) Culture

3. The systematic study of human disease and social factors is known as: [AIIMS May 2001]
 (a) Social physiology
 (b) Social pathology
 (c) Socialised medicine
 (d) Social medicine

4. The pattern of inter-relations between persons in a society is called: [AIPGME 1991]
 (a) Social stratification
 (b) Social structure
 (c) Caste system
 (d) Herd structure

5. All of the following social sciences deal directly with human behaviour except: [AIPGME 1993]
 (a) Political Science
 (b) Anthropology
 (c) Social Psychology
 (d) Sociology

6. Relationship between the disease and social conditions is described by: [AIPGME 1993]
 (a) Socialism
 (b) Acculturation
 (c) Social Pathology
 (d) Social Defence

7. Putting profit ahead of health as a cause of disease is provided by which theory of sociology: [AIIMS May 2009]
 (a) Feminist
 (b) Parsonian
 (c) Marxist
 (d) Foucauldian

8. Acculturation may take place by: [Karnataka 2011]
 (a) Education
 (b) Industrialization

9. Social pathology is: [AIIMS PGMEE May 2013]
 (a) Change in disease pattern due to change in lifestyle
 (b) Study of social problems which cause disease in population
 (c) Conflicts arising from new opportunities in transitional societies
 (d) Study of human relationships and behaviour

10. Sociology: [Recent Question 2013]
 (a) Study of human relationship
 (b) Study of human behaviour
 (c) Both
 (d) None

11. Socially acquired learned behaviour is:
 (a) Custom
 (b) Culture
 (c) Habit
 (d) Attitude

12. Study of physical, social and cultural history of man is known as: [Recent Question 2012]
 (a) Social science
 (b) Anthropology
 (c) Acculturation
 (d) Sociology

13. An organized group of people with social relationship:
 (a) Community
 (b) Association
 (c) Society
 (d) Family

14. Acculturation is: [DNB June 2009]
 (a) Triage
 (b) Cultural change due to socialization
 (c) Attitude
 (d) Belief

Review Questions

15. Acculturation means: [DNB 2004]
 (a) Culture contact
 (b) Study of the various cultures
 (c) Cultural history of health and disease
 (d) None of the above

16. Society is a: [AP 2003]
 (a) System of relations between individuals
 (b) Group with same beliefs
 (c) Group with different beliefs
 (d) Group with different religions
17. When there is contact between two people with different types of culture, there is diffusion of culture both ways which is called: (a) Socialization (b) Acculturation (c) Adjustment (d) All of the above

18. Acculturation is: (a) Process by which individual gradually acquires culture (b) Exchange of ideas between people (c) Cultural contact (d) Concealing the quality of food by addition toxicants

19. A Child’s weight for height is more than 2SD of mean, and his height for age is less than 2SD of mean. He is classified as: (a) Normal (b) Stunted (c) Wasted (d) Wasted and stunted

20. Tendency of some members of a group to identify and interact with selected members only, leads to formation of a subgroup, this is called as: (a) Cohesion (b) Sociometry (c) Group structure (d) Group dynamics

21. Which of the following is an example of primary social relationship? (a) Husband and wife (b) Author and publisher (c) Both (d) None

22. Change in the affective level after communication and health education means change in: (a) Knowledge (b) Attitude (c) Skills (d) All

23. The behavioral Science used extensively in PSM is: (a) Anthropology (b) Economics (c) Politics (d) Law

24. Phobia is exaggerated or unnecessary form of: (a) Fear (b) Anger (c) Anxiety (d) Love

25. Match the following types of learning: Type of learning
 I. Cognitive learning A. Skills
 II. Affective learning B. Knowledge
 III. Psychomotor learning C. Attitudes
 (a) I - B, II - A, III - C
 (b) I - A, II - B - C, III - A
 (c) I - A, II - C, III - B
 (d) I - A, II - B, III - C

26. Most important epidemiological tool used for assessing disability in children is: (a) Activities of Daily living (ADL) scale (b) Wing’s Handicaps, Behavior and Skills (HBS) Schedule (c) Binet and Simon IQ tests (d) Physical Quality of Life Index (PQLI)

27. Inner subjective thought of a person towards an individual or a situation is best described as: (a) Attitude (b) Value (c) Belief (d) Opinion

28. A temporary, provisional view held by people on a point of debate is: (a) Opinion (b) Practice (c) Attitude (d) Belief

29. Learned behaviour which is permanent and consistent, but liable to change is: (a) Cultural belief (b) Attitude (c) Knowledge (d) Practice

30. According to Maslow’s hierarchy of needs, following is at the top of pyramid: (a) Physical needs (b) Self actualization (c) Safety (d) Esteem recognition

31. Social psychology is: (a) Human relationships & behaviour (b) Psychology of individuals in society (c) Cultural history of man (d) None

32. Not a method of learning: (a) Propaganda (b) Writing (c) Group discussion (d) Reading
33. A primitive man, feeling, thinking deals with:
(a) Social psychology [UP 2003]
(b) Sociometry
(c) Sociopathy
(d) Sociotherapy

34. ‘Moron’ is one with an IQ of: [AIIMS Nov 2003]
(a) 0-24
(b) 25-49
(c) 50-69
(d) 70-79

35. A person with an IQ of 55 is: [AIPGME 1995]
(a) Mild mental retardation
(b) Moderate mental retardation
(c) Severe mental retardation
(d) Profound mental retardation

36. Severe mental retardation is defined as: [DPG 2011]
(a) Intelligence quotient 50-70
(b) Intelligence quotient 35-49
(c) Intelligence quotient 20-34
(d) Intelligence quotient < 20

37. IQ = 51 is: [Recent Question 2013]
(a) Mild MR
(b) Moderate MR
(c) Severe MR
(d) Profound MR

38. Average Mental IQ according to Wechsler’s Scale is: [AIIMS PGMEE May 2013]
(a) 70-79
(b) 80-89
(c) 90-109
(d) 110-119

39. Mild mental retardation does not include IQ level(s): [PGI May 2012]
(a) 45
(b) 55
(c) 65
(d) 75
(e) 85

40. IQ is calculated by: [Recent Question 2013]
(a) Mental age/ chronological age X 100
(b) Mental age – chronological age X 100
(c) Chronological age/ mental age X 100
(d) Chronological age - mental age X 100

41. For mental retardation, IQ = 20-34 is:
(a) Severe MR [Recent Question 2013]
(b) Profound MR
(c) Moderate MR
(d) Mild MR

42. Chronological age 10 yrs, mental age 4yrs. What that person called as? [Recent Question 2012]
(a) Idiot

43. Mild mental retardation is an IQ of: [Bihar 2003]
(a) 50 – 70
(b) 30 – 40
(c) 70 – 80
(d) Below 25

44. Severe mental retardation children has IQ: [UP 2003]
(a) < 20
(b) 21 – 34
(c) 35 – 49
(d) 35 – 69

45. IQ = 35 - 49; classified according to WHO is:
(a) Mild mental retardation
(b) Moderate mental retardation
(c) Severe mental retardation
(d) Profound mental retardation

46. The I. Q of a moron is: [Kolkata 2007]
(a) 50 – 69
(b) 20 – 49
(c) 60 – 80
(d) 20 – 35

47. An IQ of 42 falls in which category of mental retardation? [Kolkata 2008]
(a) Mild
(b) Moderate
(c) Severe
(d) Profound

48. Boy with IQ of 62 will come under: [MH 2000]
(a) Mild MR
(b) Moderate MR
(c) Severe MR
(d) Normal

49. Moderate mental retardation is: [R] 2009
(a) 20 – 34
(b) 35 – 49
(c) 50 – 70
(d) 71 – 90

FAMILY

50. Arrange the following stages of family cycle in chronological sequence: [AIIMS Dec 1991] [Recent Question 2013]
(a) Formation, Extension, Complete extension, Dissolution, Contraction, Complete contraction
(b) Formation, Extension, Contraction, Complete extension, Complete contraction, Dissolution
Socio-economic status

55. Kuppuswami Scale for socio-economic status is based on: [AIPGME 1994, AIIMS Nov 1999]
 (a) Income of the family, No. of livestock, No. of acres of farm land
 (b) Income of the family, No. of members in the family, Education of head of family
 (c) No. of vehicles in family, Occupation of head of family, Education of head of family
 (d) Income, Occupation of head of family, Education of head of family

56. All of the following are taken into consideration in Kuppuswamy scale except: [DNB December 2011]
 (a) Education status
 (b) Occupational status
 (c) Living/housing conditions
 (d) Per capita income

57. The socio-economic/Housing scale developed for rural setup is: [DNB December 2009]
 (a) Pareek
 (b) Kuppuswami
 (c) Bhore
 (d) Adson’s scale

58. Upper class score in Kuppuswamy Socio-economic status scale is: [Recent Question 2014]
 (a) 5-10
 (b) 11-15
 (c) 16-25
 (d) 26-29

Review Questions

59. Socioeconomic status in urban areas is indicated by which of the following? [AP 2006]
 (a) Kuppu Swamy scale
 (b) Sullivan index
 (c) Human development index
 (d) Physical quality of life index

60. Kuppuswamy scale considers all except: [MH 2000]
 (a) Education
 (b) Income
 (c) Housing
 (d) Occupation

SOCIAL PROBLEMS

61. The Children’s Act was passed in: [AIIMS May 2000]
 (a) 1960
 (b) 1969
 (c) 1971
 (d) 1986

62. Which of the following is best suited for the role of social worker? [AIIMS PGMEE May 2012]
 (a) Health professional involved in physiotherapy
 (b) Health professional involved in coping strategies, interpersonal skills, adjustment with family
 (c) A person involved in finding jobs and economic support for disabled
 (d) Health professional involved in treatment of patients

63. Which of the following statement(s) is/ are true about Women empowerment? [PGI May 2013]
 (a) Power over resources
 (b) Involvement in Political decision making
 (c) Involvement in economic decision making
 (d) Improved standard of living
 (e) Increased life expectancy

Review Questions

64. Estimated number of children affected by trafficking every year is: [MP 2009]
 (a) 1.2 million
 (b) 2.4 million
 (c) 3.6 million
 (d) 4.8 million
65. Income generated within a country is known as:
 (a) Gross Domestic Product (GDP) [AIIMS May 2001]
 (b) Net National Product (NNP)
 (c) Net Domestic Product (NDP)
 (d) Purchasing Power Parity (PPP)

66. Poverty Line can be defined in terms of:
 (a) Daily fat intake [AIIMS Nov 1993]
 (b) Daily protein intake
 (c) Daily calorie intake
 (d) Access to health services

67. Social insurance was introduced by:
 (a) Martin Luther King [AIPGME 2005]
 (b) Bismarck
 (c) Dr. Watson
 (d) Baba Amte

68. Poverty line is defined as expenditure required for daily calorie consumption below:
 (a) 1800
 (b) 2000
 (c) 2100
 (d) 2200

69. Government (public) expenditure on health as percentage of GDP is:
 (a) 1.2
 (b) 12
 (c) 5
 (d) 0.12

70. Current percent of Indian GDP on health is:
 (a) 1.2
 (b) 2
 (c) 10
 (d) 15

71. The percentage of GNP to expand in total health and family development is:
 (a) 3 %
 (b) 5 %
 (c) 6 %
 (d) 7 %

72. In “poverty lines” the expenditure required for a daily calorie intake of ——— in rural areas:
 (a) 2200
 (b) 2400
 (c) 2100
 (d) 2300

73. First requisite before conducting an interview is:
 (a) Securing rapport [AIIMS June 1998]
 (b) Probe questions
 (c) Establishing contact
 (d) Guiding the interview

74. In interview, first stage is to:
 (a) Establish contact [DNB December 2011]
 (b) Starting interview
 (c) Establishing rapport
 (d) Probe questions

75. Most powerful example of social cohesion is:
 (a) Mob [AIIMS Jan 1992]
 (b) Hospital
 (c) Family
 (d) Herd

76. Socio-security measures that are provided to the workers by which of the following Act/Acts:
 (a) Factory Act [PGI Dec 03]
 (b) Central Maternity Benefit Act
 (c) Workman Compensation Act
 (d) Disablement Benefit Act
 (e) Pensioners Act

77. Increased Drug Compliance can be seen with:
 (a) Frequent dosing
 (b) Longer Duration of Treatment
 (c) Multiple drugs
 (d) Involving family Members in Observation

78. An unstable and emotional temporary social group with a leader is known as:
 (a) A band [Karnataka 2011]
 (b) A crowd
 (c) A herd
 (d) A mob

79. Study of designing equipment and devices that fit the human body, its movements, and its cognitive abilities is:
 (a) Economics [DNB December 2009]
 (b) Ergonomics
 (c) Bionomics
 (d) Socionomics

80. All are included in ‘High social safety net’ except:
 (a) High birth rate [Kolkata 2002]
 (b) High MMR
 (c) Reduction in institutional delivery
 (d) High IMR
CONCEPTS IN SOCIOLOGY

1. **Ans. (c) Social structure** [Ref. Park 21/e p621, Park 22/e p623]
 - **Social structure**: Patterns of inter-relationships between persons in a society
 - **Socialism**: Is economic doctrine that favours the use of property and resources of the country for public welfare; it is a system of production and distribution based on social ownership
 - **Socialization**: Process by which an individual gradually acquires culture and becomes member of a social group
 - **Medical sociology**: Includes studies of medical profession, of the relationship of medicine to public, and of the social factors in the aetiology, prevalence, incidence and interpretation of disease

 Also Remember
 - Sociology: Study of human relationships and human behaviour for a better understanding of pattern of life

2. **Ans. (d) Culture** [Ref. Park 21/e p621, Park 22/e p623]
 - **Culture**: Is the learned behaviour which is socially acquired
 - **Acculturation**: Is ‘cultural contact’ or mixing of two cultures. It can occur through
 - Trade and commerce
 - Industrialization
 - Propagation of religion
 - Education
 - Conquest
 - **Custom**: The established patterns of behavior that can be objectively verified within a particular social setting
 - **Folkways**: Right ways of doing things in less vital areas of human conduct
 - **Mores**: More stringent customs
 - **Standard of Living**: Refers to the usual scale of our expenditure, goods we consume and services we enjoy. Standard of living (WHO) includes
 - Income and Occupation,
 - Standards of housing, sanitation and nutrition,
 - Level of provision of health, educational, recreational and other services.

 Also Remember
 - ‘Taboos are the most extreme form of mores’ as they forbid a society’s most outrageous practices, such as incest and murder
 - Standard of living depends on ‘Per capita GNP’

3. **Ans. (b) Social pathology** [Ref. Park 21/e p622, Park 22/e p624]

 SOCIAL PATHOLOGY:
 - **Social Pathology**: Is the study of social problems which undermine the social, psychological or economical health of the populations; it is used to describe relationship between disease and social conditions
 - **Social pathology is uncovered by Social Surveys**

 Also Remember
 - Social surveys disclose social pathology.
 - **Social epidemiology**: When the objective of the research is to study the role of social factors in the etiology of the disease, epidemiological survey and social survey are merged together
 - **Socialised medicine**: Provision of medical service and professional education by the State (as in state medicine), but the programme is operated and regulated by professional groups rather than by government
 - **Social medicine**: Study of the social, economical, environmental, cultural, psychological and genetic factors, which have a bearing on health
Review of Preventive and Social Medicine

4. Ans. (b) Social structure [Ref. Park 21/e p621, Park 22/e p623]
 - Society: Is a group of individuals who have organized themselves and follow a way of life
 - Outstanding feature of society is a System, a system of relationships between individuals
 - Community: A social group determined by geographical boundaries and/or common values or interests
 - Sociology: Study of individuals as well as groups in a society. It can be viewed as from 2 angles:
 - Study of relationships between human beings
 - Study of human behaviour

5. Ans. (a) Political Science [Ref. Park 21/e p620, Park 22/e p622]
 - Social Sciences: Comprises of those disciplines which are committed to the scientific examination of human behaviour; these are economics, political science, sociology, social psychology and social anthropology (‘Behavioural Sciences’ is applied to last three, viz., sociology, social psychology and social anthropology, because they directly deal with human behaviour)
 - Economics: Deals with human relationships in specific context of production, distribution, consumption and ownership of scarce resources, goods and services
 - Political Science: Study of systems of laws and institutions which constitute government of whole societies
 - Sociology: Study of human relationships and human behaviour for a better understanding of pattern of life
 - Social psychology: Concerned with psychology of individuals living in human society or groups
 - Social anthropology: Study of development and various types of social life

6. Ans. (c) Social Pathology [Ref. Foundations of Community Medicine, GM Dhaar and I Robbani, 1/e p279-98 and Park 22/e p624]

Also Remember

- Social defence: Covers preventive, therapeutic and rehabilitative services for the protection of society from antisocial, criminal or deviant conduct of man

7. Ans. (c) Marxist [Ref. An Introduction to Sociology, health and Illness by Kevin white; p7]

THEORIES IN SOCIOLOGY
1. Feminist Theory: Focuses on how gender inequality has shaped social life
 - Disease is due to social role of women enforced by men
2. Parsonian theory: States that illness did not simply imply a ‘biologically altered state, but also a socially altered state
 - Disease is due to social strain caused by social demands
3. Marxist theory. Is concerned with the relationship between health and illness and capitalist social organization
 - Cause of disease is putting profit ahead of health
4. Foucauldian Theory: medical discourse plays an important role in the management of individual bodies (anatomopolitics) and bodies en masse (biopolitics)
 - Disease is labels to segregate population to make it easier to control

8. Ans. (d) All of the above [Ref. K. Park 21/e p622, Park 22/e p624]
9. Ans. (b) Study of social problems which cause disease in population [Ref. K Park 22/e p624]
10. Ans. (c) Both [Ref. K Park 22/e p622]
11. Ans. (b) Culture [Ref. K Park 22/e p623]
12. Ans. (b) Anthropology [Ref. K Park 22/e p622]
13. Ans. (c) Society [Ref. K Park 22/e p622]
14. Ans. (b) Cultural change due to socialization [Ref. K Park 22/e p624]

Review Questions

15. Ans. (a) Culture contact [Ref: Park 21/e p622, Park 22/e p624]
16. Ans. (a) System of relations between individuals [Ref: Park 21/e p620, Park 22/e p622]
17. Ans. (b) Acculturation [Ref: Park 21/e p622, Park 22/e p624]
18. Ans. (c) Cultural contact [Ref. Park 21/e p622, Park 22/e p624]
19. Ans. (b) Stunted [Ref: Park 21/e p591, Park 22/e p593]
20. Ans. (b) Sociometry [Ref: Internet]
21. Ans. (a) Husband and wife [Ref: Park 22/e p606]
22. Ans. (b) Attitude [Ref: Park 21/e p626, Park 22/e p628]
23. Ans. (a) Anthropology [Ref: Park 21/e p620, Park 22/e p622]

PSYCHOLOGY

24. Ans. (a) Fear [Ref. Park 21/e p625, Park 22/e p627]
 EMOTIONS: Strong feelings of whole organism, which motivate human behaviour
 • Fear: MC emotion of man
 - Phobia: when fear becomes exaggerated or unnecessary
 • Anger (Rage): Reaction of offensive type; destructive in nature
 • Anxiety: may lead to tension or pain
 • Love: Feeling of attachment to some person

Also Remember:
• Emotional Intelligence (EI) measured as Emotional quotient (EQ): describes an ability, capacity, skill or a self-perceived ability, to identify, assess, and manage the emotions
• Alexithymia: describe a state of deficiency in understanding, processing, or describing emotions

25. Ans. (b) I – B, II – C, III – A [Ref. Park 21/e p626, Park 22/e p628]
 LEARNING: Any relative permanent change in behaviour that occurs as a result of practice or experience
 • Types of learning:

<table>
<thead>
<tr>
<th>Type of learning</th>
<th>Associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive learning</td>
<td>Knowledge</td>
</tr>
<tr>
<td>Affective learning</td>
<td>Attitudes</td>
</tr>
<tr>
<td>Psychomotor learning</td>
<td>Skills</td>
</tr>
</tbody>
</table>

26. Ans. (b) Wing’s Handicaps, Behavior and Skills (HBS) Schedule [Ref. Park 21/e p629, Park 22/e p631]
 • Wing’s Handicaps, Behavior and Skills (HBS) Schedule: One of the most important epidemiological tool used for assessing abilities and disabilities in children
 - Wing’s HBS in not useful for those who are not retarded

MENTAL HEALTH RATING SCALES IN CHILDREN:
• Adaptive Behaviour Scale (AAMR ABS): To evaluate functional and behavioural disorder in children and adolescents with mental retardation, autism and other developmental disabilities
• Child Behaviour Checklist (CBCL) Scale: To evaluate pathological behaviours and social competence in children aged 1½ to 18 years.
• Children’s Depression Inventory (CDI) Scale: To evaluate depression in children and adolescents
• Children’s Depression Rating Scale (CDRS): To evaluate severity of depression in children
• Comprehensive Behaviour Rating Scale for Children (CBRS(C): To assess child’s school functioning
• Conners’ Rating Scale (CRS): To assess psychopathology and behavioural problems in children and adolescents
• Diagnostic Interview Schedule for Children (DIS(C): To diagnose mental disorders in children and adolescents
• Revised Children’s Manifest Anxiety Scale (RCMAS): To evaluate anxiety in children
• Reynolds Adolescent Depression Scale (RADS): To screen for and measure depression in adolescents

Also Remember:
• International Classification of Functioning, Disability and Health (ICF) is a classification of the health components of functioning and disability
 - The ICF classification complements WHO’s International Classification of Diseases-10th Revision (IC(D), which contains information on diagnosis and health condition, but not on functional status
 - The ICF is structured around the following broad components:
 1. Body functions and structure
 2. Activities (related to tasks and actions by an individual) and participation (involvement in a life situation)
 3. Additional information on severity and environmental factors
27. Ans. (c) Belief. [Ref. Park 21/e p626, Park 22/e p628]
 - **Attitude:** Relatively enduring organization of beliefs around an object or subject which predisposes one to respond in a preferential manner
 - Acquired characteristics of an individual
 - Is more or less ‘permanent ways of behaving’
 - Is ‘caught, not taught’
 - Is ‘objective in nature’
 - **Value:** The ideals, customs, institutions of a society toward which the people of the group have an affective regard
 - May be positive (cleanliness, freedom, or education) or negative (cruelty, crime, or blasphemy)
 - **Opinions:** Views held by people on a point of dispute
 - Are ‘temporary, provisional’
 - Are ‘Subjective in nature’
 - **Belief:** Views derived from parents, grand parents and other people we respect
 - Are ‘permanent, unstable, almost unchanging’
 - Is ‘subjective in nature’

28. Ans. (a) Opinion [Ref. Park 21/e p626, Park 22/e p628]
29. Ans. (a) Cultural belief [Ref. Park 21/e p626, Park 22/e p628]
30. Ans. (b) Self actualization [Ref. Textbook of Basic Nursing by Rosdahi and Kowaiski, 9/e p44-45]
31. Ans. (b) Psychology of individuals in society [Ref. K Park 22/e p622]

Review Questions

32. Ans. (a) Propaganda [Ref. Park 21/e p626-27, Park 22/e p628, 29]
33. Ans. (a) Social psychology [Ref. Park 21/e p620, Park 22/e p622]

IQ

34. Ans. (c) 50-69 [Ref. Park 21/e p629, Park 22/e p631]

- **Levels of Intelligence based on IQ levels:**

<table>
<thead>
<tr>
<th>Levels of Intelligence</th>
<th>IQ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiot</td>
<td>0 – 24</td>
</tr>
<tr>
<td>Imbecile</td>
<td>25 – 49</td>
</tr>
<tr>
<td>Moron</td>
<td>50 – 69</td>
</tr>
<tr>
<td>Borderline</td>
<td>70 – 79</td>
</tr>
<tr>
<td>Low normal</td>
<td>80 – 89</td>
</tr>
<tr>
<td>Normal</td>
<td>90 – 109</td>
</tr>
<tr>
<td>Superior</td>
<td>110 – 119</td>
</tr>
<tr>
<td>Very superior</td>
<td>120 – 139</td>
</tr>
<tr>
<td>Near Genius</td>
<td>140 and over</td>
</tr>
</tbody>
</table>

- **Categories of mental retardation based on IQ levels:**

<table>
<thead>
<tr>
<th>Mental status</th>
<th>IQ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal IQ</td>
<td>70 and over</td>
</tr>
<tr>
<td>Mild mental retardation</td>
<td>50 – 69</td>
</tr>
<tr>
<td>Moderate mental retardation</td>
<td>35 – 49</td>
</tr>
<tr>
<td>Severe mental retardation</td>
<td>21 – 34</td>
</tr>
<tr>
<td>Profound mental retardation</td>
<td>20 or below</td>
</tr>
</tbody>
</table>

Also Remember

- **Sentience Quotient (SQ):** Is a measure of the efficiency of an individual brain, not its relative intelligence
- **Emotional Intelligence Quotient (EQ):** Describes an ability, capacity, or skill to perceive, assess, and manage the emotions of one’s self, of others, and of groups
- **Social intelligence:** Is the ability to understand and manage men and women, boys and girls, to act wisely in human relations

35. Ans. (a) Mild mental retardation [Ref. Park 21/e p629, Park 22/e p631]
36. Ans. (c) Intelligence quotient 20-34 [Ref. K. Park 21/e p536, Park 22/e p538]
37. Ans. (a) Mild MR [Ref. K Park 22/e p631]
38. Ans. (c) 90-109 [Ref. K Park 22/e p631]
39. Ans. (a) 45; (d) 75; (e) 85 [Ref. K Park 22/e p538]
40. Ans. (a) Mental age/chronological age X 100 [Ref. K Park 22/e p631]
41. Ans. (a) Severe MR [Ref. K Park 22/e p538]
42. Ans. (b) Imbecile [Ref. K Park 22/e p631]

Review Question

43. Ans. (a) 50 – 70 [Ref. Park 21/e p536, Park 22/e p538]
44. Ans. (b) 21 – 34 [Ref. Park 21/e p536, Park 22/e p538]
45. Ans. (a) moderate mental retardation [Ref. Park 21/e p536, Park 22/e p538]
46. Ans. (b) 50 -69 [Ref. Park 21/e p629, Park 22/e p631]
47. Ans. (a) Mild MR [Ref. Park 21/e p536, Park 22/e p538]
48. Ans. (b) 35 - 49 [Ref. Park 21/e p536, Park 22/e p538]

50. Ans. (d) Formation, Extension, Complete extension, Contraction, Complete contraction, Dissolution [Ref. Park 21/e p632, Park 22/e p634]

A normal family cycle is conceived as having 6 phases:

<table>
<thead>
<tr>
<th>Phases of family life cycle</th>
<th>Events characterising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Beginning of phase</td>
</tr>
<tr>
<td>I Formation</td>
<td>Marriage</td>
</tr>
<tr>
<td>II Extension</td>
<td>Birth of 1st child</td>
</tr>
<tr>
<td>III Complete extension</td>
<td>Birth of last child</td>
</tr>
<tr>
<td>IV Contraction</td>
<td>1st child leaves home</td>
</tr>
<tr>
<td>V Completed contraction</td>
<td>Last child leaves home</td>
</tr>
<tr>
<td>VI Dissolution</td>
<td>1st spouse dies</td>
</tr>
</tbody>
</table>

51. Ans. (d) Communal family [Ref. Park 21/e p633, Park 22/e p635]

Communal family: Is a family where all of its members are playing a part in its management
- Is a good example of ‘division of labour’, an important function of a family.

Also Remember

Most powerful example of social cohesion: Family

52. Ans. (c) Problem family [Ref. Park 21/e p635, Park 22/e p637]

Problem Family: Is a family which lags behind rest of the community; underlying factors in most problem families are those of personality, relationships, backwardness, poverty, illness, mental and social instability, character defects and marital disharmony
- Standards of life are generally far below the accepted minimum
- Parents are unable to meet the physical and emotional needs of children
- Home life is utterly unsatisfactory

Also Remember

- Nuclear Family (Elementary/Unitary Family): Consists of a married couple and their children while they are still regarded as dependents
- Broken Family: Where both parents have separated or where death has occurred of one or both the parents
- Communal family: Is a family where all of its members are playing a part in its management
53. **Ans. (b) It is applied to all nuclear families of less than 10 years duration** [Ref. Park 21/e p633, Park 22/e p635]
 - *New Family*: A family of less than 10 years duration and consists of parents and children
 - It is a variant of nuclear (elementary/unitary) family
 - New Family concept is important in view of studies related to family planning

54. **Ans. (b) Husband, wife and dependent children** [Ref. K Park 22/e p635]

SOCIO-ECONOMIC STATUS

55. **Ans. (d) Income, Occupation of head of family, Education of head of family** [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p17, Park 21/e p638-39, Park 22/e p640, 41]
 - *Modified Kuppuswami Scale*: For socioeconomic status
 - Is used for Urban families
 - *Is based on 3 parameters:*
 1. Education status of head of family
 2. Occupation of head of family
 3. Income of the family per month
 - *Scoring*: Each component is given a weighted score and summed up
 - *Socio-economic classes based on scores:*

 ![Score Table](https://kat.cr/user/Blink99/)

 - *Udai Pareek Scale:*
 - Is for Rural families
 - *Is not dependent on income*

Also Remember

- *Socio-economic status (SES) scales:*
 - **Urban SES scales:**
 1. Modified Kuppuswami Scale
 2. Kulshreshtha Scale
 3. Srivastava Scale
 4. Jalota Scale
 - **Rural SES scales:**
 1. Udai Pareek Scale
 2. Modified B. G. Prasad Scale
 3. Radhukar Scale
 4. Shirpurkar Scale
 - **Student’s scale:**
 1. Bhartwaj Scale
 - **Non-Indian SES scales:**
 1. Hollingshead (Occupation base(d) Scale
 2. Henderson Scale

56. **Ans. (c) Living/housing conditions** [Ref. K Park 22/e p640-41]

57. **Ans. (a) Pareek** [Ref. K Park 22/e p640]

58. **Ans. (d) 26-29** [Ref. Park 22/e p641]

Socioeconomic classes under Modified Kuppuswami Scale

<table>
<thead>
<tr>
<th>Socioeconomic class</th>
<th>Total score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper</td>
<td>26-29</td>
</tr>
<tr>
<td>Upper middle</td>
<td>16-25</td>
</tr>
<tr>
<td>Lower middle</td>
<td>11-15</td>
</tr>
<tr>
<td>Upper lower</td>
<td>05-10</td>
</tr>
<tr>
<td>Lower</td>
<td>01-04</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
59. Ans. (a) Kuppu Swamy scale [Ref. Park 21/e p638-39, Park 22/e p640, 41]
60. Ans. (c) Housing [Ref. Park 21/e p638-39, Park 22/e p640, 41]

SOCIAL PROBLEMS

61. Ans. (a) 1960 [Ref. Park 21/e p645, 647, Park 22/e p647, 49]

<table>
<thead>
<tr>
<th>IMPORTANT ACTS IN PUBLIC HEALTH: (Related to child health)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Vaccination Act</td>
<td>1880</td>
</tr>
<tr>
<td>The Child Marriage Restraint (SARD(A) Act</td>
<td>1929</td>
</tr>
<tr>
<td>The Children’s Act</td>
<td>1960</td>
</tr>
<tr>
<td>The Registration of Births and Deaths Act</td>
<td>1969</td>
</tr>
<tr>
<td>The Infant Milk Substitutes, Feeding Bottles and Infant Food</td>
<td></td>
</tr>
<tr>
<td>(Regulation of production, supply and distribution) Act</td>
<td>1992</td>
</tr>
<tr>
<td>The Pre-conception and Pre-natal Diagnostic Techniques</td>
<td>1994</td>
</tr>
<tr>
<td>(Prohibition of Sex Selection) [PNDT] Act</td>
<td></td>
</tr>
</tbody>
</table>

62. Ans. (b) Health professional involved in coping strategies, interpersonal skills, adjustment with family [Ref. Logical Reasoning]

63. Ans. (b) Involvement in Political decision making; (c) Involvement in economic decision making [Ref. Women Empowerment Through Literacy Campaign by J Varghese, I/e p120-21]

ECONOMICS

65. Ans. (a) Gross Domestic Product (GDP) [Ref. Park 21/e p648, Park 22/e p650]

- **Gross National Income (GNI)**/**Gross National Product (GNP)**: Is gross income generated from within the country as also net income received from abroad
- **Gross Domestic Product (GDP)**: Gross income generated within a country (excludes net income received)
- **Net National Product (NNP)**: GNP minus capital we consume
- **Net Domestic Product (NDP)**: GDP minus value of depreciation on fixed assets
- **Purchasing Power Parity (PPP)**: No. of units of a country’s currency required to buy the same amount of goods and services in domestic market, as 1 dollar would buy in USA

Also Remember

- India’s per capita GNP (2010): US $ 1070
- Gross Domestic Product, GDP = consumption + gross investment + government spending + (exports - imports)

66. Ans. (c) Daily calorie intake [Ref. Park 21/e p649, Park 22/e p651]

- **Below Poverty Line (BPL)**: Is defined on the basis of following definitions in India,

<table>
<thead>
<tr>
<th>BPL Criteria</th>
<th>Rural areas</th>
<th>Urban areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita caloric intake</td>
<td>< 2400 Kcal per day</td>
<td>< 2100 Kcal per day</td>
</tr>
<tr>
<td>Per capita income</td>
<td>< 27/- INR per day</td>
<td>< 33/- INR per day</td>
</tr>
<tr>
<td>Per capita income# (# for International comparisons)</td>
<td>< 1.25 $ per day</td>
<td>< 1.25 $ per day</td>
</tr>
</tbody>
</table>

- BPL population in India: 37% (Tendulkar Committee, 2009); 29% (2012); 22% (2013)
Also Remember

- **World Bank definition of poverty:**
 - Extreme poverty as living on less than US$ (PPP) 1 per day
 - Moderate poverty as living on less than $2 a day
- ‘Eradication of extreme poverty and hunger by 2015’ is the first Millennium Development Goal (MDG)
- **Diseases of poverty:** Diseases that are more prevalent among ‘the poor’ than among wealthier people
 - 3 primary diseases of poverty: AIDS, malaria, and tuberculosis
 - 3 additional diseases of poverty: measles, pneumonia and diarrheal diseases
- **Gini coefficient:** A measure of statistical dispersion most prominently used as a measure of inequality of income distribution or inequality of wealth distribution
- **Human Poverty Index (HPI):** Is an indication of the standard of living in a country, developed by the United Nations
 - HDI is a measure of development, whereas HPI is a measure of its deprivation

67. Ans. (b) Bismarck [Ref. Foundations of Community Medicine, GM Dhaar and I Robbani, 1/e p25]
 - **Social security:** primarily refers to a social insurance program providing social protection, or protection against socially recognized conditions, including poverty, old age, disability, unemployment and others
 - **Approaches to social security systems:**
 - Social assistance: Non-contributory benefit extended to vulnerable groups
 - Social insurance: Contributory benefit extended to individuals as a matter of right
 - **Bismarck introduced a system of social insurance in Germany in 1883:** It became a model for other European countries to introduce similar social security systems

Also Remember

- **Social safety net:** is a term used to describe a collection of services provided by the state, such as welfare, unemployment benefit, universal healthcare, homeless shelters, the minimum wage and sometimes subsidized services such as public transport, which prevent individuals from falling into poverty beyond a certain level

68. Ans. (c) 2100 [Ref. Park 21/e p649, Park 22/e p651]
69. Ans. (c) 5 [Ref. Annual Report 2013-14, MoHFW, Government of India]
 - Current India’s public health expenditure on health is 3.9% of GDP [2012]
70. Ans. (a) 1.2 [RECENT VALUE Public health core expenditure is 1.04% of GDP; Total health expenditure is 4.1% of GDP] [Ref. XIIth FYP document, Volume 3, Health, p2-3]

Review Questions

71. Ans. (b) 5% [Ref. K. Park 20/e p776]
72. Ans. (b) 2400 [Ref. Park 21/e p649, Park 22/e p651]

INTERVIEWING

73. Ans. (c) Establishing contact [Ref. Park 21/e p644, Park 22/e p646]
 - **Steps of Interview:**
 - Establishing contact: first requisite before conducting an interview
 - Securing rapport
 - Starting an interview
 - Probe questions
 - Recall
 - Guiding the interview
 - Closing the interview
 - Report
74. Ans. (a) Establish contact [Ref. K Park 22/e p646]
MISCELLANEOUS

75. Ans. (c) Family [Ref. Park 21/e p631, Park 22/e p633]
 - Family: Is a group of biologically related individuals living together and eating from a common kitchen
 - Family is the primary unit of all societies
 - Family is the ‘most powerful example of social cohesion’
 - Crowd: A group of people coming together temporarily for a short period, motivated by a common interest or curiosity
 - Crowd lacks internal organization and leadership
 - Mob: A group of people coming together temporarily for a short period, having a leader who forces members into action
 - Mob is more emotional than crowd
 - Mob like crowd is unstable and lacks internal organization
 - Herd: Is a crowd with a leader, where members of the group have to follow the orders of the leader without question

76. Ans. ALL CHOICES [Ref. Park 21/e p650, Park 22/e p652]
 - Social Security measures for Industrial workers:
 - Workmen’s Compensation Act 1923
 - The Factory’s Act 1948
 - Employees State Insurance Act 1948 (including Disablement Benefit)
 - Central Maternity Benefit Act 1961
 - The Family Pension Scheme 1971

77. Ans. (d) Involving family members in observation [Ref. Park 21/e p634, Park 22/e p636]
 In DOTS (RNTCP), several studies have shown improved compliance of treatment when family members are involved in observation

78. Ans. (d) A mob [Ref. K. Park 21/e p631, Park 22/e p633]

79. Ans. (b) Ergonomics [Ref. K Park 22/e p748]

Review Question

80. Ans. (c) Reduction in institutional delivery [Ref. Internet]
WATER

Safe and Wholesome Water

- Safe and wholesome water: Has been defined as water that is
 - Free from pathogenic agents
 - Free from harmful chemical substances
 - Pleasant to taste (free from colour and odour)
 - Usable for domestic purposes
- Water is said to be ‘polluted’ or ‘contaminated’ if it does not fulfill above criteria.

Sources of Water

- Rain:
 - Is the prime source of all water
 - Is the ‘purest form of water in nature’
 - Chemically, it is very soft water: contains traces (0.0005%) of solids
 - Gibraltar depends on rain water as a source of supply
- Surface water:
 - Impounding reservoirs
 - Artificial lakes for storing large quantities
 - Mumbai, Chennai, Nagpur derive water from it
 - Next to rain water in purity
 - Rivers and streams
 - Grossly polluted; unfit for drinking without treatment
 - Delhi, Kolkata, Allahabad derive water from it
 - Tanks, ponds and lakes
- Ground water:
 - Shallow wells
 - Moderately hard, grossly contaminated water
 - Taps water from above 1st impervious layer
 - Deep wells
 - Much hard, pure water; constant supply
 - Taps water from below 1st impervious layer
 - Springs.

Criteria for identification of ‘Problem Habitations’

- Not Covered (NC)/ No Safe Source (NSS) Habitations:
 - Drinking water source point is not within 1.6 kms in plains or 100 m elevation in hilly areas
 - Water source affected with quality problems like excess salinity, iron, fluoride, arsenic, or other toxic materials or biologically contaminated
 - Quantum of availability of safe water is not enough to meet drinking and cooking needs
- Partially Covered (PC) Habitations:
 - Drinking water source point is within 1.6 kms in plains or 100 m elevation in hilly areas
 - Capacity of system is 10 - 40 lpcd
- Fully Covered (FC) Habitations: include all the remaining habitations.
Purification of Water

- Purification of water on a large scale:
 - Storage of water:
 - Physical
 - Chemical
 - Biological
 - Filtration of water:
 - Slow sand (Biological) filters
 - Rapid sand (Mechanical) filters
 - Disinfection of water:
 - Chlorination
 - Ozonation
 - Ultraviolet irradiation

- Purification of water on a small scale:
 - Household purification of water:
 - Boiling
 - Chemical disinfection: Bleaching powder, Chlorine solution, High test hypochlorite (HTH), Chlorine (Halozone) tablets, Iodine, Potassium permanganate
 - Filtration: Ceramic filters (Pasteur Chamberland filter, Berkefeld filter, Katadyn filter)
 - Disinfection of wells:
 - Chemical: Bleaching powder (Double pot method).

Comparison of Rapid and Slow Sand Filters

<table>
<thead>
<tr>
<th></th>
<th>Rapid Sand Filter</th>
<th>Slow Sand Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Occupies very little space</td>
<td>Occupies large area</td>
</tr>
<tr>
<td>Rate of filtration</td>
<td>200 m.g.a.d.</td>
<td>2 – 3 m.g.a.d.</td>
</tr>
<tr>
<td>Effective size of sand</td>
<td>0.4 – 0.7 mm</td>
<td>0.2 – 0.3 mm</td>
</tr>
<tr>
<td>Preliminary treatment</td>
<td>Coagulation, sedimentation</td>
<td>Plain sedimentation</td>
</tr>
<tr>
<td>Washing</td>
<td>By back-washing</td>
<td>By scraping sand bed</td>
</tr>
<tr>
<td>Frequent washing</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Mechanism of action</td>
<td>Essentially physical</td>
<td>Both physical & mechanical</td>
</tr>
<tr>
<td>Operation</td>
<td>Highly skilled</td>
<td>Less skilled</td>
</tr>
<tr>
<td>Loss of head allowed</td>
<td>6 – 8 feet</td>
<td>4 feet</td>
</tr>
<tr>
<td>Removal of turbidity</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Removal of colour</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Removal of bacteria</td>
<td>98 – 99 percent</td>
<td>99.9 – 99.99 percent</td>
</tr>
<tr>
<td>Suitability</td>
<td>For big cities</td>
<td>For small towns</td>
</tr>
</tbody>
</table>

Key Guideline Aspects of WHO recommended Drinking Water Quality

- **Colour** < 15 true colour units (TCU)
- **Turbidity** < 5 nephelometric turbidity units (NTU)
- **Hardness** < 100 – 300 mg/litre calcium ion
- **pH**: 6.5 – 8.5
- **Total dissolved solids (TDS)** < 600 mg/litre
- **Zero pathogenic microorganisms**
- **Zero infectious viruses**
- **Absence of pathogenic protozoa and infective stages of helminthes**
- **Fluorine** < 1.5 ppm (0.5 – 0.8 ppm: Optimum level)
Environment and Health

- Nitrates < 50 mg/litre
- Nitrites < 3 mg/litre
- Gross alpha radiological activity < 0.5 Bq/litre [New Guideline — WHO]
- Gross beta radiological activity < 1.0 Bq/litre [New Guideline — WHO]

Chlorination of Water
- Disinfecting action of chlorine in water is due to:
 - Hypochlorous acid (HOCl) – Main role in disinfection
 - Hypochlorite ions (OCl) – Minor role in disinfection
- Chlorine has residual germicidal effect (and not Ozone or UV rays): Provides a margin of safety against subsequent microbial contamination, as may occur during storage and distribution
- Phases of Chlorination:
 - Phase I: Formation of chloramines
 - Phase II: Destruction of chloramines
 - Phase III: Appearance of break-point
 - Phase IV: Accumulation of free residual chlorine.

Figure: Phases of chlorination

- Recommended contact period of free residual chlorine in water: 1 hour
- Level of free residual chlorine (FRC) recommended:

<table>
<thead>
<tr>
<th>Water type</th>
<th>Residual chlorine level*</th>
<th>Contact period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water</td>
<td>> 0.5 mg per litre (ppm)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Water bodies, post disaster</td>
<td>> 0.7 mg per litre (ppm)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Swimming pool sanitation</td>
<td>> 1.0 mg per litre (ppm)</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

(*1 mg per litre = 1 ppm)

- Instruments used in chlorination of water:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horrock’s Apparatus</td>
<td>Chlorine demand estimation</td>
</tr>
<tr>
<td>Chlorinator/ Chloronome</td>
<td>Mixing or regulating dose of chlorine</td>
</tr>
<tr>
<td>Chloroscope</td>
<td>Measuring residual level of chlorine</td>
</tr>
</tbody>
</table>

- Tests for chlorination of water:
 - Ortho-toulidine (OT) Test: Measure the levels of,
 - Free (residual) chlorine
 - Free & Combined chlorine
 - Ortho-toulidine Arsenite (OTA) Test: Measure the levels of,
 - Free chlorine
 - Combined chlorine

Disinfecting action of chlorine in water is due to: Hypochlorous acid (HOCl)
Horrock’s Apparatus

- **Use**: To find out the dose of bleaching powder required for disinfection of water, i.e. ‘Chlorine demand estimation of water’
- **Contents**:
 - 6 white cups (200 ml capacity each)
 - 1 Black cup (with a circular mark inside)
 - 2 metal spoons
 - 7 glass stirring rods
- **Indicator**: Starch iodide (producing blue colour)
 - Dose of bleaching powder required (Chlorine demand): \(n \times 2 \) gms to disinfect 455 litres of water (where \(n \) = no. of first cup which shows distinct blue colour)
 - Development of blue colour indicates: presence of free residual chlorine.

Hardness of Water

- **Hardness of water** is defined as the ‘soap destroying power of water’
- **Hardness of water** is of two types:
 - Temporary hardness (Carbonate hardness)
 - Underlying causes: Calcium & Magnesium salts of Bicarbonates
 - Permanent hardness (Non-Carbonate hardness)
 - Underlying causes: Calcium & Magnesium salts of Sulfates, Chlorides, and Nitrates
- **Hardness of water is expressed in terms of**: milliequivalents per litre (meq/litre) of CALCIUM CARBONATE (CaCO\(_3\))
 - 1 meq/litre hardness = 50 mg CaCO\(_3\) (50 ppm) per litre of water
- **Classification of hardness in water**:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Level of Hardness (mg/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft water</td>
<td>< 1 (< 50 mg/l)</td>
</tr>
<tr>
<td>Moderately Hard water</td>
<td>1 – 3 (50 – 150 mg/l)</td>
</tr>
<tr>
<td>Hard water</td>
<td>3 – 6 (150 – 300 mg/l)</td>
</tr>
<tr>
<td>Very Hard water</td>
<td>> 6 (> 300 mg/l)</td>
</tr>
</tbody>
</table>

- **Softening of water is recommended at level of hardness > 3 meq/litre**
- **Methods of removal of hardness of water**:

<table>
<thead>
<tr>
<th>Type of hardness</th>
<th>Methods of removal</th>
</tr>
</thead>
</table>
| Temporary hardness | Boiling
Addition of lime
Addition of sodium carbonate
Permutit process |
| Permanent hardness | Addition of sodium carbonate
Base exchange process |

Bacteriological Indicators of Water Quality

- **Coliform organisms**:
 - Primary & most reliable bacterial indicator for water quality
 - E. coli is most important coliform indicator
 - Reasons for choosing coliforms as indicators of fecal pollution Rather Than Water Borne Pathogens:
Environment and Health

- Constant presence in great abundance in human intestine; foreign to potable waters
- Easily detectable by culture methods
- Longer survival period
- Greater resistance to forces of natural purification
 - **Fecal streptococci:**
 - Indicate ‘recent contamination of water’
 - **Clostridium perfringens:**
 - Indicate ‘remote contamination of water’

Presumptive Coliform Test

- **MPN Multiple Tube test:** Is based on estimating the most probable number (MPN) of coliform organisms in 100 ml of water
 - **Culture medium:** McConkey’s Lactose Bile Salt broth
 - **Indicator:** Bromocresol purple
 - **Presumption:** Tubes showing fermentation (acid & gas) contain coliforms
 - **Method:** 4 tubes inoculated with 0.1, 1.0, 10, 50 ml of water & incubated for 48 hrs
 - **Confirmatory tests (EIKJMAN’S Tests):** Subculture each presumptive positive tube in 2 tubes of brilliant green bile broth.
 - Incubate one tube at 37 °C × 48 hrs: confirmation of presence of coliforms
 - Incubate second tube at 44° C × 6 - 24 hrs: confirmation of presence of E.coli
 - **True MPN Index:** Calculate revised MPN from McCrady’s tables
- **Membrane Filtration Technique:**
 - **Membrane:** cellulose ester
 - **Method:** pass known volume of water through membrane, inoculate membrane on suitable media, count colonies in 20 hrs.

Public Health Classification of Water Borne Diseases

- **Water borne diseases:** Occur due to drinking contaminated water, transmitted by faeco-oral route
 - Examples: Typhoid, Cholera, Dysentery, Viral Hepatitis A
- **Water washed diseases:** Include infections of the outer body surface which occur due to inadequate use of water or improper hygiene
 - Examples: Scabies, Trachoma, Typhus, Bacillary dysentery, Amoebic dysentery
- **Water based diseases:** Refers to infections transmitted through an aquatic invertebrate animal
 - Examples: Schistosomiasis, Dracunculiasis (Guineaworm disease)
- **Water related diseases (Water breeding diseases):** Are infections spread by insects that depend on water
 - Examples: Malaria, Filariasis, Dengue, Yellow fever, Onchocerciasis

AIR

Ventilation

- **Types of ventilation:**
 - **Natural ventilation:**
 - **Wind:** It blows through a room (Perflation) and may exert a suction at its tail end (Aspiration)
 - **Diffusion:** When passes through smallest openings
 - **Inequality of temperature.**
 - **Mechanical (artificial) ventilation:**
 - **Exhaust ventilation:** Air is extracted to outside by exhaust fans driven by electricity

https://kat.cr/user/Blink99/
- **Plenum ventilation**: Fresh air is blown into rooms by centrifugal fans
- **Balanced ventilation**: Combination of exhaust and plenum ventilation
- **Air conditioning**: Simultaneous control of all factors especially temperature, humidity and air movement

- **Standards of Ventilation**:
 - **Cubic space**: Fresh air supply of 3000 cu. ft. per hour per person
 - **Air change**: 2 – 3 changes per hour in living rooms; 4 – 6 changes per hour in work rooms and assemblies
 - **Floor space**: Minimum 50-100 sq. ft. per person

Air Humidity

- **Description**: Air humidity is moisture content of air
- **Air humidity can be measured by**:
 - Dry and wet bulb thermometers
 - Hygrometer
 - Sling / Whirling Psychrometer
 - Assman Psychrometer

Air Pollution

- **Primary pollutants**: are emitted directly (SO₂, NO₂, CO, Hydrocarbons, Particulate matter, CFCs, Ammonia, Radioactive materials, Metals like lead, cadmium, copper)
- **Secondary pollutants**: are formed by interaction between primary pollutants (Ground level ozone, Peroxyacetyl nitrate, Particulate matter formed from primary pollutants)
- **Chemical indicators of air pollution**:
 - **Sulphur dioxide**: BEST INDICATOR of air pollution
 - **Smoke or Soiling index**: Air strain on a filter paper measured through photoelectric meter
 - **Grit & dust measurement**
 - **Coefficient of haze**
 - **Air pollution index**
 - **Soiling Index**

- **BEST Biological indicator of air pollution**: Lichens

Sources of Indoor Air Pollution

<table>
<thead>
<tr>
<th>Indoor air pollutant</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respirable particles</td>
<td>Tobacco smoke, Stove, Aerosols</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Combustion equipment, Stove, Gas heaters</td>
</tr>
<tr>
<td>Nitrogen dioxide</td>
<td>Gas cookers, Cigarettes</td>
</tr>
<tr>
<td>Sulphur dioxide</td>
<td>Coal combustion</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>Combustion, Respiration</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Particle board, Carpet adhesives, Insulation</td>
</tr>
<tr>
<td>Organic vapours (benzene, toluidine)</td>
<td>Solvents, Adhesives, Resins, Aerosols</td>
</tr>
<tr>
<td>Ozone</td>
<td>Electric arcing, UV light</td>
</tr>
<tr>
<td>Radon & daughters</td>
<td>Building materials</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Insulation, Fire-proofing</td>
</tr>
<tr>
<td>Mineral fibres</td>
<td>Appliances</td>
</tr>
</tbody>
</table>
Instruments used in Air Temperature

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry bulb thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Wet bulb thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Maximum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Minimum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Six’s maximum & minimum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Silvered thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Globe thermometer</td>
<td>Mean radiant temperature</td>
</tr>
<tr>
<td>Wet Globe thermometer</td>
<td>Environmental heat</td>
</tr>
<tr>
<td>Kata thermometer</td>
<td>Cooling power of Air; Low air velocity</td>
</tr>
</tbody>
</table>

Global Warming

- **Greenhouse gases**:
 - Water vapour (Highest contribution)
 - Carbon dioxide (Second highest contribution)
 - Methane
 - Ozone
 - Ozone layer: Is beneficial as it cuts down UV transmission
 - CFCs depletes ozone layer.
- **Kyoto Protocol**:
 - Entered into force: 16th Feb 2005
 - Signed and ratified by: 187 countries
 - Targeted reductions in transmissions:
 - Carbon dioxide
 - Methane
 - Nitrous oxide
 - Sulphurhexafluoride (SF6)
 - Perfluorocarbons (PFC)
 - Chlorofluorocarbons (CFC).

SOUND

Sound Levels

- **Human ear is sensitive to sound frequency**: 20 – 20,000 Hz
- **Daily maximum tolerable sound level to human ear** (without substantial damage to their hearing): 85-90 dB
- **Auditory fatigue appears in**: 90 dB region (greatest at 4000 Hz)
- **Sound level above which tympanic membrane rupture** (permanent mechanical damage): 150-160 dB.

Noise Levels

- Whisper: 20-30 dB
- Normal conversation: 60-70 dB
- Mechanical damage: 150-160 dB (e.g. Jet taking off).

Acceptable Noise Levels

<table>
<thead>
<tr>
<th>Environment</th>
<th>Place</th>
<th>Acceptable noise level dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Bed room</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Living room</td>
<td>40</td>
</tr>
</tbody>
</table>

Contd...
Light

Illumination
- **Basic minimum illumination for satisfactory vision**: 15 – 20 foot candles
- **Reflection factors for efficient vision**:
 - Ceilings and roofs: 80%
 - Walls: 50 – 60%
 - Floor: 15 – 20%
 - Furniture: 30 – 40%
- **Daylight factor (D.F.)**: Measures intensity of daylight illumination
 - Recommended D.F. for living rooms: ≥ 8%
 - Recommended D.F. for kitchens: ≥ 10%.

Housing

Housing Standards in India
- **Site**: Elevated from surroundings; away from nuisances; subsoil water below 10 feet
- **Set back**: Built up area up to 2/3 of total area
- **Floor**: Pucca; height of plinth 2 – 3 feet
- **Walls**: 9 - inch brick wall plastered; low heat capacity
- **Roof**: > 10 feet in absence of air-conditioning; low heat transmittance coefficient
- **Rooms**: should be depending on family size
- **Floor area**: 50-100 sq. ft. per person
- **Cubic space**: > 500 cu. ft. per capita
- **Windows**: Windows area 1/5 of floor area (Doors + windows area 2/5 of floor area); placed at height of not more than 3 ft from floor
- **Lighting**: Day light factor > 1% over half of floor area
- **Kitchen**: Separate; impervious floor; adequately lighted; provided with water supply and drainage
- **Privy**: Sanitary privy in each house
- **Garbage and refuse**: Sanitary disposal method
- **Bathing and washing**: Exclusive facilities
- **Water supply**: Safe and adequate water supply.

Rural Housing Standards in India
- Minimum 2 living rooms
- Ample verandah space
- Built up area up to 1/3 of total area
- Separate kitchen with paved sink/platform
- Sanitary latrine
- Windows area 10% of floor area
- Sanitary well/tube well within ¼ mile

Hospitals

<table>
<thead>
<tr>
<th>Type</th>
<th>Area</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Office</td>
<td>35 – 45</td>
</tr>
<tr>
<td></td>
<td>Conference</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>Restaurants</td>
<td>40 – 60</td>
</tr>
<tr>
<td>Industrial</td>
<td>Workshop</td>
<td>40 – 60</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td>40 – 50</td>
</tr>
<tr>
<td>Educational</td>
<td>Class room</td>
<td>30 – 40</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>35 – 40</td>
</tr>
<tr>
<td>Hospitals</td>
<td>Wards</td>
<td>20 – 35</td>
</tr>
</tbody>
</table>

Hospitals

Wards noise levels: 20 – 35 dB
• Cattle shed > 25 ft away
• Adequate arrangement for disposal of waste water, refuse and garbage

WASTE DISPOSAL

Types of Wastes

- **Refuse**: Solid waste generated
 - Street refuse
 - Market refuse
 - Stable refuse
 - Industrial refuse
 - Constructional refuse
 - Hospital refuse
 - Domestic refuse
 - **Ash**: Residue from fire used for cooking & heating
 - **Rubbish**: Paper, clothing, wood, metal, glass, dust
 - **Garbage**: Processed food waste generated from kitchen

- **Sewage**: Liquid waste containing excreta
- **Sullage**: Liquid waste without excreta
- **Litter**: Waste disposed in wrong place by unlawful human action.

Methods of Refuse Disposal

<table>
<thead>
<tr>
<th>Insanitary methods</th>
<th>Sanitary methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog feeding</td>
<td>Composting</td>
</tr>
<tr>
<td>Stacking</td>
<td>Sanitary landfill</td>
</tr>
<tr>
<td>Salvaging</td>
<td>Incineration</td>
</tr>
<tr>
<td>Dumping</td>
<td></td>
</tr>
</tbody>
</table>

- **Hog feeding**: Traditional way of refuse disposal by feeding to pigs
 - Insanitary method: Leads to soil pollution & water pollution
- **Stacking**: Piling up of refuse & cow dung
- **Salvaging**: Screening refuse dumps to recover objects that can be reclaimed & reused
- **Dumping**: Throwing refuse openly in an insanitary manner in periurban areas
- **Composting**: Integrated method of disposal of refuse & night soil
 - **Bangalore method**: *(Anaerobic hot fermentation process)*: Alternate layers of refuse & night soil in proportion 3:1, with refuse layer both as lowermost as well as topmost
 - **Indore Method**: *(Aerobic process)*
- **Sanitary Landfill (Controlled Tipping)**: Laying of dry & condensed refuse in layers with intervening earth partitions & coverings, followed by mechanical compression *[Most Satisfactory Method]*
 - Trench Method
 - Ramp Method
 - Area Method
- **Incineration**: High temperature dry oxidation process which reduces waste volume & weight.

Sewage

- **Sewage**: Is waste water from a community, containing solid and liquid excreta, derived from houses, street and yard washings, factories and industries
- **Composition of sewage**: 99.9% water + 0.1% solids (organic & inorganic).
Environment and Health

- Amount of sewage that flows in sewers depends upon:
 - Habits of people
 - Time of day
- Dry weather flow: Is the average amount of sewage that flows in sewerage system in 24 hours.
- Strength of sewage is expressed in terms of:
 - Biological Oxygen Demand (BOD): Is defined as ‘amount of oxygen absorbed by a sample of sewage’ during a specified period (Generally 5 days), at a specified temperature (generally 20°C) for aerobic destruction or use of organic matter by living organisms.
 - BOD is most important test done on sewage (done through Dilution method and Manometric method).
 - Strong Sewage has BOD > 300 g/litre and Weak Sewage has BOD < 100 g/litre.
 - Chemical Oxygen Demand (COD): Measures oxygen equivalent of that portion of organic matter in a sample, which is susceptible to oxidation by a strong chemical oxidizer.
 - Potassium dichromate is best for COD estimation.
 - Suspended solids: Amount in domestic sewage varies from 100 – 500 mg/litre.
 - Strong Sewage has suspended solids amount > 500 mg/litre and Weak Sewage has suspended solids amount < 100 mg/litre.

Methods of Sewage Disposal

- Modern sewage treatment:
 - Primary treatment:
 - Screening
 - Grit chamber
 - Primary sedimentation
 - Secondary treatment:
 - Aerobic oxidation (Trickling filter method; Activated sludge process)
 - Secondary sedimentation
 - Sludge digestion.
- Sea outfall
- River outfall
- Land treatment (sewage farming/ broad irrigation)
- Oxidation ponds (waste stabilization pond/ redox pond/ sewage lagoons): Predominantly organic during day and some part of night; only bottom layers have anaerobic digestion.
- Oxidation ditches

Methods of Excreta Disposal in Unsewered Areas

- Service type latrines (Conservancy system):
 - Pail type latrine
 - Bucket type latrine
- Non – service type latrines (Sanitary latrines):
 - Bore hole latrine
 - Dug well or pit latrine
 - Water seal type latrines
 - P.R.A.I. type
 - R.C.A. type
 - Sulabh shauchalaya
 - Septic tank
 - Aqua privy
• Latrines suitable for camps and temporary use:
 - Shallow trench latrine
 - Deep trench latrine
 - Pit latrine
 - Bore hole latrine

Septic Tank

- **Description:** Is a water-tight masonry tank into which household sewage is admitted for treatment
- Is a satisfactory method of disposing liquid and excreta wastes from individual dwellings, small groups of houses or institutions which have ‘adequate water supply but do not have access to a public sewerage system’

- **Design features of a septic tank:**
 - **Capacity:** Minimum should be 500 gallons
 - **Length:** to be twice the breadth
 - **Depth:** 1.5-2 m
 - **Liquid depth:** 1.2 m
 - **Air space depth:** 30 cms
 - **Ideal retention period:** 24 hours

- **Steps of purification in a septic tank:**
 - **Anaerobic digestion:** takes place in septic tank proper
 - **Aerobic oxidation:** takes place in sub-soil (outside septic tank)

- **Process of purification in a septic tank:**
 - Solids settle down in tank to form ‘Sludge’ whereas lighter solids (including grease and fat) rise to surface to form ‘Scum’. Solids undergo anaerobic digestion; methane is formed
 - Liquid which passes out of outlet pipe is called ‘Effluent’ (containing bacteria, cysts, helminthic ova and organic matter) which is allowed to percolate in sub-soil: undergoes aerobic digestion by bacteria

- **Operation and maintenance of a septic tank:**
 - Avoid soap water and disinfectants (phenol) as they are injurious to bacterial flora
 - ‘Desludging’ should be carried out once a year
 - New tanks to be filled with water and seeded with ripe sludge from another septic tank (to provide right kind of bacteria).

MISCELLANEOUS (ENVIRONMENT)

Sanitation Measures for Swimming Pool Sanitation

- **Recommended area:** Recommended area is minimum 2.2 sq. metre (24 sq. ft.) per swimmer
- **Surveillance:** Rules and regulations to be posted in appropriate place
- **Filtration of water:** Water to be refiltered in less than 6 hours (rapid sand filters); 15% water to be replaced by fresh water everyday
- **Chlorination of water:** Residual level of free chlorine to be > 1.0 ppm to protect against bacterial and viral agents
- **pH of water:** 7.4-7.8
- **Bacteriological quality of water:** To be as close to standards prescribed for drinking water.

Radiation

- **Sources of radiation exposure:**
 - **Natural sources:** (total exposure is 0.1 rad per person per year)
 - Cosmic rays
- Environmental
- Internal
- Man-made sources:
 - X-rays
 - Radioactive fall-out

- Types of radiation:
 - Electromagnetic:
 - X-rays
 - Gamma rays
 - Corpuscular:
 - Alpha particles
 - Beta particles
 - Protons

- Biological effects of Radiation exposure:
 - Somatic effects:
 - Immediate
 1. Radiation sickness
 2. Acute radiation syndrome
 - Delayed
 1. Leukaemia
 2. Carcinogenesis
 3. Foetal anomalies
 4. Shortening of life
 - Genetic effects:
 - Chromosomal mutations
 - Point mutations.

ENTOMOLOGY AND VECTOR CONTROL

Biological Transmission of Arthropod-borne Diseases

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagative</td>
<td>Disease agent only multiplies in the body of vector</td>
<td>Plague bacilli in rat fleas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yellow fever virus in Aedes mosquitoes</td>
</tr>
<tr>
<td>Cyclo-propagative</td>
<td>Disease agent undergoes cyclical change and multiplies in the body of vector</td>
<td>Malarial parasite in anopheline mosquitoes</td>
</tr>
<tr>
<td>Cyclo-developmental</td>
<td>Disease agent undergoes only cyclical change in the body of vector</td>
<td>Filarial parasite in culex mosquitoes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guineaworm embryo in cyclops</td>
</tr>
</tbody>
</table>

Vectors and Diseases Transmitted

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease(s) transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housefly (Musca domestica)</td>
<td>Diarrhoeal & dysentrical diseases, Poliomyelitis, Yaws, Anthrax, Trachoma</td>
</tr>
<tr>
<td>Sandfly (Phlebotomus argentipes)</td>
<td>Kala azar (Visceral Leishmaniasis), Oriental sore (Cutaneous Leishmaniasis), Sandfly fever, Oroya fever</td>
</tr>
<tr>
<td>Tse-Tse fly (Glossina palpalis)</td>
<td>Sleeping sickness of Africa (African Trypanosomiasis)</td>
</tr>
<tr>
<td>Reduviid bug (Triatominae)</td>
<td>Chagas Disease (Sleeping sickness of America- American Trypanosomiasis)</td>
</tr>
<tr>
<td>Black fly (Simulium)</td>
<td>Onchocerciasis (River Blindness)</td>
</tr>
<tr>
<td>Soft tick</td>
<td>Relapsing fever, Q fever, KFD (outside India)</td>
</tr>
<tr>
<td>Hard tick</td>
<td>Tularemia, Babesiosis, KFD (India), Tick paralysis, Tick encephalitis, Tick hemorrhagic fever, Indian Tick Typhus, RMSF</td>
</tr>
<tr>
<td>Louse</td>
<td>Epidemic typhus, Trench fever, Relapsing fever</td>
</tr>
</tbody>
</table>

Contd...
Contd…

<table>
<thead>
<tr>
<th>Mite</th>
<th>Scrub typhus, Rickettsial pox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flea</td>
<td>Plague, Murine typhus</td>
</tr>
<tr>
<td>Anopheles mosquito</td>
<td>Malaria, Filaria (outside India)</td>
</tr>
<tr>
<td>Culex mosquito</td>
<td>Bancroftian Filariasis, Japanese Encephalitis, West Nile fever, Viral arthritis</td>
</tr>
<tr>
<td>Aedes mosquito</td>
<td>Yellow fever, Dengue, DHF, Chikungunya, Rift Valley fever, Filariasis (Outside India)</td>
</tr>
<tr>
<td>Mansonoides mosquito</td>
<td>Malayan (Brugian) filariasis, Chikungunya</td>
</tr>
</tbody>
</table>

Life Cycle of Mosquito

- **Life span of a mosquito varies from:** 8-34 days
 - Males, as a rule, are short lived
 - Life of a mosquito is influenced by temperature & humidity

- **Life history of a mosquito:**
 - **Egg:** Laid on surface of water, 100-250 at a time
 - Egg stage lasts for 1-2 days
 - **Gonotrophic cycle:** Period that elapses from the moment a blood meal is taken until the eggs are laid; it is about 48 hours in hot & humid tropical areas
 - **Larva:** Passes through 4 stages of growth called ‘instars’, with moulting between each stage
 - Larval stage occupies 5-7 days
 - Culicine larvae (Culex, Aedes, Mansonia) have a siphon tube
 - **Pupa:** Represents ‘resting stage’ in life cycle of mosquito
 - Pupal stage lasts for 1-2 days
 - Have 2 respiratory tubes (trumpets) in thorax
 - Does not feed, prefers to stay quiet at the water surface
 - **Adult:** Life cycle from egg to adult is complete in 7-10 days
 - Adult mosquito lives for about 2 weeks.

Important Mosquito Vectors in India

<table>
<thead>
<tr>
<th>Diseases transmitted</th>
<th>Anopheles</th>
<th>Culex</th>
<th>Aedes</th>
<th>Mansonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Bancroftian filariasis, Japanese encephalitis, West Nile fever</td>
<td>Dengue & DHF, Chikungunya, Yellow fever, Rift valley fever</td>
<td>Malayan (Brugian) filariasis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breeding Habitat</th>
<th>Clean water</th>
<th>Dirty, polluted water</th>
<th>Artificial collections of water</th>
<th>Water bodies containing aquatic plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs</td>
<td>Laid singly, Boat shaped with lateral floats</td>
<td>Laid in small clusters/rafts</td>
<td>Laid singly, cigar shaped</td>
<td>Laid in star shaped clusters</td>
</tr>
<tr>
<td>Larvae</td>
<td>No siphon tube; Rest parallel to undersurface of water</td>
<td>Siphon tube; Rest perpendicular to undersurface of water</td>
<td>Siphon tube; Rest in dark bottom corners</td>
<td>Siphon tube; Rest attached to rootlets of plants</td>
</tr>
<tr>
<td>Pupae</td>
<td>Broad & short siphon tube</td>
<td>Long & narrow siphon tube</td>
<td>Long & narrow siphon tube</td>
<td>Long & narrow siphon tube</td>
</tr>
<tr>
<td>Adults</td>
<td>Inclined at an angle to surface Spotted wings</td>
<td>‘Hunch back’ rest</td>
<td>Stripes on body & legs</td>
<td>-</td>
</tr>
<tr>
<td>Flight range</td>
<td>3-5 kms</td>
<td>11 kms</td>
<td>100 m</td>
<td>-</td>
</tr>
<tr>
<td>Remark(s)</td>
<td>Sophisticated mosquito</td>
<td>Nuisance mosquito</td>
<td>Tiger mosquito</td>
<td>-</td>
</tr>
</tbody>
</table>
Hard Ticks Versus Soft Ticks

<table>
<thead>
<tr>
<th></th>
<th>Hard ticks</th>
<th>Soft ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological name</td>
<td>Ixodidae</td>
<td>Argasidae</td>
</tr>
<tr>
<td>Scutum</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Head</td>
<td>At anterior end</td>
<td>Lies ventrally</td>
</tr>
<tr>
<td>Spiracles</td>
<td>Behind IV coxa</td>
<td>Behind III and IV coxa</td>
</tr>
<tr>
<td>Eggs</td>
<td>Hundreds – thousands in 1 sitting</td>
<td>Batches of 20–100 over long period</td>
</tr>
<tr>
<td>Nymphal stages</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Habits</td>
<td>Cannot stand starvation</td>
<td>Can stand starvation for ≥ 1 year</td>
</tr>
<tr>
<td>Diseases transmitted</td>
<td>Tick typhus (RMSF)</td>
<td>Q fever (few animal cases)</td>
</tr>
<tr>
<td></td>
<td>Viral encephalitis</td>
<td>Relapsing fever</td>
</tr>
<tr>
<td></td>
<td>Tick fevers</td>
<td>KFD (outside India)</td>
</tr>
<tr>
<td></td>
<td>Hemorrhagic fevers (KFD in India)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tularaemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tick paralysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human babesiosis</td>
<td></td>
</tr>
</tbody>
</table>

Housefly

- ‘Houseflies should be regarded as a sign of insanitation’ and their number as index of that sanitation
- Important species: Musca domestica, M. vicinia, M. nebula, M. sorbens
- Life span: 15-25 days
 - Eggs: 8-24 hours
 - Larvae (maggots): 2-7 days
 - Pupae: 3-6 days
 - Adults: 5-20 days
- Important breeding places (in order of importance):
 - Fresh horse manure
 - Human excreta
 - Manure of other animals
 - Garbage
 - Decaying fruits and vegetables
 - Rubbish dumps containing organic matter
 - Grounds where liquid wastes are spilled
- Feeding habits:
 - Housefly does not bite: It cannot eat solid foods; it vomits on solid foods to make a solution of it, and sucks in a liquid state
 - Dispersal: up to 4 miles
- Modes of disease transmission:
 - Mechanical transmission: Houseflies are known as ‘Porters of infection’
 - Vomit-drop
 - Defecation
- Houseflies in disease causation:
 - As vector of diseases: Typhoid and paratyphoid fevers, diarrhoeas and dysenteries, cholera and gastroenteritis, amoebiasis, helminthic manifestations, Poliomyelitis, Yaws, Anthrax, Trachoma, conjunctivitis
 - As causative agent of disease: Myiasis.

Sandfly

<table>
<thead>
<tr>
<th>Sandfly species</th>
<th>Diseases transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlebotomus argentipes<sup>0</sup></td>
<td>Kala azar (Visceral Leishmaniasis)</td>
</tr>
<tr>
<td>Phlebotomus papatasii<sup>0</sup></td>
<td>Sandfly fever, Oriental sore (Cutaneous Leishmaniasis)</td>
</tr>
<tr>
<td>Phlebotomus sergenti<sup>0</sup></td>
<td>Oriental sore (Cutaneous Leishmaniasis)</td>
</tr>
<tr>
<td>Sergentomyia punjabensis</td>
<td>Sandfly fever</td>
</tr>
</tbody>
</table>

Habitats: Holes and crevices in walls, holes in trees, dark rooms, stables and store rooms

Sanitation measures are carried out for a distance of 50 feet

Insecticide of choice: DDT (1 – 2 gm/m² single application)

DDT is sprayed up to height of 4 – 6 feet of walls; as Sandfly cannot fly; it only hops

Only female sandflies bite: Require a blood meal every 3-4 days for oviposition.

Rat Flea (Xenopsylla)

- *Rat flea acts as a vector for*:
 - Bubonic plague
 - Murine (endemic/ flea-borne) typhus
 - Chiggerosis

- *Rat flea acts as a host for*:
 - Hymenolepis diminuta (Rat tapeworm)
 - Hymenolepis nana (Dwarf tapeworm).

Diseases Associated with Rodents

<table>
<thead>
<tr>
<th>Bacterial:</th>
<th>Viral:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plague</td>
<td>Lassa fever</td>
</tr>
<tr>
<td>Tularaemia</td>
<td>Hemorrhagic fever</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>Encephalitis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rickettsial:</th>
<th>Parasitic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrub typhus</td>
<td>Hymenolepis diminuta</td>
</tr>
<tr>
<td>Murine (Flea-borne) typhus</td>
<td>Leishmaniasis</td>
</tr>
<tr>
<td>Rickettsial pox</td>
<td>Amoebiasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Others:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat bite fever</td>
<td>Trichinosis</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>Chagas disease</td>
</tr>
<tr>
<td>Histoplasmosis</td>
<td></td>
</tr>
</tbody>
</table>

General Principles of Arthropod Control

- **Environmental control**:
 - Best approach to control of arthropods, because results are likely to be permanent
 - Examples: Elimination of breeding places (source reduction), filling & drainage operation, planned water management

- **Chemical control**:
 - No longer fully effective if used alone: Resistance has appeared in about 100 arthropods of public health importance
 - Essential to use biodegradable, less toxic compounds: Methoxychlor, Abate, Dursban
 - Other examples: Mosquito larvicidal oil (MLO), Paris green, Pyrethrum.

- **Biological control**:
 - Minimises environmental pollution
 - EXAMPLES:
 - Larvivorous fishes (Gambusia affinis, Lebister reticulata, Poecilia reticulata)
 - Fungi (Coelomomyces)
 - Bacteria (Bacillus thuringiensis H14)
 - Predator mosquito (Toxorhynchitis splendens).

- **Genetic control**:
 - Techniques: Sterile male technique, cytoplasmic incompatibility, chromosomal translocations

- **Newer methods**:
 - Examples: Insect growth regulators, chemosterilants, pheromones (sex attractants).
Mosquito Control Measures

- **Anti-larval measures:**
 - **Environmental control:** Source reduction (minor engineering methods – filling, leveling & drainage of breeding places and water management – intermittent irrigation)
 - Filling & drainage of clean water collections – Anopheles
 - Abolition of domestic and peridomestic collections of polluted dirty water – Culex
 - Getting rid of artificial collections of water – Aedes
 - Aquatic plants removed or destroyed by herbicides – Mansonia
 - **Chemical control:**
 - Mineral oils: Applied once-a-week in dose of 40-90 litres per hectare; makes water unfit for human consumption and kills fish
 - Paris green®: 2 percent dust applied in dose of 1 kg per hectare; ‘stomach poison’ to larvae but harmless to humans, animals or fish
 - Synthetic insecticides: Abate (very effective larvicide and least toxic at dose of 1 ppm), Malathion, Fenthion, Chlorpyrifos
 - **Biological control®:** through use of small fishes
 - Gambusia affinis
 - Lebister reticulata
 - Poecilia.

- **Anti-adult measures:**
 - **Residual sprays:**
 - Toxicant | Dosage (gm per m²) | Average duration of effectiveness (months)
 - DDT | 1 – 2 | 6 – 12
 - BHC (Lindane) | 0.5 | 3
 - Malathion | 2 | 3
 - **Space sprays:**
 - Pyrethrum extract: ‘nerve poison’; Active principal ‘pyrethrin’; no residual action – short-lived effect®
 - Residual insecticides: Malathion and fenitrothion for ULV (Ultra low volume) fogging®
 - **Genetic control:**
 - Sterile male technique
 - Cytoplasmic incompatibility
 - Chromosomal translocations
 - Sex distortion
 - Gene replacement

- **Personal protection measures (against mosquito bites):**
 - **Mosquito nets:**
 - No. of holes per square inch: 150®
 - Size of each hole diameter: < 0.0475 inch®
 - **Screening:**
 1. Size: 16 meshes to inch
 2. Aperture size: < 0.0475 inch
 - **Repellants®:**
 - Diethyltoluamide (DEET)
 - Ethyl hexanediol
 - **Pyrethrum:**
 - Space spray for killing adult mosquitoes®
 - Contact poison
 - Knock-down effect with paralysis®
Environment and Health

- Insecticide of plant origin: Flowers of Chrysanthemum
 - 5 active principles (all 'nerve poisons'):
 1. Pyrethrin I
 2. Pyrethrin II
 3. Cinerin I
 4. Cinerin II
 5. Jasminode II
- No residual effect: Short lived effect
- Synthetic pyrethroids: permethrin, allethrin, furethrin, cyclenithrin
- Because of the natural insecticidal properties used as 'companion plants', to repel pest insects from nearby crops.

- Common insect repellents:
 - DEET (N,N-diethyl-m-toluamide)
 - Allethrin
 - Essential oil of the lemon eucalyptus [p-menthan-3,8-diol (PMD)]
 - Icaridin (picaridin)
 - Nepetalactone (catnip oil)
 - Citronella oil
 - Permethrin
 - Soyabean oil
 - Neem oil

- Few uncommon insect repellents:
 - Thiamine (vitamin B1)
 - Garlic
 - Incense
 - Ultrasonic devices

- Bacillus thuringiensis H14: Spores and crystalline insecticidal proteins produced by B. thuringiensis are used as specific insecticides. Because of their specificity, these pesticides are regarded as environmentally friendly, with little or no effect on humans, wildlife, pollinators, and most other beneficial insects.
 - Bacillus thuringiensis serovar israelensis is widely used as a larvicide against mosquito larvae (Bt Toxin)

- Insecticide treated bed nets (ITBN):
 - Chemicals used in ITBN Program: Synthetic pyretheroids
 1. Deltamethrin: 2.5 % in dosage of 25 mg/m²
 2. Cyfluthrin: 5 % in dosage of 50 mg/m²
 3. Other insecticides used: Permethrin, Lambda-cyhalothrin, Etofenprox, -cypermethrin
 - Effectiveness of pyretheroids: 6-12 months (Retreatment every 6 months)
 - Long-lasting insecticidal mosquito nets (LLINs): Also use pyrethroid insecticides, and a chemical binder that allows the nets to be washed ≥20 times, allowing use for ≥3 years.

Insecticides

- Organo-phosphorus Insecticides:
 - Malathion
 - Parathion
 - Fenthion
 - Diazinon
 - Fenitrothion
 - Chlorpyrifos
 - Dioxathion
 - Chlorthion
Review of Preventive and Social Medicine

- **Organo-chlorine Insecticides**:
 - DDT
 - BHC (HCH)
 - Lindane
 - Dieldrin

- **Carbamate Insecticides**:
 - Carbarly
 - Propoxur.

Paris Green (Copper Acetoarsenite)

- **Description**:
 - Emerald green, microcrystalline powder
 - Anti-larval measure, kills mainly Anopheles larvae as they are surface feeders
 - Bottom feeding larvae can also be killed, when applied as a special granular formulation
 - Paris green is a ‘stomach poison’
 - Is most widely used larvicide for mosquito control

- **Recommended dose**: 1 kg paris green per hectare water surface
 - In dosage applied, paris green does not harm fish, man or domestic animals.

DDT (Dichloro-diphenyl-trichloro ethane)

- **Type of insecticide**: Organochlorine compound
 - Synthesised by: Ziedler
 - Properties discovered by: Paul Muller (Nobel prize)
 - Most active form: Para-para isomer (70-80% in DDT)

- **Mechanism of action**:
 - Contact poison: Nerve poison which inhibits Acetylcholinesterase enzyme
 - Takes several hours to kill (No immediate death)
 - Residual action lasts for 18 months
 - No repellent action

- **Application**: 100-2000 mg per sq. foot
 - Dosage: 100-200 mg per sq.ft.

- **Technical DDT**: 70-80% para-para isomer (most active form)

- Sandflies (Phlebotamus) have not demonstrated resistance to DDT.

Pyrethrum

- **Description**:
 - Insecticide of plant origin: Flowers of Chrysanthemum
 - Space spray for killing ‘adult mosquitoes’:
 - Active principal ‘pyrethrin’; no residual action – short-lived effect

- **Mechanism of action**:
 - Contact ‘nerve’ poison
 - Knock-down effect with paralysis

- **5 active principles (all ‘nerve poisons’)**:
 - Pyrethrin I
 - Pyrethrin II
 - Cinerin I
 - Cinerin II
 - Jasmine II

- **No residual effect**: Short lived effect.
Malathion

- Is 'least toxic among Organophosphate compounds'\(^\text{Q}\)
 - Because of its low toxicity, it is recommended as 'an alternative to DDT'
 - Dosage: 100-200 mg per sq. ft. every 3 months
 - ULV spray: Used to kill adult mosquitoes
- Mechanism of action: Interfere with transmission of nerve impulses
 - Act by 'inhibiting Acetyl-cholinesterase'\(^\text{Q}\).

Scabies

- Scabies: Is a transmissible ectoparasite skin infection characterized by superficial burrows, intense pruritus (itching) and secondary infection\(^\text{Q}\)
 - Scabies is caused by the mite Sarcoptes scabei, variety hominis (known as 'Itch mite')\(^\text{Q}\)
 - Scabies is usually transmitted by close contact with an infested person. Scabies is transmitted readily, often throughout an entire household, by skin-to-skin contact with an infected person and thus is sometimes classified as a sexually transmitted disease (STD)
- Drug of Choice for scabies: 5% Permethrin\(^\text{Q}\)
- Other treatment modalities for Scabies\(^\text{Q}\):
 - 25% Benzyl benzoate (2 applications)
 - 1% HCH (Gammaxene; lindane) (2 applications)
 - 5% Tetmasol solution (3 daily applications)
 - 10% Sulphur ointment (4 daily applications)
 - Crotamiton lotion (3 applications)
 - Malathion (1 application)
 - Ivermectin (Single dose) — Oral/Systemic Drug of Choice\(^\text{Q}\)
 - Neem oil (for persistent cases).
MULTIPLE CHOICE QUESTIONS

WATER

1. Purest water in nature is: [AIPGME 2000]
 - (a) River water
 - (b) Rain water
 - (c) Deep well
 - (d) Impounding reservoirs

2. All the following statements are true about break point chlorination, except: [AIIMS May 2004]
 - (a) Free chlorine is released in water after break point chlorination
 - (b) Chlorine demand is the amount needed to kill bacteria, oxidize organic matter and neutralize ammonia
 - (c) 1 ppm free chlorine should be present in water after break point has reached
 - (d) Contact period of 1 hour is necessary

3. Nitrates in excess of—may cause infantile methaemoglobinemia: [AIPGME 1997]
 - (a) 15 mg/l
 - (b) 25 mg/l
 - (c) 35 mg/l
 - (d) 45 mg/l

4. All the following provide evidence of faecal pollution except: [AIIMS Sep 1996]
 - (a) Faecal streptococci
 - (b) Coliform
 - (c) Cl. Tetani
 - (d) Enteropathogenic virus

5. Per capita allowance of water per day is recommended at: [AIIMS Nov 2005]
 - (a) 70-80 lit
 - (b) 80-120 lit
 - (c) 120-150 lit
 - (d) 150-200 lit

6. Recommended standard for bacterial water quality in small community supplies is: [AIIMS Dec 1997]
 - (a) No coliform
 - (b) No E. coli in 100 ml
 - (c) Coliform less than 10/100 ml
 - (d) Coliform less than 1/100 ml

7. Temporary hardness of water is primarily due to the presence of: [AIIMS Nov 2007]
 - (a) Calcium and magnesium sulphates
 - (b) Calcium and magnesium chlorides
 - (c) Calcium and magnesium bicarbonates
 - (d) Calcium and magnesium nitrates

8. Horrock’s apparatus estimates: [AIIMS May 2006]
 - (a) Free chlorine
 - (b) Combined chlorine
 - (c) (a) + (b)
 - (d) Chlorine demand

9. Which one of the following methods is used for the estimation of chlorine demand of water?
 - (a) Chlorometer [AIIMS Nov 2006, AIIMS May 2007]
 - (b) Horrock’s apparatus
 - (c) Berkefeld filter
 - (d) Double pot method

10. Ortho-toulidine test is used to determine: [AIIMS Nov 1995, AIIMS May 2004]
 - (a) Nitrates in water
 - (b) Nitrites in water
 - (c) Free and combined chlorine in water
 - (d) Ammonia content in water

11. Most desired temperature range for drinking water is: [AIIMS May 1995]
 - (a) 0-5°C
 - (b) 5-10°C
 - (c) 10-15°C
 - (d) 15-20°C

12. Most undesirable metal in drinking water is: [AIIMS June 1991]
 - (a) Iron
 - (b) Copper
 - (c) Zinc
 - (d) Lead

13. ‘Most reliable’ evidence of fecal contamination of water is provided by: [AIPGME 1999]
 - (a) Coliform bacteria
 - (b) Cl. Perfringens
 - (c) St. fecalis
 - (d) Cl. welchii

14. Scabies, an infection of the skin caused by Sarcoptes scabiei, is an example of: [AIPGME 2002]
 - (a) Water borne disease
 - (b) Water washed disease
 - (c) Water based disease
 - (d) Water related disease

15. “Safe and Wholesome water” does not include being: [AIPGME 1992]
 - (a) Free from pathogenic agents
 - (b) Free from harmful chemical substances
 - (c) Free from colour and odour
 - (d) Free from chlorine
16. A daily water supply considered adequate to meet the need for all urban domestic purposes is:
 (a) 10 litres per capita [AIIMS Nov 2000]
 (b) 20 litres per capita
 (c) 40-60 litres per capita
 (d) 150-200 litres per capita

17. All are “Water-Washed Diseases” except:
 (a) Scabies [AIIMS June 2000]
 (b) Trachoma
 (c) Typhoid
 (d) Conjunctivitis

18. All are true for Rapid Sand Filters except:
 (a) No preliminary storage of raw water is required
 (b) Operation requires highly skilled persons
 (c) Frequent washing is not required [AIPGME 1997]
 (d) Can be gravity type or pressure type

19. Disinfecting action of chlorine on water is mainly due to:
 (a) Hydrogen chloride [AIPGME 2005]
 (b) Hypochlorous acid
 (c) Hypochlorite ions
 (d) Hydrogen ions

20. Which of the following agents have ‘residual germicidal effect’ when used for disinfection of water:
 (a) Chlorine only [AIIMS Dec 1995]
 (b) Chlorine and Ozone gas
 (c) Chlorine and UV radiation
 (d) Chlorine, Ozone gas and UV radiation

21. Proposed guideline values for Radioactivity in Drinking water is:
 (a) Gross a activity 0.1 Bq/L and Gross b activity 1.0 Bq/L [AIPGME 2001]
 (b) Gross a activity 1.0 Bq/L and Gross b activity 0.1 Bq/L
 (c) Gross a activity 1.0 Bq/L and Gross b activity 10.0 Bq/L
 (d) Gross a activity 10 Bq/L and Gross b activity 1.0 Bq/L

22. MPN Multiple Tube Method is done to:
 (a) Detect the presence of Coliform organisms in a sample of water [AIIMS Dec 1995]
 (b) Detect the presence of Faecal streptococci in a sample of water
 (c) Detect the presence of Cl. perfringens in a sample of water
 (d) Do the colony count of bacteria

23. Level of hardness in soft water is ___ mEq/liter:
 (a) Less than 1 [AIIMS Nov 1999]
 (b) 1-3
 (c) 3-6
 (d) Over 6

24. To find out the dose of bleaching powder required for disinfection of water, following is used:
 (a) Chloroscope [AIIMS Dec 1994-95]
 (b) Chloronome
 (c) Horrock’s apparatus
 (d) Winchester Quart Bottle

25. Indicator solution in Horrock’s Apparatus contains:
 (a) Ortho-toulidine [AIIMS Nov 2006]
 (b) Starch iodide
 (c) Ortho-toulidine arsenite
 (d) Bromocresol purple

26. The minimum recommended dose of “free” residual chlorine in water for routine chlorination (in mg/ lts) is:
 (a) 0.5 mg/l for a contact period of 1hr
 (b) 0.5 mg/l for a contact period of 1/2 hr
 (c) 1.0 mg/l for a contact period of 1hr
 (d) 1.0 mg/l for a contact period of 1/2 hr

27. True statement regarding chlorination is
 (a) Orthotolidine test measures combined chlorine separately: [DPG 2005]
 (b) Chlorine acts best when pH is around 7
 (c) It kills bacteria, viruses and spores
 (d) Hypochlorite ions are mainly responsible for disinfecting activity

28. What is the amount of bleaching powder required to disinfect 455 litre of water if 4, 5, 6 cup shows distinct colouration in Horrock’s apparatus? [DPG 2007]
 (a) 2 g
 (b) 6 g
 (c) 8 g
 (d) 4 g

29. Temporary hardness of water is due to presence of:
 (a) Bicarbonates of calcium and magnesium [Karnataka 2004]
 (b) Chlorides of calcium and magnesium
 (c) Nitrates of calcium and magnesium
 (d) Oxides of calcium and magnesium

30. When the level of hardness in water is around 150-300 mg/litre it is classified as: [Karnataka 2008]
 (a) Very hard water
 (b) Hard water
 (c) Moderately hard water
 (d) Soft water

31. The minimum recommended level of residual chlorine in the drinking water is for one hour: [Karnataka 2009]
 (a) 0.25 mg/L
 (b) 0.5 mg/L
 (c) 1.0 mg/L
 (d) 2.0 mg/L
32. Slow sand filter is differentiated from rapid sand filter by:
 (a) Bacteria are removed more effectively
 (b) Skilled person is needed
 (c) Cost construction is cheaper
 (d) Sand particle are of smaller size
 (e) Longer duration is needed

33. Indication of Fecal contamination of water is due to
 presence of:
 (a) E. coli
 (b) Coliform
 (c) Enterococci
 (d) Clostridium difficile
 (e) Streptococcus pyogenes

34. Orthotoulidine test done for estimation of:
 (a) Free chlorine
 (b) Combined chlorine
 (c) Fluoride
 (d) Iodine content

35. NOT seen in fecal pollution:
 (a) Staphylococcus
 (b) Streptococcus
 (c) E. coli
 (d) Clostridium perfringens

36. All of the following statements about purification of water are true except:
 (a) Presence of Clostridial spores indicates recent contamination of water
 (b) Coliforms must not be detectable in any 100 ml sample of drinking water
 (c) Sodium thiosulphate is used to neutralize certain contaminants
 (d) Coliforms may be detected by multiple tube method and indole production

37. Chlorine demand estimated by:
 (a) Horrock’s apparatus
 (b) Berkfield filter
 (c) Chlorometer
 (d) Double pot method

38. Ortho-toulidine test (OT Test) is used to detect:
 (a) Chlorine
 (b) Nitrates
 (c) Ammonia
 (d) Nitrate

39. All the following statements about purification of water are true except:
 (a) Presence of clostridial spores indicate recent contamination
 (b) Coliforms must not be detectable in any 100 ml sample of drinking water
 (c) Sodium thiosulphate is used to neutralize chlorine
 (d) Coliforms may be detected by multiple tube method and indole production at 44 degrees

40. In a slow sand filter, the element responsible for yielding bacteria free water is the:
 (a) Valve
 (b) Vital layer
 (c) Supernatant water
 (d) Under-drainage system

41. True about slow sand filter is:
 (a) Occupies less space
 (b) More expensive
 (c) Requires longer duration
 (d) Sand size 0.4-0.7 mm

42. Coliform test is for:
 (a) Air pollution
 (b) Water contamination
 (c) Sound pollution
 (d) None

43. Softening is recommended when hardness of water is more than:
 (a) 50 mg/litre
 (b) 75 mg/litre
 (c) 100 mg/litre
 (d) 150 mg/litre

44. The vital layer in a slow sand filter is:
 (a) Sand bed
 (b) Under drainage
 (c) Zoological layer
 (d) Supernatant

45. Horrock’s apparatus determines Chloride which has to have a holding level of:
 (a) 1.0 mg/L
 (b) 1.5 mg/L
 (c) 2.0 mg/L
 (d) 0.5 mg/L

46. Process of deflouridation of water is:
 (a) Nalgonda technique
 (b) Soaking
 (c) Sand filter
 (d) Parboiling

47. Criteria for drinking water quality recommended by WHO includes:
 (a) Colour <15 TCU
 (b) pH 6.5 – 8.5
 (c) Chloride 200-600 mg/l
 (d) Turbidity <5 NTU
 (e) Zinc <4 mg/l

48. Residual chlorine in chlorination of water should be:
 (a) 1 mg/1 after 1 hr
 (b) 0.5 mg/1 after 1 hr
 (c) 1 mg/1 after 30 min
 (d) 0.5 mg/1 after 30 min
49. Which of the following is used as an indicator for recent fecal contamination of water?
(a) E coli
(b) Cornyobacterium diphtheriae
(c) Pseudomonas
(d) Streptococci

[Environment and Health] [DNB December 2011]

50. Hardness of drinking water should be:
(a) >3
(b) <1
(c) 1-3
(d) >3

[Environment and Health] [Recent Question 2013] [DNB December 2011]

51. Disinfecting action of chlorine is due to:
(a) Hypochlorous acid
(b) Hypochlorite ion
(c) Hydrochloric acid
(d) Both hypochlorous acid and hypochlorite ion

[Environment and Health] [Recent Question 2012]

52. Faecal contamination of drinking water is evaluated by:
(a) Klebsiella
(b) E coli
(c) Proteus
(d) Coagulase negative staphylococci

[Environment and Health] [DNB December 2011]

53. Orthotoludine test can detect:
(a) Free residual chlorine
(b) Bound chlorine
(c) Free and combined chlorine
(d) Chlorine demand

[Environment and Health] [Recent Question 2012]

54. Nalgonda technique for defluoridation is in what sequence:
(a) Lime + Alum
(b) Soda + Alum
(c) Alum + Soda
(d) Alum + Lime

[Environment and Health] [Recent Question 2012]

55. A chloride level ________ is said to be acceptable by WHO:
(a) 0.2 mg/L
(b) 0.5 mg/L
(c) 45 mg/L
(d) 200 mg/L

[Environment and Health] [DNB 2007]

56. Minimum chlorine content of water after chlorination should be:
(a) 0.5 mg/L
(b) 5 mg/L
(c) 0.05 mg/L
(d) 50 mg/L

[Environment and Health] [DNB December 2011]

57. Bacterial indicator of recent contamination of water is?
(a) Clostridium perfringens
(b) E.coli
(c) Clostridium welchii
(d) Faecal streptococci

[Environment and Health] [Recent Question 2013]

58. Confirmatory Test for coliform count:
(a) Eijkman test
(b) Casoni’s test
(c) Nitrate test
(d) Urease test

[Environment and Health] [Recent Question 2013]

59. Safe water criteria include:
(a) Free from pathogens
(b) Free from harmful chemicals
(c) Free from chlorine
(d) Free from colour and odour
(e) Usable for agricultural purposes

[Environment and Health] [PGI November 2013]

60. Method of choice for purification of highly polluted water on a large scale is:
(a) Boiling
(b) Chlorination
(c) Super chlorination followed by dechlorination
(d) Ultraviolet light treatment

[Environment and Health] [AP 2014]

Review Questions

61. Action of chlorine in water is through:
(a) Hypochlorous acid
(b) HCL
(c) Both
(d) None

[Environment and Health] [DNB 2001]

62. A chloride level of _____ is said to be acceptable by WHO:
(a) 0.2 mg/L
(b) 0.5 mg/L
(c) 45 mg/L
(d) 200 mg/L

[Environment and Health] [DNB 2007]

63. Residual chlorine in chlorination for water should be:
(a) 1 mg/1 after 1 hr
(b) 0.5 mg/1 after 1 hr
(c) 1 mg/1 after 30 mins
(d) 0.5 mg/1 after 30 mins

[Environment and Health] [DNB 2008]

64. Residual chlorine after effective chlorination should be:
(a) 0.5 mg/1 after 1 hr.
(b) 0.5 mg/1 after 15 hr
(c) 1 mg/1 after 30 mins
(d) 1 mg/1 after 20 hr

[Environment and Health] [Bihar 2004]

65. Not a feature of hard water is:
(a) Increased fuel consumption
(b) Erosion of lead pipe
(c) Scaling of boiler
(d) Decreased soap consumption

[Environment and Health] [Bihar 2005]

66. Fresh bleaching powder contains:
(a) 33% chlorine
(b) 3.3% chlorine
(c) 0.33% chlorine
(d) 0.033% chlorine

[Environment and Health] [Bihar 2005]

67. All are example of water borne disease Except:
(a) Leptospirosis
(b) Fish tapeworm
(c) Shistosomiasis
(d) Brucellosis

[Environment and Health] [UP 2000]

https://kat.cr/user/Blink99/
68. Bacteriological quality of drinking water is small community is:
 (a) No coliform bacteria in water
 (b) 10 coliform bacteria in 100 ml water
 (c) 10 E. coli in 100 ml III water
 (d) 100 E. coli in 100 ml. Water

69. All the following assess the water-quality-criteria for water pollution are all Except:
 (a) Solid particles
 (b) Dissolved oxygen
 (c) Dissolved chloride
 (d) Dissolved nitrogen

70. Maximum permissible chloride level is:
 (a) 200 mg/litre
 (b) 300 mg/litre
 (c) 500 mg/litre
 (d) 600 mg/litre

71. Action of Bleaching powder is due to release of:
 (a) Free Chlorine
 (b) Lime
 (c) Hydrochloric acid
 (d) Hydrogen ions

72. Vital layer in slow sand filter is seen:
 (a) Top of water
 (b) On the sand bed
 (c) Near filter valves
 (d) None

73. Chlorination time allowed is:
 (a) 1/2 hour
 (b) 1 hour
 (c) 1 1/2 hours
 (d) 2 hours

74. Contact time for chlorination:
 (a) 4 hrs
 (b) 1 hr
 (c) 11/2 hr
 (d) 2 hrs

75. Effective size of sand in rapid sand filter is:
 (a) 0.2 mm
 (b) 0.5 mm
 (c) 0.8 mm
 (d) 0.1 mm

76. When river water is stored for the first 5-7 days, the bacterial count drops by as much as:
 (a) 25%
 (b) 50%
 (c) 90%
 (d) 100%

77. The vital layer of slow sand filter is:
 (a) Schmutzdecke
 (b) Under-drainage system

78. Orthotoluidine test is done to detect:
 (a) Iodine level of water
 (b) Free and combined chlorine in water
 (c) Recent contamination in water
 (d) Coliform count of water

79. Level of residual chlorine after one hour:
 (a) 1 mg/L
 (b) 0.5 mg/L
 (c) 1.5 mg/L
 (d) 2 mg/L

80. In Fresh bleaching powder available chlorine is:
 (a) 20%
 (b) 30%
 (c) 33%
 (d) 40%

81. Most effective water treatment method in rural area:
 (a) Rapid sand filter
 (b) Slow and filter
 (c) Chlorination of water
 (d) Ozonization

82. One tablet of chlorine is effective to disinfect how much quantity of water:
 (a) 5 L
 (b) 10 L
 (c) 20 L
 (d) 30 L

83. Residual level of chlorine in disinfected water should be:
 (a) 0.25 mg/L
 (b) 0.5 mg/L
 (c) 1 mg/L
 (d) 1.5 mg/L

84. Criteria for safe drinking water:
 (a) pH 6.5-8.5
 (b) Chloride 0.8 g/L
 (c) Nitrate 0.2 g/L
 (d) Solids-12000 mg/L

85. Schmutzdecke refers to the following:
 (a) Suspended matter in drinking water
 (b) Algae in drinking water
 (c) Alum flocculate on surface of sand bed filter
 (d) Algae, plankton, diatoms and bacteria on surface of sand bed filter

86. Water sample from a well was tested using Horrock’s apparatus. It was observed that 3rd white cup showed blue colour after addition of starchiodide indicator. How much bleaching powder is required to disinfect 2275 liters of the well water?
 (a) 5 gms
 (b) 15 gms
 (c) 25 gms
 (d) 30 gms
87. One chlorine tablet is efficient to chlorinate how many liters of water? [MH 2002]
 (a) 10 liters
 (b) 20 liters
 (c) 30 liters
 (d) 40 liters

88. Drawback of ozone as water disinfectant is: [MH 2003]
 (a) No virucidal effect
 (b) Long time period for action
 (c) Teratogenicity
 (d) No residual action

89. Criteria for “Problem village” include all except: [JIPMER 1998](MH 2006]
 (a) Where no water source in a distance of 1.6 km from community
 (b) Water is more than depth of 15 meter
 (c) There is excess of Na+, K+, F+ salts
 (d) Risk of Guinea worm infection

90. Residual chlorine after 1 hour is: [R] 2000
 (a) 0.5 mg
 (b) 1 mg
 (c) 5 mg
 (d) 10 mg

91. Chlorine demand is measured by:
 (a) Horrock’s apparatus
 (b) Orthotoludine test
 (c) Phosphatase test
 (d) All of these

92. Chlorine acts due to:
 (a) Hypochlorus acid
 (b) Hydrocholoric acid
 (c) Chloride iron
 (d) None

93. Recommended hardness of water (mequ/L): [R] 2002
 (a) 50-150
 (b) 150-300
 (c) 300-500
 (d) 700

94. After water chlorination, residual chlorine should be:
 (a) 1 mg/L
 (b) 10 mg/L
 (c) 0.5 mg/L
 (d) 100 mg/L

95. Psychrometer is used to measure: [AIPGME 2008]
 (a) Humidity
 (b) Air velocity
 (c) Room temperature
 (d) Radiant heat

96. All of the following are types of mechanical ventilation except: [AIIMS May 1995]
 (a) Perflation and Aspiration
 (b) Exhaust ventilation
 (c) Plenum ventilation
 (d) Air conditioning

97. All are indicators of air pollution except:
 (a) Soiling index
 (b) McArdle’s index
 (c) Suspended particle count
 (d) SO2 Concentration

98. McArdle’s maximum allowable sweat rate is:
 (a) 4 lit /4 hours
 (b) 4 lit /1 hours
 (c) 4.5 lit/4 hours
 (d) 4.5 lit/8 hours

99. Kata thermometer measures:
 (a) Air temperature only
 (b) Air temperature and humidity
 (c) Air temperature, humidity and air movement
 (d) Air velocity only

100. ‘Cooling Power’ of air is measured by:
 (a) Kata thermometer
 (b) Hygrometer
 (c) Anemometer
 (d) Sling’s Psychrometer

101. The mechanical system in which fresh air is blown into the room by centrifugal fans so as to create positive pressure and displace the vitiated air is termed as:
 (a) Balanced ventilation
 (b) Air conditioning
 (c) Exhaust ventilation
 (d) Plenum ventilation

102. Kata thermometer measures:
 (a) Air temperature only
 (b) Air temperature and humidity
 (c) Air temperature humidity and air movement
 (d) None of the above

103. The mean radiant temperature is measured by:
 (a) Dry bulb thermometer
 (b) Wet bulb thermometer
 (c) Six’s maximum and minimum thermometer
 (d) Globe thermometer

104. The instrument used for recording very low air velocities is:
 (a) Globe thermometer
 (b) Kata thermometer
 (c) Anaemometer
 (d) Sling psychrometer
105. Global warming true is:
(a) CO2 is a major greenhouse gas
(b) Stratosphere ozone layer is harmful
(c) CFC increases stratosphere ozone layer
(d) Kyoto protocol called for 20% reduction in greenhouse emissions

106. Which of the following is not a source of Indoor Air Pollution?
(a) Carbon monoxide
(b) Nitrogen dioxide
(c) Radon
(d) Mercury vapour

107. Indoor air pollution does not cause:
(a) Chronic lung disease
(b) Pregnancy problems
(c) Childhood pneumonia
(d) Neuro-developmental problems

108. Which of the following is non-natural gas causing greenhouse effect?
(a) Carbon dioxide
(b) Methane
(c) Ozone
(d) CFCs

109. The best parameter to measure air pollution is:
(a) SO2
(b) CO2
(c) CO
(d) N2O

110. Acceptable level for physical comfort:
(a) Corrected effective temperature 77-80°F
(b) Corrected effective temperature 70-76°F
(c) Corrected effective temperature 80-81°F
(d) Corrected effective temperature >82°F

111. Air velocity is measured by:
(a) Hygrometer
(b) Psychrometer
(c) Anemometer
(d) Wet bulb thermometer

112. Which agency monitors air quality in India?
(a) Central Research Institute
(b) Ministry of health and Family Welfare
(c) National Environmental Engineering Research Institute
(d) Central Pollution Control Board

113. In winter, water vapours and pollutants comes to lie in the lowermost layer of atmosphere by:
(a) Acid rain
(b) Greenhouse effect
(c) Temperature inversion
(d) Ocean effect

114. At which level of heat stress index it is not possible to work comfortably causing threat to health:
(a) 20 - 40
(b) 40 - 60
(c) 60 - 80
(d) 80 – 100

115. Number of air changes in one hour in a drawing room should be at least:
(a) 2
(b) 3
(c) 4
(d) 5

116. Number of air changes in a drawing room per hour should be at least:
(a) 2-3
(b) 3-4
(c) 4-5
(d) 5-6

117. Number of air changes in one hour in a work room should be at least:
(a) 2-3
(b) 3-4
(c) 4-6
(d) 5-7

118. The best parameter to measure air pollution is:
(a) SO2
(b) CO2
(c) CO
(d) N2O

119. The best indicator of air pollution is:
(a) SO2
(b) CO2
(c) CO
(d) N2O

120. Number of air changes in one hour in a drawing room should not be less than:
(a) 2
(b) 3
(c) 4
(d) 5

121. The best chemical parameter to measure air pollution is:
(a) SO2
(b) CO2
(c) CO
(d) N2O

122. The best parameter in measure air pollution is:
(a) SO2
(b) CO2
(c) CO
(d) N2O
123. Acceptable level for physical comfort:
(a) Corrected effective temperature 79°F [DNB 2008]
(b) Corrected effective temperature 70-76°F
(c) Corrected effective temperature 80-81°F
(d) Corrected effective temperature > 82°F

124. For air pollution, the best indicator used in India is:
(a) SO₂ [Bihar 2004]
(b) Dust
(c) CO
(d) Lead

125. Best indication of air pollution is:
(a) SO₂ [UP 2002]
(b) CO₂
(c) Smoke index
(d) Suspended particle

126. The effective temperature of ‘comfort zone’ is:
(a) 69 – 76°F [Recent Question 2013][UP 2005]
(b) 77 – 80°F
(c) 83 – 85°F
(d) 86 – 90°F

127. In Indoor air pollution, carbon monoxide is produced by:
(a) Combustion equipment [UP 2007]
(b) Stove
(c) Gas heaters
(d) All of the above

128. Kata thermometer is used nowadays to determine:
(b) Humidity of air
(c) Direction of air flow
(d) Cooling power of air

129. CO₂ in air is measured by:
(a) Manometer [Kolkata 2003]
(b) Hygrometer
(c) Kiffer test
(d) None

130. Relative humidity is determined by:
(a) Kata thermometer [Karnataka 2005]
(b) Anemometer [MH 2000]
(c) Sling psychrometer
(d) Gardbad apparatus

131. The best indicator of level of air pollution is:
(a) H₂ [RJ 2006]
(b) CO₂
(c) N₂
(d) SO₂

132. Whispering produces a sound of:
(a) 20-30 dB [AIIMS May 1993]
(b) 30-40 dB
(c) 40-50 dB
(d) 50-60 dB

133. Exposure to following minimum level of sound can cause rupture of tympanic membrane, leading to permanent hearing loss:
(a) 90 dB [AIPGME 2000]
(b) 110 dB
(c) 160 dB
(d) 1600 dB

134. An upper limit of noise which people can tolerate without damage to their hearing is:
(a) 45 db [Karnataka 2004]
(b) 65 db
(c) 85 db
(d) 105 db

135. Exposure to noise above …….. cause permanent loss of hearing:
[DNB 2007]
(a) 85 dB
(b) 90 dB
(c) 100 dB
(d) 160 dB

Review Questions

136. The decibels above which auditory fatigue occurs is:
(a) 60 db [DNB 2003]
(b) 70 db
(c) 85 db
(d) 140 db

137. Exposure to noise above _____ causes permanent loss of hearing:
[DNB 2007]
(a) 85 dB
(b) 90 dB
(c) 100 dB
(d) 160 dB

138. The ‘acceptable’ noise level is:
[UP 2006]
(a) 85 dB
(b) 90 dB
(c) 95 dB
(d) 100 dB

139. Pain in the ear occurs at:
[Kolkata 2002]
(a) 80 dB
(b) 120 dB
(c) 140 dB
(d) 160 dB
140. Highest permissible intensity of sound is: [MP 2003]
 (a) 65 dB
 (b) 85 dB
 (c) 90 dB
 (d) 80 dB

141. Repeated exposure to____ can cause permanent deafness is: [MH 2002]
 (a) 160 dB
 (b) 60 dB
 (c) 90 dB
 (d) 100 dB

142. Upper limit of exposure to noise up to which there is no damage to hearing? [Karnataka 2004](MH 2005)
 (a) 160 dB
 (b) 70 dB
 (c) 85 dB
 (d) 100 dB

143. Upper limit of tolerance of noise/day is (decibel): [R] 2004
 (a) 10
 (b) 85
 (c) 100
 (d) 125

144. Recommended illumination range for regular work is ______ foot-candles: [AIPGME 2001]
 (a) 6-12
 (b) 25-50
 (c) 50-75
 (d) 75-100

145. Day light factor in living room should be:
 (a) 8% [Recent Question 2013] [DNB June 2009]
 (b) 6%
 (c) 10%
 (d) 15%

146. The optimum floor space recommended per adult person in a dwelling place is: [AIIMS Nov 1999]
 (a) 50–100 sq.ft.
 (b) 101–450 sq.ft.
 (c) 151–200 sq.ft.
 (d) 201–250 sq.ft.

147. The optimum floor space recommended per adult person in a house [Karnataka 2004]
 (a) 70–90 sq. ft.
 (b) 101–150 sq.ft.
 (c) 151–200 sq.ft.
 (d) 201–250 sq. ft.

148. All of the following are methods of sewage disposal except: [AIPGME 2006]
 (a) River outfall
 (b) Land treatment
 (c) Oxidation ponds
 (d) Bangalore method (Composting)

149. Waste water from kitchen is called: [AIIMS Dec 1997]
 (a) Refuse
 (b) Garbage
 (c) Sullage
 (d) Sewage

150. The amount of sewage flowing in a system in 24 hours is called: [AIIMS Nov 2000]
 (a) Sewage rate
 (b) Dry weather flow
 (c) RCA index
 (d) Sludge

151. A good trap should have effective seal of:
 (a) 2.5 cm [AIIMS May 1993]
 (b) 5 cm
 (c) 7.5 cm
 (d) 10 cm

152. All are features of septic tank except: [AIPGME 92]
 (a) Ideal retention period – 48 hrs
 (b) Minimum capacity – 500 gallons
 (c) Aerobic oxidation takes place outside
 (d) Sludge is solids setting down

153. Sullage consists of: [AIPGME 2002]
 (a) Solid vegetable waste matter
 (b) Inorganic waste [Recent Question 2013]
 (c) Waste containing human excreta
 (d) Waste water from kitchen

154. Most satisfactory method of Refuse disposal is:
 (a) Dumping [AIIMS May 1993-2003]
 (b) Controlled tipping [AIPGME 1994]
 (c) Incineration
 (d) Manure pits

155. The depth of Water Seal in RCA Latrine is:
 (a) 1 cm [AIIMS Dec 1991]
 (b) 2 cms
 (c) 5 cms
 (d) 12 cms

156. Strength of sewage is expressed in terms of all except: [AIPGME 2006]
 (a) E-Coli Count
 (b) Suspended particles
 (c) Chemical oxygen demand
 (d) Biological oxygen demand
The biological oxygen demand (BOD) indicates:
(a) Organic matter \[AIPGME\ 2002,\ AIIMS\ June\ 2000\]
(b) Bacterial content
(c) Anaerobic bacteria
(d) Chemicals

Waste water without human excreta is called:
(a) Sewage \[DPG\ 2006\]
(b) Humus
(c) Sullage
(d) Effluent

Following latrines are suitable for camps and temporary use except: \[Karnataka\ 2004\]
(a) Shallow trench latrine
(b) Pit latrine
(c) Borehole latrine
(d) Septic tank

Biochemical oxygen demand is calculated to know:
(a) Organic waste
(b) Inorganic waste
(c) Total solids
(d) Toxic substances

Following are the waste types not to be incinerated except: \[Karnataka\ 2009\]
(a) Pressurized gas containers
(b) Reactive chemical waste
(c) Halogenated plastics
(d) Content of combustible matter above 60%

It waste water contain toxic substances, organic load is measured by: \[Recent\ Question\ 2013\]
(a) Biological oxygen demand
(b) Chemical oxygen demand
(c) Suspended solid
(d) None

The heart of activated sludge process is: \[Recent\ Question\ 2012\]
(a) Aeration tank
(b) Primary sedimentation
(c) Digestion tank
(d) Secondary sedimentation tank

Septic tank true is/ are: \[PGI\ November\ 2014\]
(a) Treatment of household sewage
(b) Suitable in presence of public sewerage system
(c) Aerobic oxidation outside septic tank
(d) Anaerobic digestion inside septic tank
(e) Retention period 6 hours

True about Sewage is/ are: \[PGI\ November\ 2014\]
(a) Does not contain human excreta
(b) Strength measured by Biological oxygen demand
(c) BOD >100 mg/L is strong sewage
(d) Composed of 90% water
(e) Dry weather flow is measured for 24 hours period

Review Questions

The sewage ground water is disposed by: \[DNB\ 2002\]
(a) Oxidation pond
(b) Soakage pit
(c) Activated sludge process
(d) Any of the above

If land is available the ideal method of disposal is:
(a) Composting \[Bihar\ 2003\]
(b) Incineration
(c) Controlled tipping
(d) None

Not a feature of septic tank: \[Bihar\ 2005\]
(a) Used for personal and small public use
(b) Water tight compartment
(c) Used where water supply is adequate
(d) Used where public sewerage system is adequate

Trickling filter is used in: \[UP\ 2000\]
(a) Primary treatment of sewage
(b) Secondary treatment of sewage
(c) Swage effluent treatment
(d) Sewage farming treatment

Best method for disposal of refuse where land is available: \[Kolkata\ 2008\]
(a) Burial
(b) Dumping
(c) Manure pit
(d) Controlled tipping

Most important prerequisite in sanitary latrine is: \[MP\ 2002\]
(a) Water seal
(b) Adequate drainage
(c) Squatting plate/slab
(d) Smooth slope of the pan

Septic tank true is: \[MP\ 2004\]
(a) Always double chamber
(b) Minimum 200 galon capacity
(c) Depth is from 5-7 feet
(d) Retention period is of 24 hrs

The function of grit chamber in modern sewage plants is: \[MP\ 2008\]
(a) Formation of sludge
(b) Removal of floating large objects
(c) Settlement of heavy objects
(d) Formation of Zoogeleal layer

All the following wastewater contains human excreta except: \[MH\ 2005\]
(a) Sewage
(b) Sullage
(c) Faeces
(d) None
175. **Strength of sewage is expressed in terms of all except:**
- (a) Biological Oxygen Demand
- (b) Chemical oxygen demand
- (c) Suspended solids
- (d) Coliform count [JIPMER 1985, TN 1993, MH 2006]

176. **Sullage in rural area is disposed by:** [R] 2001
- (a) Gobar gas plant
- (b) Septic tank
- (c) Sewage system
- (d) Incineration

177. **Water not containing feces:** [R] 2005
- (a) Sewage
- (b) Sullage
- (c) Both
- (d) None of these

178. **Poliovirus transmission does not occur through:** [R] 2005
- (a) Sewage
- (b) Sullage
- (c) Both
- (d) None of these

179. **Which of the following is not a recommended sanitation measure for swimming pool sanitation?**
- (a) Recommended area per swimmer = 2.2 sq. metre
- (b) Water to be refiltered in less than 6 hours (rapid sand filters)
- (c) Residual level of free chlorine to be > 0.5 ppm
- (d) 15% water to be replaced by fresh water every day [AIIMS May 2005]

180. **The permissible dose of man made radiation should not exceed:** [Karnataka 2004]
- (a) 3 rads per year
- (b) 5 rads per year
- (c) 8 rads per year
- (d) 10 rads per year

181. **10-days rule is related to:** [Recent Question 2012]
- (a) Sewage disposal
- (b) Air quality
- (c) Water quality
- (d) Radiation protection in pregnancy

182. **Unit of absorbed radiation is:** [Recent Question 2012]
- (a) Roentgen
- (b) Rad
- (c) Rem
- (d) Sievert

183. **Thickness of lead apron of prevent radiation:** [Recent Question 2012]
- (a) 0.1 mm
- (b) 0.2 mm
- (c) 0.5 mm
- (d) 1 mm

184. **Maximum solar radiation in India is received by:** [Recent Question 2013]
- (a) Kerala
- (b) Jammu & Kashmir
- (c) Rajasthan
- (d) Gujarat

185. **Acceptable safe dose of radiation during pregnancy is:** [Recent Question 2014]
- (a) 1 rad
- (b) 2 rads
- (c) 5 rads
- (d) 0.5 rads

Review Questions

186. **Venturimeter is used to measure:** [Kolkata 2002]
- (a) Air velocity
- (b) Size of suspended particles in the air
- (c) SO2 content in the atmosphere
- (d) Bed resistance in a slow sand filter

187. **Soiling index is a measure of:** [MP 2003]
- (a) Soil pollution [Recent Question 2013]
- (b) Water pollution [Recent Question 2014]
- (c) Noise pollution
- (d) Air pollution

ENTOMOLOGY AND VECTOR CONTROL

188. **Mites are the vectors of the following diseases except** [AIIMS Nov 2003]
- (a) Scabies
- (b) Scrub typhus
- (c) Rickettsial pox
- (d) Kyasanur forest disease

189. **Pyrethrum is a:** [AIIMS Dec 1991]
- (a) Contact poison [Recent Question 2013]
- (b) Stomach poison
- (c) Both of above: a + b
- (d) Space poison

190. **Match the following: Method of mosquito control**

<table>
<thead>
<tr>
<th>Example</th>
<th>A. Mosquito larvicidal oil [Larvivorous fish] (MLO)</th>
<th>B. Bacillus thuringiensis (Bacteria) H14</th>
<th>C. Source reduction</th>
<th>D. Barbados millions</th>
</tr>
</thead>
</table>

191. **Mosquitoes that breed in dirty water collection are:** [AIIMS Dec 1995]
- (a) Anopheles
- (b) Culex
- (c) Aedes
- (d) Mansonia
192. Lice are not the vectors of:
(a) Relapsing fever
(b) Q fever
(c) Trench fever
(d) Epidemic typhus

193. Example of cyclopropagative transmission is:
(a) Plague bacilli in rat flea
(b) Malarial parasite in mosquito
(c) Microfilaria in mosquito
(d) Guinea worm embryo in Cyclops

194. Which of the following is incorrectly matched?
(a) Agent changes in form and number: Cyclopropagative transmission
(b) Agent merely multiples in vector, but no change in form: Propagative transmission
(c) Agent undergoes only development but no multiplication: Cyclodevelopmental transmission
(d) Agent transmitted from nymph to adult vector: Transovarial transmission

195. All of the following statements about mosquito are true except:
(a) It is a definitive host in malaria
(b) It is a definitive host in filaria
(c) Its life cycle is completed in 3 weeks
(d) The female can travel upto 3 kilometers

196. A child has multiple itchy papular lesions on the genitalia and fingers. Similar lesions are also seen in the younger brother. Which of the following is most possible diagnosis?
(a) Papular urticaria
(b) Scabies
(c) Atopic dermatitis
(d) Allergic contact dermatitis

197. Reduviid bug is a vector for the transmission of:
(a) Relapsing fever
(b) Lyme’s disease
(c) Scrub typhus
(d) Chagas’ disease

198. Babesiosis is transmitted by:
(a) Tick
(b) Mites
(c) Flea
(d) Mosquito

199. Dengue fever is transmitted by:
(a) Tiger mosquito
(b) Jackal mosquito
(c) Wolf mosquito
(d) Lion mosquito

200. Which of the following flies do not bite:
(a) Sand fly
(b) Housefly
(c) Blackfly
(d) Tse tse fly

201. Which of the following flies is found in cracks and crevices of walls during daytime?
(a) Sand fly
(b) Housefly
(c) Blackfly
(d) Tse tse fly

202. All of the following diseases are caused by Soft Tick except:
(a) Tularemia
(b) Q fever
(c) Relapsing fever
(d) KFD

203. Spot the wrongly matched pair of arthropod and disease transmitted:
(a) Housefly – Poliomyelitis
(b) Louse – Epidemic typhus
(c) Itch mite – Scabies
(d) Black fly – Chagas Disease

204. Best approach to control of arthropods is:
(a) Environmental Control
(b) Chemical Control
(c) Biological Control
(d) Genetic Control

205. Flight range for Aedes Mosquito is
(a) 10 meters
(b) 100 meters
(c) 400 meters
(d) 11 kms

206. Normal life span of mosquitoes is:
(a) 2-3 days
(b) 5-7 days
(c) 8-34 days
(d) 3-4 months

207. True about Paris green for mosquito control is:
(a) It is used as an anti-adult measure
(b) It is more effective against Anopheles
(c) In usual doses also it harms fish, man and domestic animals
(d) It is a nerve poison

208. Sandfly does not transmit:
(a) Kala-azar
(b) Oriental sore
(c) Oraya fever
(d) Trench fever

209. Rat flea transmit following diseases except:
(a) Murine typhus
(b) Pneumonic plague
(c) Chiggerosis
(d) Hymenolepis dimunita

210. Drug of choice for Scabies is:
(a) 25% Benzyl benzoate
(b) 5% Permethrin
(c) 1% HCH
(d) 5% Sulphur ointment
211. Diseases associated with rodents include all except:
 (a) Leptospirosis [AIIMS May 2006]
 (b) Rat Bite fever
 (c) Tularemia
 (d) Oriental sore
 (c) Trench fever [AIIMS May 2006]
 (d) Q fever
 (e) Rocky mountain Spotted fever

212. All of the following methods are anti-larval measures except:
 (a) Intermittent irrigation [AIIMS Nov 2008]
 (b) Paris green
 (c) Gambusia affinis
 (d) Pyrethrum

213. Scabies is transmitted by:
 (a) Mite [DPG 2007]
 (b) Tick
 (c) Louse
 (d) Rat flea

214. Aedes mosquito transmit the following diseases except:
 (a) Yellow fever [Karnataka 2008]
 (b) Dengue fever
 (c) Chikungunya fever
 (d) Japanese encephalitis

215. Aedes aegypti transmits following diseases:
 (a) Yellow fever [PGI 1997]
 (b) Dengue
 (c) Japanese encephalitis
 (d) Filariasis
 (e) Malaria

216. Disease transmitted by louse include:
 (a) Epidemic typhus [PGI June 02]
 (b) Endemic typhus
 (c) Trench fever
 (d) RMSF
 (e) Scrub typhus

217. Organophosphate insecticides are all except:
 (a) Dieldrin [PGI Dec 03]
 (b) Fenthion
 (c) Diazinon
 (d) Propoxur
 (e) Lindane

218. Aedes aegypti transmits:
 (a) JE [PGI June 04]
 (b) KFD
 (c) Yellow fever
 (d) Filaria
 (e) Dengue

219. Vector borne diseases are:
 (a) Syphilis [PGI June 04]
 (b) Typhus
 (c) Dengue
 (d) J.E.
 (e) HIV

220. Diseases transmitted by louse:
 (a) Epidemic typhus [PGI Dec 08]
 (b) Scrub Typhus
 (c) Relapsing fever [AIIMS May 2010]
 (d) Trench fever
 (d) Anopheles

221. Chikungunya is transmitted by:
 (a) Aedes [AIIMS May 2010]
 (b) Culex
 (c) Mansonoides
 (d) Anopheles

222. Not spread by louse:
 (a) Epidemic typhus [AIIMS May 2010]
 (b) Q fever
 (c) Relapsing fever
 (d) Trench fever

223. Aedes- True are A/E:
 (a) Recurrent biters [AIIMS May 2010]
 (b) Eggs can’t survive >1 wk without water
 (c) Transmits Dengue
 (d) It takes 7-8 days to develop the parasite and transmit the disease

224. Hard tick is the vector of all the following diseases except:
 (a) Relapsing fever [AIIMS Nov 2010]
 (b) KFD
 (c) Indian tick typhus
 (d) Tularaemia

225. Which of the following is not DDT-resistant?
 (a) Musca domestica [AIPGME 2011]
 (b) Phlebotamus
 (c) Culex mosquito
 (d) Anopheles stephensi

226. All of the following are deliberate measures of mosquito control except:
 (a) Use of alkaline soap water in factory [AIPGME 2011]
 (b) Use of larvicidal agents
 (c) Community participation
 (d) Use of bed-nets for mosquito

227. Vectors do not transmit infection by:
 (a) Ingestion [AIIMS May 2011]
 (b) Regurgitation
 (c) Rubbing
 (d) Contamination with body fluids

228. Least toxic organophosphorus compound is:
 (a) DDT [DPG 2011]
 (b) Paris green
 (c) Malathion
 (d) Parathion

229. Which of the following statements regarding DDT is false?
 (a) Pyrethrum has synergistic action [AIIMS May 2011]
 (b) It is a contact poison
 (c) Immediately kills the prey
 (d) Residual effect lasts 18 months
230. Following are larval control measures except?
(a) DDT [AIIMS May 2011]
(b) Paris green [AIIMS November 2011]
(c) Gambusia fish
(d) Intermittent irrigation

231. Which of the following disease is transmitted globally by Anopheles, Culex and Aedes mosquitoes?
(a) Malaria [AIPGME 2012]
(b) Yellow fever
(c) Dengue fever
(d) Filariasis

232. Following are used for treatment of Scabies in India except:
(a) Crotamiton lotion [PGI November 2011]
(b) Sulphur ointment
(c) Tetmasol
(d) Ivermectin
(e) Rifampicin

233. Which of the following viral infections is transmitted by tick?
(a) Japanese encephalitis [DNB 2007]
(b) Dengue fever
(c) Kyasanur forest disease (KFD)
(d) Yellow fever

234. Percentage of para-para isomer in DDT is:
(a) 20-30% [DNB 2008]
(b) 40-50%
(c) 60-70%
(d) 70-80%

235. Mineral oils are used in mosquito control measure as:
(a) Personal protection methods [DNB 2008]
(b) Larvicide
(c) Adulticide
(d) Space spray

236. The Anopheles species most commonly found in coastal regions is:
(a) Anopheles philippensis [DNB 2008]
(b) Anopheles stephensi
(c) Anopheles fluviatilis
(d) Anopheles minimums

237. Which of the following insecticide is least toxic to man and most toxic to insects?
(a) Malathion [Bihar 2004]
(b) Parathion
(c) Physostigmine
(d) Nicotine

238. Black flies causes:
(a) Oriental sore [UP 2003]
(b) Onchocerciasis
(c) Scabies
(d) Plague

239. True about vector is:
(a) Plague is caused by mite [UP 2003]
(b) Sleeping sickness is caused by tse tse flies
(c) Kala-azar is caused by W. bancrafi
(d) Epidemic typhus is caused by Flea

240. DDT is:
(a) Stomach poison [UP 2003]
(b) Repellants
(c) Contact poisons
(d) Fumigants

241. Black fly transmits:
(a) Onchocerciasis [MP 2001] (UP 2003)
(b) Cysticercosis
(c) Filariasis
(d) Kala-azar

242. An example of Space Spray is:
(a) Pyrethrum [AP 2001]
(b) Malathion
(c) DDT
(d) Paris green

243. All are true regarding DDT, except:
(a) It is primarily a contact poison [AP 2005]
(b) It acts as neurotoxin
(c) It does not cause immediate death, but it takes several hours to kill
(d) It has repellent action on insects

244. Culex mosquito is associated with transmission of:
(a) Malaria [AP 1978] (Madhyapradesh 2004]
(b) Typhus [TN 2000]
(c) Dengue fever [TN 2000]
(d) Japanese encephalitis

245. The most prevalent mosquito-born viral disease in India:
(a) Dengue fever [AP 1980] (TN 2000]
(b) Japanese ‘B’ encephalitis
(c) Yellow fever
(d) Kyasanur forest disease

246. DDT is a:
(a) Organochlorine compound [TN 2005]
(b) Organophosphorus compound
(c) Carbamate
(d) Stomach poison

247. Paris Green is used to eliminate the larva of:
(a) Anopheline [TN 2005]
(b) Culex [Recent Question 2013]
(c) Aedes
(d) Mansonoides

248. Japanese encephalitis is transmitted by:
(a) Mosquito [Kolkata 2002]
(b) Tick [Recent Question 2013]
(c) Mite
(d) Rat flea

https://kat.cr/user/Blink99/
249. Dengue transmitted by:
- (a) Culex
- (b) Aedes
- (c) Anopheles
- (d) Mansonoides

250. All belongs to class Insecta except:
- (a) Housefly
- (b) Rat fleas
- (c) Ticks
- (d) Bedbugs

251. Vector of Bancroftian filariasis:
- (a) Aedes
- (b) Culex
- (c) Mansonia
- (d) Anopheles

252. True about sand flea:
- (a) Not found in India
- (b) Causes ulcers in foot
- (c) Causes bubo in groin
- (d) Vector for Kala-azar

253. Dengue fever is transmitted by:
- (a) Culex
- (b) Mansonina
- (c) Aedes aegypti
- (d) Sand fly

254. Which insecticide is used for space-spray:
- (a) Pyrethrum
- (b) DDT
- (c) Malathion
- (d) BHC

255. Black fly transmits:
- (a) Kala-azar
- (b) Onocerciasis
- (c) Cahgas disease
- (d) Oryza fever

256. Which of the followings is transmitted by ticks:
- (a) H. nana
- (b) Babesiosis
- (c) Loa-Loa
- (d) CJ-disease

257. Mosquito borne diseases are all except:
- (a) KFD
- (b) Malaria
- (c) Filaria
- (d) Dengue fever

258. Natural insecticide among following is:
- (a) Malathion
- (b) Pyrethrum
- (c) Aldrin
- (d) BHC

259. Culex is the vector for:
- (a) Filaria
- (b) JE
- (c) Dengue
- (d) Yellow fever

260. Which of the following diseases is transmitted by soft tick?
- (a) Tularemia
- (b) Q fever
- (c) Colorado tick fever
- (d) Human babesiosis

261. Which of the following is “nuisance mosquito”?
- (a) Anopheles
- (b) Culex
- (c) Aedes
- (d) Mansonoides

262. Mosquitoes whose larvae lie horizontal on water and thus rest parallel to surface of water:
- (a) Aedes
- (b) Anopheles
- (c) Culex
- (d) Mansonoides

263. The nerve gas ‘sarin’ is:
- (a) Organophosphorous compound
- (b) Organochloro compound
- (c) Carbamate
- (d) Acridine

264. Soft tick transmits all the following Except:
- (a) Q fever
- (b) Relapsing fever
- (c) KFD
- (d) RMSF

265. Which of the following mosquito transmit Japanese encephalitis?
- (a) Culex
- (b) Aedes
- (c) Mansonoides
- (d) All of the above

266. Which of the following type of mosquito can be controlled by removing and destroying the aquatic plants by herbicides?
- (a) Aedes
- (b) Culex
- (c) Mansonoides
- (d) Anopheles

267. KFD is transmitted by:
- (a) Tick
- (b) Mite
- (c) Sand Flea
- (d) Mosquito
268. Scrub typhus is transmitted by: [RJ 2003]
 (a) Mite [Recent Question 2013]
 (b) Tick
 (c) Flea
 (d) Louse

269. Aedes aegypti index for control of yellow fever should be less then: [RJ 2004]
 (a) 1
 (b) 2
 (c) 3
 (d) 5

270. All are true about Pyrethrum except: [RJ 2009]
 (a) Residual action is similar to DDT
 (b) Vegetable origin
 (c) Contact poison
 (d) Synergistic with DDT

271. Most hazardous pesticide colour coding is: [AIIMS PG MEE November 2013]
 (a) Red
 (b) Green
 (c) Yellow
 (d) Black

272. Louse transmitted disease(s) is/are: [PGI November 2012]
 (a) Trench fever
 (b) Q fever
 (c) KFD
 (d) Epidemic typhus
 (e) Pediculosis

273. Disease(s) spread by ticks include: [PGI May 2012]
 (a) Epidemic typhus
 (b) Endemic typhus
 (c) Scrub typhus
 (d) RMSF
 (e) Crimean Congo Fever

274. Cyclo-propogative cycle is: [DNB June 2011] [DNB December 2011]
 (a) Malaria
 (b) Plague
 (c) Cholera
 (d) Filariasis

275. Plague undergoes: [DNB December 2011]
 (a) Trans-ovarian cycle
 (b) Propogative cycle
 (c) Cyclo-developmental
 (d) Cyclo-propogative

276. Phlebotomus argentipes is killed by: [DNB December 2011]
 (a) Pyrethrum
 (b) DDT
 (c) Malathion
 (d) None of the above

277. Mode of transmission of Q fever: [DNB 2008]
 (a) Ticks
 (b) Mites

278. Urban malaria is transmitted by? [Recent Question 2013]
 (a) Anopheles culiciacies
 (b) Anopheles stephensi
 (c) Anopheles fluviatilis
 (d) Anopheles minimus

279. Disease transmitted by Hard tick include all except:
 (a) Viral encephalitis [DNB December 2011]
 (b) Oriental sore
 (c) Tick paralysis
 (d) Tularaemia

280. Mineral oils are used in mosquito control measure as a: [DNB 2008]
 (a) Personal protection methods
 (b) Larvicide
 (c) Adulticide
 (d) Space spray

281. The anopheles species most commonly found in coastal regions is: [DNB 2008]
 (a) Anopheles philippinesis
 (b) Anopheles stephensi
 (c) Anopheles fluviatilis
 (d) Anopheles minimus

282. Range of flight of Aedes mosquito is? [Recent Question 2013]
 (a) 1 Km
 (b) Less than 100 m
 (c) 400 m
 (d) 10 Kms

283. The distance from airport or seaport which has to be kept free from aedes mosquitoes is:
 (a) 400 m [Recent Question 2013]
 (b) 500 m
 (c) 1 km
 (d) 100 m

284. Transovarian transmission is seen in:
 (a) Rickettesial disease [Recent Question 2013]
 (b) Malaria
 (c) Filariasis
 (d) None

285. Cyclo-developmental stage is seen in:
 (a) Malaria [Recent Question 2012]
 (b) Filaria [Recent Question 2013]
 (c) Plague
 (d) Cholera

286. Fenthion is:
 (a) Space spray
 (b) Residual spray
 (c) Stomach poison
 (d) Fumigant

287. Transovarian transmission is seen in:
 (a) Ticks [Recent Question 2013]
 (b) Louse
 (c) Flea
 (d) None
288. **Best way to control houseflies:**
(a) Eliminate breeding places
(b) Insecticide spray
(c) BedNet use
(d) Paris green

289. **Sandfly can fly upto**
(a) 50 yards
(b) 100 yards
(c) 200 yards
(d) 300 yards

290. **Number of holes per square inch of a standard mosquito net is:**
(a) 100
(b) 150
(c) 250
(d) 175

291. **Regarding anopheles mosquito true is all except:**
(a) Eggs are laid singly on water
(b) Larva don’t have siphon tube
(c) Wings are spotted
(d) Pupa don’t have siphon tube

292. **Which of the following viral infections is transmitted by tick?**
(a) Japanese encephalitis
(b) Dengue fever
(c) Kyasanur forest disease
(d) Yellow fever

293. **Percentage of para-para isomer in DDT is:**
(a) 20-30%
(b) 40-50%
(c) 60-70%
(d) 70-80%

294. **Average number of mites found on the body in a person suffering from scabies is:**
(a) 1-2
(b) 5-10
(c) 10-15
(d) 15-20

295. **Mosquito-net hole diameter is:**
(a) 0.02 inch
(b) 0.0475 inch
(c) 0.5 inch
(d) 0.9 inch

296. **Ixodes ticks transmit:**
(a) Babesiosis
(b) Tularaemia
(c) Lyme’s disease
(d) KFD

297. **Disease(s) transmitted by Aedes aegypti include:**
(a) Yellow fever
(b) Dengue
(c) Chikungunya fever
(d) West Nile fever
(e) Rift valley fever

298. **Disease(s) transmitted by Louse include:**
(a) Epidemic typhus
(b) Scrap typhus
(c) Relapsing fever
(d) Trench fever
(e) Q fever

299. **Features of Anopheles mosquito include:**
(a) Stripes on wings
(b) Larva rests at an angle to water surface
(c) Adult rests at angle to surface of skin
(d) Eggs laid in clusters
(e) No siphon tube in larvae

300. **Mansonia mosquito is a vector of all of the following diseases except:**
(a) Malaria
(b) Brugian filariasis
(c) Chikungunya fever
(d) St. Louis Encephalitis

301. **Cigar-shaped eggs are seen in:**
(a) Culex
(b) Aedes
(c) Anopheles
(d) Mansonia

302. **Most efficient anti-larval measure to prevent urban malaria is:**
(a) Clean drainage and sewerage systems
(b) Cover overhead tanks properly
(c) Filling cesspools and ditches
(d) Cover pits
WATER

1. Ans. (b) Rain water [Ref. Park 21/e p654, Park 22/e p656]
 - Rain:
 - Is the prime source of all water
 - Is the ‘purest form of water in nature’
 - Chemically, it is very soft water: contains traces (0.0005%) of solids
 - Gibraltar depends on rain water as a source of supply

Also Remember

- Safe and wholesome water: has been defined as water that is
 - Free from pathogenic agents
 - Free from harmful chemical substances
 - Pleasant to taste (free from colour and odour)
 - Usable for domestic purposes

- Water is said to be ‘polluted’ or ‘contaminated’ if it does not fulfill above criteria
- Safe yield of water: Yield that is adequate for 95% of the year.

2. Ans. (c) 1 ppm free chlorine should be present in water after break point has reached [Ref. Park 21/e p661, Park 22/e p695]

CHLORINATION OF WATER

- Disinfecting action of chlorine in water is due to:
 - Hypochlorous acid (HOCl) – Main role in disinfection
 - Hypochlorite ions (OCl) – Minor role in disinfection

- Chlorine has residual germicidal effect (and not Ozone or UV rays): Provides a margin of safety against subsequent microbial contamination, as may occur during storage and distribution

- Phases of Chlorination:
 - Phase I: Formation of chloramines
 - Phase II: Destruction of chloramines
 - Phase III: Appearance of break-point
 - Phase IV: Accumulation of free residual chlorine

- Recommended contact period of free residual chlorine in water: 1 hour
- Level of free residual chlorine (FRC) recommended:

<table>
<thead>
<tr>
<th>Water type</th>
<th>Recommended</th>
<th>Contact period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water</td>
<td>Residual chlorine level*</td>
<td>1 hour</td>
</tr>
<tr>
<td></td>
<td>> 0.5 mg per litre (ppm)</td>
<td></td>
</tr>
<tr>
<td>Water bodies, post disaster</td>
<td>> 0.7 mg per litre (ppm)</td>
<td>1 hour</td>
</tr>
<tr>
<td>Swimming pool sanitation</td>
<td>> 1.0 mg per litre (ppm)</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

* (1 mg per litre = 1 ppm)

- Correct dose of chlorine to be applied: Chlorine demand + FRC 0.5 mg per litre.
Also Remember

• Bleaching powder (CaOCl2) contains: 33% available chlorine
• Chlorine acts best as a disinfectant for water at: pH around 7.0
• Instruments used in chlorination of water:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horrock’s Apparatus</td>
<td>Chlorine demand estimation</td>
</tr>
<tr>
<td>Chlorinator/Chloronome</td>
<td>Mixing or regulating dose of chlorine</td>
</tr>
<tr>
<td>Chloroscope</td>
<td>Measuring residual level of chlorine</td>
</tr>
</tbody>
</table>

• Tests for chlorination of water:
 - *Ortho-toulidine (OT)* Test: Measure the levels of,
 1. Free chlorine
 2. Free & Combined chlorine
 - *Ortho-toulidine Arsenite (OTA)* Test: Measure the levels of,
 1. Free chlorine
 2. Combined chlorine
• OTA test is better than OT test as:
 - Detects both free and combined chlorine separately
 - Not affected by interfering substances (nitrites, iron, manganese).

3. Ans. (d) 45 mg/l [Ref. Park 21/e p668-69, Park 22/e p671, 672]
• Guideline value of nitrate in drinking water: < 50 mg/litre
 - Nitrates in drinking water indicate: Remote contamination
 - Is solely used for prevention of methemoglobinemia
• Guideline value of nitrite in drinking water: < 3 mg/litre
 - Nitrites in drinking water indicate: Recent contamination
 - May lead to ‘Blue baby syndrome’
• Concentration of nitrate/Guideline value of nitrate + Concentration of nitrite/Guideline value of nitrite should be ≤ 1

4. Ans. (c) Cl. Tetani [Ref. Park 21/e p666-67, Park 22/e p669, 670]
• Bacteriological indicators of water quality:
 - Coliforms (E.coli is most important microbiological indicator)
 - Fecal streptococci (Indicator of recent contamination) (Sodium Azide medium)
 - Clostridium perfringens (Indicator of remote contamination)
• Acceptable level of *coliforms in drinking water*: None
 - EXCEPTION: In large urban supplies, up to 5% samples are acceptable to be contaminated, if taken continuously for a period of 12 month

5. Ans. (d) 150-200 lit [Ref. Park 21/e p653, Park 22/e p655]
• Water supply considered adequate to meet the need for domestic purposes:
 - Urban: 150-200 litres per capita per day
 - Rural: 40-60 litres per capita per day
• Daily drinking water requirement: 2-3 litres per capita per day.

Also Remember

• Criteria for identification of ‘Problem Habitations’:
 - *Not Covered (NC)/No Safe Source (NSS) Habitations*:
 1. Drinking water source point is not within 1.6 kms in plains or 100 m elevation in hilly areas
 2. Water source affected with quality problems like excess salinity, iron, fluoride, arsenic, or other toxic materials or biologically contaminated
 3. Quantum of availability of safe water is not enough to meet drinking and cooking needs
 - *Partially Covered (PC) Habitations*:
 1. Drinking water source point is within 1.6 kms in plains or 100 m elevation in hilly areas
 2. Capacity of system is 10 – 40 lpcd
 - *Fully Covered (FC) Habitations*: include all the remaining habitations.
6. Ans. (a) No coliform [Ref. Park 21/e p667, Park 22/e p670]
 Refer to Ans 4.

7. Ans. (c) Calcium & magnesium bicarbonates [Ref. Park 21/e p671, Park 22/e p674]

 HARDNESS OF WATER
 • Hardness of water is defined as the ‘soap destroying power of water’
 • Hardness of water is of two types:

<table>
<thead>
<tr>
<th>Type of Hardness</th>
<th>Underlying causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary hardness (Carbonate hardness)</td>
<td>Calcium & Magnesium salts of Bicarbonates</td>
</tr>
<tr>
<td>Permanent hardness (Non-Carbonate hardness)</td>
<td>Calcium & Magnesium salts of Sulfates/Chlorides/Nitrates</td>
</tr>
</tbody>
</table>

 • Hardness of water is expressed in terms of: milliequivalents per litre (meq/l) of Calcium Carbonate (CaCO₃)
 - 1 meq/l hardness = 50 mg CaCO₃ (50 ppm) per litre of water
 • Classification of hardness in water:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Level of Hardness (mg/litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft water</td>
<td>< 1 (≤ 50 mg/l)</td>
</tr>
<tr>
<td>Moderately Hard</td>
<td>1 – 3 (50 – 150 mg/l)</td>
</tr>
<tr>
<td>Hard water</td>
<td>3 – 6 (150 – 300 mg/l)</td>
</tr>
<tr>
<td>Very Hard water</td>
<td>> 6 (> 300 mg/l)</td>
</tr>
</tbody>
</table>

 • Softening of water is recommended at level of hardness > 3 meq/litre
 (>150 mg/litre of Calcium carbonate)

8. Ans. (d) Chlorine demand [Ref. Park 21/e p661, 673, Park 22/e p663, 676]

 HORROCK’S APPARATUS
 • Use: To find out the dose of bleaching powder required for disinfection of water, i.e. ‘Chlorine demand estimation of water’
 • Dose of bleaching powder required (Chlorine demand):
 - n x 2 gms to disinfect 455 litres of water (where n = no. of first cup which shows distinct blue colour).

9. Ans. (b) Horrock’s apparatus [Ref. Park 21/e p661, 673, Park 22/e p663, 676]

 • Chlorine demand of water: Is the amount of chlorine that is needed to destroy bacteria, and to oxidize all the organic matter and ammonical substances present in water
 - Is the amount of chlorine added to water minus amount of residual chlorine remaining at the end of a specific period of contact (1 hr)
 - Estimation of chlorine demand of water (or dose of bleaching powder required for disinfection of water) is done by ‘Horrock’s apparatus’.

10. Ans. (c) Free and combined chlorine in water [Ref. Park 22/e p664]

11. Ans. (b) 5-10°C [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p31]

 • Most desired temperature range for drinking water is 40 – 50° F (5-10°C).

12. Ans. (d) Lead [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p72]

 • Undesirable metals in drinking water: Iron, manganese, zinc, copper, aluminium, lead
 • MOST undesirable metal in drinking water: Lead
 - Lead was earlier seen in drinking water when water was being supplied through lead pipes
 • Undesirable salts in drinking water: Chlorides, Fluorides, Nitrites, Nitrates, Calcium, Magnesium
 • Undesirable gases in drinking water: Ammonia, Hydrogen sulphide, Methane.

13. Ans. (a) Coliform bacteria [Ref. K. Park 19/e p580-81, 20/e p630, Park 21/e p666, Park 22/e p669]

 • Coliform organisms:
 - Primary & most reliable bacterial indicator for water quality
 - E. coli is most important coliform indicator
 - Reasons for choosing coliforms as indicators of fecal pollution rather than water – Borne. pathogens:
 1. Constant presence in great abundance in human intestine; foreign to potable waters
 2. Easily detectable by culture methods
 3. Longer survival period
14. Ans. (b) Water washed disease [Ref. A Dictionary of Public Health by Dr. J. Kishore; p575-76,]
 - *Water washed diseases:* Include infections of the outer body surface which occur due to inadequate use of water or improper hygiene. Examples: Scabies, Trachoma, Typhus, Bacillary dysentery, Amoebic dysentery

 Also Remember
 - *Scabies:* Is a transmissible ectoparasitic skin infection characterized by superficial burrows, intense pruritus (itching) and secondary infection
 - Scabies is caused by the mite *Sarcoptes scabei*, variety *hominis* (known as ‘Itch mite’)
 - Scabies is usually transmitted by close contact with an infested person; Scabies is transmitted readily, often throughout an entire household, by skin-to-skin contact with an infected person and thus is sometimes classified as a sexually transmitted disease (STD)
 - Drug of Choice for scabies: 5% Permethrin (Oral systemic DOC: Ivermectin)
 - Scabies was the first disease of man with known cause.

15. Ans. (d) Free from chlorine [Ref. Park 21/e p653, Park 22/e p655]

16. Ans. (d) 150-200 litres per capita [Ref. Park 21/e p653, Park 22/e p655]

 Also Remember
 - **Norms of water supply for urban areas:**
Type of urban area	Norm for water supply
Towns with piped water supply, but no sewerage system	70 lpcd
Cities with piped water supply & existing/planned sewerage	135 lpcd
Metropolitan & Megacities with piped water supply & sewerage	150 lpcd
Public stand post	40 lpcd
 (lpcd: litres per capita per day)

17. Ans. (c) Typhoid [Ref. A Dictionary of Public Health by Dr. J. Kishore; p575-76]

18. Ans. (c) Frequent washing is not required [Ref. Park 21/e p659-61, Park 22/e p661, 663]

 Comparison of Rapid and Slow sand filters:

<table>
<thead>
<tr>
<th></th>
<th>Rapid Sand Filter</th>
<th>Slow Sand Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Occupies very little space</td>
<td>Occupies large area</td>
</tr>
<tr>
<td>Rate of filtration</td>
<td>200 m.g.a.d.</td>
<td>2 – 3 m.g.a.d.</td>
</tr>
<tr>
<td>Effective size of sand</td>
<td>0.4 – 0.7 mm</td>
<td>0.2 – 0.3 mm</td>
</tr>
<tr>
<td>Preliminary treatment</td>
<td>Chemical coagulation & sedimentation</td>
<td>Plain sedimentation</td>
</tr>
<tr>
<td>Washing</td>
<td>By back-washing</td>
<td>By scraping sand bed</td>
</tr>
<tr>
<td>Frequent washing</td>
<td>Required</td>
<td>Not required</td>
</tr>
<tr>
<td>Mechanism of action</td>
<td>Essentially physical</td>
<td>Both physical & mechanical</td>
</tr>
<tr>
<td>Operation</td>
<td>Highly skilled</td>
<td>Less skilled</td>
</tr>
<tr>
<td>Loss of head allowed</td>
<td>6 – 8 feet</td>
<td>4 feet</td>
</tr>
<tr>
<td>Removal of turbidity</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Removal of colour</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Removal of bacteria</td>
<td>98 – 99 percent</td>
<td>99.9 – 99.99 percent</td>
</tr>
<tr>
<td>Suitability</td>
<td>For big cities</td>
<td>For small towns</td>
</tr>
</tbody>
</table>
Also Remember

- **Vital layer (Schmutzdecke, Zoogleal layer or Biological layer):** Slimy, gelatinous layer consisting of algae, planktons, diatoms and bacteria is formed in the slow sand filter
 - Vital layer is the ‘Heart of Slow Sand Filter’
 - Formation of vital layer is known as ‘Ripening of the filter’
 - It removes organic matter, holds back bacteria oxidizes nitrogen to nitrates and helps in yielding bacteria-free water.

19. Ans. (b) Hypochlorous acid [Ref. Park 21/e p661, Park 22/e p663]

20. Ans. (a) Chlorine only [Ref. Park 21/e p661, Park 22/e p663]
- Ozone gas and UV radiation has got no residual action.
- Free Residual Chlorine (FRC) is allowed to accumulate in water till it reaches a level of 0.5 ppm (mg/litre) when it becomes fit for community supply.
- FRC has a bactericidal action that takes care of post-chlorination contamination of drinking water.

Also Remember

Chlorine has no effect on bacterial spores, protozoal cysts and helminthic ova (except in higher doses). Viral agents of Infectious hepatitis (Hepatitis A) and Poliomyelitis are also resistant in normal doses, as are cyclops.

21. Ans. (a) Gross a activity 0.1 Bq/L & Gross b activity 1.0 Bq/L (Now 0.5 Bq/L and 1.0 Bq/L respectively) [Ref. Park 22/e p673]
- **Key guideline aspects of WHO recommended drinking water quality:**
 - Colour < 15 true colour units (TCU)
 - Turbidity < 5 nephelometric turbidity units (NTU)
 - pH: 6.5 – 8.5
 - Total dissolved solids (TDS) < 600 mg/litre
 - Zero pathogenic microorganisms
 - Zero infectious viruses
 - Absence of pathogenic protozoa and infective stages of helminthes
 - Fluorine < 1.5 ppm (0.5 – 0.8 ppm: Optimum level)
 - Nitrates < 50 mg/litre
 - Nitrites < 3 mg/litre
 - Gross alpha radiological activity < 0.5 Bq/litre (New Guideline — WHO)
 - Gross beta radiological activity < 1.0 Bq/litre (New Guideline — WHO).

22. Ans. (a) Detect the presence of Coliform organisms in a sample of water [Ref. Park 22/e p674]

Also Remember

- **Periodicity of water sample collection for bacteriological examination:**

<table>
<thead>
<tr>
<th>Population served</th>
<th>Minimum interval between successive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 20,000</td>
<td>1 month</td>
</tr>
<tr>
<td>20,001 – 50,000</td>
<td>2 weeks</td>
</tr>
<tr>
<td>50,001 – 100,000</td>
<td>4 days</td>
</tr>
<tr>
<td>> 100,000</td>
<td>1 day</td>
</tr>
</tbody>
</table>

23. Ans. (a) Less than 1 [Ref. Park 21/e p672, Park 22/e p675]
- **Methods of removal of hardness of water:**

<table>
<thead>
<tr>
<th>Type of hardness</th>
<th>Methods of removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary hardness</td>
<td>Boiling</td>
</tr>
<tr>
<td></td>
<td>Addition of lime</td>
</tr>
<tr>
<td></td>
<td>Addition of sodium carbonate</td>
</tr>
<tr>
<td></td>
<td>Permutit process</td>
</tr>
<tr>
<td>Permanent hardness</td>
<td>Addition of sodium carbonate</td>
</tr>
<tr>
<td></td>
<td>Base exchange process</td>
</tr>
</tbody>
</table>
WHO says that ‘there does not appear to be any convincing evidence that water hardness causes adverse health effects in humans’ (rather it is cardioprotective).

24. Ans. (c) Horrock’s apparatus [Ref. Park 21/e p673, Park 22/e p676]

25. Ans. (b) Starch iodide [Ref. Park 21/e p673, Park 22/e p676]

• Indicator in Horrock’s apparatus: Starch iodide
• Indicator in Presumptive coliform test (MPN Multiple Tube Method): Bromocresol purple

26. Ans. (a) 0.5 mg/l for a contact period of 1hr [Ref. Park 21/e p661, Park 22/e p661]

27. Ans. (b) Chlorine acts best when pH is around 7 [Ref. Park 21/e p661-62, Park 22/e p663, 664]

28. Ans. (c) 8 g [Ref. Park 21/e p673, Park 22/e p676]

29. Ans. (a) Bicarbonates of calcium and magnesium [Ref. Park 21/e p671, Park 22/e p674]

30. Ans. (b) Hard water [Ref. Park 21/e p672, Park 22/e p675]

31. Ans. (b) 0.5 mg/L [Ref. Park 21/e p661, Park 22/e p663]

32. Ans. (a) Bacteria are removed more effectively; (c) Cost construction is cheaper; (d); (e) [Ref. Park 22/e p663]

33. Ans. (a) E. coli; (b) Coliform; (c) Enterococci [Ref. Park 22/e p669, 670]

34. Ans. (a) Free chlorine; (b) Combined chlorine [Ref. Park 21/e p662, Park 22/e p664]

35. Ans. (a) Staphylococcus [Ref. K. Park 20/e p630]

36. Ans. (a) Presence of Clostridial spores indicates recent contamination of water [Ref. K. Park 20/e p630]

37. Ans. (a) Horrock’s apparatus [Ref. K. Park 20/e p637]

38. Ans. (a) Chlorine [Ref. K. Park 21/e p662]

39. Ans. (a) Presence of clostridial spores indicate recent contamination [Ref. Park 22/e p669, 670]

40. Ans. (b) Vital layer [Ref. K. Park 21/e p661, Park 22/e p663]

Review Questions

41. Ans. (c) Requires longer duration [Ref. K Park 22/e p663]

42. Ans. (b) Water contamination [Ref. K Park 22/e p669-70]

43. Ans. (d) 150 mg/litre [Ref. K Park 22/e p674-75]

44. Ans. (c) Zoological layer [Ref. K Park 22/e p661]

45. Ans. (d) 0.5 mg/L [Ref. K Park 22/e p676-77]

46. Ans. (a) Nalgonda technique [Ref. K Park 22/e p598]

47. Ans. (a) Colour <15 TCU; (b) pH 6.5 – 8.5; (c) Chloride 200-600 mg/l; (e) Zinc <4 mg/l [Ref. K Park 22/e p669]

48. Ans. (b) 0.5 mg/l after 1 hr [Ref. K Park 22/e p663]

49. Ans. (d) Streptococci [Ref. K Park 22/e p669]

50. Ans. (c) 1-3 [Ref. K Park 22/e p674-75]

51. Ans. (a) Hypochlorous acid [Ref. K Park 22/e p663]

52. Ans. (b) E coli [Ref. K Park 22/e p669]

53. Ans. (c) Free and combined chlorine [Ref. K Park 22/e p664]

54. Ans. (a) Lime + Alum [Ref. K Park 22/e p598]

55. Ans. (d) 200 mg/L [Ref. K Park 22/e p669]

56. Ans. (a) 0.5 mg/L [Ref. K Park 22/e p663]

57. Ans. (d) Faecal streptococci [Ref. K Park 22/e p669]

58. Ans. (a) Eijkman test [Ref. K Park 22/e p674]
59. Ans. (a) Free from pathogens; (b) Free from harmful chemicals; (d) Free from colour and odour
60. Ans. (c) Super chlorination followed by dechlorination [Ref. Park 22/e p664]
61. Ans. (a) Hypochlorous acid [Ref. Park 21/e p661, Park 22/e p663]
62. Ans. (d) 200 mg/L [Ref. Park 21/e p665, Park 22/e p668]
63. Ans. (b) 0.5 mg/l after 1 hour [Ref. Park 21/e p661, Park 22/e p663]
64. Ans. (a) 0.5 mg/l after 1 hour [Ref. Park 21/e p661, Park 22/e p663]
65. Ans. (d) Decreased soap consumption [Ref. Park 21/e p671-72, Park 22/e p674, 675]
66. Ans. (a) 33% chlorine [Ref. Park 21/e p662, Park 22/e p664]
67. Ans. (d) Brucellosis [Ref. Park 21/e p657, Park 22/e p659]
68. Ans. (a) No coliform bacteria in water [Ref. Park 21/e p667, Park 22/e p670]
69. Ans. (d) Dissolved nitrogen [Ref. Park 21/e p664-66, Park 22/e p667, 669]
70. Ans. (d) 600 mg litre [Ref. Park 21/e p665, Park 22/e p668]
71. Ans. (a) Free chlorine [Ref. Park 21/e p66, Park 22/e p67]
72. Ans. (b) On the sand bed [Ref. Park 21/e p659, Park 22/e p661]
73. Ans. (b) 1 hour [Ref. Park 21/e p661, Park 22/e p663]
74. Ans. (b) 1 hr [Ref. Park 21/e p661, Park 22/e p663]
75. Ans. (b) 0.5 mm [Ref. Park 21/e p661, Park 22/e p663]
76. Ans. (c) 90% [Ref. Park 21/e p658, Park 22/e p660]
77. Ans. (a) Schmutzdecke [Ref. Park 21/e p659, Park 22/e p661]
78. Ans. (b) Free and combined chlorine in water [Ref. Park 21/e p662, Park 22/e p654]
79. Ans. (b) 0.5 mg/L [Ref. Park 21/e p661, Park 22/e p663]
80. Ans. (c) 33% [Ref. Park 21/e p662, Park 22/e p664]
81. Ans. (c) Chlorination of water [Ref. Park 21/e p661, Park 22/e p663]
82. Ans. (c) 20 L [Ref. Park 21/e p663, Park 22/e p665]
83. Ans. (b) 0.5 mg/L [Ref. Park 21/e p661, Park 22/e p663]
84. Ans. (a) pH 6.5-8.5 [Ref. Park 21/e p664-70, Park 22/e p667, 673]
85. Ans. (d) [Ref. Park 21/e p659, Park 22/e p661]
86. Ans. (d) 30 gms [Ref. Park 21/e p673-74, Park 22/e p676, 77]
87. Ans. (b) 20 liters [Ref. Park 21/e p663]
88. Ans. (d) No residual action [Ref. Park 21/e p662, Park 22/e p664]
89. Ans. (d) Risk of Guinea worm infection [Ref. Park 22/e p347]
90. Ans. (a) 0.5 mg [Ref. Park 21/e p661]
91. Ans. (a) Horrock’s apparatus [Ref. Park 21/e p673, Park 22/e p676]
92. Ans. (a) Hypochlorus acid [Ref. Park 21/e p661, Park 22/e p663]
93. Ans. (a) 50-150 [Ref. Park 21/e p672, Park 22/e p675]
94. Ans. (c) 0.5 mg/L [Ref. Park 21/e p661, Park 22/e p663]

AIR

95. Ans. (a) Humidity [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p54-56, Park 22/e p695]

AIR HUMIDITY
- Air humidity is moisture content of air
Review of Preventive and Social Medicine

- Air humidity can be measured by:
 - Dry and wet bulb thermometers
 - Hygrometer
 - Sling/Whirling Psychrometer
 - Assman Psychrometer

Also Refer to Annexure 3

96. Ans. (a) Perflation and Aspiration [Ref. Park 21/e p682, Park 22/e p686]
- Types of ventilation:
 - **Natural ventilation:**
 1. **Wind:** It blows through a room (Perflation) and may exert a suction at its tail end (Aspiration)
 2. **Diffusion:** When passes through smallest openings
 3. **Inequality of temperature**
 - **Mechanical (artificial) ventilation:**
 1. **Exhaust ventilation:** Air is extracted to outside by exhaust fans driven by electricity
 2. **Plenum ventilation:** Fresh air is blown into rooms by centrifugal rooms
 3. **Balanced ventilation:** Combination of exhaust and plenum ventilation
 4. **Air conditioning:** Simultaneous control of all factors especially temperature, humidity and air movement

97. Ans. (b) McArdle’s index [Ref. Park 21/e p678-79, Park 22/e p681, 683]
- Air pollutants can be of several types:
 - **Primary pollutants:** are emitted directly (SO2, NO2, CO, Hydrocarbons, Particulate matter, CFCs, Ammonia, Radioactive materials, Metals like lead, cadmium, copper)
 - **Secondary pollutants:** are formed by interaction between primary pollutants (Ground level ozone, Peroxyacetyl nitrate, Particulate matter formed from primary pollutants)
- **Chemical indicators of air pollution:**
 - **Sulphur dioxide:** Best indicator of air pollution
 - **Smoke or Soiling index:** Air strain on a filter paper measured through photoelectric meter
 - **Grit & dust measurement**
 - **Coefficient of haze**
 - **Air pollution index**
- **BEST Biological indicator of air pollution:** Lichens.

Also Remember
- **Corrected Effective Temperature (CET) is an index of thermal comfort:** Combines effect of temperature, humidity, velocity of air & mean radiant heat
 - **McArdle’s maximum allowable sweat rate:** 4.5 litres/4h

<table>
<thead>
<tr>
<th>Zone of comfort</th>
<th>P4SR (Predictable 4 hour sweat rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort zone</td>
<td>1 – 3 litres</td>
</tr>
<tr>
<td>Just tolerable</td>
<td>3 – 4.5 litres</td>
</tr>
<tr>
<td>Intolerable</td>
<td>> 4.5 litres</td>
</tr>
</tbody>
</table>

- **The Kyoto protocol:** is a protocol intended to achieve ‘stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system’
 - The protocol was initially adopted for use on 11 December 1997 in Kyoto, Japan and which entered into force on 16 February 2005
 - The Kyoto Protocol establishes legally binding commitments for the reduction of 6 greenhouse gases (carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, hydrofluorocarbons, and perfluorocarbons) by industrialized nations, as well as general commitments for all member countries
 - Under Kyoto, industrialized countries agreed to reduce their collective GHG emissions by 5.2%, averaged over the period of 2008-2012, compared to the year 1990.

98. Ans. (c) 4.5 lit/4 hours [Ref. Park 21/e p677, Park 22/e p680]
Also Remember

- Indices of thermal comfort:
 - Air temperature
 - Air temperature & humidity
 - Cooling power: Air temperature, humidity & air movement
 - Effective Temperature (ET): Combines effect of temperature, humidity & movement of internal air on sensation of warmth or cold felt by the human body. It ignores effects of radiation from the surrounding structures
 - Corrected Effective Temperature (CET): Combines effect of temperature, humidity, velocity of air & mean radiant heat.

99. Ans. (c) Air temperature, humidity and air movement [Ref. Park 21/e p689, Park 22/e p693]
 - Kata thermometer measures 'cooling power of air': Cooling power of air comprises of
 - Air temperature
 - Humidity
 - Air movement
 - Kata thermometer readings as indices of thermal comfort:
 - Dry kata reading > 6 (Thermal comfort)
 - Wet kata reading > 20 (Thermal comfort)
 - Nowadays it is used to record low air velocity.

100. Ans. (a) Kata thermometer [Ref. Park 21/e p689, Park 22/e p693]
101. Ans. (d) Plenum ventilation [Ref. Park 22/e p686]
102. Ans. (c) Air temperature humidity & air movement [Ref. Park 21/e p689, Park 22/e p693]
103. Ans. (d) Globe thermometer [Ref. Park 21/e p689, Park 22/e p693]

- Instruments used in Air temperature:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry bulb thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Wet bulb thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Maximum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Minimum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Six's maximum and minimum thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Silvered thermometer</td>
<td>Air temperature</td>
</tr>
<tr>
<td>Globe thermometer</td>
<td>Mean radiant temperature</td>
</tr>
<tr>
<td>Wet Globe thermometer</td>
<td>Environmental heat</td>
</tr>
<tr>
<td>Kata thermometer</td>
<td>Cooling power of Air; Low air velocities</td>
</tr>
</tbody>
</table>

104. Ans. (b) Kata thermometer [Park 21/e p692, Park 22/e p696]
105. Ans. (a) CO₂ is a major greenhouse gas [Ref. Wikipedia]

GREENHOUSE GASES

- Water vapour (Highest contribution)
- Carbon dioxide (Second highest contribution)
- Methane
- Ozone
 - Ozone layer: Is beneficial as it cuts down UV transmission
- CFCs depletes ozone layer

106. Ans. (d) Mercury vapour [Ref. K. Park 21/e p679, Park 22/e p683]

Sources of Indoor Air Pollution: (Mnemonic: C MORON SCARF)
Indoor air pollutant	Sources
Respirable particles | Tobacco smoke, Stove, Aerosols
Carbon monoxide | Combustion equipment, Stove, Gas heaters
Nitrogen dioxide | Gas cookers, Cigarettes
Sulphur dioxide | Coal combustion
Carbon dioxide | Combustion, Respiration
Formaldehyde | Particle board, Carpet adhesives, Insulation
Organic vapours (benzene, toluidine) | Solvents, Adhesives, Resins, Aerosols
Ozone | Electric arcing, UV light
Radon & daughters | Building materials
Asbestos | Insulation, Fire-proofing
Mineral fibres | Appliances

Review Question

 - Effects of indoor air pollution
 - Acute respiratory tract infections (Pneumonias)
 - Chronic lung disease
 - Lung cancers in adults
 - Adverse pregnancy outcomes (Especially stillbirths)

108. Ans. (d) CFCs [Ref. Global Change of Planet Earth OECD, p48]

109. Ans. (a) SO\textsubscript{2} [Ref. K Park 22/e p681-83]

110. Ans. (a) Corrected effective temperature 77-80ºF [Ref. K Park 22/e p680]

111. Ans. (c) Anemometer [Ref. K Park 22/e p695]

112. Ans. (d) Central Pollution Control Board [Ref. K Park 22/e p684]

113. Ans. (c) Temperature inversion [Ref. Encyclopedia of Climate and Weather by Schneider, Root & Mastrandrea, 2/e (Volume 3) p392]

114. Ans. (b) 40 – 60 [Ref. Park 22/e p694]

| Heat Stress Index (HSI) |
|---|---|
| HSI % | Consequence of 8 hour exposure |
| 0 | No thermal strain |
| 10-30 | Mild-Moderate heat stress, Minimal impairment in work |
| 40-60 | Severe heat stress, Threat to health if not fit |
| 70-90 | Very severe heat stress, only few can sustain it |
| 100 | Maximum heat stress, only young fit acclimatized can sustain it |
| >100 | Varying degrees of stress due to hyperthermia |

115. Ans. (a) 2 [Ref. Park 21/e p681, Park 22/e p685]

116. Ans (a) 2 – 3 [Ref. Park 21/e p681, Park 22/e p685]

117. Ans (c) 4 – 6 [Ref. Park 21/e p681, Park 22/e p685]

118. Ans. (a) SO\textsubscript{2} [Ref. Park 21/e p677-79, Park 22/e p680, 683]

119. Ans. (a) SO\textsubscript{2} [Ref. Park 21/e p677-79, Park 22/e p680, 683]

120. Ans. (a) 2 [Ref. Park 21/e p681, Park 22/e p685]

121. Ans. (a) SO\textsubscript{2} [Ref. Park 21/e p677-79, Park 22/e p680, 683]
122. Ans. (a) SO2 [Ref. Park 21/e p677-79, Park 22/e p680, 683]
123. Ans. (a) 79°F [Ref. Park 21/e p676-77, Park 22/e p679,680]
124. Ans. (a) SO2 [Ref. Park 21/e p677-79, Park 22/e p680, 683]
125. Ans. (a) SO2 [Ref. Park 21/e p677-79, Park 22/e p680, 683]
126. Ans. (b) 77–80°F [Ref. Park 21/e p676-77, Park 22/e p679,680]
127. Ans. (d) All of the above [Ref. Park 21/e p679, Park 22/e p683]
128. Ans. (a) Air velocity [Ref. Park 21/e p689, Park 22/e p693]
129. Ans. (c) Kiffer test [Ref. Internet]
130. Ans. (c) Sling psychrometer [Ref. Park 21/e p691, Park 22/e p695]
131. Ans. (d) SO2 [Ref. Park 21/e p677-79, Park 22/e p680, 683]

SOUND

132. Ans. (a) 20-30 dB [Ref. K. Park 20/e p648, Park 21/e p685, Park 22/e p689]
 - Human ear is sensitive to sound frequency: 20 – 20,000 Hz
 - Daily maximum tolerable sound level to human ear (without substantial damage to their hearing): 85 – 90 dB
 - Auditory fatigue appears in: 90 dB region (greatest at 4000 Hz)
 - Sound level above which tympanic membrane rupture (permanent mechanical damage): 150 – 160 dB
 - Sound levels of some noises:
 - Whisper: 20 – 30 dB
 - Normal conversation: 60 – 70 dB
 - Mechanical damage: 150 – 160 dB (e.g. jet taking off)
 - Acceptable noise levels: expressed in dB (A), sound pressure levels conforming to weighting curve (A)

<table>
<thead>
<tr>
<th>Environment</th>
<th>Place</th>
<th>Acceptable noise level dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Bed room</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Living room</td>
<td>40</td>
</tr>
<tr>
<td>Commercial</td>
<td>Office</td>
<td>35 – 45</td>
</tr>
<tr>
<td></td>
<td>Conference</td>
<td>40 – 45</td>
</tr>
<tr>
<td></td>
<td>Restaurants</td>
<td>40 – 60</td>
</tr>
<tr>
<td></td>
<td>Workshop</td>
<td>40 – 60</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
<td>40 – 50</td>
</tr>
<tr>
<td></td>
<td>Class room</td>
<td>30 – 40</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>35 – 40</td>
</tr>
<tr>
<td></td>
<td>Wards</td>
<td>20 – 35</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospitals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also Remember

- 20th century has been described as ‘Century of noise’
- Basic instruments used in studies of noise:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Level Meter</td>
<td>Measures intensity of sound in dB or dB(A)</td>
</tr>
<tr>
<td>Octave Band Frequency Analyser</td>
<td>Shows ‘sound spectrum’, characteristic (pitch)</td>
</tr>
<tr>
<td>Audiometer</td>
<td>Measures hearing ability</td>
</tr>
</tbody>
</table>

- Most Temporary Hearing loss occurs in the frequency range: 4000-6000 Hz.

133. Ans. (c) 160 dB [Ref. Park 20/e p649, Park 21/e p685, Park 22/e p689]
134. Ans. (c) 85 db [Ref. Park 21/e p684, Park 22/e p688]
135. Ans. (c) 100 dB [Ref. K Park 22/e p689]
Review Questions

136. Ans. (c) 85 db [Ref. Park 21/e p684, Park 22/e p688]
137. Ans. (c) 100 dB [Ref. Park 21/e p685, Park 22/e p689]
138. Ans. (a) 85 db [Ref. Park 22/e p688]
139. Ans. (c) 140 dB [Ref. Park 21/e p685, Park 22/e p689]
140. Ans. (b) 85 dB [Ref. Park 22/e p688]
141. Ans. (d) 100 dB [Ref. Park 21/e p685, Park 22/e p689]
142. Ans. (c) 85 dB [Ref. Park 21/e p684, Park 22/e p688]
143. Ans. (b) 85 [Ref. Park 21/e p684, Park 22/e p688]
144. Ans. (a) 6-12 [Ref. Park 21/e p682, Park 22/e p686]
 • Basic minimum illumination for satisfactory vision: 15 – 20 foot candles
145. Ans. (a) 8% [Ref. K Park 22/e p687]

Housing

146. Ans. (a) 50 – 100 sq.ft. [Ref. Park 21/e p694, Park 22/e p698]
 • Recommend per capita space in urban houses: 50-100 sq.-ft.

Also Remember

• Accepted standards of overcrowding:
 - Persons per room:
No. of rooms	Maximum no. of persons
1 room	2 persons
2 room	3 persons
3 room	5 persons
4 room	7 persons
5 rooms (additional 2 for each further room)	10 persons

 - Floor space per person: Child between 1 – 10 years is counted as ½ unit; infant is not counted
Floor space	Maximum no. of persons
> 110 sq. ft.	2 persons
90 – 110 sq. ft.	1½ persons
70 – 90 sq. ft.	1 person
50 – 70 sq. ft.	½ person
< 50 sq. ft.	Nil

 - Sex separation: Overcrowding is said to exist if two persons over 9 years of age, not husband and wife, of opposite sexes are obliged to sleep in the same room

• Recommended spaces:
 - Floor space per person in a house: minimum 90 – 110 sq. ft.
 - Floor area per student in a class: > 10 sq. ft.
 - Space per worker in a factory (The Factory Act, 1948): >500 cu. ft.

147. Ans. is (a) 70-90 sq. ft. [Ref. Park 21/e p694, Park 22/e p698]
 • Optimum floor space recommended per adult person in a house: 70 – 90 sq.ft. (7 – 9 sq.m.)
WASTE DISPOSAL

148. Ans. (d) Bangalore method (Composting) [Ref. Park 21/e p706, Park 22/e p708]

Also Remember

- Composting: Integrated ‘sanitary’ method of disposal of refuse & night soil
 - Bangalore method (Anaerobic hot fermentation process): Alternate layers of refuse & night soil in proportion 3:1, with refuse layer both as lowermost as well as topmost.
 - Indore Method (Aerobic process).

149. Ans. (c) Sullage [Ref. Park 21/e p703, Park 22/e p707]

Also Remember

- Sullage (Grey water): Is non-industrial wastewater generated from domestic processes such as kitchen, laundry and bathing
 - Greywater comprises 50-80% of residential waste water; it consists wastewater generated from all of the house’s sanitation equipment except for the toilets
 - ‘Black water’ is water from toilets
 - ‘White water’ is groundwater or potable water.

150. Ans. (b) Dry weather flow [Ref. Park 21/e p703, Park 22/e p707]

- Sewage: Is waste water from a community, containing solid and liquid excreta, derived from houses, street and yard washings, factories and industries
 - Composition of sewage: 99.9% water + 0.1% solids (organic & inorganic)
 - Dry weather flow: Is the average amount of sewage that flows in sewerage system in 24 hours
 - Strength of sewage is expressed in terms of:
 - Biological Oxygen Demand (BOD): Is defined as ‘amount of oxygen absorbed by a sample of sewage’ during a specified period (Generally 5 days), at a specified temperature (generally 20° C) for aerobic destruction or use of organic matter by living organisms
 1. BOD is most important test done on sewage (done through Dilution method and Manometric method)
 2. Strong Sewage has BOD > 300 g/litre and Weak Sewage has BOD < 100 g/litre
 - Chemical Oxygen Demand (COD): Measures oxygen equivalent of that portion of organic matter in a sample, which is susceptible to oxidation by a strong chemical oxidizer
 1. Potassium dichromate is best for COD estimation
 - Suspended solids: Amount in domestic sewage varies from 100 – 500 mg/litre
 1. Strong Sewage has suspended solids amount > 500 mg/litre and Weak Sewage has suspended solids amount < 100 mg/litre.

151. Ans. (a) 2.5 cm [Ref. Park 21/e p700, Park 22/e p704]

- The trap: Is a bent pipe in sanitary latrine, about 7.5 cms in diameter and connected with the pan
 - Trap is a ‘Water seal’: it holds water; prevents access by flies and suppresses the nuisance from smell
 - Depth of water seal in RCA sanitary latrine: 2 cms (¼ inch)
 - Water seal in sanitary latrine is an example of ‘Sanitation barrier’

Also Remember

- Sanitation barrier: Barrier to prevent spread of faecal – oral diseases
 - Sanitation barrier is between 5F’s: Faeces on one side and Fingers, Flies, Fomites, Food (water, soil) on other side
 - Sanitation barrier can be provided by:
 1. Sanitary latrine
 2. Disposal pit

152. Ans. (a) Ideal retention period – 48 hrs [Ref. Park 21/e p701, Park 22/e p705]

SEPTIC TANK:

- Is a water-tight masonary tank into which household sewage is admitted for treatment
• Is a satisfactory method of disposing liquid and excreta wastes from individual dwellings, small groups of houses or institutions which have ‘adequate water supply but do not have access to a public sewerage system’

• Design features of a septic tank:
 - Ideal retention period: 24 hours

• Steps of purification in a septic tank:
 - Anaerobic digestion: takes place in septic tank proper
 - Aerobic oxidation: takes place in sub-soil (outside septic tank).

153. Ans. (d) Waste water from kitchen [Ref. Park 21/e p703, Park 22/e p707]

154. Ans. (b) Controlled tipping [Ref. Park 21/e p696, Park 22/e p700]

 • Sanitary Landfill (Controlled Tipping): Laying of dry & condensed refuse in layers with intervening earth partitions & coverings, followed by mechanical compression (Most Satisfactory Method)
 - Trench Method
 - Ramp Method
 - Area Method

155. Ans. (b) 2 cms [Ref. Park 21/e p700, Park 22/e p704]

156. Ans. (a) E-Coli Count [Ref. Park 21/e p704, Park 22/e p708]

157. Ans. (a) Organic matter [Ref. Park 21/e p704, Park 22/e p708]

 • Biological Oxygen Demand (BOD): Is defined as ‘amount of oxygen absorbed by a sample of sewage’ during a specified period (Generally 5 days), at a specified temperature (generally 20°C) for aerobic destruction or use of organic matter by living organisms
 - BOD is most important test done for estimation of strength of sewage (done through Dilution method and Manometric method)
 - Strong Sewage has BOD > 300 g/litre and Weak Sewage has BOD < 100 g/litre.

158. Ans. (c) Sullage [Ref. Park 21/e p703, Park 22/e p707]

159. Ans. (d) Septic tank [Ref. Park 21/e p701, Park 22/e p705]

160. Ans. (a) Organic waste [Ref. Park 21/e p704, Park 22/e p708]

161. Ans. (d) Content of combustible matter above 60% [Ref. Park 21/e p732, Park 22/e p736]

162. Ans. (a) Treatment of household sewage; (c) Aerobic oxidation outside septic tank; (d) Anaerobic digestion inside septic tank [Ref. Park 22/e p705-06]

163. Ans. (b) Strength measured by Biological oxygen demand; (e) Dry weather flow is measured for 24 hours period [Ref. Park 22/e p708]

Review Questions

164. Ans. (b) Chemical oxygen demand [Ref. K Park 22/e p708]

165. Ans. (a) Aerated tank [Ref. K Park 22/e p709]

166. Ans. (c) Activated sludge process [Ref. Park 21/e p705, Park 22/e p709]

167. Ans. (c) Controlled tipping [Ref. Park 21/e p696, Park 22/e p700]

168. Ans. (d) Used where public sewerage system is adequate [Ref. Park 21/e p701, Park 22/e p705]

170. Ans. (d) Controlled tipping [Ref. Park 21/e p696, Park 22/e p700]

171. Ans. (a) Water seal [Ref. Park 21/e p700, Park 22/e p705]

172. Ans. (d). Retention period is of 24 hrs [Ref. Park 21/e p701, Park 22/e p705]

173. Ans. (c) Settlement of heavy objects [Ref. Park 21/e p704, Park 22/e p708]

174. Ans. (b) Sullage [Ref. Park 21/e p703, Park 22/e p707]
175. Ans. (d) Coliform count [Ref. Park 21/e p704, Park 22/e p708]
176. Ans. (a) Gobar gas plant [Ref. internet]
177. Ans. (b) Sullage [Ref. Park 21/e p703, Park 22/e p707]
178. Ans. (b) Sullage [Ref. Park 22/e p707]

MISCELLANEOUS (ENVIRONMENT)

179. Ans. (c) Residual level of free chlorine to be > 0.5 ppm [Ref. Park 21/e p673, Park 22/e p676]

SANITATION MEASURES FOR SWIMMING POOL SANITATION:
- Recommended area: Recommended area is = 2.2 sq. metre (24 sq. ft.) per swimmer
- Surveillance: Rules and regulations to be posted in appropriate place
- Filtration of water: Water to be refiltered in less than 6 hours (rapid sand filters); 15% water to be replaced by fresh water everyday
- Chlorination of water: Residual level of free chlorine to be > 1.0 ppm to protect against bacterial and viral agents
- pH of water: 7.4 – 7.8
- Bacteriological quality of water: To be as close to standards prescribed for drinking water

Also Remember
- Level of residual chlorine to be maintained in drinking water is > 0.5 mg/l (> 0.5 ppm) for a contact period of 1 hour
- Level of residual chlorine to be maintained in all water bodies in post-disaster phase is > 0.7 mg/l (> 0.7 ppm)
 - Level of residual chlorine to be maintained for swimming pool sanitation is > 1.0 mg/l (> 1.0 ppm)

180. Ans. (b) 5 rads per year [Ref. Park 21/e p687, Park 22/e p691]
- Protection: Maximum permissible radiation exposure is ‘5 rad per person per year’.
181. Ans. (c) Rajasthan [Ref. Me’n’ Mine English Grammar III by Ambika Roshan, p180]
182. Ans. (c) 5 rads [Ref. Roberts and Hedges Clinical Procedures in Emergency Medicine, 6/e p1471]

Review Questions

183. Ans. (d) Radiation protection in pregnancy [Ref. An Introduction to Radiobiology by AHW Nias 2/e p86],
184. Ans. (b) Rad [Ref. K Park 22/e p691]
185. Ans. (c) 0.5 mm [Ref. Flexible Bronchoscopy by AC Mehta, 3/e p26]
186. Ans. (d) Bed resistance in a slow sand filter [Ref. Park 22/e p661]
187. Ans. (d) Air pollution [Ref. Park 21/e p679, Park 22/e p683]

ENTOMOLOGY AND VECTOR CONTROL

188. Ans. (d) Kyasanur forest disease [Ref. Park 21/e p721-22, Park 22/e p725, 726]

Vectors and Diseases Transmitted

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease(s) transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housefly (Musca domestica)</td>
<td>Diarrhoeal & dysentrical diseases, Poliomyelitis, Yaws, Anthrax, Trachoma</td>
</tr>
<tr>
<td>Sandfly (Phlebotomus argentipes)</td>
<td>Kala azar (Visceral Leishmaniasis), Oriental sore (Cutaneous Leishmaniasis), Sandfly fever, Oroya fever</td>
</tr>
<tr>
<td>Tse-Tse fly (Glossina palpalis)</td>
<td>Sleeping sickness of Africa (African Trypanosomiasis)</td>
</tr>
<tr>
<td>Reduviid bug (Triatoma)</td>
<td>Chagas Disease (Sleeping sickness of America- American Trypanosomiasis)</td>
</tr>
<tr>
<td>Black fly (Simulunae)</td>
<td>Onchocerciasis (River Blindness)</td>
</tr>
<tr>
<td>Soft tick</td>
<td>Relapsing fever, Q fever, KFD (outside India)</td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

<table>
<thead>
<tr>
<th>Species</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard tick</td>
<td>Tularemia, Babesiosis, KFD (India), Tick paralysis, Tick encephalitis, Tick hemorrhagic fever, Indian Tick Typhus, RMSF</td>
</tr>
<tr>
<td>Louse</td>
<td>Epidemic typhus, Trench fever, Relapsing fever, Pediculoses</td>
</tr>
<tr>
<td>Mite</td>
<td>Scrub typhus, Rickettsial pox</td>
</tr>
<tr>
<td>Flea</td>
<td>Plague, Murine typhus</td>
</tr>
<tr>
<td>Anopheles mosquito</td>
<td>Malaria, Filariasis (outside India)</td>
</tr>
<tr>
<td>Culex mosquito</td>
<td>Bancroftian Filariasis, Japanese Encephalitis, West Nile fever, Viral arthritis</td>
</tr>
<tr>
<td>Aedes mosquito</td>
<td>Yellow fever, Dengue, DHF, Chikungunya, Rift Valley fever, Filariasis (Outside India)</td>
</tr>
<tr>
<td>Mansonoides mosquito</td>
<td>Malayan (Brugian) filariasis, Chikungunya</td>
</tr>
</tbody>
</table>

Also Remember

- **Mites (Chiggers):** resembles ticks in their general appearance
 - Trombiculid mite (Leptotrombium): transmits Scrub typhus
 - Itch mite (Sarcoptes/Acarus): transmits Scabies
- **Transmission of KFD:**
 - KFD in India is transmitted by: ‘Hemophysalis spinigera’ (Hard Ticks)
 - KFD outside India is transmitted by: Soft ticks
- **KFD is also known as ‘Monkey disease’**
- **Man in KFD:** Incidental, dead-end host (No man-to-man transmission)
- **IP of KFD:** 3 – 8 days
- **Case fatality rate of KFD:** 5 – 10%.

189. Ans. (a) Contact poison
[Ref. Park 21/e p725, Park 22/e p729]

Also Remember

- **Pyrethrum:**
 - Space spray for killing ‘adult mosquitoes’: Active principal ‘pyrethrin’; no residual action – short-lived effect
 - Contact ‘nerve’ poison
 - Knock-down effect with paralysis
 - Insecticide of plant origin: Flowers of Chrysanthemum
 - 5 active principles (all ‘nerve poisons’):
 1. Pyrethrin I
 2. Pyrethrin II
 3. Cinerin I
 4. Cinerin II
 5. Jasminole II
 - No residual effect: Short lived effect
 - Synthetic pyrethroids: permethrin, allethrin, furethrin, cyfluthrin
 - Because of the natural insecticidal properties used as ‘companion plants’, to repel pest insects from nearby crops.

190. Ans. (d) A-III, B-II, C-IV, D-I
[Ref. Park 21/e p712-25, Park 22/e p716, 29]

Also Remember

- Experts now recommend an ‘integrated approach’ for arthropods control
- Best level of prevention of arthropod borne diseases: Primordial prevention (e.g. source reduction)
- Barbados Millions (Lebister reticulates) is a larvivorous fish used for biological control of mosquitoes
- Toxorhynchitis splendens: also known as Predator mosquito are particularly useful biological method for Aedes aegypti
- Mosquito nets are used as personal protection measures:
 - Maximum recommended size of holes in mosquito nets: 0.0475 inch
 - Maximum recommended no. of holes in mosquito nets: 150/sq.inch
- Bacillus thuringiensis H14: Spores and crystalline insecticidal proteins produced by B. thuringiensis are used as specific insecticides. Because of their specificity, these pesticides are regarded as environmentally friendly, with little or no effect on humans, wildlife, pollinators, and most other beneficial insects.
191. Ans. (b) Culex [Ref. Park 21/e p711, Park 22/e p715]

Also Remember

- Important culex species in India:

<table>
<thead>
<tr>
<th>Vector</th>
<th>Disease transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culex quinquefasciatus (fatigans)</td>
<td>Bancroftian Filariasis</td>
</tr>
<tr>
<td>Culex tritaeniorhyncus</td>
<td>Japanese Encephalitis</td>
</tr>
<tr>
<td>Culex vishnuii</td>
<td>Japanese Encephalitis</td>
</tr>
<tr>
<td>Culex gelidus</td>
<td>Japanese Encephalitis</td>
</tr>
</tbody>
</table>

192. Ans. (b) Q fever [Ref. Park 21/e p718, Park 22/e p722]

- LICE (singular LOUSE): wingless insects, also known as ‘Fly babies’
- Lice as the vectors of diseases:

<table>
<thead>
<tr>
<th>Diseases transmitted by lice</th>
<th>Causative agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemic typhus</td>
<td>Rickettsia prowazekii</td>
</tr>
<tr>
<td>Relapsing fever</td>
<td>Borrelia recurrentis</td>
</tr>
<tr>
<td>Trench fever</td>
<td>Rickettsia quintana</td>
</tr>
<tr>
<td>Dermatitis</td>
<td>Due to scratching & secondary infection</td>
</tr>
</tbody>
</table>

Also Remember

- Q Fever:
 - Cause: Coxiella burnetii
 - Only Rickettsia disease without any vector (soft tick in few animal cases)
 - Only Rickettsia disease without any skin lesion
 - Mode of Transmission: Inhalation of Infected dust, Aerosol transmission, direct contact
 - Contaminated food like meat, milk & milk products
 - IP: 2-3 weeks

193. Ans. (b) Malarial parasite in mosquito [Ref. Park 21/e p709, Park 22/e p713]

- Biological transmission of arthropod-borne diseases:

<table>
<thead>
<tr>
<th>Transmission</th>
<th>Definition</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagative</td>
<td>Disease agent only multiplies in the body of vector</td>
<td>Plague bacilli in rat fleas Yellow fever virus in Aedes mosquitoes</td>
</tr>
<tr>
<td>Cyclo-propagative</td>
<td>Disease agent undergoes cyclical change as well as multiplies in the body of vector</td>
<td>Malarial parasite in anopheline mosquitoes</td>
</tr>
<tr>
<td>Cyclo-developmental</td>
<td>Disease agent undergoes only cyclical change in vector</td>
<td>Filarial parasite in culex mosquitoes Guineaworm embryo in cyclops</td>
</tr>
</tbody>
</table>

194. Ans. (d) Agent transmitted from nymph to adult vector: Transovarial transmission [Ref. Park 22/e p713]

- Trans-stadial transmission: Agent transmitted from nymph to adult vector
 - Borrelia burgdorferi in ticks
- Trans-ovarial transmission (vertical transmission): Female vector passes the infectious agent through her eggs to the next generation
 - Rickettsia rickettsii in ticks.

195. Ans. (b) It is a definitive host in filaria [Ref. Park 21/e p244-45, Park 22/e p245, 46]

- In lymphatic and Brugian Filariasis: Man is the definitive host and mosquito the intermediate host
- HOST: A person or other animal, including birds & arthropods, that affords subsistence or lodgement to an infectious agent under natural (as opposed to experimental) conditions
Review of Preventive and Social Medicine

- **Primary (definitive) host:** host in which parasite attains maturity or passes its sexual stage
- **Secondary (intermediate) host:** host in which parasite is in larval or asexual stage

<table>
<thead>
<tr>
<th>Disease</th>
<th>Parasite</th>
<th>Host Primary</th>
<th>Host Secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Plasmodium</td>
<td>Anopheles</td>
<td>Man</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Taenia solium</td>
<td>Man</td>
<td>Pigs</td>
</tr>
<tr>
<td>Tapeworm</td>
<td>Taenia saginata</td>
<td>Man</td>
<td>Cattle</td>
</tr>
<tr>
<td>Guinea worm</td>
<td>Dracunculus medinensis</td>
<td>Man</td>
<td>Cyclops</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Wuchereria bancrofti</td>
<td>Man</td>
<td>Culex</td>
</tr>
<tr>
<td>Hydatid Disease</td>
<td>Echinococcus</td>
<td>Dog</td>
<td>Sheep, Cattle, Man</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>Trypanosomes</td>
<td>Man</td>
<td>Tse tse fly</td>
</tr>
</tbody>
</table>

- **Obligate host:** Only Host for a Parasite. For example, Man in Measles, Man in Typhoid Fever
- **Transport host:** A carrier in which the organism remains alive but does not undergo development
- **Paratenic host:** Is similar to an intermediate host, only that it is not needed for the parasite’s development cycle to progress.
 1. The difference between a paratenic and reservoir host is that the latter is a primary host, whereas paratenic hosts serve as “dumps” for non-mature stages of a parasite which they can accumulate in high numbers.
- **Dead-end host:** Is an intermediate host that does generally not allow transmission to the definite host, thereby preventing the parasite from completing its development. For example, humans are dead-end hosts for Echinococcus canine tapeworms.

196. Ans. (b) Scabies [Ref. Park 21/e p721-22, Park 22/e p725, 26]
- Diagnosis of scabies:
 - Itching which worsens at night
 - Follicular lesions at affected site
 - Secondary infection leads to crusted papules and pustules
 - MC sites: Hands & wrists (63%)
 - Other members of the family are affected
 - Confirmation of diagnosis: Search for parasite in skin debris under microscope.

197. Ans. (d) Chagas’ disease [Ref. Park 21/e p720, Park 22/e p724]
- Reduviid bugs (Triatominae):
 - Also known as ‘Cone - nose bugs’ or ‘Kissing bugs’ or ‘Assassin bugs’
 - Vectors of Chagas’ Disease (American Trypanosomiasis – ‘Sleeping sickness of America’), caused by Trypanosoma cruzi.

Also Remember

- **Vector for Relapsing fever:** Soft tick
- **Vector for Lyme’s disease:** Hard tick
- **Vector for Scrub typhus:** Trombiculid mite.

198. Ans. (a) Tick [Ref. Park 22/e p724, 725]
- Hard ticks versus Soft ticks:

<table>
<thead>
<tr>
<th>Diseases transmitted</th>
<th>Hard ticks</th>
<th>Soft ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tick typhus (RMSF)</td>
<td>Q fever (few animal cases)</td>
</tr>
<tr>
<td></td>
<td>Viral encephalitis</td>
<td>Relapsing fever</td>
</tr>
<tr>
<td></td>
<td>Tick fevers</td>
<td>KFD (outside India)</td>
</tr>
<tr>
<td></td>
<td>Hemorrhagic fevers</td>
<td>(KFD in India)</td>
</tr>
<tr>
<td></td>
<td>Tularaemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tick paralysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human babesiosis</td>
<td></td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
- Mites (Chiggers): resembles ticks in their general appearance
 - Trombiculid mite (Leptotrombium): transmits Scrub typhus
 - Itch mite (Sarcoptes/Acarus): transmits Scabies.

199. Ans. (a) Tiger mosquito [Ref. Park 21/e p712, Park 22/e p716]
- Aedes mosquitoes (Stegomyia) have white stripes on a black body; because of their striped/ banded character of legs, they are known as 'Tiger mosquitoes'.

200. Ans. (b) Housefly [Ref. Park 22/e p718]

Also Remember
- Biting flies: Only females bite except in Tsetse flies where both sexes bite and transmit the disease
 - Sandflies – Tsetse flies
 - Blackflies – Deerflies
 - Horseflies
- Important flies of public health importance:

<table>
<thead>
<tr>
<th>Fly (biological name)</th>
<th>Disease(s) transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housefly (Musca domestica)</td>
<td>Typhoid and paratyphoid fevers, diarrhoeas and dysenteries, cholera and gastroenteritis, amoebiasis, helminthic manifestations, Poliomyelitis, Yaws, Anthrax, Trachoma, conjunctivitis</td>
</tr>
<tr>
<td>Sandfly (Phlebotomus argentipes)</td>
<td>Kala azar, Oriental sore, Sandfly fever, Oraya fever</td>
</tr>
<tr>
<td>Tse tse fly (Glossina palpalis)</td>
<td>Sleeping sickness of Africa (African Trypanosomiasis)</td>
</tr>
<tr>
<td>Blackfly (Simulium indicum)</td>
<td>Onchocerciasis (River blindness)</td>
</tr>
<tr>
<td>Deerfly/ Horsefly (Chrysops)</td>
<td>Loa loa, Tularaemia, Anthrax</td>
</tr>
</tbody>
</table>

201. Ans. (a) Sand fly [Ref. Park 21/e p716, Park 22/e p720]
SANDFLY:
Diseases transmitted by Sandflies:

<table>
<thead>
<tr>
<th>Sandfly species</th>
<th>Diseases transmitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phlebotomus argentipes</td>
<td>Kala azar (Visceral Leishmaniasis)</td>
</tr>
<tr>
<td>Phlebotomus papatasii</td>
<td>Sandfly fever, Oriental sore (Cutaneous Leishmaniasis)</td>
</tr>
<tr>
<td>Phlebotomus perlongipennis</td>
<td>Oriental sore (Cutaneous Leishmaniasis)</td>
</tr>
<tr>
<td>Sergentomyia punjabensis</td>
<td>Sandfly fever</td>
</tr>
</tbody>
</table>

- Habitats: Holes and crevices in walls, holes in trees, dark rooms, stables and store rooms
 - Sanitation measures are carried out for a distance of 50 feet
- Insecticide of choice: DDT (1 – 2 gm/m2 single application)
 - DDT is sprayed up to height of 4 – 6 feet of walls: as Sandfly cannot fly; it only hops
- Only female sandflies bite: Require a blood meal every 3 – 4 days for oviposition.

202. Ans. (a) Tularemia [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p235, Park 22/e p725]

Also Remember
- Q fever is only rickettsial Disease without any vector: only in few animal cases, soft tick is vector
- KFD in India is transmitted by ‘Hemophysalis spinigera’ (Hard Ticks)
- Vector of Bancroftian filariasis: Culex quinquefasciatus (C.fatigans)
- Vector of Japanese encephalitis: Culex tritaeniorhynchus (MC), Culex vishnuii, Culex gelidu

203. Ans. (d) Black fly – Chagas Disease [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p224, Park 21/e p720, Park 22/e p724]
BLACK FLY (SIMULUM):
- Simulium is vector for Onchocerciasis (River blindness)
- Simulium is also known as ‘White socks’
Also Remember

- There are more than 35 species of Black fly in India but none associated with human disease.
- Chagas disease (Sleeping sickness of America) is transmitted by Reduviid bug (Kissing bug).

204. Ans. (a) Environmental Control [Ref. Park 21/e p712-13, Park 22/e p716, 17]

Also Remember

- Residual sprays for mosquito control:

<table>
<thead>
<tr>
<th>Toxicant</th>
<th>Dosage (gm/m²)</th>
<th>Av. duration of effectiveness (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDT</td>
<td>1 – 2</td>
<td>6 – 12</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Malathion</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

205. Ans. (b) 100 meters [Ref. Park 21/e p711, Park 22/e p715]

- Flight range of important mosquito vectors in India:

<table>
<thead>
<tr>
<th>Mosquito vector</th>
<th>Flight range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anopheles</td>
<td>3 – 5 kms</td>
</tr>
<tr>
<td>Culex</td>
<td>11 kms</td>
</tr>
<tr>
<td>Aedes</td>
<td>100 m (110 yards)</td>
</tr>
<tr>
<td>Mansonia</td>
<td>-</td>
</tr>
</tbody>
</table>

- International measures to restrict spread of Yellow Fever (vector: Aedes aegypti) are specified under International Health Regulations (IHRs):
 - Travellers:
 1. Must possess a valid International certificate of vaccination (validity 10 days – 10 yrs) against YF before they enter ‘YF receptive areas’
 2. If no such certificate available: Quarantine for 6 days (Max I.P of YF) from date of leaving an infected area
 3. If traveller arrives before certificate becomes valid (10 days after vaccination): Isolate till it becomes valid
 - Mosquitoes:
 1. Aircrafts/ships arriving from endemic areas: Aerosol spray to kill insect vectors
 2. Airports/seaports kept free from vector breeding: at least 400 meters around boundary
 3. Aedes aegypti index: kept below 1
- Simulium (Black fly), vector of Onchocerciasis (River blindness) has a flight range of 100 miles.

206. Ans. (c) 8-34 days [Ref. Park 21/e p712, Park 22/e p716]

- Life span of a mosquito varies from: 8 to 34 days
 - Males, as a rule, are short lived
 - Life of a mosquito is influenced by temperature & humidity
- Egg stage lasts for 1 – 2 days
- Gonotrophic cycle: Period that elapses from the moment a blood meal is taken until the eggs are laid; it is about 48 hrs in hot & humid tropical areas
 - Larva: Passes through 4 stages of growth called ‘instars’, with moulting between each stage
- Larval stage occupies 5 – 7 days
- Culicine larvae (Culex, Aedes, Mansonia) have a siphon tube
 - Pupa: Represents ‘resting stage’ in life cycle of mosquito
- Pupal stage lasts for 1-2 days
- Have 2 respiratory tubes (trumpets) in thorax
 - Adult: Life cycle from egg to adult is complete in 7 – 10 days
- Adult mosquito lives for about 2 weeks.
207. Ans. (b) It is more effective against Anopheles [Ref. Foundations of Community Medicine, GM Dhaar & I Robbani, 1/e p247, Park 21/e p713, Park 22/e p717]

PARIS GREEN (COPPER ACETOARSENITE):
- Emerald green, microcrystalline powder
- Anti-larval measure, kills mainly Anopheles larvae as they are surface feeders
- Bottom feeding larvae can also be killed, when applied as a special granular formulation
- Paris green is a ‘stomach poison’
- Is most widely used larvicide for mosquito control
- Recommended dose: 1 kg paris green per hectare water surface
 - In dosage applied, paris green does not harm fish, man or domestic animals

Also Remember

- Pyrethrum: Space spray
 - Anti-adult, nerve poison, kills mainly by ‘knock down’ effect
 - Dosage: 1oz (0.1% Pyrethrin) per 1000 cu.ft. of space
 - Disadvantage: No residual action; reinfection occurs within a short time.

208. Ans. (d) Trench fever [Ref. Park 21/e p716, Park 22/e p720]

Also Remember

- Sandfly:
 - Insecticide of choice: DDT (second line: BHC)
 1. Dose: 1-2 gm/sq. metre (2 rounds per year)
 2. DDT is sprayed on walls up to height of 6 feet (2 metres) from floor level
 3. For long lasting results, spraying should be combined with sanitation measures
- Trench fever: a rickettsial disease limited to Central Europe
 - Causative agent: Bartonella Quintana (earlier, Rochalimaea Quintana)
 - Vector: Louse
 - Reservoir: Humans
 - Mode of transmission: Louse faeces
 - Drug of choice: Tetracycline.

209. Ans. (b) Pneumonic plague [Ref. Park 21/e p718, Park 22/e p722]

RAT FLEA (XENOPSYL:LA):
- Rat flea acts as a vector for:
 - Bubonic plague
 - Murine (endemic/flea-borne) typhus
 - Chiggerosis
- Rat flea acts as a host for:
 - Hymenolepis diminuta (Rat tapeworm)
 - Hymenolepis nana (Dwarf tapeworm)

Also Remember

- Pneumonic plague is the most virulent and least common form of plague, caused by the Yersinia pestis
 - Typically, pneumonic form is due to a secondary spread from advanced infection of an initial bubonic form
 - Pneumonic plague is not vector-borne like bubonic plague: results from inhalation of aerosolized droplets and can be transmitted from human to human ‘without involvement of fleas or animals’
 - Most apparent symptom: coughing, often with hemoptysis
- Human flea (Pulex irritans): can lead to restlessness, and both irritation and scratching of the skin
 - Pulex irritans is also a vector of Yersinia pestis (plague).
210. Ans. (b) 5% Permethrin [Ref. CMDT 2014, p144, Park 21/e p722, Park 22/e p726]

- **Scabies**: Is a transmissible ectoparasite skin infection characterized by superficial burrows, intense pruritus (itching) and secondary infection
 - Scabies is caused by the mite Sarcoptes scabei, variety hominis (known as ‘Itch mite’)
 - Scabies is usually transmitted by close contact with an infested person. Scabies is transmitted readily, often throughout an entire household, by skin-to-skin contact with an infected person and thus is sometimes classified as a sexually transmitted disease (STD)
 - **Drug of Choice for scabies**: 5% Permethrin
 - Other useful treatments:
 - Scabies was the first disease of man with known cause
 - **Other treatment modalities for Scabies**:
 1. 25% Benzyl benzoate (2 applications)
 2. 1% HCH (Gammaxene; lindane) (2 applications)
 3. 5% Tetnasol solution (3 daily applications)
 4. 10% Sulphur ointment (4 daily applications)
 5. Crotamiton lotion (3 applications)
 6. Malathion (1 application)
 7. Ivermectin (Single dose)—Oral/Systemic Drug of Choice
 8. Neem oil (for persistent cases).

Also Remember

- In scabies, the impregnated female ‘tunnels into the stratum corneum of the skin’ and deposits eggs in the ‘burrows’
- Scabies is sometimes classified as a sexually transmitted disease (STD); transmitted readily by skin-to-skin contact with an infected person
- Scabies transmission cannot be prevented by using condoms.

211. Ans. (d) Oriental sore [Ref. Park 21/e p716, Park 22/e p720]

- **Diseases associated with rodents**:

<table>
<thead>
<tr>
<th>Bacterial</th>
<th>Viral</th>
<th>Rickettsial</th>
<th>Parasitic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plague</td>
<td>Lassa fever</td>
<td>Scrub typhus</td>
<td>Hymenolepis dimunita</td>
<td>Rat bite fever</td>
</tr>
<tr>
<td>Tularemia</td>
<td>Hemorrhagic fever</td>
<td>Murine (Flea-borne) typhus</td>
<td>Leishmaniasis</td>
<td>Leptospirosis</td>
</tr>
<tr>
<td>Salmonellosis</td>
<td>Encephalitis</td>
<td>Rickettsial pox</td>
<td>Amoebiasis</td>
<td>Histoplasmosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trichinosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chagas disease</td>
<td></td>
</tr>
</tbody>
</table>

Also Remember

- **Rodenticides**: pest control chemicals intended to kill rodents
 - Anticoagulants: 4-hydroxy coumarin
 - Phosphides: Zinc phosphate, aluminium phosphate
 - Calferols: Vitamin D
 - Others: ANTU (a-naphthylurea), arsenic, barium, thallium, strychnine
 - **Rodenticides dangerous to use**: Arsenic trioxide, Phosphorus, Thallium sulphate, ANTU, Gophacide.

212. Ans. (d) Pyrethrum [Ref. Park 21/e p712-13, Park 22/e p716, 17]

213. Ans. (a) Mite [Ref. Park 21/e p721-22, Park 22/e p725, 26]

214. Ans. (d) Japanese encephalitis [Ref. Park 21/e p712, Park 22/e p716]

215. Ans. (a) Yellow fever; (b) Dengue; (d) Filarisis [Ref. Park 21/e p712, Park 22/e p716]

216. Ans. (a) Epidemic typhus; (c) Trench fever [Ref. Park 21/e p718, Park 22/e p722]

217. Ans. (a) Dieldrin; (d) Propoxur; (e) Lindane [Ref. Park 21/e p724, Park 22/e p728]

- **Organophosphorus Insecticides**:
 - Malathion
 - Parathion
 - Fenthion
 - Diazinon

[https://kat.cr/user/Blink99/]
Environment and Health

- Fenitrothion
- Dioxathion

• Organochlorine Insecticides:
 - DDT
 - Lindane

• Carbamate Insecticides:
 - Carbaryl
 - Propoxur

218. Ans. (c) Yellow fever; (d) Filariasis; (e) Dengue [Ref. Park 21/e p712, Park 22/e p716]

219. Ans. (b) Typhus; (c) Dengue; (d) J.E. [Ref. Park 21/e p712, 718, Park 22/e p716, 722]

220. Ans. (a) Epidemic typhus; (c) Trench fever [Ref. Park 21/e p718, Park 22/e p722]

221. Ans. (a) Aedes [Ref. K. Park 20/e p676]

222. Ans. (b) Q fever [Ref. K. Park 20/e p681]

223. Ans. (b) Eggs can't survive >1 wk without water [Ref. K. Park 20/e p675]
 • Egg stage of mosquito life cycle lasts for 1-2 days only, so there is no question of survival more than 1 week
 • Aedes mosquitoes are recurrent, fearless biters, chiefly bite during day
 • Aedes mosquitoes transmits:
 - Dengue
 - Yellow fever
 - Chikungunya fever
 • It takes 7-8 days to develop the parasite & transmit the disease (extrinsic incubation period)

224. Ans. (a) Relapsing fever [Ref. Park 22/e p725]

225. Ans. (b) Phlebotomus [Ref. Park 22/e p720, 727]
 DDT (Dichloro-diphenyl-trichloro ethane) Organochlorine
 • Synthesised by Zeidler (1874); Insecticidal properties discovered by Noble prize winner Paul Miller (1939)
 • Technical DDT: 70-80% para-para isomer (most active form)
 • Mechanism of action: Contact (Nerve) poison (hours to kill) (Acetylcholiesterase inhibitor)
 • DDT has ‘No repellent action’ but ‘residual action for 18 months’
 • Dosage: 100-200 mg per sq. ft.
 • Sandflies (Phlebotomus) have not demonstrated resistance to DDT

226. Ans. (a) Use of alkaline soap water in factory [Ref. Internet, Wikipedia]
 Alkaline soap water is not used in factories for mosquito control.

227. Ans. (a) Ingestion [Ref. K. Park 21/e p93, Park 22/e p94]
 Methods of transmission of disease by vectors:
 • Biting
 • Regurgitation
 • Scratching-in/Rubbing of infective surfaces
 • Contamination of host with body fluids of vectors.

228. Ans. (c) Malathion [Ref. K. Park 21/e p724, Park 22/e p728]
 MALATHION
 Is ‘least toxic among Organophosphate compounds’
 • Because of its low toxicity, it is recommended as ‘an alternative to DDT’
 • Dosage: 100-200 mg per sq. ft. every 3 months
 • ULV spray: Used to kill adult mosquitoes
 • Mechanism of action: Interfere with transmission of nerve impulses
 • Act by ‘inhibiting Acetyl-cholinesterase’

229. Ans. (c) Immediately kills the prey [Ref. K. Park 21/e p723, Park 22/e p727]

230. Ans. (a) DDT [Ref. K. Park 21/e p712-713, Park 22/e p716, 17]

231. Ans. (d) Filariasis [Ref. K. Park 21/e p246, Park 22/e p247]

232. Ans. (e) Rifampicin [Ref. K. Park 21/e p722, Park 22/e p726]
Review Questions

233. Ans. (c) Kyasanur forest disease (KFD) [Ref: Park 21/e p720-21, Park 22/e p724,725]
234. Ans. (d) 70-80% [Ref: Park 21/e p723, Park 22/e p727]
235. Ans. (b) Larvicide [Ref: Park 21/e p713, Park 22/e p717]
236. Ans. (b) Anopheles stephensi [Ref: Park 21/e p232-33, Park 22/e p233, 34]
237. Ans. (a) Malathion [Ref. Park 21/e p724, Park 22/e p728]
238. Ans. (b) Onchocerciasis [Ref. Park 21/e p717, Park 22/e p721]
239. Ans. (b) Sleeping sickness is caused by tse tse flies [Ref. Park 21/e p716, Park 22/e p720]
240. Ans. (c) Contact poisons [Ref. Park 21/e p723, Park 22/e p727]
241. Ans. (a) Onchocerciasis [Ref. Park 21/e p717, Park 22/e p721]
242. Ans. (a) Pyrethrum [Ref. Park 21/e p713-14, Park 22/e p717, 18]
243. Ans. (d) It has repellent action on insects [Ref. Park 21/e p723, Park 22/e p727]
244. Ans. (d) Japanese encephalitis [Ref. Park 21/e p712, Park 22/e p716]
245. Ans. (a) Dengue fever [Ref. Park 21/e p260, Park 22/e p259-260]
246. Ans. (a) Organochlorine compound [Ref. Park 21/e p723, Park 22/e p727]
247. Ans. (a) Anopheline [Ref. Park 21/e p713, Park 22/e p721]
248. Ans. (a) Mosquito [Ref. Park 21/e p712, Park 22/e p716]
249. Ans. (b) Aedes [Ref. Park 21/e p712, Park 22/e p716]
250. Ans. (c) Ticks [Ref. Park 21/e p708, Park 22/e p712]
251. Ans. (b) Culex [Ref: Park 21/e p712, Park 22/e p716]
252. Ans. (b) Causes ulcers in foot [Ref. Park 21/e p719-20, Park 22/e p723, 24]
253. Ans. (c) Aedes aegypti [Ref. Park 21/e p712, Park 22/e p716]
254. Ans (a) Pyrethrum [Ref. Park 21/e p713-14, Park 22/e p717, 18]
255. Ans. (b) Oncocerciasis [Ref. Park 21/e p717, Park 22/e p721]
256. Ans. (b) Babesiosis [Ref. Harrison’s 17/e p1294, Park 21/e p720-21, Park 22/e p724, 25]
257. Ans. (a) KFD [Ref. Park 21/e p712, Park 22/e p716]
258. Ans. (b) Pyrethrum [Ref. Park 21/e p725, Park 22/e p729]
259. Ans. (b) JE [Ref. Park 21/e p712, Park 22/e p716]
260. Ans. (b) Q fever [Ref. Park 21/e p720-21, Park 22/e p724, 25]
261. Ans. (b) Culex [Ref. Park 21/e p711, Park 22/e p715]
262. Ans. (b) Anopheles [Ref. Park 21/e p710, Park 22/e p714]
263. Ans. (a) Organophosphorous compound [Ref. KDT 5/e p90]
264. Ans. (d) RMSF [Ref. Park 22/e p723, 24]
265. Ans. (a) Culex [Ref. Park 21/e p712, Park 22/e p716]
266. Ans. (c) Mansonia [Ref. Park 22/e p716]
267. Ans. (a) Tick [Ref. Park 21/e p719-20, Park 22/e p723, 24]
268. Ans. (a) Mite [Ref. Park 21/e p719-20, Park 22/e p723, 24]
269. Ans. (a) 1 [Ref. Park 21/e p259, Park 22/e p258]
270. Ans. (a) Residual action is similar to DDT [Ref. Park 21/e p725, Park 22/e p729]
271. Ans. (a) Red [Ref. Insecticides Rules 1971, Central Insecticides Board, India]
• **Red label**: Extremely toxic
 - Zinc phosphide
• **Yellow label**: Highly toxic
 - Endosulphan
• **Blue label**: Moderately toxic
 - Malathion
• **Green label**: Slightly toxic
 - Mosquito repellants

272. Ans. (a) Trench fever; (d) Epidemic typhus; (e) Pediculosis [Ref. K Park 22/e p721-22]

273. Ans. (d) RMSF; (e) Crimean Congo Fever [Ref. K Park 22/e p724-25]

274. Ans. (a) Malaria [Ref. K Park 22/e p713]

275. Ans. (b) Propogative cycle [Ref. K Park 22/e p713]

276. Ans. (b) DDT [Ref. K Park 22/e p719-20]

277. Ans. (a) Ticks [MOST COMMON: Inhalation] [Ref. K Park 22/e p275]

278. Ans. (b) Anopheles stephensi [Ref. K Park 22/e p714]

279. Ans. (b) Oriental sore [Ref. K Park 22/e p724-25]

280. Ans. (b) Larvicide [Ref. K Park 22/e p717]

281. Ans. (b) Anopheles stephensi [Ref. K Park 22/e p714]

282. Ans. (b) Less than 100 m [Ref. K Park 22/e p715]

283. Ans. (a) 400 m [Ref. K Park 22/e p715-16]

284. Ans. (a) Rickettsial disease [Ref. Rickettsiology and Rickettsial Diseases, 5th International Conference, p146]

285. Ans. (b) Filaria [Ref. K Park 22/e p713]

286. Ans. (b) Residual spray [Ref. K Park 22/e p728]

287. Ans. (a) Ticks [Ref. K Park 22/e p94]

288. Ans. (a) Eliminate breeding places [Ref. K Park 22/e p719]

289. Ans. (a) 50 yards [Ref. K Park 22/e p720]

290. Ans. (b) 150 [Ref. K Park 22/e p718]

291. Ans. (d) Pupa don’t have siphon tube [Ref. K Park 22/e p714]

292. Ans. (c) Kyasanur forest disease [Ref. K Park 22/e p724-25]

293. Ans. (d) 70-80% [Ref. K Park 22/e p727]

294. Ans. (c) 10-15 [Ref. Manson’s Tropical Diseases, 23/e p833]

295. Ans. (b) 0.0475 inch [Ref. K Park 22/e p718]

296. Ans. (c) Lyme’s disease [Ref. K Park 22/e p724]

297. Ans. (a) Yellow fever; (b) Dengue; (c) Chikungunya fever; (e) Rift valley fever

298. Ans. (a) Epidemic typhus; (c) Relapsing fever; (d) Trench fever

299. Ans. (b) Larva rests at an angle to water surface; (e) No siphon tube in larvae [Ref. Park 22/e p714]

300. Ans. (a) Malaria [Ref. Park 22/e p716]

301. Ans. (b) Aedes [Ref. Park 22/e p715]

302. Ans. (b) Cover overhead tanks properly [Ref. Guidelines for Source Reduction, NVBDCP, Government of India]

• In urban areas, Malaria is mainly transmitted by Anopheles stephensi:
 - Breeds in man-made water containers in domestic/peridomestic situations such as tanks, wells, cisterns, which are of permanent nature and hence can malaria transmission throughout the year

• Recommended measures for Urban Malaria control:
Review of Preventive and Social Medicine

- Lids of overhead tanks must be checked and maintained monthly basis; any leakage be repaired immediately (most effective)
- Cover-up of underground and open tanks
- Open tanks used for animals be dead dried once in week
- Never to throw any containers in open capable of holding water
- Construction sites: Building bye-laws be implemented to prevent fault in designs, water flow on roof, gully traps open tanks for curing be treated with larvicides on weekly basis
- Unused wells either be closed or treated with larvicides
- Ornamental tanks, fountains be checked periodically and larvivorous fish be introduced
- Public health engineers be involved for proper drainage, building designs, periodic flushing of water logged areas and drainage.
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

Note: Please Refer to Annexure 13 for NEW PROPOSED DRAFT GUIDELINES OF BMW MANAGEMENT

BMW MANAGEMENT

Hospital Waste Composition
- Paper: 15%
- Plastic: 10%
- Rags: 15%
- Metals (Sharps, etc): 1.0%
- Infectious waste: 1.5%
- Glass: 4.0%
- General waste (food waste, sweeping of premises): 53.5%

Biomedical Waste Management (BMW) in India
- Biomedical Wastes (BMW) in India are handled and managed under 'Biomedical Waste Management (Management and Handling) Rules, 1998'
 - Exercising powers: Sections 6, 8, 25 of 'Environmental (Protection) Act, 1986'
 (under the Ministry of Environment and Forests)
- Schedules under Biomedical Waste Management (Management and Handling) Rules, 1998:
 - Schedule I#: Categories of BMW, treatment and disposal
 - Schedule II#: Color coding and type of container for BMW disposal
 - Schedule III#: Labels for BMW containers/bags
 - Schedule IV: Label for transport of BMW containers/bags
 - Schedule V: Standards for treatment and disposal of BMW

Categories of Biomedical Wastes (BMW) (Schedule I#)

<table>
<thead>
<tr>
<th>Cat</th>
<th>BMW#</th>
<th>Wastes included#</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Anatomical Waste</td>
<td>Human tissues, organs, body parts</td>
</tr>
<tr>
<td>2.</td>
<td>Animal Waste</td>
<td>Animal tissues, body parts, organs, carcasses, fluids, blood</td>
</tr>
<tr>
<td>3.</td>
<td>Microbiology and Biotechnology Waste</td>
<td>Waste from lab cultures, stocks, specimens of microorganisms, live or attenuated vaccines, cell cultures (human/animal), wastes from production of biologicals, toxins</td>
</tr>
<tr>
<td>4.</td>
<td>Waste Sharps</td>
<td>Needles, syringes, blades, scalpels, glass</td>
</tr>
<tr>
<td>5.</td>
<td>Discarded Medicines and Cytotoxic Drugs</td>
<td>Outdated contaminated and discarded medicines</td>
</tr>
<tr>
<td>6.</td>
<td>Soiled Waste</td>
<td>Items contaminated with blood, and fluids, including cotton, dressings, soiled plaster casts, linen, beddings</td>
</tr>
<tr>
<td>7.</td>
<td>Solid Waste</td>
<td>Disposable items (except sharps) including tubings, catheters, intravenous sets</td>
</tr>
<tr>
<td>8.</td>
<td>Liquid Waste</td>
<td>Waste generated from lab and washing, cleaning, housekeeping and disinfecting activities</td>
</tr>
<tr>
<td>9.</td>
<td>Incineration Ash</td>
<td>Ash from incineration of any BMW</td>
</tr>
<tr>
<td>10.</td>
<td>Chemical Waste</td>
<td>Chemical used in disinfection (insecticides) or in production of biologicals</td>
</tr>
</tbody>
</table>
Treatment/Disposal of Biomedical Wastes (Schedule I)

<table>
<thead>
<tr>
<th>Cat</th>
<th>BMW Category</th>
<th>Treatment/disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Human Anatomical Waste</td>
<td>Incineration/deep burial</td>
</tr>
<tr>
<td>2.</td>
<td>Animal Waste</td>
<td>Incineration/deep burial</td>
</tr>
<tr>
<td>3.</td>
<td>Microbiology and Biotechnology Waste</td>
<td>Local autoclaving/microwave/incineration</td>
</tr>
<tr>
<td>4.</td>
<td>Waste Sharps</td>
<td>Chemical treatment/autoclaving/microwave and mutilation/shredding</td>
</tr>
<tr>
<td>5.</td>
<td>Discarded Medicines and Cytotoxic Drugs</td>
<td>Incineration/destruction/secured landfills</td>
</tr>
<tr>
<td>6.</td>
<td>Soiled Waste</td>
<td>Incineration/autoclaving/microwave</td>
</tr>
<tr>
<td>7.</td>
<td>Solid Waste</td>
<td>Chemical treatment/autoclaving/microwave, mutilation/shredding</td>
</tr>
<tr>
<td>8.</td>
<td>Liquid Waste</td>
<td>Chemical treatment</td>
</tr>
<tr>
<td>9.</td>
<td>Incineration Ash</td>
<td>Sanitary landfill</td>
</tr>
<tr>
<td>10.</td>
<td>Chemical Waste</td>
<td>Chemical treatment and secured landfill (for solids)</td>
</tr>
</tbody>
</table>

Colour Coding and Type of Container for BMW Disposal (Schedule II)

<table>
<thead>
<tr>
<th>Color coding</th>
<th>Type of container</th>
<th>BMW category</th>
<th>Treatment option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Plastic bag</td>
<td>1, 2, 3, 6</td>
<td>Incineration/ deep burial</td>
</tr>
<tr>
<td>Red</td>
<td>Disinfected container/ Plastic bag</td>
<td>3, 6, 7</td>
<td>Autoclave/ Microwave/ Chemical treatment</td>
</tr>
<tr>
<td>Blue/ White translucent</td>
<td>Plastic bag</td>
<td>4, 7</td>
<td>Autoclave/ Microwave/ Chemical treatment and Destruction/ Shredding</td>
</tr>
<tr>
<td>Black</td>
<td>Plastic bag</td>
<td>5, 9, 10 (solid)</td>
<td>Secured landfill</td>
</tr>
</tbody>
</table>

Inertization

- **Process:** Mixing biomedical waste with cement and other substance before disposal, so as to minimize risk of toxic substances contained in waste to contaminate ground/surface water.
 - Inertization is especially suitable for pharmaceuticals and for incineration ashes with high metal content.
- **A typical composition of mixture is:**
 - 65% pharmaceutical waste
 - 15% lime
 - 15% cement
 - 5% water

BMW Management Treatment Modalities

1. **Mechanical Processes**
 - **Compacting:** Reducing size and volume of waste (Useful for general non-hazardous wastes)
 - **Shredding:** Breaking the material into smaller pieces by grinding/cutting/ granulation (Useful for plastics, rubber and soft metals)
 - **Landfill:** Oldest method of waste disposal
 - **Two types:** Open dump or Sanitary landfill
 - **Encapsulation:** Filling containers with waste, adding an immobilizing material (plastic foam/bituminous sand/cement mortar/clay material) and sealing containers.
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

- **Inertization**: Mixing biomedical waste with cement and other substance before disposal.
 - Useful for pharmaceuticals and for incineration ashes with high metal content.

2. **Thermal Processes**

- **Heat disinfection**: Boiling for 20 minutes
 - Useful for pre-treatment of sharps and plastics waste
- **Hot air oven**: Causes sterilization and mutilation at 160°C
 - Used for glassware, powders and oils impermeable to steam
- **Autoclave**: Steam-sterilization under pressure is a low-heat thermal process
 - Waste is subjected to 121°C or 135°C
- **Hydroclave**: Steam-sterilization under pressure causes fragmentation of wastes
 - Waste is subjected to 121°C or 132°C
- **Microwave**: Volumetric heating for microbial hazardous wastes using frequency of 2450 MHz and wavelength 12.24 nm
 - Waste destruction occurs by ‘heat conduction’
- **Incineration**: High temperature dry oxidation process which reduces waste volume and weight
 - Waste is subjected to 850 ± 50°C and 1050 ± 50°C
- **Plasma arc**: Ionized gas (electrical discharges) at high temperature causes gasification and molecular dissociation of organic wastes
 - Waste is subjected to 2000°C
- **Gamma irradiation**: Useful for re-usable medical equipments and clothing.

3. **Chemical Processes**

- **Disinfectants**: A disinfectant is a chemical agent, which destroys or inhibits growth of pathogenic micro-organisms in the non-sporing or vegetative state
 - Disinfectants are applied to inanimate objects and materials such as instruments and surfaces to control and prevent infection.
- **Antiseptics**: An antiseptic is a type of disinfectant, which destroys or inhibits growth of micro-organisms on living tissues without causing injurious effects when applied to surfaces of the body or to exposed tissues.

4. **Biological Processes**

- **Composting**: Land and cow dung (gobar) are used
- **Vermi-composting**: Earth worms (Eisenia fetida), land, matured cow dung (khad) and coconut husk are used
 - Not useful for non-biodegradable wastes
- **Bio-digestion**: Biodegradable kitchen waste or left over food of a hospital is used, which leads to production of manure and methane
 - Useful for rural health care institutions.

Incineration

- **Incineration**: Is a 'high temperature dry oxidation' process; It leads to significant reduction in waste-volume and weight (up to 70-80%)
 - **Incineration does not require pre-treatment**
 - **Biggest disadvantage of incineration**: Generation of smoke
- **Types of Incinerators**:
 - Double-chamber pyrolytic
 - Single-chamber pyrolytic
 - Rotary kilns
- **Temperature in an incinerator**:
 - **Primary chamber**: 800° ± 50°C
 - **Secondary chamber**: 1050° ± 50°C

[Links to related resources provided]

https://kat.cr/user/Blink99/
Characteristics of wastes suitable for incineration:
- Low heating volume
- Combustible matter > 60%
- Non-combustible solids < 5%
- Non-combustible fines < 20%
- Moisture content < 30%

Wastes types not to be incinerated:
- Pressurized gas containers
- Reactive chemical wastes (large)
- Silver/Radiographic/photographic wastes
- Halogenated plastics (PVC)
- Wastes with high mercury/cadmium content
- Sealed ampoules ampoules with heavy metals.
- Sharp
- Cytotoxic drugs

Mercury disposal
- Dispose mercury as a hazardous waste
- Never combine it with organic or inorganic waste
- Never dispose it in sink/drain
- Dispose off in ‘Recycling units’

Disaster management

Disaster

- Disaster (WHO): Is any occurrence that causes damage, ecological disruption, loss of human life or deterioration of health and health services on a scale sufficient to warrant an extraordinary response from outside the affected community or area.
- Disaster (Colin Grant): Is catastrophe causing ‘injury or illness simultaneously to at least 30 people’, who will require hospital emergency treatment.
 - Most commonly reported disease in post-disaster phase is Gastroenteritis.
 - Foremost step for disease prevention and control in post-disaster phase is chlorination of all water bodies.
 - Level of residual chlorine to be maintained in all water bodies in post-disaster phase is > 0.7 mg/l (0.7 ppm).
 - A common micronutrient deficiency in disasters is Vitamin A deficiency: It occurs due to deficient relief diets, measles and diarrhea (gastroenteritis).
 - Other common deficiencies include scurvy (Vitamin C), anemia (iron) and pellagra (Vitamin B4 - niacin).

Stages of a Disaster Cycle

- Disaster impact and response:
 - Search, rescue and first aid
 - Field care
 - Triage
 - Tagging
 - Identification of dead
- Stage of health and medical relief: Disaster containment
 - Primary phase (0-6 hours): First aid, medical care
 - Secondary follow-up (6-24 hours): Transportation, sanitation and immunization
 - Tertiary clean up (1-60 days): Food, clothing, shelter assistance, social service, employment, rehabilitation
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

• Rehabilitation:
 - Water supply
 - Sanitation and personal hygiene
 - Food safety
 - Vector control
• Mitigation: Measures designed to either prevent hazards from causing emergency or to lessen the effects of emergency
• Disaster preparedness.

Triage
• Triage: Consists of rapidly classifying the injured ‘on the basis of severity of their injuries and likelihood of their survival’ with prompt medical intervention
 - First come first serve is NOT followed in emergencies
 - Triage yields best results when carried out at the site of disaster
• Triage sieve: Quick survey to separate the dead and the walking from the injured
• Triage sort: Remaining casualties are assessed and allocated to categories
• Triage system: Most commonly uses FOUR color code system:
 - Red (Highest Priority): Immediate resuscitation or limb/life saving surgery in next 6 hours
 - Yellow (High Priority): Possible resuscitation or limb/life saving surgery in next 24 hours
 - Green (Low Priority): Minor illness/AMBULATORY patients
 - Black (Least Priority): Dead and moribund patients
• Tagging: Is the procedure where identification, age, place of origin, triage category, diagnosis and initial treatment are tagged on to every victim of disaster through a Colour Coding.

Types of Triage
• Triage is of two types:
 - Simple triage: Simple triage is used in a scene of mass casualty, in order to sort patients into those who need critical attention and immediate transport to the hospital and those with less serious injuries
 - This step is required before transportation becomes available
 - The categorization of patients based on the severity of their injuries can be aided with the use of printed triage tags or colored flagging
 - Rapid triage: S.T.A.R.T. (Simple Triage and Rapid Treatment) is a simple triage system that can be performed by lightly-trained lay and emergency personnel in emergencies
 - It is not intended to supersede or instruct medical personnel or techniques
 - It may serve as an instructive example
 - It has been field-proven in mass casualty incidents such as train wrecks and bus accidents
• Reverse Triage: In addition to the standard practices of triage as mentioned above, there are conditions where sometimes the less wounded are treated in preference to the more severely wounded. This may arise in,
 - A situation such as war where the military setting may require soldiers be returned to combat as quickly as possible
 - Disaster situations where medical resources are limited in order to conserve resources for those likely to survive but requiring advanced medical care.

National Institute for Disaster Management (NIDM)
• Established: 1995 (under Indian institute of Public Administration)
• Ministry in-charge: Ministry of Home Affairs
• Head: Union Home Minister

https://kat.cr/user/Blink99/
Purpose:
- To work as a think tank for Government by providing assistance in policy formulation
- To facilitate in reducing the impact of disasters

National Disaster Response Force and Civil Defence (NDRF)

- **Established:** 2006
- **Composition:** 10 battalions from CRPF, BSF, ITBP, CISF
- **Purpose:**
 - *Civil defence:* To safeguard the life and property of the civilian population and also to maintain the continuity of productive and economic activity of the nation during war time crisis
 - *Home guards:* To assist the police in controlling civil disturbance and communal riots (maintenance of internal security)
 - *Fire cell:* To organize Fire prevention and Fire fighting services, and to render technical advice on Fire Protection, Fire Prevention and Fire Legislation

OCCUPATIONAL HEALTH

Physical Hazards and Diseases

- **High Temperature**
 - Heat cramps
 - Heat hyperpyrexia (body temperature <102°F)
 - Heat exhaustion (body temperature >106°F)
 - Heat stroke (body temperature up to 110°F)

- **Low Temperature**
 - Chilblains
 - Trench Foot
 - Frost bite

- **Low Pressure**
 - Caisson Disease

- **Vibration**
 - Vibration sickness
 - Neurogenic damage

- **Non-ionizing Radiation**
 - Microwave Injuries
 - Laser injuries

Pneumoconioses

- *Pneumoconiosis occur due to:* occupational exposure to dust
- *Particles size:* 0.5 to 3.0 microns are the most dangerous (as a health hazard causing pneumoconiosis), as they reach the interior of lungs with ease
- *Particle size and behavior:*

<table>
<thead>
<tr>
<th>Particle size</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 microns</td>
<td>Settle down by gravity</td>
</tr>
<tr>
<td>< 10 microns</td>
<td>Remain suspended in air</td>
</tr>
<tr>
<td>5 – 10 microns</td>
<td>Arrested in upper respiratory tract</td>
</tr>
<tr>
<td>3 – 5 microns</td>
<td>Deposited in mid respiratory tract</td>
</tr>
<tr>
<td>1 – 3 microns</td>
<td>Enter alveoli and settle there</td>
</tr>
<tr>
<td>< 1 microns</td>
<td>Brownian movement</td>
</tr>
</tbody>
</table>
• **List of Pneumoconioses:**

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exposure source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicosis</td>
<td>Silica dust</td>
</tr>
<tr>
<td>Anthracosis</td>
<td>Coal dust</td>
</tr>
<tr>
<td>Asbestosis</td>
<td>Asbestos dust</td>
</tr>
<tr>
<td>Byssinosis</td>
<td>Cotton fibre</td>
</tr>
<tr>
<td>Bagassosis</td>
<td>Molasses (sugarcane)</td>
</tr>
<tr>
<td>Berylliosis</td>
<td>Beryllium</td>
</tr>
<tr>
<td>Farmer’s Lung</td>
<td>Mouldy hay</td>
</tr>
<tr>
<td>Siderosis</td>
<td>Iron dust</td>
</tr>
<tr>
<td>Stannosis</td>
<td>Tin dust</td>
</tr>
<tr>
<td>Bird fancier’s lung</td>
<td>Avian/ bird droppings</td>
</tr>
<tr>
<td>Compost lung</td>
<td>Compost</td>
</tr>
</tbody>
</table>

• **Antigens involved in Pneumoconioses:**

<table>
<thead>
<tr>
<th>Disease</th>
<th>Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagassosis</td>
<td>Thermoactinomyces sacchari</td>
</tr>
<tr>
<td>Farmer’s Lung</td>
<td>Micropolyspora faeni</td>
</tr>
<tr>
<td>Compost lung</td>
<td>Aspergillus</td>
</tr>
<tr>
<td>Chemical workers lung</td>
<td>Isocyanates</td>
</tr>
</tbody>
</table>

Asbestosis

- *Asbestosis is a pneumoconiosis which occurs due to: Exposure to asbestos*
- Asbestosis does not usually appear until after 5-10 years of exposure[^1]
- Sputum shows ‘asbestos bodies’, which are asbestos fibres coated with fibrin
- Asbestos may lead to pulmonary fibrosis, carcinoma of bronchus, mesothelioma of peritoneum/pleura and cancer of GIT[^2]
- Asbestos type most dangerous is ‘amphibole’[^3]

Bagassosis

- *Bagassosis occurs due to: Occupational exposure to fibrous residue of sugarcane (bagasse); Bagassosis has been shown to be due to Thermoactinomyces sacchari[^4]*
 - Bagassosis is a form of extrinsic allergic alveolitis
- **Pathogenesis:**
 - Bagasse contains a percentage of silica, innumerable fungal spores and micro-organisms
 - Bagasse dust blocks bronchioles thus leading to bronchitis and bronchopneumonia
- **Prevention and Bagasse control measures[^5]:**
 - Keeping moisture content > 20%
 - Spraying bagasse with 2% propionic acid (fungicide)
- **Organisms involved in causation of bagassosis[^6]:**
 - Thermoactinomyces sacchari
 - Thermoactinomyces vulgaris
 - Micropolyspora faeni

Lead Poisoning

- Lead Poisoning is known as ‘Plumbism’, Saturnism or Painter’s Colic[^7]
- Greatest source of lead in Lead Poisoning (Plumbism, Saturnism or Painter’s Colic) is

[^1]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^2]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^3]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^4]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^5]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^6]: [Lead Poisoning](https://kat.cr/user/Blink99/)
[^7]: [Lead Poisoning](https://kat.cr/user/Blink99/)
Gasoline/petrol/vehicular exhaust/automobile exhaust

- **Mode of absorption**: Lead can be absorbed by inhalation (most common mode), ingestion or through skin.
- **Clinical picture of lead poisoning**:
 - **Facial pallor**: Earliest and most consistent sign.
 - **Anemia**: Microcytic hypochromic.
 - **Punctate basophilia** or basophilic stippling of RBCs.
 - **Burtonian Line**: Lead sulphide line on gums (upper jaw).
 - **Lead colic**: Constipation (but sometimes diarrhea).
 - **Lead Palsy** (Peripheral neuropathy): Wrist drop or foot drop.
 - **Lead encephalopathy**.
 - **CNS effects**: mostly due to organic lead compounds.

- **Diagnosis of lead poisoning**:

<table>
<thead>
<tr>
<th>Laboratory parameter</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coproporphyrin in Urine (CPU) >150 mcg/l</td>
<td>Exposure to lead</td>
</tr>
<tr>
<td>Amino levulinic acid in urine (ALAU) >5 mg/l</td>
<td>Indicates lead absorption</td>
</tr>
<tr>
<td>Lead in blood >70 mcg/100 ml</td>
<td>Clinical symptoms appear</td>
</tr>
<tr>
<td>Lead in urine >0.8 mg/l</td>
<td>Lead exposure and absorption</td>
</tr>
<tr>
<td>Basophilic stippling of RBCs</td>
<td>Punctate basophilia</td>
</tr>
</tbody>
</table>

- A useful screening test is Coproporphyrin in Urine (CPU).

- **Treatment**: EDTA.

Occupational Dermatitis

- **Causes of occupational dermatitis**:

<table>
<thead>
<tr>
<th>Causes</th>
<th>Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Heat, cold, moisture, pressure, friction, x-rays, other rays</td>
</tr>
<tr>
<td>Chemical</td>
<td>Acids, alkalis, dyes, solvents, grease, tar, pitch, chlorinated phenols</td>
</tr>
<tr>
<td>Biological</td>
<td>Viruses, bacteria, fungi, parasites</td>
</tr>
<tr>
<td>Plant products</td>
<td>Leaves, vegetables, fruits, flowers, vegetable dust</td>
</tr>
<tr>
<td>Primary iritants</td>
<td>Acids, alkalis, dyes, solvents</td>
</tr>
<tr>
<td>Sensitizers</td>
<td>Sensitization of skin</td>
</tr>
</tbody>
</table>

- **Prevention of occupational dermatitis**: [Mnemonic: P4]
 - Pre-selection: Similar to pre-placement examination
 - Protection: Protective clothing, barrier creams
 - Personal hygiene: Washing facilities, water, soap, towel
 - Periodic inspection: Post-placement examination

Occupational Carcinomas

- **Most common**: Nearly 75% of occupational cancers are skin cancers.
 - **Type**: Predominantly 'squamous cell carcinomas'.
 - **Characteristic feature**: Occurrence on exposed parts of the body (head, neck, hands, arms) that have remained in direct contact with a carcinogenic source.
 - **Carcinogens implicated**: UV light, ionizing radiation, coal products, petroleum products, lubricating oils, fuel oils, etc.

- **Occupational cancers affect**: Skin, lungs, bladder and blood forming organs.
- **Occupational exposures and cancers**:

<table>
<thead>
<tr>
<th>Agent</th>
<th>Cancer(s) caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos</td>
<td>Mesothelioma</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Skin, Lung, Liver</td>
</tr>
</tbody>
</table>
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

Cont...

<table>
<thead>
<tr>
<th>Agent</th>
<th>Cancer(s) caused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>Leukemia</td>
</tr>
<tr>
<td>Benzidine</td>
<td>Urinary bladder</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Lung</td>
</tr>
<tr>
<td>Cadmium</td>
<td>Lung</td>
</tr>
<tr>
<td>Chromium</td>
<td>Nasal sinus, Lung</td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>Leukemia</td>
</tr>
<tr>
<td>Ionizing radiation</td>
<td>Skin, Thyroid, Lung</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nasal sinus, Lung</td>
</tr>
<tr>
<td>Polycyclic aromatic hydrocarbons</td>
<td>Skin, Scrotum, Lung</td>
</tr>
<tr>
<td>Radon</td>
<td>Lung</td>
</tr>
<tr>
<td>Silica</td>
<td>Lung</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>Liver</td>
</tr>
<tr>
<td>Wood dust</td>
<td>Nasal sinus</td>
</tr>
</tbody>
</table>

Carcinoma Bladder in Occupational Exposures

- Cancer bladder was first noted in man in Aniline industry in 1895
- Now following has been mentioned as possible bladder carcinogens:
 - β-naphthylamines
 - Benzidine
 - Paraamino-diphenyl
 - Auramine
 - Magenta
 - Certain drugs: Cyclophosphamide, Phenacetin
- Industries associated with cancer bladder
 - Dye-stuffs and dyeing industry
 - Rubber, gas and electric cable industry
- Most common symptom: Blood in the urine (haematuria)
- Most common type: Transitional Cell (urothelial cell) carcinoma (TCC) [90%]
- Immunotherapy in the form of ‘Intravesical (pharmacotherapeutic) BCG instillation’ is also used to treat and prevent the recurrence of superficial tumors.

Decompression Sickness (Caisson’s Disease)

- Caisson Disease (Decompression Sickness, DCS): Occurs due to low pressure, when a diver ascends rapidly to surface or air passengers ascend too rapidly to high altitudes
- Manifestations of air expansion:
 - Barodontalgia: Air trapped beneath teeth expands
 - Barosinusitis: Compressed air trapped in sinuses expands
 - Barotitis: Air under pressure trapped in middle ear expands
 - Emphysema: Most serious complication (may lead to cerebral embolism)
 - Abdominal distension: Air trapped in intestinal canal expands
- Effects of Nitrogen effervescence:
 - Bends: Steady aching pain in joints
 - Chokes: Rapid, shallow, dyspnec breathing
 - Prickles: Irritation of nerve terminals in skin
 - Paralysis: Most Serious Complication
 - Aseptic bone necrosis: Hip, knee and shoulder joints
- Gases implicated in DCS:
 - Nitrogen
 - Trimix (nitrogen + oxygen + helium)
 - Heliox (oxygen + helium)

https://kat.cr/user/Blink99/
Caisson Disease is a type of diving hazard and dysbarism.
Recompression is the only effective treatment for severe DCS, although rest and oxygen applied to lighter cases can be effective.

Sickness Absenteeism

- Sickness absenteeism is a ‘useful index in industry to assess the state of health of workers’, and their physical, mental and social well-being.
- Causes of sickness absenteeism may not be entirely due to sickness:
 - Economic causes
 - Social causes
 - Medical causes
- Methods of reducing sickness absenteeism:
 - Good factory management and practices
 - Adequate pre-placement examination
 - Good human relations
 - Application of ergonomics
- Rate of absenteeism reported in India: 8-10 days per worker per year.

Occupational Health Examination

- Pre-placement Examination: Is the foundation of an efficient occupational health service
 - Timing: At the time of employment and includes worker’s history (medical, family, occupational and social), physical examination and biological and radiological examinations
 - Main purpose of Pre-placement Examination is to place ‘the right man in right job’ so that worker can perform his duties efficiently without detriment to his health (Ergonomics)
 - Pre-placement Examination also serves as a useful benchmark for future comparison (examination and epidemiology).
- Periodic Post-placement Medical Examination: (for industrial workers) is held at appropriate intervals to test their physical and mental efficiency and to detect any departure from health at the earliest; objective being early diagnosis and prompt treatment (Secondary level of prevention). Frequency of periodic examinations:
 - Frequency and content depend upon the type of occupational exposure
 - Annual: for most of occupational exposures
 - Monthly: for lead, radium and dye-stuffs exposure
 - Daily: for dichromates exposure.

Ergonomics

- Ergonomics (human factors): Is the application of scientific information concerning objects, systems and environment for human use.
- Physical Ergonomics: deals with the human body’s responses to physical and physiological stress.
- Cognitive Ergonomics (engineering psychology): concerns mental processes as they affect interactions among humans and other elements of a system; includes workload, training, interaction, decision-making, errors, etc.
- Organizational Ergonomics (macroergonomics): is concerned with the optimization of systems, including their organizational structures, policies, and processes; includes job-satisfaction, motivation, supervision, team work, ethics, etc.

The Factories Act, 1948

- Scope: The Act defines factory as an establishment employing 10 or more persons where power is used and 20 or more persons where power is not used.
- Work related norms:

- **ESI Act** is an important measure of social security and health insurance in India.
- **Scope of ESI Act**: The act covers all the factories in India 'excluding mines, defence, railway employees',
 - *Act in the first instance applies to*: All non-seasonal factories, employing **10 or more persons**, for wages on any day in implemented areas. It also covers shops, hotels and restaurants, cinemas and theatres, road-motor transport establishments and newspaper establishments (Now it covers Medical Institutions in few states & UT’s)
 - *It covers all states except*: Manipur, Sikkim, Arunachal Pradesh and Mizoram; and UTs of Delhi and Chandigarh
 - *It covers all employees getting income up to ₹ 15,000/- per month*
- **Administration**: The Union Minister of Labour is the Chairman of ESI Corporation
- **Finance**:
 - Employer contributes 4.75% of total wage bill
 - Employee contributes 1.75% of wages (those earning < ₹ 100/- per day exempted)
 - State and Central Government share medical expenditure in ration of 1:7
- **Benefits to employees under ESI**:
 - **Medical benefit**: Full medical care
 - **Sickness benefit**: 70% of the average daily wages and is payable for 91 days (in any continuous period of 365 days)
 - **Extended sickness benefit**: Payable for 2 years for a set of 34 diseases (80% wages)
 - **Enhanced sickness benefit**: Full average daily wage for duration upto 7 days in the case of Vasectomy and up to 14 days in the case of the Tubectomy
 - **Maternity benefit**: Full average daily wage for duration upto 12 weeks (confinement) or 6 weeks (miscarriage or MTP) or 4 weeks (sickness arising out of pregnancy, confinement, premature birth), as the case may be
 - **Temporary disablement benefit**: 90% of the average daily wages till recovery
 - **Permanent disablement benefit**: 90% of wages for loss of earning as worked out by a medical board

Additional Information

- **A minimum of 500 cubic feet space per worker**.
- **1 Safety Officer per 1000 workers**.

- **Diseases which are notifiable**
 - Silicosis
 - Anthracosis
 - Byssinosis
 - Bagassosis

- **Employer contributes 4.75% of total wage bill.**
- **Sickness benefit**: 70% of the average daily wages and is payable for 91 days.
Dependents' benefit: Pension at rate of 90% of wages
Funeral expenses: Cash not exceeding ₹ 10,000/-
Rehabilitation benefit

GENETICS

Definitions

- **Genome:** The sum total of genetic information of an individual which is encoded in structure of DNA
- **Genomics:** Is the study of human genome
- **Gene Therapy:** Introduction of a gene sequence into a cell to modify its behavior
- **DNA Technology:** Development of new diagnostic techniques such as restriction enzymes.

Eugenics and Euthenics

- **Eugenics (Sir Francis Galton):** Is a social philosophy which advocates the improvement of human hereditary traits through various forms of intervention (GENETIC MANIPULATION)
 - **Negative Eugenics:** Is aimed at lowering fertility among the genetically disadvantaged
 - Abortions
 - Sterilizations
 - Other methods of family planning
 - **Positive Eugenics:** Is aimed to encourage reproduction among the genetically advantaged
 - Financial and political stimuli
 - Targeted demographic analyses
 - In vitro fertilization,
 - Egg transplants
 - Gene cloning
- **Euthenics:** Deals with human improvement through altering external factors such as education and the controllable environment, including the prevention and removal of contagious disease and parasites, environmentalism, education regarding home economics, sanitation, and housing (Environmental Manipulation).

Mendelian Diseases Inheritance

<table>
<thead>
<tr>
<th>Autosomal dominant traits</th>
<th>Autosomal recessive traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achondroplasia</td>
<td>Albimism</td>
</tr>
<tr>
<td>Huntington’s chorea</td>
<td>Phenylketonuria</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>Tay Sachs disease</td>
</tr>
<tr>
<td>Familial polyposis coli</td>
<td>Alcaptonuria</td>
</tr>
<tr>
<td>Marfan’s Syndrome</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>Galactosemia</td>
</tr>
<tr>
<td>ABO blood group system</td>
<td>Hemoglobinopathies</td>
</tr>
<tr>
<td>Hyperlipoproteinemia I, II, III, IV</td>
<td>Maple syrup urine disease</td>
</tr>
<tr>
<td>Polycystic kidney</td>
<td>Megacolon (Hirschsprung Dis)</td>
</tr>
<tr>
<td>Hereditary spherocytosis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex-linked dominant traits</th>
<th>Sex-linked recessive traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin-D resistant rickets</td>
<td>Hemophilia type A & B</td>
</tr>
<tr>
<td>Blood group Xg</td>
<td>Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>Familial hypophosphatemia</td>
<td>Color blindness</td>
</tr>
<tr>
<td></td>
<td>G6PD deficiency</td>
</tr>
<tr>
<td></td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td></td>
<td>Retinitis pigmentosa</td>
</tr>
</tbody>
</table>

Hardy Weinberg fails if:
- Small populations
- Dynamic populations
- Non-random mating
- Assortative mating
- Mutations
- Natural selection
- Gene flow
- Genetic drift
- Migration
Hardy Weinberg Law

- Hardy Weinberg Law\(^\text{a}\): States that the genotype frequencies in a population remain constant or are in equilibrium from generation to generation unless specific disturbing influences are introduced
 - Genetic equilibrium (HW law) is a basic principle of population genetics; the entire principle is based on Mendelian genetics
 - HW law assumes that human population is static
- Hardy Weinberg is only applicable for:\(^\text{a}\)
 - Infinitely large populations
 - Random mating populations
 - Static populations
- Hardy Weinberg fails if:\(^\text{a}\)
 - Small populations
 - Dynamic populations
 - Non-random mating
 - Assortative mating
 - Mutations
 - Natural selection (mortality selection, fecundity selection)
 - Gene flow
 - Genetic drift
 - Migration.

Human Genome Project (HGP)

- Human Genome Project: HGP is an international scientific research project
 - Primary goals are to determine the sequence of chemical base pairs which make up DNA and to identify the approximately 25,000 genes of the human genome\(^\text{a}\)
 - Secondary goals: To understand human genome and complete a map of all findings
 - Goals of the original HGP were not only to determine more than 3 billion base pairs in the human genome, but also to identify all the genes in this vast amount of data.
- Project began in 1990 initially headed by James D. Watson:
 - Ongoing sequencing led to the announcement of the essentially complete genome in April 2003\(^\text{a}\)
 - Part of the project is still ongoing, although a prelimanary count indicates about 22,000–23,000 genes in the human genome\(^\text{a}\)
- The Human Genome Diversity Project (HGDP): A spinoff research aimed at mapping the DNA that varies between human ethnic groups, to date has yielded new conclusions. In the future, HGDP could possibly expose new data in disease surveillance, human development and anthropology. HGDP could unlock secrets behind and create new strategies for managing the vulnerability of ethnic groups to certain diseases. It could also show how human populations have adapted to these vulnerabilities.

Amniocentesis

- Amniocentesis: Examination of a sample of amniotic fluid makes possible the prenatal diagnosis of chromosomal anomalies and certain metabolic defects; The procedure can be used as early as 14th week of pregnancy when abortion of affected fetus is still feasible
 - Culture and karyotyping of fetal cells from amniotic fluid is used for diagnosis of fetal anomalies
 - Biochemical analysis of amniotic fluid is used for diagnosis of metabolic effects
Review of Preventive and Social Medicine

- Amniocentesis is indicated in following circumstances:
 - A mother aged > 35 years (high risk of Down’s Syndrome)
 - Patients who have had a child with Down’s Syndrome or other chromosomal anomalies
 - Parents known to have chromosomal translocation
 - Patients who have had a child with metabolic defect
 - When sex-determination is warranted.

MENTAL HEALTH

Causes of Mental Health Disorders
- Organic conditions: Cerebral arteriosclerosis, neoplasma, metabolic diseases, endocrine diseases and chronic diseases (TB, leprosy, epilepsy)
- Heredity: Schizophrenia
- Socio-pathological: Worries, anxiety, emotional stress, tension, frustration, unhappy married life, broken homes, poverty, industrialization, urbanization, cruelty, rejection, neglect, etc.

Situational Analysis
- WHO analysis shows a global point prevalence of neuro-psychiatric conditions is about 10% for adult
- MCC of DALYs lost: Unipolar depressive disorders
- MCC of deaths: Alzheimer’s and other dementias
- Mental morbidity in India: 18-20 per 1000.

DALYs Lost due to Mental Health Disorders

<table>
<thead>
<tr>
<th>Type of disorder</th>
<th>DALYs lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar depressive disorders</td>
<td>64963</td>
</tr>
<tr>
<td>Alcohol disorders</td>
<td>18469</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>15686</td>
</tr>
<tr>
<td>Bipolar affective disorders</td>
<td>13645</td>
</tr>
<tr>
<td>Alzheimer’s dementia</td>
<td>12464</td>
</tr>
<tr>
<td>Migraine</td>
<td>7539</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>7067</td>
</tr>
</tbody>
</table>

Diagnostic Criteria
- DSM-IV Criteria: Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision, DSM-IV-TR, is a manual published by the American Psychiatric Association (APA) that includes all currently recognized mental health disorders
- International Classification of Diseases, ICD-10 criteria.
MULTIPLE CHOICE QUESTIONS

BMW MANAGEMENT

1. What is the color-coding of bag in hospitals to dispose off human anatomical wastes such as body parts?
 (a) Yellow [AIPGME 2005]
 (b) Black
 (c) Red
 (d) Blue

2. “Inertization” deals with: [AIIMS June 1998]
 (a) Mixing biomedical waste with cement and other substance before disposal
 (b) Incineration of biomedical waste with cement and other substance before disposal
 (c) Dumping of biomedical waste in sanitary landfills
 (d) Screw feed technology to disinfect sharps

3. HIV (+) patient is being infused amphotericin B for fungal systemic infection patient’s iv-cannula and tubing should be managed as which of the following:
 (a) Disinfect in 1% hypochlorite, put in blue bag for destruction/shredding [AIIMS May 2006]
 (b) Put in Red bag for destruction/shredding
 (c) Disinfect in 5% hypochlorite solution and put in yellow bag
 (d) Put in black bag for destruction/shredding

4. What is the color-coding of bag in hospitals to dispose off human anatomical wastes such as appendix:
 (a) Yellow [AIIMS May 2004]
 (b) Black
 (c) Red
 (d) Blue

5. What is the color-coding of bag in hospitals to dispose off waste sharps? [AIIMS Nov 2000]
 (a) Yellow
 (b) Black
 (c) Red
 (d) Blue

6. Which of the following Categories of Biomedical wastes in India do not require containers/bags for disposal?
 (a) Category 1 (Human anatomical waste) [AIIMS Nov 2005]
 (b) Category 4 (Waste sharps)
 (c) Category 5 (Discarded drugs and Cytotoxic medications)
 (d) Category 8 (Liquid waste)

7. Incineration is: [AIPGME 2006]
 (a) High temperature reduction process
 (b) Low temperature reduction process
 (c) High temperature oxidation process
 (d) Low temperature oxidation process

8. Which of the following Biomedical wastes can be incinerated? [AIIMS Nov 2008]
 (a) Pressurized gas containers
 (b) Radiographic wastes
 (c) PVC
 (d) Human anatomical wastes

9. Which of the following Biomedical wastes cannot be disposed off in Yellow Bags? [AIIMS Nov 2007]
 (a) Reactive chemical wastes
 (b) Human anatomical wastes
 (c) Microbiology and Biotechnology wastes
 (d) Dressings soaked with blood

10. A known HIV positive patient is admitted in an isolation ward after an abdominal surgery following an accident. The resident doctor who changed his dressing the next day found it to be soaked in blood. Which of the following would be right method of choice of discarding the dressing? [AIIMS Nov 05]
 (a) Pour 1% hypochlorite on the dressing material and send it for incineration in an appropriate bag
 (b) Pour 5% hypochlorite on the dressing material and send it for incineration in an appropriate bag
 (c) Put the dressing material directly in an appropriate bag and send for incineration
 (d) Pour 2% Lysol on the dressing material and send it for incineration in an appropriate bag

11. Yellow plastic bags containing biomedical wastes are treated by: [Karnataka 2008]
 (a) Autoclaving
 (b) Incineration
 (c) Microwaving
 (d) Shredding

12. Hospital waste product accounts: [PGI June 04]
 (a) Paper 40%
 (b) Plastic 10%
 (c) Infectious waste 30%
 (d) Rage 30%
 (e) Glass 4%

13. True about composition of Indian hospital waste products: [PGI June 06]
 (a) Metal 1%
 (b) Paper 15%
 (c) Glass 55%
 (d) Infectious waste 3%
 (e) Plastics 3%
14. **Safe disposal of mercury is:** [AIIMS May 09]
 (a) Collect carefully and recycle
 (b) Controlled combustion
 (c) Treatment with chemicals
 (d) Deep burial

15. **Outdated cytotoxic drugs are best disposed by:** [AIIMS Nov 09]
 (a) Disposa in municipal waste
 (b) Destruction and dumping in secured landfill
 (c) Store for months and burial
 (d) Autoclave

16. **Mercury is disposed by:** [AIIMS May 2010]
 (a) Controlled combustion
 (b) Deep burial
 (c) Safely collect and re-use
 (d) Chemical treatment

17. **All of the following statements regarding Biomedical Waste management are true except:** [AIPGME 2011]
 (a) Human Anatomical waste is thrown in Yellow bag
 (b) Blue bag waste is disposed by Landfill
 (c) Incineration ash is discarded in Black bag
 (d) Material in Red bag could be a source of contamination

18. **A known HIV positive patient is admitted in an isolation ward after an abdominal surgery following an accident. The resident doctor who changed his dressing the next day found it to be soaked in blood. Which of the following would be the right method of choice for discarding the dressing?** [DPG 2011]
 (a) Pour 1% hypochlorite on the dressing material and send it for incineration in an appropriate bag
 (b) Pour 5% hypochlorite on the dressing material and send it for incineration in an appropriate bag
 (c) Put the dressing material directly in an appropriate bag and send it for incineration
 (d) Pour 2% lysol on the dressing material and send it for incineration in an appropriate bag

19. **Incineration not done for:** [AIIMS May 2011]
 (a) Cytotoxic drugs
 (b) Waste sharps
 (c) Human anatomical waste
 (d) Cotton contaminated by blood

20. **Discarded expired medicines are thrown into:** [Recent Question 2013]
 (a) Blue bag
 (b) Black bag
 (c) Yellow bag
 (d) Red bag

21. **Not true about Screw feed technique is:** [AIIMS November 2013]
 (a) 80% volume reduction
 (b) Pathological waste are removed
 (c) Weight is decreased by 20-30%
 (d) Based on non-burn thermal treatment

22. **Discarded cytotoxic medicines should be disposed in:** [DNB December 2010]
 (a) Blue bag
 (b) Black bag

23. **Biomedical waste(s) to be discarded in Yellow Bag:** [PGI November 2012]
 (a) Human anatomical waste
 (b) Animal waste
 (c) Radiographic waste
 (d) Used batteries

24. **Incineration is done for:** [Recent Question 2013]
 (a) Waste sharps
 (b) Human anatomical waste
 (c) Radiographic waste
 (d) Used batteries

25. **Amount of infectious waste among hospital waste is:** [Recent Question 2012]
 (a) 1.5%
 (b) 4.5%
 (c) 25%
 (d) 12%

26. **Not safe disposal but good for soil building:** [Recent Question 2012] [Recent Question 2013]
 (a) Incineration
 (b) Controlled tipping
 (c) Composting
 (d) Dumping

27. **Disposal of placenta at PHC is:** [Recent Question 2013] [AIIMS May 09] [Recent Question 2012] [Recent Question 2013]
 (a) Dry burning
 (b) Deep burial
 (c) Boiling
 (d) Treat with bleaching powder and burial

28. **Plastic cover of syringes are disposed in:** [Recent Question 2013] [DNB December 2009] [DNB December 2011]
 (a) Red bag
 (b) Yellow bag
 (c) White bag
 (d) Blue bag

29. **Waste sharps should be disposed in:** [DNB December 2010]
 (a) Black bag
 (b) Yellow bag
 (c) White bag
 (d) Yellow bag

30. **Which bag among the following shouldn’t be incinerated as it contains cadmium?** [DNB December 2010]
 (a) Blue
 (b) Red
 (c) Black
 (d) Yellow

31. **Animal waste is disposed off by:** [Recent Question 2012]
 (a) Autoclaving
 (b) Incineration
 (c) Chemical treatment
 (d) Microwaves
32. True about Incinerator is/are: [PGI November 2012]
(a) Red bag can be incinerated
(b) No pre-treatment required
(c) Yellow bag must be incinerated
(d) Sharps must not be incinerated
(e) Combustible matter must be above 30%

33. Incineration is not done for: [PGI November 2013]
(a) Anatomical waste
(b) Sharps waste
(c) Cytotoxic drugs
(d) Radioactive waste
(e) Animal waste

34. True about Inertization all except: [AIIMS November 2014]
(a) Mixing biomedical waste with cement
(b) Used for pharmaceutical waste
(c) Contaminates water sources
(d) Not useful for infectious waste

35. Disposal mechanism for Black colour coded biomedical waste bag is: [Recent Question 2014]
(a) Incineration
(b) Dumping
(c) Shredding
(d) Landfill

36. Category 7 on biomedical waste management contains: [Recent Question 2014]
(a) Soiled waste
(b) Solid waste
(c) Liquid waste
(d) Incineration ash

37. Black colour Bag for:
(a) Cat 1 [UP 2006]
(b) Cat 3
(c) Cat 4
(d) Cat 5

38. Biodegradable waste products, disposing in which of the colour code of the bags: [UP 2008]
(a) Blue
(b) Black
(c) Green
(d) Yellow

39. “3-D” means in hospital waste management is: [UP 2008]
(a) Disinfection, Disposal, Drainage
(b) Discard, Disinfection, Drainage
(c) Destruction, Deep burial, Drainage
(d) Destruction, Deep burial, Disposal

40. Color coding of bags in hospitals to dispose off human anatomical waste: [Kolkata 2008]
(a) Black
(b) Yellow

41. According to the Biomedical Waste Rules (1998), for the hospital waste products disposed by incineration, the temperature of primary chamber of incineration should be: [MH 2005]
(a) 600 + /- 50°C
(b) 800 + /- 50°C
(c) 1000 + /- 50°C
(d) 1200 + /- 50°C

42. According to the Bio Medical Waste (Management and Handling) Rules, 1998 of India, schedule II, the waste included in Category 4 are: [MH 2006]
(a) Human Anatomical Waste
(b) Waste Sharps
(c) Animal Waste
(d) Microbiology and Biotechnology Waste

43. Discarded cytotoxic drugs and medicines are disposed in: [MH 2007]
(a) Black bag
(b) Yellow bag
(c) Blue bag
(d) Red Bag

44. According to biomedical waste, which of the following bag can be incinerated? [MH 2008]
(a) Red
(b) Blue
(c) Green
(d) Yellow

45. Incineration ash is seen in the category: [RJ 2008]
(a) 6
(b) 3
(c) 5
(d) 9

46. Soiled waste is seen in the category: [RJ 2009]
(a) 6
(b) 3
(c) 5
(d) 9

47. Post disaster (earthquake) in Pakistan, which of the following vaccines is recommended by WHO? [AIPGME 2005]
(a) Typhoid
(b) Cholera
(c) Tetanus
(d) None of the above

48. Chernobyl nuclear explosion accident occurred on 26th April, 1986. It resulted in emission of:
[a] Methyl isocyanate (Mi(C) [AIIMS Dec 1994]
(b) Union carbide
(c) Ur235, Po210
(d) I131, Cs134, Cs137, Sr90
49. In draughts, commonly noticed vitamin deficiency is:
(a) Vitamin A
(b) Vitamin B
(c) Vitamin C
(d) Vitamin D

[AHIMS Feb 1997]

50. Arrange the following phases of Disaster Cycle in a logical sequence:
(a) Disaster impact – Mitigation – Rehabilitation – Response
(b) Disaster impact – Response – Rehabilitation – Mitigation
(c) Rehabilitation – Response – Disaster impact – Mitigation
(d) Response – Disaster impact – Rehabilitation – Mitigation

[AHIMS Dec 1994]

51. During a disaster, rapidly classifying the injured on the basis of likelihood of their survival with prompt medical intervention, is a part of:
(a) Search, rescue and first aid
(b) Triage
(c) Tagging
(d) Disaster mitigation

[AIPGME 2000]

52. Most commonly reported disease in the post disaster period is:
(a) Acute Respiratory Infections
(b) Gastroenteritis
(c) Tetanus
(d) Malaria

[AIIMS May 2001]

53. As per the most common classification of Triage system that is internationally accepted, the colour code that indicates high priority treatment or transfer is:
(a) Black
(b) Yellow
(c) Red
(d) Blue

[Karnataka 2007]

54. Which colour-coded person is given first preference in disaster triage?
(a) Red
(b) Black
(c) Yellow
(d) Green

[AHIMS November 2013]

57. All vaccines are NOT given in disaster, except:
(a) Cholera
(b) Tetanus
(c) Measles
(d) Tetanus

[Recent Question 2013]

58. Which of the following is the nodal centre for disaster management?
(a) PHC
(b) CHC
(c) Police Control room
(d) District

[Recent Question 2013]

59. True about triage is:
(a) Yellow-least priority
(b) Red-morbidity
(c) Green-ambulatory
(d) Blue-ambulatory

[Recent Question 2012]

60. Which is the calamity with most amount of damage?
(a) Flood
(b) Earthquake
(c) Landslides
(d) Volcanoes

[AIPGME 2000]

61. Natural disaster causing maximum deaths:
(a) Hydrological
(b) Meterological
(c) Geological
(d) Fires

[AIIMS May 2012]

62. Triage is:
(a) A concept in trauma
(b) A method of breast lump diagnosis
(c) An investigation for duodenum and pancreas
(d) Management of old age health problems

[NUPGET 2013]

63. Epidemics after disaster are caused by all except:
(a) Leptospirosis
(b) Rickettsiosis
(c) Leishmaniasis
(d) Acute respiratory infection

[AIIMS November 2013]

64. The gas responsible for Bhopal gas tragedy was:
(a) Methyl isocyanate
(b) Potassium isothiocyanate
(c) Sodium isothiocyanate
(d) Ethyl isothiocyanate

[DNB June 2010]

65. Which epidemic does not occur after a disaster?
(a) Leptospirosis
(b) Leishmaniasis
(c) ARTI
(d) Rickettsia

[AIIMS May 2014]

66. Nodal centre in case of disaster management:
(a) PHC
(b) Sub centre
(c) CHC
(d) District

[Recent Question 2014]

67. Black color in triage is:
(a) Death
(b) Transfer
(c) High priority
(d) Low priority

[Recent Question 2012] [Recent Question 2013]

50. Arrange the following phases of Disaster Cycle in a logical sequence:
(a) Disaster impact – Mitigation – Rehabilitation – Response
(b) Disaster impact – Response – Rehabilitation – Mitigation
(c) Rehabilitation – Response – Disaster impact – Mitigation
(d) Response – Disaster impact – Rehabilitation – Mitigation

[AHIMS Dec 1994]

51. During a disaster, rapidly classifying the injured on the basis of likelihood of their survival with prompt medical intervention, is a part of:
(a) Search, rescue and first aid
(b) Triage
(c) Tagging
(d) Disaster mitigation

[AIPGME 2000]

52. Most commonly reported disease in the post disaster period is:
(a) Acute Respiratory Infections
(b) Gastroenteritis
(c) Tetanus
(d) Malaria

[AIIMS May 2001]

53. As per the most common classification of Triage system that is internationally accepted, the colour code that indicates high priority treatment or transfer is:
(a) Black
(b) Yellow
(c) Red
(d) Blue

[Karnataka 2007] [Recent Question 2013]

54. Which colour-coded person is given first preference in disaster triage?
(a) Red
(b) Black
(c) Yellow
(d) Green

[AHIMS November 2013]

57. All vaccines are NOT given in disaster, except:
(a) Cholera
(b) Tetanus
(c) Measles
(d) Tetanus

[Recent Question 2013]

58. Which of the following is the nodal centre for disaster management?
(a) PHC
(b) CHC
(c) Police Control room
(d) District

[Recent Question 2013]

59. True about triage is:
(a) Yellow-least priority
(b) Red-morbidity
(c) Green-ambulatory
(d) Blue-ambulatory

[Recent Question 2012]

60. Which is the calamity with most amount of damage?
(a) Flood
(b) Earthquake
(c) Landslides
(d) Volcanoes

[AIPGME 2000]

61. Natural disaster causing maximum deaths:
(a) Hydrological
(b) Meterological
(c) Geological
(d) Fires

[AIIMS May 2012]

62. Triage is:
(a) A concept in trauma
(b) A method of breast lump diagnosis
(c) An investigation for duodenum and pancreas
(d) Management of old age health problems

[NUPGET 2013]

63. Epidemics after disaster are caused by all except:
(a) Leptospirosis
(b) Rickettsiosis
(c) Leishmaniasis
(d) Acute respiratory infection

[AIIMS November 2013]

64. The gas responsible for Bhopal gas tragedy was:
(a) Methyl isocyanate
(b) Potassium isothiocyanate
(c) Sodium isothiocyanate
(d) Ethyl isothiocyanate

[DNB June 2010]

65. Which epidemic does not occur after a disaster?
(a) Leptospirosis
(b) Leishmaniasis
(c) ARTI
(d) Rickettsia

[AIIMS May 2014]

66. Nodal centre in case of disaster management:
(a) PHC
(b) Sub centre
(c) CHC
(d) District

[Recent Question 2014]
67. During massive disaster what should be done first?
 (a) Search and rescue, first aid [Recent Question 2014]
 (b) Triage
 (c) Stabilization of victims
 (d) Hospital treatment and redistribution of patients to
 hospital if necessary

68. In a disaster management triage, patients who need
 surgery within 24 hours, are categorized under which color category: [Recent Question 2014]
 (a) Red
 (b) Green
 (c) Blue
 (d) Black

Review Questions

69. During disaster management the following condition
 would be classified under international code green signal:
 [MP 2007]
 (a) High priority treatment
 (b) Medium priority treatment
 (c) Ambulatory patient
 (d) Dead patients

70. Following occupational diseases are notifiable under
 the Indian Factory Act, 1976 except: [AIIMS June 1998]
 (a) Silicosis
 (b) asbestosis
 (c) byssinosis
 (d) bagassosis

71. Ideal periodical examination of worker in an industry is
done every: [AIIMS Dec 1995]
 (a) Day
 (b) Month
 (c) Year
 (d) Depends on type of exposure

72. Indian constitution has declared that children less than
 ______ years should not be employed in factories or
 mines: [AIIMS June 1999]
 (a) 10
 (b) 12
 (c) 14
 (d) 16

73. ‘Safety officers’ have to be appointed in factories where
 no. of workers is more than:
 (a) 500 [AIPGME 2001]
 (b) 1000
 (c) 2000
 (d) 5000

74. Useful screening test for lead is measurement of:
 (a) Coproporphyrin in urine [AIIMS Nov 1999]
 (b) Amino-laevulinic acid in urine

75. Lead poisoning in industries commonly occurs by:
 (a) Inhalation [AIIMS June 1999]
 (b) Ingestion
 (c) Skin absorption
 (d) Conjunctival route

76. Inhalation of sugarcane dust could cause:
 (a) Bagassosis [AIIMS Nov 2003]
 (b) Byssinosis [Recent Question 2013]
 (c) Tobacosis
 (d) Farmer’s lung

77. All are features of Silico-tuberculosis except:
 (a) High sputum AFB +ve [AIPGME 2004]
 (b) Children of such cases do not get disease
 (c) Impairement of total lung
 (d) Nodular fibrosis

78. All are disease manifestations associated with Low
 Temperature except: [AIPGME 2002]
 (a) Chilblains
 (b) Prickles
 (c) Frostbite
 (d) Trench foot

79. Periodic Examination of factory workers is a type of:
 (a) Primordial Prevention [AIPGME 1993]
 (b) Primary Prevention
 (c) Secondary Prevention
 (d) Tertiary Prevention

80. With reference to lead poisoning, various parameters
 are given below with the levels: [AIIMS Nov 2004]
 A. Coproporphyrin in urine
 B. Aminolevulinic Acid in urine
 C. Lead in urine
 D. Lead in blood
 I. > 70 mg/100ml
 II. > 5 mg/L
 III. >150mg/L
 IV. > 0.8 mg/L
 Correct match is:
 (a) A-I B-II C-IV D-III
 (b) A-III B-IV C-II D-I
 (c) A-I B-IV C-II D-III
 (d) A-III B-II C-IV D-I

81. The minimum air space per worker prescribed by
 Indian Factory (Amendment) Act, 1987 is:
 (a) 200 cu ft [AIPGME 1994]
 (b) 300 cu ft
 (c) 500 cu ft
 (d) 700 cu ft

82. Maximum permissible level of whole body occupational
 exposure to ionizing radiation is: [AIIMS Dec 1997]
 (a) 1 rem per year
 (b) 5 rem per year
 (c) 5 rem per year
 (d) 15 rem per year

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

83. “White Fingers” may result from which of the following occupational hazards: [AIIMS June 1998]
(a) Heat
(b) Cold
(c) UV Radiation
(d) Vibration

84. Respirable dust, responsible for pneumoconiosis, has a size limit of: [AIPGME 1993]
(a) < 1 micron
(b) < 5 micron
(c) < 10 micron
(d) < 100 micron

85. Which of the following Pneumoconioses are more prone to develop Tuberculosis? [AIPGME 1991]
(a) Silicosis
(b) Anthracosis
(c) Byssinosis
(d) Bagassosis

86. Which of the following Pneumoconioses is caused by Thermoactinomycetes Sacchari? [AIPGME 1998]
(a) Silicosis
(b) Anthracosis
(c) Byssinosis
(d) Bagassosis

87. Which of the following Pneumoconioses is caused by Micropolyspora Faeni? [AIPGME 1996]
(a) Silicosis
(b) Byssinosis
(c) Farmer’s lung
(d) Bagassosis

88. All are true about Lead Poisoning except: [AIPGME 1995]
(a) Greatest source is drinking water from lead pipes
(b) Can cause Blue Line on gums
(c) Measurement of CPU is a useful screening test
(d) Basophilic stippling of RBCs is a sensitive parameter of hematological response

89. Nearly 3/4th of occupational cancers are: [AIPGME 2008]
(a) Skin Cancer
(b) Lung Cancer
(c) Cancer Bladder
(d) Leukemias

90. Which of the following are associated with Bladder cancer: [AIIMS May 2008]
(a) Nickel
(b) Naphthylamines
(c) Arsenic
(d) Lead

91. Pre-placement Examination has an important role to play in:
(a) Energy Conservation
(b) Occupational Health
(c) Genetic Counselling
(d) Mental Health

92. Under ESI Act, sickness benefit is given for a period of: [AIPGME 1999]
(a) 17 days
(b) 39 days
(c) 91 days
(d) 117 days

93. Sickness absenteeism is a useful index to assess:
(a) Working environment
(b) Sincerity of the workers
(c) Worker management relationship
(d) State of health of the workers

94. All of the following are true for occupational lead poisoning except: [AIIMS Nov 02]
(a) Inhalation is the most common mode of absorption
(b) Lead in blood and urine provide quantitative indicators of exposure
(c) Lead poisoning is not a notifiable disease
(d) Basophilic stippling is a sensitive parameter of hematological response

95. All of the following features are suggestive of asbestosis except: [AIIMS May 2003]
(a) Occurs within five years of exposure
(b) The disease progresses even after removal of contact
(c) Can lead to pleural mesothelioma
(d) Sputum contains asbestos bodies

96. Bagassosis can be prevented by spraying: [DPG 2005]
(a) 10% acetic acid
(b) 5% acetic acid
(c) 1% propionic acid
(d) 2% propionic acid

97. Bagassosis is a pneumoconiosis caused by inhalation of: [DPG 2004]
(a) Sugarcane dust
(b) Cotton
(c) Coal particles
(d) Asbestos

98. According to “Factory Act, 1948” maximum permissible working hours per week are: [DPG 2007]
(a) 48
(b) 60
(c) 72
(d) 54

99. The Financial contribution for ESI comes from: [Karnataka 2008]
(a) State government
(b) Central government
(c) Employers’
(d) All of the above

100. Following are the chemical agents, which causes occupational dermatitis by local irritation except: [Karnataka 2009]
(a) Rubber
(b) X-rays
(c) Lime
(d) Ether
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

101. Most common mode of lead poisoning is: [AIIMS May 2009]
 (a) Ingestion
 (b) Dermally
 (c) Inhalation
 (d) Faecal-oral

102. Which occupational exposure may cause sterility in females: [Recent Question 2012]
 (a) Lead
 (b) Carbon monoxide
 (c) Mercury
 (d) Agricultural insecticides

103. Chairman for ESI in India is: [Recent Question 2014]
 (a) Prime Minister
 (b) Union Minister of Health & Family Welfare
 (c) Union Minister of Labour
 (d) Union Minister of Human Resource Development

104. True about ESI act 1948: [Recent Question 2014]
 (a) Applicable on educational institutions also
 (b) Employer employee contribution is 1.75%
 (c) Maternity benefit for 3 months
 (d) Beneficiaries are those having income with > 15000/month

105. False about ESI in India: [AIIMS November 2014]
 (a) Centre contribute 7/8 and State contribute 1/8 part on expenditure
 (b) A worker with income less than 70/- per day has to pay only 300/- per month
 (c) Funeral expenses is 50,000/-
 (d) Medical benefit include full medical care

Review Questions

106. The extended sickness benefit is given for: [DNB 2002]
 (a) 309 days
 (b) 409 days
 (c) 365 days
 (d) 490 days

107. Byssinosis is seen in: [DNB 2003]
 (a) Cement factories [Recent Question 2013]
 (b) Textile industries
 (c) Iron factories
 (d) Grain fields

108. Bagassosis occurs with: [DNB 2004]
 (a) Cotton
 (b) Sugarcane fibres
 (c) Carbon particles
 (d) Silica fibres

109. Bagassosis occurs with: [DNB 2006]
 (a) Cotton industry
 (b) Sugarcane industry
 (c) Carbon particles
 (d) Faemers

110. Silicosis occurs with: [DNB 2007]
 (a) Cotton
 (b) Sugarcane fibres
 (c) Carbon particles
 (d) Silica fibres

111. A person working in hot environment who consumes more H2O without salt is likely to develop: [DNB 2000]
 (a) Heat stroke
 (b) Heat cramps
 (c) Heat exhaustion
 (d) Heat hyperpyrexia

112. In ESI progrance, state governemt employee contribute to the fund. Employer’s contribution is: [DNB 2008]
 (a) 5.75%
 (b) 4.75%
 (c) 3.75%
 (d) 2.75%

113. Benzene is associated with cancer of: [UP 2001]
 (a) Skin
 (b) Lung
 (c) Bladder
 (d) Leukemia

114. Wrist drop may be caused as industrial hazard in: [UP 2001]
 (a) Battery industry
 (b) Gas industry
 (c) Asbestos, industry
 (d) Aniline industry

115. “Snow-storm” appearance are seen in: [UP 2006]
 (a) Anthracosis
 (b) Silicosis
 (c) Byssinosis
 (d) Bagassosis

116. Exposure to cotton dust causes: [Karnataka 2000][AP 2002]
 (a) Byssinosis
 (b) Bagassosis
 (c) Silicosis
 (d) Asbestosis

117. ‘Bagassosis; is an occupational disease of the lung caused by inhalation of: [AP 1992][AP 2003]
 (a) Cotton
 (b) Jute
 (c) Sugarcane dust
 (d) Coal

118. ESI Act includes all the following except: [AP 2006]
 (a) Small power using factories employing 10-19 persons
 (b) Non power using factories employing 20 or more person
 (c) Newspaper establishment
 (d) Defence establishment

https://kat.cr/user/Blink99/
119. All are covered under ESI except: [AP 2008]
 (a) News paper workers
 (b) Non power using factories with 18 members
 (c) Small power using factories with 18 members
 (d) Non power using factories with 20 members

120. Monday fever is associated with: [NIMHANS 1984][TN 2003]
 (a) Bagassosis
 (b) Byssinosis
 (c) Asbestosis
 (d) Silicosis

121. Silicosis affects: [TN 2005]
 (a) Lower lobes of lungs
 (b) Both
 (c) Hilum of lungs
 (d) Upper lobes of lungs

122. Respirable dust for pneumoconiosis: [Kolkata 2004]
 (a) 0.1–5 m
 (b) 5–10 m
 (c) 10–15 m
 (d) 15–20 m

123. Dust particle, in a industry is a: [Kolkata 2005]
 (a) Biological hazards
 (b) Chemical hazards
 (c) Physical hazards
 (d) Mechanical hazards

124. Bagassosis is due to long term inhalation of: [MP 2002]
 (a) Cotton fibres
 (b) Sugar cane dust
 (c) Thermophilic bacteria
 (d) Silica

125. Which of these is true regarding factories act:[MP 2004]
 (a) It is applicable in establishment employing 20 or more workers where power is used or <20 workers where power is not used
 (b) 500sq feet minimum space required per person
 (c) Act has prescribed a maximum of 48 working hrs per week, not exceeding 10 hrs per day
 (d) Act applies to the whole of India including Jammu and Kashmir

126. A 40 year old man working in a coal mine since 15 years developed cough, dyspnoea on exertion and chest pain. His X-ray showed “snow – storm” appearance in lung fields. The most likely diagnosis is: [MP 2008]
 (a) Anthracosis
 (b) Silicosis
 (c) Asbestosis
 (d) Siderosis

127. By the Factory Act the age for the child to work should minimum be (in years): [MH 2000]
 (a) 14
 (b) 16
 (c) 18
 (d) 21

128. Which of the following is occupational lung disease but not pneumoconiosis? [MH 2003]
 (a) Brucellosis
 (b) Silicosis
 (c) Anthracosis
 (d) Byssinosis

129. According to the factory Act (1948), minimum space each worker should have in a factory (in Cu.ft.) is: [MH 2005]
 (a) 100
 (b) 200
 (c) 400
 (d) 500

130. Which of the following is not a advantage for employers under ESI act? [MH 2005]
 (a) Exemption from Maternity Benefit ACT 1961
 (b) Rebate under Income Tax Act on contribution deposited in ESI scheme
 (c) Exemption from payment of medical allowance to employees and their dependants or arranging for their medical care
 (d) Exemption from sales tax

131. What are the maximum permissible working hours (in work/person/week) according to the factory act? [MH 2006]
 (a) < 42 hours
 (b) < 48 hours
 (c) < 56 hours
 (d) < 60 hours

132. Particle size (in micron) at which the dust particles gets lodged in the respiratory tract? [MH 2008]
 (a) 5-10
 (b) 0.5-3
 (c) 0.5-0.1
 (d) 3-5

133. Under ESIS act, the state government’s share of expenditure on medical care is? [MH 2008]
 (a) 1/8
 (b) 3/8
 (c) 5/8
 (d) 7/8

134. Minimum duration to developing coal minor pneumoconiosis: [RJ 2000]
 (a) 2-4 years
 (b) 4-6 years
 (c) 8 years
 (d) > 10 years

135. Which is not included in pneumoconiosis? [RJ 2001]
 (a) Byssinosis
 (b) Bagassosis
 (c) Anthracosis
 (d) Psittacosis
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

136. Bagassosis is caused by: [RJ 2003]
 (a) Cotton dust
 (b) Sugar cane
 (c) Coal dust
 (d) Silica

137. Occupational exposer to cotton dust causes: [RJ 2006]
 (a) Byssinosis
 (b) Bagassosis
 (c) Anthracosis
 (d) Pneumoconiosis

138. ESI Act maximum time for sickness benefit is: [RJ 2006]
 (a) 91 days
 (b) 309 days
 (c) 30 days
 (d) 6 weeks

139. Occupational exposure that may cause sterility in females: [Recent Question 2012]
 (a) Aniline
 (b) Lead
 (c) Radon
 (d) Textiles

140. Bagassosis is caused by dust of: [DNB 2007, DNB June 2011]
 (a) Jute
 (b) Cotton
 (c) Sugarcane
 (d) Textiles

141. The clinical symptoms of lead toxicity are associated with blood levels of: [DNB 2008]
 (a) 30 mcg/100ml blood
 (b) 40 mcg/100ml blood
 (c) 50 mcg/100ml blood
 (d) 70 mcg/100ml blood

142. Minimum area per person mandatory under the factory act is: [DNB December 2011]
 (a) 100 cu. ft
 (b) 200 cu. ft
 (c) 500 cu. ft
 (d) 1000 cu. ft

143. In ESI programme, state govt, employees contribute to the fund. Employer’s contribution is: [DNB 2008]
 (a) 5.75%
 (b) 4.75%
 (c) 3.75%
 (d) 2.75%

144. Thermoactinomyces sacchari causes: [Recent Question 2013]
 (a) Bagassosis
 (b) Siderosis
 (c) Byssinosis
 (d) Anthracosis

145. Ergonomics is: [Recent Question 2013]
 (a) Adjusting the Worker to his job
 (b) Study of human behaviour

146. Sickness benefit under ESI act extended into: [DNB December 2011]
 (a) 91 days
 (b) 61 days
 (c) 1 year
 (d) 2 years

147. Most common heavy metal poisoning in the world: [Recent Question 2013]
 (a) Lead
 (b) Arsenic
 (c) Mercury
 (d) Cadmium

148. All are occupational cancers except: [Recent Question 2012]
 (a) Liver cancer
 (b) Bladder cancer
 (c) Lungs cancer
 (d) Breast cancer

149. Which of the following is true about ESI Act (1948)? [AIIMS November 2013]
 (a) Funeral charges put up to Rs. 50,000/-
 (b) State government share is 1/8 and ESI Corporation is 7/8
 (c) Employee contributes 8.75% and employer 3.75%
 (d) Maximum limit for each family member is Rs. 30,000/-

150. According to The Workmen’s Compensation Act, 1992, which of the following is considered an occupational disease? [AIIMS May 2012]
 (a) Typhoid
 (b) Anthrax
 (c) Tetanus
 (d) Dengue

151. Main cause of Farmer’s lung is due to microorganism: [NUPGET 2013]
 (a) Pneumococcus
 (b) Mycobacterium tuberculosis
 (c) Micropolyspora faeni
 (d) Staphylococcus aureus

152. Under ESI, a benefit which is NOT given in cash: [NUPGET 2013]
 (a) Sickness benefit
 (b) Medical benefit
 (c) Maternity benefit
 (d) Dependents’ benefit

153. Which is/are not true of ESI Act, 1948? [PGI November 2012]
 (a) Involves those working in restaurants
 (b) 100% wages in temporary disability
 (c) Extended sickness benefit 91 days
 (d) Workers pay 1.75% of income
 (e) Run by Central government
154. Hardy Weinberg law is related to:
(a) Gene therapy
(b) Human genome project
(c) Population genetics
(d) Eugenics

155. The primary goal of Human Genome Project has been:
(a) Introduction of a gene sequence into a cell to modify its behavior
(b) Development of new diagnostic techniques such as restriction enzymes
(c) Identify genes and sequence of base pairs in DNA of human genome
(d) Confirmation of Hardy Weinberg Law

156. Amniocentesis to detect chromosomal abnormalities can be done as early as:
(a) 14th week of gestation
(b) 18th week of gestation
(c) 22nd week of gestation
(d) 26th week of gestation

157. Haemophilia is a genetic disorder of coagulation seen only in males. It is transmitted as:
(a) X-linked dormant
(b) Y-linked dormant
(c) X-linked recessive
(d) Autosomal recessive

158. Environmental Manipulation which enable genes to express themselves readily is known as:
(a) Positive Eugenics
(b) Negative Eugenics
(c) Euthenics
(d) Genetic Counselling

159. In post disaster phase, for ensuring safe water supply, it is advisable to have a Residual Chlorine Level of:
(a) 0.3 mg/ litre
(b) 0.5 mg/ litre
(c) 0.7 mg/ litre
(d) 3.0 mg/ litre

160. Polygenic inheritance seen in:
(a) Hypertension
(b) HOCM
(c) Manic depressive psychosis
(d) Familial hyper lipemia

161. Which of the following does not affect Hardy Weinberg Equation?
(a) Small population
(b) Natural selection
(c) Mutation
(d) Assortative mating

162. All of the following disorders are Autosomal dominant except:
(a) Neurofibromatosis
(b) Retinoblastoma
(c) Marfan’s syndrome
(d) Ataxia telangiectasia

163. “Eugenics” is:
(a) The study of hereditary improvement of the human race by controlled selective breeding
(b) The humane destruction of an animal accomplished by a method that produces rapid unconsciousness and subsequent death without evidence of pain or distress, or a method that utilizes anaesthesia produced by an agent that causes painless loss of consciousness and subsequent death
(c) A feeling of well-being or elation, may be drug related
(d) A state of being carried away by overwhelming emotion

164. Following are correct about Autosomal recessive except:
(a) Both boy and girl are affected
(b) Heterozyte are not affected
(c) Most disorders of inborn errors of metabolism come under this group
(d) Affect more people in later age group than children

165. Population genetics is related with:
(a) Mendelian law
(b) Watson anc Crick model
(c) Hardy Weinberg law
(d) Weigert Meyer rule

166. “Founder effect” describes the distribution of diseases on the basis of:
(a) Occupation
(b) Environment
(c) Genetics
(d) All of the above

167. All of the following affect the equilibrium in Hardy-Weinberg’s law, except:
(a) Small population
(b) Random mating
(c) Mutations
(d) Gene outflow

168. Which is/ are NOT X-linked disorders?
(a) Wilson’s disease
(b) Haemophilia
(c) Thalassemia
(d) G6PD deficiency
(e) ABO blood groups system
169. Effect of environment on genes is called:
 (a) Positive Eugenics
 (b) Negative Eugenics
 (c) Euthenics
 (d) Ergonomics

 [Recent Question 2012]

170. Most commonly abused agent in India:
 (a) Cannabis indica
 (b) Tobacco
 (c) Heroine
 (d) Amphetamine

 [AIIMS May 07]

171. Which one of the following is not a socio-pathological factor associated with mental illness?
 (a) Emotional stress
 (b) Frustration
 (c) Endocrine diseases
 (d) Anxiety

 [AIIMS Nov 1999]

172. Maximum loss of DALY occurs in which psychiatric disorder?
 (a) Schizophrenia

 [DPG 2007]

173. Under passive surveillance for tuberculosis, indication for sputum microscopy cough is for weeks or more:
 (a) 3 weeks
 (b) 4 weeks
 (c) 6 weeks
 (d) 8 weeks

 [MH 2005]

174. Punnet's square is used for:
 (a) Random sampling
 (b) Statistical analysis
 (c) Finding genotype of offspring
 (d) Test of significance

 [AIPGME 2011]

175. Best way to dispose e-waste is:
 (a) Burning
 (b) Incineration
 (c) In a landfill
 (d) Recycling

 [DNB December 2010]
BMWMANAGEMENT

1. Ans. (a) Yellow [Ref. BMW Management in India by Dr. J. Kishore and Dr. G. K. Ingle, 1/e p26-28, Park 22/e p738-39]

BIOMEDICAL WASTE MANAGEMENT:
- Biomedical Wastes (BMW) in India are handled and managed under ‘Biomedical Waste Management (Management and Handling) Rules, 1998’
- The exercising powers are conferred under Sections 6, 8, 25 of ‘Environmental (Protection) Act, 1986’ (under the Ministry of Environment and Forests)
- Categories of Bio medical wastes (BMW) (Schedule I):

<table>
<thead>
<tr>
<th>Cat</th>
<th>BMW Wastes included</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Human Anatomical Waste Human tissues, organs, body parts</td>
</tr>
<tr>
<td>2</td>
<td>Animal Waste Animal tissues, body parts, organs, carcasses, fluids, blood</td>
</tr>
<tr>
<td>3</td>
<td>Microbiology and Biotechnology Waste attenuated vaccines, cell cultures (human/animal), wastes from production of biologicals, toxins</td>
</tr>
<tr>
<td>4</td>
<td>Waste Sharps Needles, syringes, blades, scalpels, glass</td>
</tr>
<tr>
<td>5</td>
<td>Discarded Medicines and Cytotoxic Drugs Outdated contaminated and discarded medicines</td>
</tr>
<tr>
<td>6</td>
<td>Soiled Waste Items contaminated with blood, and fluids, including cotton, dressings, soiled plaster casts, linen, beddings</td>
</tr>
<tr>
<td>7</td>
<td>Solid Waste Disposable items (except sharps) including tubings, catheters, intravenous sets</td>
</tr>
<tr>
<td>8</td>
<td>Liquid Waste Waste generated from lab and washing, cleaning, housekeeping and disinfecting activities</td>
</tr>
<tr>
<td>9</td>
<td>Incineration Ash Ash from incineration of any BMW</td>
</tr>
<tr>
<td>10</td>
<td>Chemical Waste Chemical used in disinfection (insecticides) or in production of biologicals</td>
</tr>
</tbody>
</table>

- Colour coding and Type of container for BMW disposal (Schedule II):

<table>
<thead>
<tr>
<th>Color coding</th>
<th>Type of container</th>
<th>BMW category</th>
<th>Treatment option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>Plastic bag</td>
<td>1, 2, 3, 6</td>
<td>Incineration/deep burial</td>
</tr>
<tr>
<td>Red</td>
<td>Disinfected container/Plastic bag</td>
<td>3, 6, 7</td>
<td>Autoclave/Microwave/Chemical treatment</td>
</tr>
<tr>
<td>Blue/White translucent</td>
<td>Plastic bag</td>
<td>4, 7</td>
<td>Autoclave/Microwave/Chemical treatment and Destruction/Shredding</td>
</tr>
<tr>
<td>Black</td>
<td>Plastic bag</td>
<td>5, 9, 10 (solid)</td>
<td>Secured landfill</td>
</tr>
</tbody>
</table>

2. Ans. (a) Mixing biomedical waste with cement and other substance before disposal [Ref. Park 22/e p737]
- The process of ‘Inertization’ involves mixing biomedical waste with cement and other substance before disposal, so as to minimize risk of toxic substances contained in waste to contaminate ground/surface water. Inertization is especially suitable for pharmaceuticals and for incineration ashes with high metal content
- A typical composition of mixture is:
 - 65% pharmaceutical waste
 - 15% lime
 - 15% cement
 - 5% water
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

Also Remember

- **Advantage of Inertization**: Relatively inexpensive
- **Disadvantage of Inertization**: Not applicable to infectious waste.

3. Ans. (a) Disinfect in 1% hypo chlorite, put in blue bag for destruction/shedding [Ref. Park 22/e p738-39]
 - Intravenous cannula and tubing are included in BMW category 7 (Solid Waste). It is disposed off in blue/white translucent bag (preferable is metal containers which are puncture-proof)

4. Ans. (a) Yellow [Ref. Park 21/e p734-35, Park 22/e p738-39]
 - Human anatomical wastes (BMW Cat. 1) such as body parts, tissues and organs are disposed off in Yellow bag
 - Amputations, cholecystectomised gall bladder, appendix (post appendicectomy) are included in human anatomical wastes

5. Ans. (d) Blue [Ref. Park 21/e p734-35, Park 22/e p738-39]
 - Wasted sharps (scalpels, needles, syringes, blades, glass) are included in BMW Category 4 (Schedule I). Category 4 wastes are disposed off in Blue/White translucent bag (Schedule II)

Also Remember

- **Schedules under Biomedical Waste Management (Management and Handling) Rules, 1998**:
 - Schedule I: Categories of BM, treatment and disposal
 - Schedule II: Color coding and type of container for BM disposal
 - Schedule III: Labels for BM containers/bags
 - Schedule IV: Label for transport of BM containers/bags
 - Schedule V: Standards for treatment and disposal of BM

6. Ans. (d) Category 8 (Liquid waste) [Ref. Park 21/e p735, Park 22/e p739]
 - According to Schedule II of Biomedical Waste (Management and Handling) Rules, 1998, following categories do not require containers/bags for disposal:
 - Categories 8 and 10 (liquid)
 - Category 3 (if disinfected locally)

Also Remember

- Chemical treatment with ‘at least 1 % hypochlorite solution’ for category 8 and 10.

7. Ans. (c) High temperature oxidation process [Ref. Park 21/e p731-32, Park 22/e p735-36]

IN CINERATION

- **Incineration**: Is a ‘high temperature dry oxidation’ process; It leads to significant reduction in waste-volume and weight (up to 70 – 80%)
- Incineration does not require pre-treatment
- **Biggest disadvantage of incineration**: Generation of smoke
- **Types of Incinerators**:
 - Double-chamber pyrolytic
 - Single-chamber pyrolytic
 - Rotary kilns
- **Temperature in an incinerator**:
 - Primary chamber: 800° ± 50°C
 - Secondary chamber: 1050° ± 50°C

Also Remember

- **Characteristics of wastes suitable for incineration**:
 - Low heating volume
 - Combustible matter > 60%
 - Non-combustible solids < 5%
 - Non-combustible fines < 20%
 - Moisture content < 30%
Review of Preventive and Social Medicine

- Red bags should not be incinerated as they contain cadmium (heavy metal).

8. Ans. (d) Human anatomical wastes [Ref. Park 21/e p731-32, Park 22/e p735-36]
 - Wastes types not-to-be incinerated:
 - Pressurized gas containers
 - Reactive chemical wastes (large)
 - Silver/Radiographic/photographic wastes
 - Halogenated plastics (PVC)
 - Wastes with high mercury/cadmium content
 - Sealed ampoules/ampoules with heavy metals.

Also Remember

- Human anatomical wastes can be treated/disposed by incineration or deep burial.

9. Ans. (a) Reactive chemical wastes [Ref. Park 21/e p731-32, Park 22/e p735-36]
 - Yellow color bags are used for disposal of:
 - BMW Cat. 1: Human anatomical wastes
 - BMW Cat. 2: Animal waste
 - BMW Cat. 3: Microbiological and biotechnology waste
 - BMW Cat. 6: Soiled waste
 - Container/bags are NOT required for disposal of:
 - BMW Cat. 8: Liquid waste
 - BMW Cat. 10: Chemical waste
 - BMW Cat. 3 (if disinfected locally): Microbiological and biotechnology waste

10. Ans. (a) Pour 1% hypochlorite on the dressing material and send it for incineration in an appropriate bag [Ref. Internet, Park 21/e p734-35, Park 22/e p738-39]
 - All HIV infected material, i.e. gauge pieces, bandages, cotton swabs, blood units, blood have to be incinerated

11. Ans. (b) Incineration [Ref. Park 21/e p735, Park 22/e p739]

12. Ans. (b) Plastic 10%; (e) Glass 4% [Ref. Park 21/e p731, Park 22/e p735]
 - Average composition of Hospital waste products in India:
 - Paper: 15%
 - Plastic: 10%
 - Rags: 15%
 - Metals [Sharps, etc]: 1.0%
 - Infectious waste: 1.5%
 - Glass: 4.0%
 - General waste (food waste, sweeping of premises): 53.5%

13. Ans. (a) Metal 1%; (b) Paper 15% [Ref. Park 21/e p731, Park 22/e p735]

14. Ans. (a) Collect carefully and recycle [Ref. Guidelines for environmentally sound mercury management in fluorescent lamp sector, CPCB, India]
 MERCURY DISPOSAL:
 - Dispose mercury as a hazardous waste
 - ‘Never combine it with organic or inorganic waste
 - Never dispose it in sink/drain
 - Dispose off in ‘Recycling units’

15. Ans. (b) Destruction and dumping in secured landfill [Ref. Park 21/e p734-35, Park 22/e p738-39]

16. Ans. (c) Safely collect and re-use [Ref. Guidelines for environmentally sound mercury management in fluorescent lamp sector, CPCB, India]

17. Ans. (b) Blue bag waste is disposed by Landfill [Ref. Park 22/e p739]

18. Ans. (a) Pour 1% hypochlorite on the dressing material and send it for incineration in an appropriate bag [Ref. K. Park 21/e p734, Park 22/e p738]

19. Ans. (b) Waste sharps [Ref. Park 21/e p731-32, Park 22/e p735-36]
20. Ans. (b) Black bag [Ref. K Park 22/e p738-39]
21. Ans. (b) Pathological waste are removed [Ref. K Park 22/e p736]
 SCREW-FEED TECHNOLOGY
 - Principle: Non-burn dry thermal process
 - Process:
 - Shredding of waste
 - Heating in a rotating auger
 - Reduction in waste:
 - Reduction in weight: 20-35%
 - Reduction in volume: 80%
 - Useful for wastes:
 - Infectious waste
 - Sharps
 - Not useful for wastes:
 - Pathological waste
 - Cytotoxic waste
 - Radioactive waste

22. Ans. (b) Black bag [Ref. K Park 22/e p738-39]
23. Ans. (a) Human anatomical waste; (b) Animal waste; (c) Microbiological waste; (e) Soiled waste [Ref. K Park 22/e p738-39]
25. Ans. (a) 1.5% [Ref. K Park 22/e p735]
26. Ans. (c) Composting [Ref. K Park 22/e p700]
27. Ans. (d) Treat with bleaching powder and burial [Ref. Essentials of Community Health Nursing Practice by Kamalam, 1/e p226]
28. Ans. (c) Black bag [Ref. BMW Management Guidelines 2011, Government of India]
31. Ans. (b) Incineration [Ref. K Park 22/e p738-39]
32. Ans. (c) Yellow bag must be incinerated; (d) Sharps must not be incinerated [Ref. K Park 22/e p735-36]
33. Ans. (b) Sharps waste; (c) Cytotoxic drugs; (d) Radioactive waste
34. Ans. (c) Contaminates water sources [Ref. Park 22/e p737]
35. Ans. (d) Landfill [Ref. Park 22/e p739]
36. Ans. (b) Solid waste [Ref. Park 22/e p738]

Review Questions

37. Ans. (d) Cat 5 [Ref. Park 21/e p737, Park 22/e p741]
38. Ans. (d) Yellow [Ref. Park 21/e p734-35, Park 22/e p738-739]
39. Ans. (a) Disinfection, Disposal, Drainage [Ref. Internet]
40. Ans. (b) Yellow [Ref. Park 21/e p734-35, Park 22/e p738-739]
41. Ans. (b) 800 +/- 50°C [Ref. Community Medicine by AP Kulkarni, 2/e p 246]
42. Ans. (b) Waste Sharps [Ref. Park 21/e p734, Park 22/e p738]
43. Ans. (a) Black bag [Ref. Park 21/e p734-35, Park 22/e p738-739]
44. Ans. (d) Yellow [Ref. Park 21/e p735, Park 22/e p739]
DISASTER MANAGEMENT

47. Ans. (d) None of the above [Ref. Park 20/e p702-03, Park 21/e p738-39, Park 22/e p742-43]
 - WHO does not recommend Typhoid, Cholera and Tetanus Toxoid vaccinations in routine use in endemic areas post-disaster
 - However, these vaccinations are recommended for health workers
 - Because measles can deplete Vitamin A stores in children, ‘measles is the highest priority among vaccinations for children’ living in congregate care after a disaster

Also Remember
- Clean water supply in post-disaster phase: UNHCR recommends 15 liters/person/day clean water be provided
- A common micronutrient deficiency in disasters is Vitamin A deficiency: It occurs due to deficient relief diets, measles and diarrhea (gastroenteritis)
- Other common deficiencies include scurvy (Vitamin C), anemia (iron) and pellagra (Vitamin B4 - niacin)

48. Ans. (d) I131, Cs134, Cs137, Sr90 [Ref. K. Park 20/e p706, Park 21/e p742, Park 22/e p746]
 - Chernobyl nuclear explosion accident occurred on 26th April, 1986 in Russia (now Ukraine)
 - It resulted in emission of I131, Cs134, Cs137, Sr90
 - Chernobyl nuclear explosion accident is the ‘largest accidental release of radioactive material in the history of nuclear power’
 - It is the only instance so far of level 7 on the International Nuclear Event Scale for nuclear accidents

Also Remember
- World’s worst man-made disaster is Bhopal gas Tragedy, 3rd December 1984:
 - Methylisocyanate (MIC) gas leaked from Union Carbide pesticide plant in Bhopal, India
 - It resulted in resulting in the death of about 3,000 people according to the Indian Supreme Court
 - Fukushima Daichii Tragedy, 11 March 2011: I131, Cs134, Cs137.

49. Ans. (a) Vitamin A [Ref. Epidemiology of malnutrition in disasters by Clinton Coil, 2nd Vol; p4]
 - A common micronutrient deficiency in disasters is Vitamin A deficiency: It occurs due to deficient relief diets, measles and diarrhea (gastroenteritis)
 - Other common deficiencies include scurvy (Vitamin C), anemia (iron) and pellagra (Vitamin B4 – niacin).

50. Ans. (b) Disaster impact – Response – Rehabilitation – Mitigation [Ref. Park 21/e p737, Park 22/e p741]

Also Remember
- Disaster (Colin Grant): Is catastrophe causing ‘injury or illness simultaneously to at least 30 people’, who will require hospital emergency treatment
- For every 1 disaster registered (in official database), there are 20 other unacknowledged smaller emergencies with destructive impact
- During the phase of search, rescue and first aid, most immediate help cover is derived from uninjured survivors
- ‘Most crucial phase of disaster management’ is the stage of health and medical relief
- World Disaster Reduction Day: 2nd Wednesday of October
- Greatest need for emergency care in immediate post disaster occurs in first few hours.

51. Ans. (b) Triage [Ref. Park 21/e p737, Park 22/e p741]
 - Triage: Consists of rapidly classifying the injured ‘on the basis of severity of their injuries and likelihood of their survival’ with prompt medical intervention
 - First come first serve is NOT followed in emergencies
Biomedical Waste Management, Disaster Management, Occupational Health, Genetics and Health, Mental Health

- **Triage sieve**: Quick survey to separate the dead and the walking from the injured
- **Triage sort**: Remaining casualties are assessed and allocated to categories
- **Triage system**: Most commonly uses FOUR color code system:
 - Red (Highest Priority): Immediate resuscitation or limb/life saving surgery in next 6 hours
 - Yellow (High Priority): Possible resuscitation or limb/life saving surgery in next 24 hours
 - Green (Low Priority): Minor illness/ambulatory patients
 - Black (Least Priority): Dead and moribund patients
- **Tagging**: Is the procedure where identification, age, place of origin, triage category, diagnosis and initial treatment are tagged on to every victim of disaster through a colour coding
- **Mitigation**: Measures designed to either prevent hazards from causing emergency or to lessen the effects of emergency.

Also Remember

TRIAGE:
- Triage yields best results when carried out at the site of disaster
- **Triage is of two types:**
 - Simple triage: Simple triage is used in a scene of mass casualty, in order to sort patients into those who need critical attention and immediate transport to the hospital and those with less serious injuries.
 1. This step is required before transportation becomes available
 2. The categorization of patients based on the severity of their injuries can be aided with the use of printed triage tags or colored flagging
 - Rapid triage: S.T.A.R.T. (Simple Triage and Rapid Treatment) is a simple triage system that can be performed by lightly-trained lay and emergency personnel in emergencies.
 1. It is not intended to supersede or instruct medical personnel or techniques
 2. It may serve as an instructive example
 3. It has been field-proven in mass casualty incidents such as train wrecks and bus accidents
- **Reverse Triage**: In addition to the standard practices of triage as mentioned above, there are conditions where sometimes the less wounded are treated in preference to the more severely wounded. This may arise in,
 - A situation such as war where the military setting may require soldiers be returned to combat as quickly as possible
 - Disaster situations where medical resources are limited in order to conserve resources for those likely to survive but requiring advanced medical care.

52. Ans. (b) Gastroenteritis **[Ref. Park 21/e p738, Park 22/e p742]**
- Most commonly reported disease in post-disaster phase is Gastroenteritis
- Most practical and effective strategy of disease prevention and control in post-disaster phase is ‘supplying safe drinking water and proper disposal of excreta’
- Foremost step for disease prevention and control in post-disaster phase is chlorination of all water bodies
- Level of residual chlorine to be maintained in all water bodies in post-disaster phase is > 0.7 mg/l (> 0.7 ppm)

Also Remember

- A common micronutrient deficiency in disasters is Vitamin A deficiency: It occurs due to deficient relief diets, measles and diarrhea (gastroenteritis)
 - Other common deficiencies include scurvy (Vitamin C), anemia (iron) and pellagra (Vitamin B4 – niacin).

53. Ans. (c) Red **[Ref. K. Park 20/e p701, Park 21/e p737]**
- Categories in Triage:

<table>
<thead>
<tr>
<th>Category</th>
<th>Tagging colour</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Red</td>
<td>High</td>
</tr>
<tr>
<td>II</td>
<td>Yellow</td>
<td>Medium</td>
</tr>
<tr>
<td>III</td>
<td>Green</td>
<td>Low</td>
</tr>
<tr>
<td>IV</td>
<td>Black</td>
<td>Least</td>
</tr>
</tbody>
</table>
Review of Preventive and Social Medicine

54. Ans. (a) Red [Ref. K Park 22/e p741-42]
55. Ans. (a) Death [Ref. K Park 22/e p741-42]
56. Ans. (c) 4 [Ref. K Park 22/e p741-42]
57. Ans. (c) Measles [Ref. K Park 22/e p742-43]
58. Ans. (d) District [Ref. National Disaster Management Authority, Delhi website]
59. Ans. (c) Green-ambulatory [Ref. K Park 22/e p741-42]
60. Ans. (a) Flood [Ref. National Disaster Management Authority, Delhi website]
61. Ans. (a) Hydrological [Ref. National Disaster Management Authority, Delhi website]
62. Ans. (a) A concept in trauma [Ref. K Park 22/e p741-42]
63. Ans. (c) Leishmaniasis [Ref. K Park 22/e p742]
 Diseases common in Post-disaster Phase
 • Gastroenteritis (MC)
 • Acute respiratory tract infections (Pneumonias)
 • Leptospirosis
 • Rickettsiosis
 • Rabies
 • Equine encephalitis
64. Ans. (a) Methyl isocyanate [Ref. K Park 22/e p746]
65. Ans. (a) Leishmania [Ref. Park 22/e p742]
 • Diseases common in Post-disaster Phase: Gastroenteritis (MC), Acute respiratory tract infections (Pneumonias),
 Leptospirosis, Rickettsiosis, Rabies, Equine encephalitis
66. Ans. (d) District [Ref. National Health Programmes in India by Dr Jugal Kishore, 9/e p457]
67. Ans. (a) Search and rescue, first aid [Ref. Park 22/e p741]
68. Ans. (c) Blue [Ref. Park 22/e p741]

Review Questions

69. Ans. (c) Ambulatory patient [Ref. Park 21/e p737, Park 22/e p741]

OCCUPATIONAL HEALTH

70. Ans. (d) bagassosis [Ref. National Health programs of India by Dr. J Kishore, 5/e p430]

Also Remember

• Under Factories Act 1948, there are 29 diseases which are notifiable (Schedule 3) including silicosis, Anthracosis, Byssinosis,
 Asbestosis.

71. Ans. (d) Depends on type of exposure [Ref. Park 21/e p753, Park 22/e p757]
 • The frequency and content of periodic medical examinations depend upon the type of occupational exposure
 • Periodic Medical Examination: (for industrial workers) is held at appropriate intervals to test their physical and mental
 efficiency and to detect any departure from health at the earliest; objective being early diagnosis and prompt treat-
 ment (Secondary level of prevention). Frequency of periodic examinations:
 - Annual: for most of occupational exposures
 - Monthly: for lead, radium and dye-stuffs exposure
 - Daily: for dichromates exposure
72. Ans. (c) 14 [Ref. Park 21/e p756, Park 22/e p760]
 • According to the Factories Act, 1948:
 - Employment of young persons:
 1. Employment prohibited for age less than 14 years
 2. 15 – 18 years old adolescents to be declared fit by ‘certifying surgeons’; will work only between 6AM to 7PM
 3. Employment prohibited in certain dangerous occupations
 - Hours of work:
 1. A maximum of 41/2 hours of work per day for adolescents
 2. 48 hours per week (9 hrs per day)
 3. Maximum 60 hours per week (including overtime).

Also Remember

- Legal age of marriage in India: 18 years for girls and 21 years for boys
- Legal age for voting in India: 18 years for both boys and girls
- Legal age of consent by a girl for sexual intercourse in India: 18 years [New guidelines]
- Juvenile in India: Boy less than 18 years and girl less than 18 years
- Major in India: 18 years and above
- Tobacco products cannot be sold in India: To age below 18 years
- Alcohol cannot be sold in India: To age below 25 years.

73. Ans. (b) 1000 [Ref. Park 21/e p755, Park 22/e p759]
 • The Factories Act, 1948:
 - Health, Safety and Welfare recommendations:
 1. A minimum of 500 cubic feet space per worker
 2. 1 Safety Officer per 1000 workers
 3. 1 Welfare Officer per 500 workers
 4. 1 Canteen for greater than 250 workers
 5. 1 Crèche for greater than 30 women workers

74. Ans. (a) Coproporphyrin in urine [Ref. Park 21/e p749, Park 22/e p753]
 • Diagnosis of lead poisoning:
Laboratory parameter	Remark
Coproporphyrin in Urine (CPU) >150 mcg/l	Exposure to lead
Amino levalinic acid in urine (ALAU) >5 mg/l	Indicates lead absorption
Lead in blood >70 mcg/100 ml	Clinical symptoms appear
Lead in urine >0.8 mg/l	Lead exposure and absorption
Basophilic stippling of RBCs	Punctate basophilia

Also Remember

- A useful screening test is Coproporphyrin in Urine (CPU)
- Lead Poisoning is known as ‘Plumbism’, Saturnism or Painter’s Colic
- Clinical picture of lead poisoning:
 - Facial pallor: Earliest and most consistent sign
 - Anemia: Microcytic hypochromic
 - Punctate basophilia or basophilic stippling of RBCs
 - Burtonian Line: Lead sulphide line on gums (upper jaw)
 - Lead colic: Constipation (but sometimes diarrhea)
 - Lead Palsy (Peripheral neuropathy): Wrist drop or Foot drop
 - Lead encephalopathy
 - CNS effects: mostly due to organic lead compounds
- Clinical symptoms of plumbism occur when lead level in blood >70 mcg/100 ml
- A sensitive parameter of hematological response is Basophilic stippling of RBCs.
75. Ans. (a) Inhilation [Ref. Park 21/e p748, Park 22/e p752]
- Greatest source of lead in Lead Poisoning (Plumbism, Saturnism or Painter’s Colic) is Gasoline/petrol/vehicular exhaust/automobile exhaust
- Mode of absorption: Lead can be absorbed by inhalation (most common mode), ingestion or through skin

76. Ans. (a) Bagassosis [Ref. Park 21/e p747, Park 22/e p751]
- Bagassosis occurs due to occupational exposure to fibrous residue of sugarcane (bagasse); Bagassosis has been shown to be due to Thermoactinomyces sacchari
- Bagasse contains a percentage of silica, innumerable fungal spores and micro-organisms; Bagasse dust blocks bronchioles thus leading to bronchitis and bronchopneumonia
- Prevention and Bagasse control measures:
 - Keeping moisture content > 20%
 - Spraying bagasse with 2% propionic acid (fungicide).

Also Remember
- Bagassosis is a form of extrinsic allergic alveolitis
- Organisms involved in causation of bagassosis:
 - Thermoactinomyces sacchari
 - Thermoactinomyces vulgaris
 - Micropolyspora faeni.

77. Ans. (a) High sputum AFB +ve [Ref. Park 21/e p747, Park 22/e p751]
- Patients with silicosis are particularly susceptible to tuberculosis (TB) infection, known as ‘Silicotuberculosis’ (ST)
 - The reason for the increased risk, 10–30 fold increased incidence, is not well understood
 - It is thought that silica damages pulmonary macrophages, inhibiting their ability to kill mycobacteria
- In recent years doubts have risen in the association between silicosis and tuberculosis as:
 - Sputum is rarely AFB+
 - Children and women of STs do not develop tuberculosis
 - Post mortem of STs fail to prove existence of tuberculosis
 - Radiological evidence of both conditions is similar.

Also Remember
- Among the occupational diseases, silicosis is the major cause of permanent disability and mortality
- Particles of the size 0.5 – 3 microns are most dangerous for causation of silicosis
- IP: Few months to 6 years
- X-ray shows ‘snow storm appearance’
- No effective treatment is available
- Silicosis is a notifiable disease under Factories Act, 1948 and Mines Act 1952.

78. Ans. (b) Prickles [Foundations of Community Medicine, 1/e p318]
- Disease manifestations associated with physical hazards:
 - High Temperature
 1. Heat cramps
 2. Heat hyperpyrexia (body temperature <102°F)
 3. Heat exhaustion (body temperature >106°F)
 4. Heat stroke (body temperature up to 110°F)
 - Low Temperature
 1. Chilblains
 2. Trench Foot
 3. Frost bite
 - Low Pressure
 1. Caisson Disease
 - Vibration
 1. Vibration sickness
 2. Neurogenic damage
- Non-ionizing Radiation
- Microwave Injuries
- Laser injuries
- Prickles: Irritation of nerve terminals in skin due to nitrogen bubbles as seen in Caisson Disease (low pressure).

Also Remember

- **Caisson Disease (Decompression Sickness, DCS):** Occurs due to low pressure, when a diver ascends rapidly to surface or air passengers ascend too rapidly to high altitudes
 - **Manifestations of air expansion:**
 1. Barodontalgia: Air trapped beneath teeth expands
 2. Barosinusitis: Compressed air trapped in sinuses expands
 3. Barotitis: Air under pressure trapped in middle ear expands
 4. Emphysema: Most serious complication (may lead to cerebral embolism)
 5. Abdominal distension: Air trapped in intestinal canal expands
 - **Effects of Nitrogen effervescence:**
 1. Bends: Steady aching pain in joints
 2. Chokes: Rapid, shallow, dyspneic breathing
 3. Prickles: Irritation of nerve terminals in skin
 4. Paralysis: Most serious complication
 5. Aseptic bone necrosis: Hip, knee and shoulder joints

- Caisson Disease is a type of diving hazard and dysbarism.
- Recompression is the only effective treatment for severe DCS, although rest and oxygen applied to lighter cases can be effective.
- Gases implicated in DCS:
 - Nitrogen
 - Trimix (nitrogen + oxygen + helium)
 - Heliox (oxygen + helium).

79. Ans. (c) Secondary Prevention [Ref. Park 21/e p753, Park 22/e p757]
 - Secondary Level of Prevention: It halts the progress of disease at its’ incipient stage and prevents complications (Modes of Intervention: Early Diagnosis and Treatment).

80. Ans. (d) A-III B-II C-IV D-I [Ref. Park 21/e p749, Park 22/e p753]

81. Ans. (c) 500 cu ft [Ref. K. Park 19/e p669, 20/e p719, Park 21/e p755, Park 22/e p759]
 - The Factories Act, 1948:
 - Scope: The Act defines factory as an establishment employing 10 or more persons where power is used and 20 or more persons where power is not used.

82. Ans. (c) 5 rem per year [Ref. Park 21/e p687, 750, Park 22/e p691, 754]

RADIAION EXPOSURE:

- International Commission of Radiological Protection (ICRP) has set the maximum permissible level of whole body occupational exposure to ionizing radiation at ‘5 rem per year for workers’ AND at ‘0.5 rem per year for general public’
- **ICRP’s set of recommendations for radiation exposure:**
 - Any tissue or organ dose less than 50 rem per year
 - Lens of the eye dose less than 15 rem per year
 - Whole body dose less than 5 rem per year
 - Lifetime average dose less than 1 rem per year.
Review of Preventive and Social Medicine

Also Remember

• Radiation poisoning, also called ‘radiation sickness’ or a ‘creeping dose’, is a form of damage to organ tissue due to excessive exposure to ionising radiation
 • 1 Sv = 100 rem
 • 1 Gray = 100 rad
 • For β-particles, X-rays and γ-rays, rad and rem are equivalent
 • For α-particles, 1 rad is equivalent to 20 rem
• Cow’s milk contain a soluble radioactive substance: ^90Sr
• Radiation exposure and effects:

<table>
<thead>
<tr>
<th>Dose (rem)</th>
<th>Effects</th>
<th>Signs and symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 – 20</td>
<td>No symptoms</td>
<td>—</td>
</tr>
<tr>
<td>20 – 50</td>
<td>No symptoms generally</td>
<td>Temporary ↓ in RBC count</td>
</tr>
<tr>
<td>50 – 100</td>
<td>Mild radiation sickness</td>
<td>Headache, ↑ infection risk, temporary male sterility</td>
</tr>
<tr>
<td>100 – 200</td>
<td>Light radiation poisoning</td>
<td>Vomiting, fatigue, ↓ immunity, spontaneous abortion, stillbirth</td>
</tr>
<tr>
<td>200 – 300</td>
<td>Moderate radiation poisoning</td>
<td>Loss of hair, massive leucopenia, permanent female sterility</td>
</tr>
<tr>
<td>300 – 400</td>
<td>Severe radiation poisoning</td>
<td>-do-</td>
</tr>
<tr>
<td>400 – 600</td>
<td>Acute radiation poisoning (severity)</td>
<td>Uncontrollable bleeding in mouth, under skin, kidneys</td>
</tr>
<tr>
<td>600 – 1,000</td>
<td>Acute radiation poisoning</td>
<td>Complete bone marrow failure</td>
</tr>
<tr>
<td>1000 – 5000</td>
<td>Acute radiation poisoning</td>
<td>Massive diarrhea, bleeding, dyselectrolytemia, delirium, death</td>
</tr>
<tr>
<td>> 5000</td>
<td>Acute radiation poisoning</td>
<td>Death</td>
</tr>
</tbody>
</table>

83. Ans. (d) Vibration [Ref. Park 21/e p745, Park 22/e p749]
 • After some months or years of exposure to vibrations (10 – 500 Hz), the fine blood vessels of fingers may become extremely sensitive to spasm, known as ‘White fingers’.
 • White fingers are a form of Raynaud’s Disease. Vibration white finger is the vascular component of ‘hand-arm vibration syndrome (HAVS)’.

84. Ans. (b) < 5 micron [Ref. Park 21/e p747, Park 22/e p751]
 • Pneumoconiosis occur due to occupational exposure to dust. Particles size 0.5 to 3.0 microns are the most dangerous (as a health hazard causing pneumoconiosis), as they reach the interior of lungs with ease.
 • Particle size and behavior:

<table>
<thead>
<tr>
<th>Particle size</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 10 microns</td>
<td>Settle down by gravity</td>
</tr>
<tr>
<td>< 10 microns</td>
<td>Remain suspended in air</td>
</tr>
<tr>
<td>5 – 10 microns</td>
<td>Arrested in upper respiratory tract</td>
</tr>
<tr>
<td>3 – 5 microns</td>
<td>Deposited in mid respiratory tract</td>
</tr>
<tr>
<td>1 – 3 microns</td>
<td>Enter alveoli and settle there (cause pneumoconioses)</td>
</tr>
<tr>
<td>< 1 microns</td>
<td>Brownian movement</td>
</tr>
</tbody>
</table>

85. Ans. None of the choices [Ref. Park 21/e p747, Park 22/e p751]
86. Ans. (d) Bagassosis [Ref. Park 21/e p747, Park 22/e p751]
87. Ans. (c) Farmer’s lung [Ref. Park 21/e p748, Park 22/e p752]
 • Farmer’s Lung is due to inhalation of mouldy hay or grain dust. Micropolyspora faeni (Sacchorpolyspora rectivirgula) is the main cause of farmer’s lung.

88. Ans. (a) Greatest source is drinking water from lead pipes [Ref. Park 22/e p752-753]
 • Source of lead: Greatest source of environmental (non-occupational) lead is Gasoline/petrol/vehicular exhaust/automobile exhaust
 • Mode of absorption: Lead can be absorbed by inhalation (most common), ingestion or through skin.

Also Remember

• A useful screening test is Coproporphyrin in Urine (CPU)
• A sensitive parameter of hematological response is Basophilic stippling of RBCs
• Plumbism (lead poisoning) can cause Burtonian’s line (Blue Line on gums).
89. Ans. (a) **Skin Cancer** [Ref. Park 21/e p749, Park 22/e p753]
- Nearly 75% of occupational cancers are skin cancers
- First attention was drawn by Percival Pott to cancer of scrotum in chimney sweepers
- Occupational skin cancers are predominantly ‘squamous cell carcinomas’
- Only characteristic feature of occupational skin cancers their occurrence on exposed parts of the body (head, neck, hands, arms) that have remained in direct contact with a carcinogenic source
- Carcinogens implicated in occupational skin cancers include UV light, ionizing radiation, coal products, petroleum products, lubricating oils, fuel oils, etc.

90. Ans. (b) **Naphthylamines** [Ref. Park 21/e p749, Park 22/e p753]
- Cancer bladder was first noted in man in Aniline industry in 1895
- **Now following has been mentioned as possible bladder carcinogens:**
 - β-naphthylamines
 - Benzidine
 - Paraamino-diphenyl
 - Auramine
 - Magenta
- Industries associated with cancer bladder are dye-stuffs and dyeing industry, rubber, gas and electric cable industry

Also Remember

- The most common symptom of cancer of the bladder is blood in the urine (haematuria)
- Most common type of Ca-bladder (90%) is Transitional Cell (urothelial cell) carcinoma (TCC)
- Tobacco use (specifically cigarette smoking) is thought to cause 50% of bladder cancers discovered in male patients and 30% of those found in female patients
- Certain drugs such as cyclophosphamide and phenacetin are known to predispose to bladder TCC
- Immunotherapy in the form of ‘Intravesical (pharmacotherapeutic) BCG instillation’ is also used to treat and prevent the recurrence of superficial tumors.

91. Ans. (b) **Occupational Health** [Ref. Park 21/e p753, Park 22/e p757]
- Pre-placement Examination: Is the foundation of an efficient occupational health service. It is done at the time of employment and includes worker’s history (medical, family, occupational and social), physical examination and biological and radiological examinations.
- Main purpose of Pre-placement Examination is to place ‘the right man in right job’, so that worker can perform his duties efficiently without detriment to his health (Ergonomics).
- Pre-placement Examination also serves as a useful benchmark for future comparison (examination and epidemiology).

Also Remember

- **Ergonomics (human factors):** Is the application of scientific information concerning objects, systems and environment for human use.

92. Ans. (c) 91 days [Ref. Park 21/e p757, Park 22/e p761]

THE EMPLOYEES STATE INSURANCE (ESI) ACT, 1948: (NEW GUIDELINES)
- **Scope of ESI Act:** The act covers all the factories in India ‘excluding mines, defence, railways’. The Act in the first instance applies to all non-seasonal factories, employing 10 or more persons, for wages on any day in implemented areas. (Now included education)
 - It covers all employees getting up to ₹15,000/- per month
- **Finance:** The employer contributes 4.75% of total wage bill; the employee contributes 1.75% of wages. State and Central Government share medical expenditure in ration of 1:7
- **Sickness Benefits to employees under ESI:**
 - **Sickness benefit:** 90% of the average daily wages and is payable for 91 days (in any continuous period of 365 days).
 - **Extended sickness benefit:** Payable for 2 years for a set of 34 diseases
 - **Enhanced sickness benefit:** Full average daily wage for duration up to 7 days in the case of Vasectomy and up to 14 days in the case of the Tubectomy.
Also Remember

- The per capita cost of medical benefit under ESI scheme was ₹ 905/- in 2001–02
- To become eligible to Sickness Benefit, one should have paid contribution for not less than 78 days during the corresponding contribution period
- Employees in receipt of a daily average wage up to ₹ 100/- are exempted from payment of contribution; Employers will however contribute their own share in respect of these employees
- Rajiv Gandhi Shramik Kalyan Yojana (under ESI): Unemployment allowance (at 50% wages for maximum 12 months) for employees who are rendered unemployed involuntarily due to closure of factory.

93. Ans. (d) State of health of the workers [Ref. Park 21/e p751, Park 22/e p755]

SICKNESS ABSENTEEISM:
- Sickness absenteeism is a ‘useful index in industry to assess the state of health of workers’, and their physical, mental and social well-being
- Rate of absenteeism reported in India: 8 – 10 days per worker per year.

94. Ans. (c) Lead poisoning is not a notifiable disease [Ref. Park 21/e p748-49, Park 22/e p752-53]

95. Ans. (a) Occurs within five years of exposure [Ref. Park 21/e p748, Park 22/e p752]

- Asbestosis is a pneumoconiosis which occurs due to exposure to asbestos
- Asbestosis does not usually appear until after 5 – 10 years of exposure. Once established, the disease is progressive even after removal of worker from contact
- Sputum shows ‘asbestos bodies’, which are asbestos fibres coated with fibrin
- Asbestos may lead to pulmonary fibrosis, carcinoma of bronchus, mesothelioma of peritoneum/pleura and cancer of GIT
- Asbestos type most dangerous is ‘amphibole’.

Also Remember

- List of Pneumoconioses:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Exposure source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicosis</td>
<td>Silica dust</td>
</tr>
<tr>
<td>Anthracosis</td>
<td>Coal dust</td>
</tr>
<tr>
<td>Asbestosis</td>
<td>Asbestos dust</td>
</tr>
<tr>
<td>Byssinosis</td>
<td>Cotton fibre</td>
</tr>
<tr>
<td>Bagassosis</td>
<td>Molasses (sugarcane)</td>
</tr>
<tr>
<td>Berylliosis</td>
<td>Beryllium</td>
</tr>
<tr>
<td>Farmer’s Lung</td>
<td>Mouldy hay</td>
</tr>
<tr>
<td>Siderosis</td>
<td>Iron dust</td>
</tr>
<tr>
<td>Stannosis</td>
<td>Tin dust</td>
</tr>
<tr>
<td>Bird fancier’s lung</td>
<td>Avian/ bird droppings</td>
</tr>
<tr>
<td>Compost lung</td>
<td>Compost</td>
</tr>
</tbody>
</table>

- Antigens involved in Pneumoconioses:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagassosis</td>
<td>Thermoactinomycases sacchari</td>
</tr>
<tr>
<td>Farmer’s Lung</td>
<td>Micropolyspora faeni</td>
</tr>
<tr>
<td>Compost lung</td>
<td>Aspergillus</td>
</tr>
<tr>
<td>Chemical workers lung</td>
<td>Isocyanates</td>
</tr>
</tbody>
</table>

- Pneumoconioses occur due to occupational exposure to dust, especially of the size 0.5 – 3.0 microns diameter Most Dangerous particle size)
- Coal workers lung is known as ‘black lung’
- Silicosis is known as ‘grinder’s disease’.

96. Ans. (d) 2% propionic acid [Ref. Park 21/e p748, Park 22/e p752]

97. Ans. (a) Sugarcane dust [Ref. Park 21/e p748-49, Park 22/e p752-53]
98. Ans. (a) 48 [Ref. Park 21/e p756, Park 22/e p760]
99. Ans. (d) All of the above [Ref. Park 21/e p756, Park 22/e p760]
100. Ans. (d) Ether [Ref. Davidson’s, 20/e p1285, Park 21/e p750, Park 22/e p754]
101. Ans. (c) Inhalation [Ref. Park 21/e p748, Park 22/e p752]
102. Ans. (a) Lead; (d) Agricultural insecticides [Ref. Sittig’s Handbook of Pesticides and Agricultural Chemicals by Stanley A. Greene, 1/e p319]
103. Ans. (a) Applicable on educational institutions also; (c) Maternity benefit for 3 months [Ref. Park 22/e p760]
104. Ans. (b) A worker with income less than 70/- per day has to pay only 300/- per month; (c) Funeral expenses is 50,000/- [Ref. Park 22/e p760-62]
• Under ESI, a worker with income below 100/- per day is exempted from payment of contribution
• Under ESI, Funeral expenses are Rs 10000/-

Review Questions

106. Ans. (a) 309 days (now up to 2 years) [Ref. Park 21/e p757, Park 22/e p761]
107. Ans. (b) Textile industries [Ref. Park 21/e p747, Park 22/e p751]
108. Ans. (b) Sugarcane fibres [Ref. Park 21/e p747-48, Park 22/e p751-52]
109. Ans. (b) Sugarcane Industry [Ref. Park 21/e p747-48, Park 22/e p751-52]
110. Ans. (d) Silica fibres [Ref. Park 21/e p747-748, Park 22/e p751-52]
111. Ans. (b) Heat cramps [Ref. Internet]
112. Ans. (b) 4.75% [Ref. Park 21/e p756-57, Park 22/e p760-61]
113. Ans. (d) Leukemia [Ref. Harrison 16/e p442, Park 21/e p749, Park 22/e p753]
114. Ans. (a) Battery industry [Ref. Park 21/e p748-49, Park 22/e p752-53]
115. Ans. (b) Silicosis [Ref. Park 21/e p747, Park 22/e p751]
116. Ans. (a) Byssinosis [Ref. Park 21/e p747, Park 22/e p751]
117. Ans. (c) Sugarcane dust [Ref. Park 21/e p747, Park 22/e p751]
118. Ans. (d) Defence establishment [Ref. Park 21/e p756-58, Park 22/e p760-62]
119. Ans. (b) Non power using factories with 18 members [Ref. Park 21/e p756, Park 22/e p760]
120. Ans. (b) Byssinosis [Ref. Davidson 19/e p557, CMDT 2014 p301, Harrison 16/e p1525]
121. Ans. (d) Upper lobes of lungs [Ref. Park 21/e p747, Park 22/e p751]
122. Ans. (a) 0.1-5 m [Ref. Park 21/e p747, Park 22/e p751]
123. Ans. (b) Chemical hazards [Ref. Park 21/e p746, Park 22/e p750]
124. Ans. (b) Sugar cane dust [Ref. Park 21/e p747, Park 22/e p751]
125. Ans. (b) 500sq feet minimum space required per person [Ref. Park 21/e p755-56, Park 22/e p759-60]
126. Ans. (b) Silicosis [Ref. Park 21/e p747, Park 22/e p751]
127. Ans. (a) 14 [Ref. Park 21/e p756]
128. Ans. (a) Brucellosis [Ref. Park 21/e p747-748, 265, Park 22/e p751-52, 668]
129. Ans. (d) 500 [Ref. Park 21/e p755]
130. Ans. (d) Exemption from sales tax [Ref. Park 21/e p756-58, Park 22/e p760-62]
131. Ans. (b) < 48 hours [Ref. Park 21/e p756, Park 22/e p760]
132. Ans. (b) 0.5-3 [Ref. Park 21/e p747, Park 22/e p751]
133. Ans. (a) 1/8 [Ref. Park 21/e p756-57, Park 22/e p760-61]
134. Ans. (d) > 10 years [Ref. Park 21/e p747, Park 22/e p751]
135. Ans. (d) Psittacosis [Ref. Park 21/e p747-48, Park 22/e p751-52]
136. Ans. (b) Sugar cane [Ref. Park 21/e p747, Park 22/e p751]
137. Ans. (a) Byssinosis [Ref. Park 21/e p747, Park 22/e p751]
138. Ans. (a) 91 days [Ref. Park 21/e p757, Park 22/e p761]
139. Ans. (b) Lead [Ref. Reproductive Endocrinology and Infertility by Carrell & Peterson, /e p800]
140. Ans. (c) Sugarcane [Ref. K Park 22/e p751]
141. Ans. (d) 70 mcg/100ml blood [Ref. K Park 22/e p753]
142. Ans. (c) 500 cu. ft [Ref. K Park 22/e p759-60]
143. Ans. (b) 4.75% [Ref. K Park 22/e p760]
144. Ans. (a) Bagassosis [Ref. K Park 22/e p751]
145. Ans. (a) Adjusting the Worker to his job [Ref. K Park 22/e p748]
146. Ans. (d) 2 years [Ref. K Park 22/e p761]
147. Ans. (a) Lead [Ref. K Park 22/e p752-53]
148. Ans. (b) Breast ca [Ref. K Park 22/e p753-54]
149. Ans. (b) State government share is 1/8 and ESI Corporation is 7/8 [Ref. K Park 22/e p760-61]

Finance under ESI:
- Employer contributes 4.75% of total wage bill
- Employee contributes 1.75% of wages
- State and Central Government share medical expenditure in ration of 1:7
150. Ans. (b) Anthrax [Ref. Workman’s Compensation Act, 1923 document]
151. Ans. (c) Micropolyspora faeni [Ref. K Park 22/e p752]
152. Ans. (b) Medical benefit [Ref. K Park 22/e p761-62]
153. Ans. (b) 100% wages in temporary disability; (c) Extended sickness benefit 91 days [Ref. K Park 22/e p760-62]

GENETICS

154. Ans. (c) Population genetics [Ref. Park 21/e p766, Park 22/e p770]
- Hardy Weinberg Law: States that the genotype frequencies in a population remain constant or are in equilibrium from generation to generation unless specific disturbing influences are introduced.
- Genetic equilibrium (HW law) is a basic principle of population genetics; the entire principle is based on Mendelian genetics.
- Deviations in HW law: HW law fails to apply in:
 - non-random mating (assortative mating)
 - new mutations
 - genetic drift
 - gene flow
 - natural selection (mortality selection, fecundity selection)
 - small populations
 - migrations
 - dynamic populations
- HW law assumes that human population is static, large and has random mating.
155. Ans. (c) Identify genes and sequence of base pairs in DNA of human genome [Ref. Park 22/e p770]

HUMAN GENOME PROJECT (HGP)
- Human Genome Project: HGP is an international scientific research project
- Primary goals were to determine the sequence of chemical base pairs which make up DNA and to identify the approximately 25,000 genes of the human genome
 - They also want to understand it and complete a map of all their findings
- The project began in 1990 initially headed by James D. Watson
- Ongoing sequencing led to the announcement of the essentially complete genome in April 2003
The goals of the original HGP were not only to determine more than 3 billion base pairs in the human genome, but also to identify all the genes in this vast amount of data.

- This part of the project is still ongoing, although a preliminary count indicates about 22,000–23,000 genes in the human genome.

Also Remember

- **Genome:** The sum total of genetic information of an individual which is encoded in structure of DNA
- **Genomics:** Is the study of genome
- **Gene Therapy:** Introduction of a gene sequence into a cell to modify its behavior
- Development of new diagnostic techniques such as restriction enzymes is a component of DNA Technology

156. Ans. (a) 14th week of gestation [Ref. Park 21/e p768, Park 22/e p772]

- **Amniocentesis:** Examination of a sample of amniotic fluid makes possible the prenatal diagnosis of chromosomal anomalies and certain metabolic defects; The procedure can be used as early as 14th week of pregnancy when abortion of affected fetus is still feasible.
 - Culture and karyotyping of fetal cells from amniotic fluid is used for diagnosis of fetal anomalies
 - Biochemical analysis of amniotic fluid is used for diagnosis of metabolic effects

- **Amniocentesis is indicated in following circumstances:**
 - A mother aged > 35 years (high risk of Down’s Syndrome)
 - Patients who have had a child with Down’s Syndrome or other chromosomal anomalies
 - Parents known to have chromosomal translocation
 - Patients who have had a child with metabolic defect
 - When sex-determination is warranted

Also Remember

- Various genetic testing may be performed, but the three most common abnormalities tested for are
 - Down’s syndrome
 - Trisomy 18
 - Spina bifida

157. Ans. (c) X-linked recessive [Ref. Park 21/e p763, Park 22/e p767]

- **Mendelian diseases and their inheritance:**

<table>
<thead>
<tr>
<th>Autosomal dominant traits</th>
<th>Autosomal recessive traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achondroplasia</td>
<td>Albinism</td>
</tr>
<tr>
<td>Huntington’s chorea</td>
<td>Phenylketonuria</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
<td>Tay sachs disease</td>
</tr>
<tr>
<td>Familial polyposis coli</td>
<td>Alcaptonuria</td>
</tr>
<tr>
<td>Marfan’s Syndrome</td>
<td>Cystic fibrosis</td>
</tr>
<tr>
<td>Retinoblastoma</td>
<td>Galactosemia</td>
</tr>
<tr>
<td>ABO blood group system</td>
<td>Hemoglobinopathies</td>
</tr>
<tr>
<td>Hyperlipoproteinemia I, II, III, IV</td>
<td>Maple syrup urine disease</td>
</tr>
<tr>
<td>Polycystic kidney</td>
<td>Megacolon (Hirschsprung Dis)</td>
</tr>
<tr>
<td>Hereditary spherocytosis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex-linked dominant traits</th>
<th>Sex-linked recessive traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin-D resistant rickets</td>
<td>Hemophilia type A and B</td>
</tr>
<tr>
<td>Blood group Xg</td>
<td>Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>Familial hypophosphatemia</td>
<td>Color blindness</td>
</tr>
<tr>
<td></td>
<td>G6PD deficiency</td>
</tr>
<tr>
<td></td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td></td>
<td>Retinitis pigmentosa</td>
</tr>
</tbody>
</table>

158. Ans. (c) Euthenics [Ref. Park 21/e p767, Park 22/e p771]

- **Eugenics (Sir Francis Galton):** Is a social philosophy which advocates the improvement of human hereditary traits through various forms of intervention (Genetic Manipulation).
Review of Preventive and Social Medicine

- **Euthenics**: Deals with human improvement through altering external factors such as education and the controllable environment, including the prevention and removal of contagious disease and parasites, environmentalism, education regarding home economics, sanitation, and housing (Environmental Manipulation).

Also Remember
- Earlier proposed means of achieving eugenic goals focused on selective breeding, while modern ones focus on prenatal testing and screening, genetic counseling, birth control, in vitro fertilization, and genetic engineering
- Euthenics is a pre-requisite for Eugenics
- **Dysgenics**: Is a term describing the progressive evolutionary ‘weakening’ or genetic deterioration of a population of organisms relative to their environment.

159. Ans. (c) 0.7 mg/litre [Ref. Internet]
- Level of residual chlorine to be maintained in all water bodies in post-disaster phase is > 0.7 mg/l (> 0.7 ppm).

Also Remember
- Level of residual chlorine to be maintained in drinking water is > 0.5 mg/l (> 0.5 ppm) for a contact period of 1 hour
- Level of residual chlorine to be maintained for swimming pool sanitation is > 1.0 mg/l (> 1.0 ppm).

160. Ans. (a) Hypertension; (c) Manic depressive psychosis [Ref. Park 21/e p762, Park 22/e p766]

161. Ans. None [Ref. K. Park 21/e p766-767, Park 22/e p770-771]

162. Ans. (d) Ataxia telangiectasia [Ref. K. Park 21/e p763, Park 22/e p767]

Review Questions

163. Ans. (a) The study [Ref. Park 21/e p767, Park 22/e p771]

164. Ans. (d) Affect more people in later age group than children [Ref. Park 21/e p762-63, Park 22/e p766-767]

165. Ans. (c) Hardy Weinberg law [Ref. Park 21/e p766, Park 22/e p770]

166. Ans. (c) Genetics [Ref. Park PSM 19/e p680]

167. Ans. (b) Random mating [Ref. K Park 22/e p770]

168. Ans. (a) Wilson’s disease; (c) Thalassemia; (e) ABO blood groups system [Ref. K Park 22/e p767]

169. Ans. (c) Euthenics [Ref. K Park 22/e p771]

MENTAL HEALTH

170. Ans. (b) Tobacco [Ref. Park 21/e p774-76, Park 22/e p778-80]
- In India, about 47% of males and about 17% of females smoke.

Also Remember
- **Cannabis**: Is the ‘most widely used drug today’ (Most commonly abused Narcotic substance)
 - Most common reaction: Dreamy state of altered consciousness
 - Forms of Cannabis:
 1. **Bhang**: Dried leaves and flowering shoots
 2. **Hashish/Charas**: Resinous exudates from flowering tops of the female plant
 3. **Ganjia**: Resinous mass from small leaves and brackets of inflorescence
 4. **Marijuana**: Refer to any part of plant that induces somatic and psychic changes in man
 - **Heroin**: ‘Heroin addiction is worst type of addiction’
 - Heroin is Di-acetyl-morphine
 - **Amphetamine**: Synthetic drug structurally similar to adrenaline
 - Known as ‘Superman drugs’: Tremendous boost to energy and self-confidence.
171. Ans. (c) Endocrine diseases [Ref. Park 21/e p771-72, Park 22/e p775-776]
 - Causes of mental health disorders:
 - **Organic conditions:** Cerebral arteriosclerosis, neoplasm, metabolic diseases, endocrine diseases and chronic diseases (TB, leprosy, epilepsy)
 - **Heredity:** Schizophrenia
 - **Socio-pathological:** Worries, anxiety, emotional stress, tension, frustration, unhappy married life, broken homes, poverty, industrialization, urbanization, cruelty, rejection, neglect, etc.

Also Remember

- WHO analysis shows a global point prevalence of neuro-psychiatric conditions is about 10% for adult
 - **MCC of DALYs lost:** Unipolar depressive disorders
 - **MCC of deaths:** Alzheimer’s and other dementias
- **Mental morbidity in India:** 18 – 20 per 1000
- **DSM-IV Criteria:** Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision, DSM-IV-TR, is a manual published by the American Psychiatric Association (APA) that includes all currently recognized mental health disorders. The coding system utilized by the DSM-IV is designed to correspond with codes from the International Classification of Diseases, ICD.

172. Ans. (b) Depression [Ref. Park 21/e p770, Park 22/e p774]
 - DALYs lost due to mental disorders:

<table>
<thead>
<tr>
<th>Type of disorder</th>
<th>DALYs lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unipolar depressive disorders</td>
<td>64963</td>
</tr>
<tr>
<td>Alcohol disorders</td>
<td>18469</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>15686</td>
</tr>
<tr>
<td>Bipolar affective disorders</td>
<td>13645</td>
</tr>
<tr>
<td>Alzheimer’s dementia</td>
<td>12464</td>
</tr>
<tr>
<td>Migraine</td>
<td>7539</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>7087</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

173. Ans. (a) 3 weeks (Now 2 weeks) [Ref. RNTPC Key Facts and Concepts by DGHS, Park 21/e p392, Park 22/e p396]
174. Ans. (c) Finding genotype of offspring [Ref. Internet, Wikipedia]

PUNNETT SQUARE

- Is a diagram that is used to predict the result of a cross/breeding experiment
- Is representing summary of every possible combination of each maternal allele with paternal allele for each gene studied in square
- Is used by biologists ‘to determine the probability of an offspring having a particular genotype’
- Can be used for both monohybrid and dihybrid cross
- Are standard tools for genetic counsellors
- **Typical example of a Punnett square:**

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>YY</td>
<td>Yy</td>
</tr>
<tr>
<td>y</td>
<td>Yy</td>
<td>yy</td>
</tr>
</tbody>
</table>

175. Ans. (d) Recycling [Ref. Electronic Waste Management by RE Hester, Volume 27, p111]
Health Education and Communication

Chapter 13

Health Communication

Communication Process

- Communication process: Process of exchanging ideas, feelings and information
- Components of communication process:
 - Sender (source)
 - Message (content)
 - Receiver (audience)
 - Feedback (effect)
 - Channel(s) (medium)

Types of Communication

1. One-way Communication Vs Two-way Communication:
 - One-way communication (Didactic Method): Flow of communication is one way - from communicator to audience
 - Disadvantages of one way communication:
 a. Knowledge is imposed and learning authoritative
 b. Little audience participation and no feedback
 c. Does not influence human behaviour
 d. Makes no attempt at removing misconceptions and misunderstandings
 e. Communicates message even if unintelligible or unacceptable
 f. Autocratic process
 - Examples of one way communication:
 a. Lecture method (Chalk and talk method)
 b. Television
 c. Radio
 d. Newsprint
 - Two-way communication (Socratic Method): Two way communication in which both the communicator and the audience take part
 - Advantages of two way communication:
 a. Active participatory and democratic process
 b. More likely to influence human behaviour
 c. Better audience participation and feedback
 - Examples of two way communication:
 a. Focus Group Discussion (FGD)
 b. Symposium
 c. Panel discussion

2. Verbal Communication Vs Non-verbal Communication:
 - Verbal Communication: Face-to-Face communication
 - Advantages of verbal communication:
 a. May be loaded with hidden meanings
 b. Persuasive
 - Non-verbal Communication: Indirect interaction
 - Advantages of non-verbal communication:
 a. Silence speaks louder than words

3. Other Types of Communication:
 - Formal Communication: Follows line of authority
 - Non-formal Communication: Grape-vine communications
 - Advantages: May be more active than formal channels
 - Visual Communication: Comprises charts, graphs, pictograms, tables, maps, posters.
COMMUNICATION METHODS

Audio-Visual Aids

- *Audiovisual aids*: No health education can be effective without audiovisual aids
- *Auditory aids*: Radio, cassette tape-recorder, microphone, amplifier, earphone, public address system, disks
- *Visual aids*:
 - *Not requiring projection*: Chalk-board, leaflets, posters, charts, flannelgraph, exhibits, models, specimens, diagrams, photographs
 - *Requiring projection*: Slides, filmsstrips, overhead projector, epidiascope
- *Combined A-V aids*: Television, sound films (cinem(a)), synchronized slide-tape combination, multimedia, videotape system, drama, skits

Delphi Method

- *Delphi method*: Is a ‘systematic interactive forecasting method’ for obtaining consensus forecasts from a panel of independent geographically dispersed experts

Counselling

- *Definition*: Counselling is face-to-face communication through which a person is helped to make a decision or solve a problem
- *Counselling helps clients make informed choices*
- **COUNSELLING IS DIFFERENT FROM ADVICE**: In Counselling, ‘Choice is given to clients’

Elements of Counselling: (GATHER Approach)

- *G*: Greet the clients (make them comfortable, give attention)
- *A*: Ask/ascertain needs/problems or reasons for coming
- *T*: Telling different methods/options/choices to solve the problem
- *H*: Help client to make voluntary decisions
- *E*: Explain fully the chosen decision/action/method
- *R*: Return for follow-up visit

Group Approach to Health Education

1. *Chalk and Talk (Lecture)*:

 - *For effective communication through lecture method*:
 - Group size should be <30
 - Talk duration <15–20 minutes
 - Combine with flip charts, flannelgraphs, exhibits, films and charts

 - *Advantages of lecture method*:
 - Most economical method
 - Information transfer in a short time to a large group
 - Less preparation and minimal resources
Review of Preventive and Social Medicine

- **Disadvantages of lecture method:**
 - Learning is passive, does not motivate
 - Suitable only for small groups
 - Students are involved to minimal extent
 - Do not stimulate thinking or problem-solving capacity
 - Comprehension and retention varies with students
 - Health behaviour of listeners not necessarily affected

2. **Demonstrations:**
 - **Definition:** A carefully planned presentation to show how to perform a skill or procedure
 - **Method:** Demonstrator carries out step-by-step in front of an audience and involves them
 - **Advantages:**
 - Dramatises by arousing interest
 - Persuades onlookers to adopt
 - Upholds principles of ‘seeing is believing’ and ‘learning by doing’
 - Can bring desirable changes in behaviour
 - High motivational value
 - **Utility:**
 - Environmental sanitation (hand pump installation, use of sanitary latrine)
 - MCH (ORS technique)
 - Control of disease (Scabies)

3. **Group Discussion**
 - **Description:** A group is an aggregation of people interacting in a face-to-face situation
 - **Advantages of group discussion:**
 - A very effective method of health communication
 - Well-conducted group discussion is ‘effective to change health behaviour and attitudes’
 - Permits learning by free exchange of ideas, knowledge, and opinions
 - Provides a wider interaction among members
 - Valuable to ensure long-term compliance
 - **Ensuring an effective discussion:**
 - Group size of ‘6 – 12 members’, including
 - 1 group leader: Initiates discussion, helps discussion in a proper manner, prevents side conversations, encourages everyone to participate and sums up the discussion
 - 1 recorder: Record, report on issues discussed and agreements reached
 - **Rules to be followed:**
 - Listen to what others are saying
 - Express ideas clearly and concisely
 - Do not interrupt when others are saying
 - Make only relevant remarks
 - Accept criticism gracefully
 - Help to reach conclusions
 - **Limitations of group discussion:**
 - Unequal participation: Those shy may not take part in discussion while some may dominate the discussion
 - Some may deviate from the subject and make the GD irrelevant or unprofitable

4. **Panel Discussion**
 - **Features of a panel discussion:**
 - ‘4 – 8 persons’ who are qualified to talk about the topic sit and discuss a given problem/topic in front of a target group or audience
 - Panel comprises,
 - A chairman or moderator
 - 4-8 expert speakers

Demonstrations:
- Upholds principles of ‘seeing is believing’ and ‘learning by doing’

Well conducted group discussion is ‘effective to change health behaviour and attitudes’
• **Method of Panel discussion:**
 - The chairman introduces topic briefly and invites panel members to speak
 - There is 'no specific agenda, no order of speaking and no set speeches' \(^Q\)
 - The success of panel depends on chairman; he makes it going and provides train of thought
 - After speakers explore the topic, audience is invited to take part
 - Panelists may have to have a preliminary meeting and prepare the material on the subject

• **Advantages of a panel discussion** \(^Q\):
 - Flexible, spontaneous; better understanding of various aspects, keeps audience alert
 - If properly planned and guided, panel discussion can be ‘an extremely effective method of education’

• **Disadvantages of a panel discussion** \(^Q\):
 - Needs a thorough planning and preparation in advance
 - Panelists need to be of sufficient experience
 - Audience is usually passive

5. **Symposium:**

• **Features of a symposium:**
 - A series of speeches/lectures on a selected subject \(^Q\)
 - Each person or expert presents an aspect briefly
 - There is no discussion among symposium members \(^Q\)
 - Audience may raise questions in the end
 - Chairman makes a comprehensive summary at the end of symposium
 - In an ideal symposium, there is no discussion in between presentations of speakers

• **Advantages of a symposium** \(^Q\):
 - Transfers concise information to audience at one time
 - Audience remains alert (frequent change of speakers)
 - Analysis of different aspects of a topic at one time
 - Good tool for integrated teaching

• **Disadvantage of a symposium:**
 - No discussion during symposium (Q and A at end)

6. **Workshop:**

• **Features of workshop:**
 - A series of meetings usually >4 \(^Q\)
 - Emphasis is on individual work within the group to impart training \(^Q\)
 - Help sought from consultants and resource personnel
 - Total workshop may be divided in to smaller groups; each group will choose a chairman and a recorder
 - Individuals solve a problem through personal effort with help of consultants; contribute to group work and group discussion and leave workshop with concrete suggestions and a ‘plan of action’ on problem \(^Q\)

• **Advantages of workshop:**
 - Learning takes place in a friendly, happy and democratic atmosphere, under expert guidance
 - Provides each participant an opportunity to improve his effectiveness as a professional worker

• **Disadvantages of workshop:**
 - Needs a lot of baseline ground work \(^Q\)
 - Benefits a small no. of people

7. **Role-Playing (Socio-Drama):**

• **Features of role-playing:**
 - Situation is dramatized by a group
 - Group enact as if they have observed/experienced it
 - Audience not passive; actively concerned with drama; can suggest alternative solutions at request of leader
Review of Preventive and Social Medicine

- Followed by discussion of the problem
- Ideal size of the group: 25

Advantages of role-playing:
- Useful to discuss problems of human relationships
- Useful educational device for school children

8. Conferences and Seminars:
- Features of conferences and seminars:
 - Contains a large component of commercialized continuing education
 - Usually held on a regional, state or national level
 - ½ day to 1 week in length
 - May cover a single topic in depth or be broadly comprehensive
 - Use variety of teaching formats: self instruction to mass media

HEALTH EDUCATION

Health Education

- Health Education: The process by which individuals and groups of people learn to behave in a manner conducive to the promotion, maintenance or restoration of health (John M. Last)

<table>
<thead>
<tr>
<th>Older emphasis</th>
<th>New emphasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention of disease</td>
<td>Promotion of healthy lifestyles</td>
</tr>
<tr>
<td>Modification of individual behaviour</td>
<td>Modification of social environment</td>
</tr>
<tr>
<td>Community participation</td>
<td>Community involvement</td>
</tr>
<tr>
<td></td>
<td>Promotion of individual & community self reliance</td>
</tr>
</tbody>
</table>

Approaches to Health Education

- Regulatory approach (Managed prevention):
 - Defined as any Governmental intervention
 - Coercive approach or Legislative approach
 - Useful in times of emergency
- Service approach:
 - Providing health services at peoples’ door step
 - Not based on felt needs
- Health education approach:
 - Slow but enduring results
- Primary health care approach:
 - Radically new approach
 - Community involvement and intersectoral coordination
 - Help individuals becomes self reliant in health

Principles of Health Education

- Credibility
- Interest
- Participation
- Motivation
- Comprehension
- Reinforcement
- Learning by doing
- Known to unknown
- Setting an example
- Good human relations
- Feedback
- Leaders
Health Education versus Propaganda/ Publicity

<table>
<thead>
<tr>
<th></th>
<th>Health education</th>
<th>Health propaganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and skills</td>
<td>Actively acquired</td>
<td>Instilled in minds</td>
</tr>
<tr>
<td>Promotion of thought process</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Primitive desires</td>
<td>Disciplines</td>
<td>Arouses</td>
</tr>
<tr>
<td>Behaviour developed</td>
<td>Reflective behaviour</td>
<td>Reflexive behaviour</td>
</tr>
<tr>
<td>Appeals to</td>
<td>Reason</td>
<td>Emotion</td>
</tr>
<tr>
<td>Develops</td>
<td>Individuality, personality</td>
<td>Set attitudes, behaviour</td>
</tr>
<tr>
<td>Knowledge acquired by</td>
<td>Self-reliant activity</td>
<td>Passive spoon-feeding</td>
</tr>
<tr>
<td>Process</td>
<td>Behaviour centred</td>
<td>Information centred</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

Mass Media

- *Mass media*: TV, radio, printed media
 - Mass media are mainly a one-way communication (Didactic Methods)

- **Advantages of mass media**:
 - Reaches a relatively larger population in a shorter time than with other means
 - Useful for message transmission even in remote areas
 - More influential with average and below average education level
 - Get public attention

- **Disadvantages of mass media**:
 - Being impersonal, not usually effective in changing established modes of behaviour if used alone
 - *One way communication*: Carry messages from centre to periphery; feedback mechanisms are poorly organized

Methods of Mass Media

- **Television**:
 - Most popular of all media
 - Creates awareness, influence public opinions and introduce new ways of life
 - Raise levels of understanding
 - Has much potential for health communication
 - Not much opportunity for feedback and discussion

- **Radio**:
 - Purely didactic medium
 - Valuable aid in putting across health information

- **Internet**:
 - Fast growing communication media
 - Holds very large potential to become a major health education tool

- **Newspapers**:
 - Most widely disseminated of all forms of literature
 - Reach only to limited population (literates)

- **Printed material**:
 - Can convey detailed information
 - Produced in bulk at low cost, can be shared

- **Direct mailing**:
 - New innovation in health communication

- **Posters, billboards, signs**:
 - Can be displayed at public places
 - Less effective in changing behaviour

- **Health museums and exhibitions**

- **Folk media**

Advantages of mass media: Reaches a relatively larger population in a shorter time

Television: Most popular of all media
Review Questions

1. Which of the following is the correct sequence of various components of the ‘communication process’?
 (a) Receiver, Message, Channel, Feedback, Sender
 (b) Sender, Feedback, Message, Channel, Receiver
 (c) Sender, Message, Channel, Receiver, Feedback
 (d) Message, Sender, Channel, Feedback, Receiver

2. Lecture Method of teaching is a type of:
 (a) Socratic Method
 (b) Didactic Method
 (c) Non-verbal communication
 (d) Visual Communication

3. All of the following involve a two-way communication except:
 (a) Symposium
 (b) Lecture
 (c) Panel discussion
 (d) Workshop

4. Which one is not a two way communication?
 (a) Lecture
 (b) Workshop
 (c) Group discussion
 (d) Panel discussion

5. Socratic method of education consists of all except:
 (a) Lecture
 (b) Group discussion
 (c) Seminar
 (d) Panel discussion

6. Which of the following is/are didactic methods of health communication?
 (a) Group discussion
 (b) Workshop
 (c) Demonstration
 (d) Lecture
 (e) Panel discussion

7. Which of the following is the socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

8. An example of a two-way discussion is?
 (a) A seminar
 (b) Role playing
 (c) Symposium
 (d) Group Discussion

9. Which of the following is the Socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

10. True about mass media education except:
 (a) Rapid
 (b) High rich content
 (c) Distorted information
 (d) Local community needs

11. Which is incorrect about socratic method?
 (a) Two way communication
 (b) Audience can raise question
 (c) Active and democratic
 (d) Audience can take part

12. A tool for increasing consensus among a large no. of people is:
 (a) Chalk and talk (lecture)
 (b) Delphi method
 (c) Television
 (d) Interpersonal communication (IPC)

13. GATHER Approach is useful for:
 (a) Chlorination of water
 (b) Counselling
 (c) Refuse disposal
 (d) Data analysis

14. A series of speeches is given by experts but there is no discussion among speakers. This is seen in:
 (a) symposium
 (b) lecture
 (c) panel discussion
 (d) workshop

15. The most effective method for motivating a couple for adopting family planning practices is:
 (a) Printed material

Types of Communication

1. Which of the following is the correct sequence of various components of the ‘communication process’?
 (a) Receiver, Message, Channel, Feedback, Sender
 (b) Sender, Feedback, Message, Channel, Receiver
 (c) Sender, Message, Channel, Receiver, Feedback
 (d) Message, Sender, Channel, Feedback, Receiver

2. Lecture Method of teaching is a type of:
 (a) Socratic Method
 (b) Didactic Method
 (c) Non-verbal communication
 (d) Visual Communication

3. All of the following involve a two-way communication except:
 (a) Symposium
 (b) Lecture
 (c) Panel discussion
 (d) Workshop

4. Which one is not a two way communication?
 (a) Lecture
 (b) Workshop
 (c) Group discussion
 (d) Panel discussion

5. Socratic method of education consists of all except:
 (a) Lecture
 (b) Group discussion
 (c) Seminar
 (d) Panel discussion

6. Which of the following is/are didactic methods of health communication?
 (a) Group discussion
 (b) Workshop
 (c) Demonstration
 (d) Lecture
 (e) Panel discussion

7. Which of the following is the socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

8. An example of a two-way discussion is?
 (a) A seminar
 (b) Role playing
 (c) Symposium
 (d) Group Discussion

9. Which of the following is the Socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

10. True about mass media education except:
 (a) Rapid
 (b) High rich content
 (c) Distorted information
 (d) Local community needs

11. Which is incorrect about socratic method?
 (a) Two way communication
 (b) Audience can raise question
 (c) Active and democratic
 (d) Audience can take part

12. A tool for increasing consensus among a large no. of people is:
 (a) Chalk and talk (lecture)
 (b) Delphi method
 (c) Television
 (d) Interpersonal communication (IPC)

13. GATHER Approach is useful for:
 (a) Chlorination of water
 (b) Counselling
 (c) Refuse disposal
 (d) Data analysis

14. A series of speeches is given by experts but there is no discussion among speakers. This is seen in:
 (a) symposium
 (b) lecture
 (c) panel discussion
 (d) workshop

15. The most effective method for motivating a couple for adopting family planning practices is:
 (a) Printed material

Communication Methods

1. Which of the following is the correct sequence of various components of the ‘communication process’?
 (a) Receiver, Message, Channel, Feedback, Sender
 (b) Sender, Feedback, Message, Channel, Receiver
 (c) Sender, Message, Channel, Receiver, Feedback
 (d) Message, Sender, Channel, Feedback, Receiver

2. Lecture Method of teaching is a type of:
 (a) Socratic Method
 (b) Didactic Method
 (c) Non-verbal communication
 (d) Visual Communication

3. All of the following involve a two-way communication except:
 (a) Symposium
 (b) Lecture
 (c) Panel discussion
 (d) Workshop

4. Which one is not a two way communication?
 (a) Lecture
 (b) Workshop
 (c) Group discussion
 (d) Panel discussion

5. Socratic method of education consists of all except:
 (a) Lecture
 (b) Group discussion
 (c) Seminar
 (d) Panel discussion

6. Which of the following is/are didactic methods of health communication?
 (a) Group discussion
 (b) Workshop
 (c) Demonstration
 (d) Lecture
 (e) Panel discussion

7. Which of the following is the socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

8. An example of a two-way discussion is?
 (a) A seminar
 (b) Role playing
 (c) Symposium
 (d) Group Discussion

9. Which of the following is the Socratic method of teaching?
 (a) Lecture
 (b) Films
 (c) Exhibition
 (d) Panel discussion

10. True about mass media education except:
 (a) Rapid
 (b) High rich content
 (c) Distorted information
 (d) Local community needs

11. Which is incorrect about socratic method?
 (a) Two way communication
 (b) Audience can raise question
 (c) Active and democratic
 (d) Audience can take part

12. A tool for increasing consensus among a large no. of people is:
 (a) Chalk and talk (lecture)
 (b) Delphi method
 (c) Television
 (d) Interpersonal communication (IPC)

13. GATHER Approach is useful for:
 (a) Chlorination of water
 (b) Counselling
 (c) Refuse disposal
 (d) Data analysis

14. A series of speeches is given by experts but there is no discussion among speakers. This is seen in:
 (a) symposium
 (b) lecture
 (c) panel discussion
 (d) workshop

15. The most effective method for motivating a couple for adopting family planning practices is:
 (a) Printed material
16. All are a type of audio-visual aids except:
(a) Television [AIIMS June 1992]
(b) Cinema
(c) Flannelgraph
(d) Slide-tape combination

17. All are true for a group discussion except:
(a) Not a very effective method of health communication [AIPGME 1991]
(b) Ideally a group should comprise of 6-12 members
(c) Can lead to change in health attitudes and behaviour
(d) Allows free exchange of ideas and opinions

18. Best method of teaching an urban slum about ORS is:
(a) Lecture [DPG 2005]
(b) Role play [Recent Question 2013]
(c) Demonstration
(d) Flash cards

19. All of the following facts are true with group discussion except: [Karnataka 2006]
(a) Group discussion is very effective method of health education
(b) Group members should not have known each other before
(c) The group should sit in a circle
(d) There should be a group leader to initiate

20. Panel discussion can be defined as: [Karnataka 2007]
(a) Series of speeches
(b) Discussion by 4-8 qualified persons
(c) Groups describing individual experiences
(d) Stage wise formatted teaching

21. All are true about Panel discussion except: [Recent Question 2012]
(a) Panel of 4-8 experts discuss a health topic
(b) Audience is present
(c) Specific order, Set speeches
(d) Audience can take part

22. A group of 8 experts discussing and interacting about a topic in front of large audience is:
(a) Workshop [DNB December 2011]
(b) Symposium
(c) Seminar
(d) Panel discussion

23. Which method is used for HIV pretest counselling:
(a) Individual approach [DNB 2002]
(b) Group approach
(c) Mass media
(d) All of the above

24. Which method is used for HIV postest counselling:
(a) Individual approach [DNB 2005]
(b) Group approach
(c) Mass media
(d) All of the above

25. A counsellor should not show to the patient:
(a) Sympathy [Kolkata 2007]
(b) Understanding
(c) Patience
(d) Sensitive

26. Principles of Health Education include all except: [AIPGME 1996]
(a) Participation
(b) Motivation
(c) Reinforcement
(d) Punishment

27. All of the following are approaches to health education except: [AIIMS May 09]
(a) Service approach
(b) Regulatory approach
(c) Health education approach
(d) Mass media

28. All of the following can be done with Individual as a unit except: [AIPGME 2012]
(a) Drug administration
(b) Vaccination
(c) Health education
(d) Case report

29. Which of the following statements refers to propaganda: [Karnataka 2011]
(a) Appeals to emotion
(b) Develops individuality
(c) The process is behaviour centered
(d) Makes people think for themselves

30. In which model of health education does 'internalization' occurs: [AP 2014]
(a) Medical model
(b) Socio-environmental model
(c) Service model
(d) Motivation model

31. Health education charts serially flashed to the group as the talk is being given is called as: [MP 2007]
(a) Flannel graph
(b) Flip charts
(c) Flash cards
(d) Exhibition charts
32. All are advantages of using mass media except:
 (a) More influential with average and below average education level [AIPGME 1996]
 (b) Gives greater support for concentrated programmes
 (c) Get public attention
 (d) Reaches the widest population

33. Most popular media for mass education of general public is: [AIPGME 1998]
 (a) Television
 (b) Radio
 (c) Newspaper
 (d) Internet

34. Most persuasive and effective media system for communication is: [AIIMS Dec 1995]
 (a) Inter-personal Communication
 (b) Mass Media (TV, Radio)
 (c) Folk Media
 (d) Printed Media

35. Counselor must have all except: [Kolkata 2008]
 (a) Sensitivity
 (b) Sympathy
 (c) Understanding
 (d) Patience
Health Education and Communication

EXPLANATIONS

HEALTH COMMUNICATION

1. Ans. (c) Sender, Message, Channel, Receiver, Feedback [Ref. Park 21/e p793, Park 22/e p797]
 - Communication process: process of exchanging ideas, feelings and information
 - Components of communication process:
 - Sender (source)
 - Receiver (audience)
 - Message (content)
 - Channel(s) (medium)
 - Feedback (effect)

 ![Communication process diagram](https://kat.cr/user/Blink99/)

 Figure: Communication process

TYPES OF COMMUNICATION

2. Ans. (b) Didactic Method [Ref. Park 21/e p794, Park 22/e p798]

 TYPES OF COMMUNICATION:
 - **One-way communication (Didactic Method):** Flow of communication is one way – from communicator to audience
 - Disadvantages of one way communication:
 - Knowledge is imposed and learning authoritative
 - Little audience participation and no feedback
 - Does not influence human behaviour
 - Makes no attempt at removing misconceptions and misunderstandings
 - Communicates message even if unintelligible or unacceptable
 - Autocratic process
 - Examples of one way communication:
 - Lecture method (Chalk and talk method)
 - Television
 - Radio
 - Newsprint
 - **Two-way communication (Socratic Method):** Two way communication in which both the communicator and the audience take part
 - Advantages of two way communication:
 - Active participatory and democratic process
 - More likely to influence human behaviour
 - Better audience participation and feedback
 - Examples of two way communication:
 - Focus Group Discussion (FGD)
 - Symposium
 - Panel discussion
 - **Verbal Communication:** Face-to-Face communication
 - Advantages of verbal communication:
Review of Preventive and Social Medicine

- May be loaded with hidden meanings
- Persuasive
 • Non-verbal Communication: Indirect interaction
 - Advantages of non-verbal communication:
 - Silence speaks louder than words
 • Formal Communication: Follows line of authority
 • Non-formal Communication: Grape-vine communications
 • Advantages: May be more active than formal channels
 • Visual Communication: Comprises charts, graphs, pictograms, tables, maps, posters

3. Ans. (b) Lecture [Ref. Park 21/e p794, 802-03, Park 22/e p798, 806, 807]
 Refer to answer 2

4. Ans. (a) Lecture [Ref. Park 21/e p794, 802-03, Park 22/e p798, 806, 807]
 Refer to answer 2

5. Ans. (a) Lecture [Ref. K Park 22/e p798]
6. Ans. (c) Demonstration; (d) Lecture [Ref. K Park 22/e p798]
7. Ans. (d) Panel discussion [Ref. K Park 22/e p798]

Review Question

8. Ans. (d) Group Discussion [Ref. Park 21/e p794, 803, Park 22/e p798, 807]
9. Ans. (d) Panel discussion [Ref. Park 21/e p794, 804, Park 22/e p798, 808]
10. Ans. (b) High rich content [Ref. Park 21/e p804-05, Park 22/e p808, 809]
11. Ans. None [Ref. Park 21/e p794, Park 22/e p798]

COMMUNICATION METHODS

12. Ans. (b) Delphi method [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p31, 222]
 Refer to Theory

Also Remember

• Mini-Delphi or Estimate-Talk-Estimate (ETE): The delphi technique when adapted for use in face-to-face meetings

13. Ans. (b) Counselling [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p48]
 COUNSELLING:
 • Definition: Counselling is face-to-face communication through which a person is helped to make a decision or solve a problem
 - Counselling helps clients make informed choices
 - COUNSELLING IS DIFFERENT FROM ADVICE: In Counselling, ‘Choice is given to clients’
 • Elements of Counselling: (GATHER Approach)
 - G: Greet the clients (make them comfortable, give attention)
 - A: Ask/ ascertain needs/ problems or reasons for coming
 - T: Telling different methods/ options/ choices to solve the problem
 - H: Help client to make voluntary decisions
 - E: Explain fully the chosen decision/ action/ method
 - R: Return for follow-up visit
 • GATHER Approach can be used for counseling about contraceptives

14. Ans. (a) symposium [Ref. Park 21/e p804, Park 22/e p808]
 Refer to Theory

15. Ans. (d) Interpersonal Communication [Ref. Park 21/e p794, Park 22/e p798]
 • Also known as One-to-One or Face-to-face communication

https://kat.cr/user/Blink99/
16. Ans. (c) Flannelgraph [Ref. Park 21/e p801, Park 22/e p805]
 - Audiovisual aids: No health education can be effective without audiovisual aids
 - Auditory aids: radio, cassette tape-recorder, microphone, amplifier, earphone, public address system, disks
 - Visual aids:
 - Not requiring projection: Chalk-board, leaflets, posters, charts, flannelgraph, exhibits, models, specimens, diagrams, photographs
 - Requiring projection: Slides, filmstrips, overhead projector, epidiascope
 - Combined A-V aids: Television, sound films (cinem(a), synchronized slide-tape combination, multimedia, videotape system, drama, skits

17. Ans. (a) Not a very effective method of health communication [Ref. Park 21/e p803, Park 22/e p807]

Also Remember

- Sociogram: Graphical representation of interaction among participants in a FGD
 - Sociogram helps in understanding whether there was equal participation from all participants in a FGD

18. Ans. (c) Demonstration [Ref. Park 22/e p807]

 DEMONSTRATION:
 - Definition: Is a carefully planned presentation to show how to perform a skill or procedure
 - Method: Demonstrator carries out step-by-step in front of an audience and involves them
 - Advantages:
 - Dramatises by arousing interest
 - Persuades onlookers to adopt
 - Upholds principles of ‘seeing is believing’ and ‘learning by doing’
 - Can bring desirable changes in behaviour
 - Utility:
 - Environmental sanitation (hand pump installation, use of sanitary latrine)
 - MCH (ORS technique)
 - Control of disease (Scabies)

19. Ans. (b) Group members should not have known each other before [Ref. Park 21/e p803, Park 22/e p807]

20. Ans. (b) Discussion by 4-8 qualified persons [Ref. Park 21/e p804, Park 22/e p808]

21. Ans. (c) Specific order, Set speeches [Ref. K Park 22/e p808]

22. Ans. (d) Panel discussion [Ref. K Park 22/e p808]

Review Questions

23. Ans. (a) Individual approach [Ref. Park 21/e p802, Park 22/e p806]

24. Ans. (a) Individual approach [Ref. Park 21/e p802, Park 22/e p806]
25. Ans. (d) Sensitive [Ref. Park 20/e p656]

HEALTH EDUCATION

26. Ans. (d) Punishment [Ref. Park 21/e p800-01, Park 22/e p804-05]
 - Approaches to Health Education:
 - Principles of Health Education:
 - Credibility
 - Interest
 - Participation
 - Motivation
 - Comprehension
 - Reinforcement
 - Learning by doing
 - Known to unknown
 - Setting an example
 - Good human relations
 - Feedback
 - Leaders

Also Remember

- Strandfield’s ‘Seven I’ principles of Health Education:
 - Identification
 - Involvement
 - Indigenization
 - Indoctrination
 - Integration
 - Influencers
 - Innovation
- Behaviour change induced by health education: Occur in 3 phases:
 - Phase I: Awareness and interest
 - Phase II: Evaluation and trial
 - Phase III: Adoption and dissemination

27. Ans. (d) Mass media [Ref. Park 21/e p797-98, Park 22/e p801-02]

28. Ans. (c) Health education [Ref. K. Park 21/e p802, Park 22/e p806]
 - Health education can be done individually BUT limitation is that the numbers we reach is really small, and health education is given to only those who come in contact with health system

29. Ans. (a) Appeals to emotion [Ref. K. Park 21/e p 798, Park 22/e p802]
 - Health education versus propaganda/ publicity:

<table>
<thead>
<tr>
<th>Knowledge and skills</th>
<th>Health education</th>
<th>Health propaganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actively acquired</td>
<td>Instilled in minds</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Disciplines</td>
<td>Arouses</td>
<td></td>
</tr>
<tr>
<td>Reflective behaviour</td>
<td>Reflexive behaviour</td>
<td></td>
</tr>
<tr>
<td>Reason</td>
<td>Emotion</td>
<td></td>
</tr>
<tr>
<td>Individuality, personality</td>
<td>Set attitudes, behaviour</td>
<td></td>
</tr>
<tr>
<td>Self-reliant activity</td>
<td>Passive spoon-feeding</td>
<td></td>
</tr>
<tr>
<td>Behaviour centred</td>
<td>Information centred</td>
<td></td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
30. Ans. (d) Motivation model [Ref. Park 22/e p802]

Motivation Model of Health education (Adoption Model)
- Three stages in process of behavioural change:
 - Awareness: Interest
 - Motivation: Evaluation, Decision-making
 - Action: Adoption, Acceptance
- Internalization: New idea/ acquired behavior becomes part of own existing values

Review Questions

31. Ans. (b) Flipcharts [Ref. Park 21/e p803, Park 22/e p807]

MISCELLANEOUS

32. Ans. (b) Gives greater support for concentrated programmes [Ref. Park 21/e p804-05, Park 22/e p808-09]
- Mass media: TV, radio, printed media
 - Advantages of mass media:
 - Reaches a relatively larger population in a shorter time than with other means
 - Useful for message transmission even in remote areas
 - More influential with average and below average education level
 - Get public attention
 - Disadvantages of mass media:
 - Being impersonal, not usually effective in changing established modes of behaviour if used alone
 - One way communication: Carry messages from centre to periphery; feedback mechanisms are poorly organized

33. Ans. (a) Television [Ref. Park 21/e p804, Park 22/e p808]
- Mass media are mainly a one-way communication (Didactic Methods):
 - Television:
 - Most popular of all media
 - Creates awareness, influence public opinions and introduce new ways of life
 - Raise levels of understanding
 - Has much potential for health communication
 - Not much opportunity for feedback and discussion
 - Radio:
 - Purely didactic medium
 - Valuable aid in putting across health information
 - Internet:
 - Fast growing communication media
 - Holds very large potential to become a major health education tool
 - Newspapers:
 - Most widely disseminated of all forms of literature
 - Reach only to limited population (literates)
 - Printed material:
 - Can convey detailed information
 - Produced in bulk at low cost, can be shared
 - Direct mailing:
 - New innovation in health communication
 - Posters, billboards, signs:
 - Can be displayed at public places
 - Less effective in changing behaviour
 - Health museums and exhibitions
 - Folk media
Review of Preventive and Social Medicine

34. Ans. (a) Inter-personal Communication [Ref. Park 21/e p794, Park 22/e p798]
 • Interpersonal Communication (IPC): ‘Face-to-face communication’ is the most persuasive and effective than other forms of communication
 • IPC is particularly useful for influencing the decisions of undecided persons
 • Superiority of IPC over mass media has been well documented

Review Questions

35. Ans. (a) Sensitivity [Ref. Park 18/e p656]
HEALTH CARE IN INDIA

Health Planning Committees In India

1. Bhore Committee (1946):
 - Also known as ‘Health Survey and Development Committee’
 - **Short term measure**: 1 PHC per 40,000 population, 30 beds, 3 subcentres and 2 medical officers
 - **Long term measure (3 Million Plan)**: Primary health units with 75-bedded hospitals per 10,000-20,000 population; Secondary health units with 650-bedded hospitals; Regional health units with 2,500 beds
 - Prepare ‘Social Physicians’ (3 months training in preventive and social medicine in medical education)

2. Mudaliar Committee (1962):
 - Also known as ‘Health Survey and Planning Committee’
 - 1 PHC per 40,000 population maximum
 - Constitution of ‘All India Health Service’
 - Strengthen district hospitals with specialist services
 - Regional organizations in each state

3. Chadah Committee (1963):
 - Constituted to study arrangements necessary for the ‘Maintenance Phase of National Malaria Eradication Programme (NMEP)’
 - Vigilance operations of NMEP should be the responsibility of general health services (PHCs at block level)
 - 1 Basic Health Worker per 10,000 population (for malaria vigilance, collection of vital statistics and family planning)
 - Family Planning Health Assistants to supervise 3-4 basic health workers

4. Mukherji Committee (1965):
 - ‘Delink malaria activities from family planning’
 - Separate staff for family planning programme

5. Mukherji Committee (1966):
 - BASIC HEALTH SERVICE should be provided at block level

6. Jungalwalla Committee (1967):
 - Also known as ‘Committee on Integration of Health Services’
 - Unified cadre, common seniority, recognition of extra qualifications, ‘equal pay for equal work’, special pay for specialized work, ‘no private practice’ and good service conditions

7. Kartar Singh Committee (1973):
 - Also known as ‘Committee on Multipurpose Workers under Health and Family Planning’
 - ANMs to be replaced by ‘Female Health Workers’; Basic health workers, Malaria surveillance workers, Vaccinators, Health education assistants and family planning health assistants be replaced by ‘Male Health Workers’
 - 1 PHC for 50,000 population, 15-16 subcentres each for 3,000-3,500 population
 - Each subcentre be staffed by team of one male and one female health worker
 - 1 Male Health Supervisor per 3-4 male health workers and 1 Female Health Supervisor per 4 female health workers
 - Lady Health Visitors be designated as Female Health Supervisors
 - Doctor in charge of PHC should have overall charge of supervisors and health workers in his area

Bhore Committee (1946): Short term measure: 1 PHC per 40,000 population

Kartar Singh Committee (1973): ‘Committee on Multipurpose Workers’
8. **Shrivastava Committee (1975):**
 - Also known as ‘Group on Medical Education and Support Manpower’ (ROME) Scheme
 - ‘Village Health Guide’ Scheme

9. **Krishnan Committee (1983):**
 - ‘Urban Revamping Scheme’

10. **Bajaj Committee (1986):**
 - Formulation of ‘National Medical and Health Education Policy’
 - Formulation of ‘National Health Manpower Policy’
 - ‘Education Commission’
 - Health Manpower Cells

Primary Health Care

- **Definition:** Essential health care, based on practical, scientifically sound, and socially acceptable methods and technology, made universally accessible to individuals and families in the community, through their full participation and at a cost that the community and country can afford.

- **Hallmarks of Primary Health Care:** 4 A’s
 - Affordability
 - Acceptability
 - Accessibility
 - Availability

- **4 Principles/Pillars of Primary Health Care:**
 - Equitable distribution
 - Community Participation
 - Intersectoral Coordination
 - Appropriate Technology

Elements/Components of Primary Health Care (Alma-Ata Declaration, 1978)

- E: Education concerning health problems and their control
- L: Locally endemic diseases prevention and control
- E: Essential drugs
- M: Maternal and child health care including family planning
- E: EPI (Immunization) against Vaccine Preventable Diseases
- N: Nutrition and promoting proper food supply
- T: Treatment of common diseases and injuries
- S: Safe water supply and sanitation

Functions of Primary Health Centre

- Medical care
- MCH including family planning
- Safe water supply and sanitation
- Locally endemic diseases prevention and control
- Collection and reporting of vital statistics
- Education concerning health
- National Health Programs
Health Care in India, Health Planning and Management

- Referral services
- Training of health personnel
- Basic laboratory services

Levels of Primary Health Care System in India

- **Primary Level of Health Care**:
 - Is ‘first level of contact between population and health care system’ in India
 - Health services are delivered through:
 - Sub-centre
 - Primary Health Centre

- **Secondary Level of Health Care**:
 - Is ‘First referral level of health care’ in India
 - Health services are delivered through: Community Health Centre

- **Tertiary Level of Health Care**:
 - Is ‘Second referral level of health care’ in India
 - Health services are delivered through: Medical Colleges and Hospitals

Sub-centre

- **Staff of Sub-centre**: 3
 - Multi-purpose worker- male (MPW-M)
 - Multi-purpose worker- female (MPW-F)
 - Volunteer worker

Primary Health Centre (PHC)

- **Staff of PHC**: 15
 - Medical officer: 1-2
 - Health assistant – Male
 - Health assistant – Female
 - Health educator
 - Other staff

- PHC is the first contact point between village community and the Medical Officer
- Each PHC acts as a ‘Referral centre for 6 Sub-centers’
- Medical officer is the ‘Leader of team at PHC’
- PHCs are established and maintained by the State Governments under the Minimum Needs Programme (MNP)/Basic Minimum Services Programme (BMS)
- PHC has provision of ‘4 – 6 beds’
- No. of PHCs in India: 25,020 [2014]

Community Health Centre (CHC)

- **Staff of CHC**: 30-31
 - Specialist Medical officers: 4
 - Physician
 - Surgeon
 - Obstetrician & Gynaecologist
 - Paediatrician
 - 3 Additional new posts created under NRHM
 - Ophthalmic surgeon
 - Anaesthetist
 - Public health programme (PSM) manager
 - Other staff

- Ministry of Health & Family Welfare is providing ‘100% Central assistance’
- No. of Sub-centres in India: 1,52,326 [2014]
Review of Preventive and Social Medicine

Each CHC acts as a ‘Referral centre for 4 PHCs’
- CHCs are being established and maintained by the State Government under MNP/BMS programme
- Bed strength of CHC: 30
- No. of CHCs in India: 5363 [2014]

Key Facts About Primary Health Care System

<table>
<thead>
<tr>
<th>Level of care</th>
<th>Sub-centre</th>
<th>PHC</th>
<th>CHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population norm</td>
<td>Primary</td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Plains</td>
<td>5000</td>
<td>30,000</td>
<td>1,20,000</td>
</tr>
<tr>
<td>Hilly/tribal areas</td>
<td>3000</td>
<td>20,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Staff</td>
<td>3</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Rural area covered</td>
<td>21 sq. km.</td>
<td>140 sq. km.</td>
<td>770 sq. km.</td>
</tr>
<tr>
<td>Radial distance covered</td>
<td>2.6</td>
<td>6.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Average no. of villages covered</td>
<td>4</td>
<td>29</td>
<td>158</td>
</tr>
</tbody>
</table>

Staffing Pattern in Primary Health Care System

- **Staff at Subcentre**: Total 3
 - Male multipurpose worker (1)
 - Female multipurpose worker (1)
 - Volunteer (1)
- **Staff at Primary Health Centre (PHC)**: Total 15
 - Medical officer (1)
 - Health Assistant Male (1)
 - Health Assistant Female (1)
 - ANM, Pharmacist, UDC, LDC, BEE, Nurse-midwife, Lab. Technician, driver [all 1 each]
 - Class IV (4)
- **Staff at Community Health Centre (CHC)**: Total 30-31
 - 4 specialist medical officers (Surgeon, Physician, Obstetrician/Gynecologist, Pediatrician - 1 each)
 - 23-24 staff [Nurse-midwife (9), Dresser (1), Pharmacist (1), Radiographer (1), Lab. Technician (1), Ophthalmic Assistant (1), Ward boy (2), Sweepers (3), Chowkidar (1), OPD attendant (1), OT attendant (1), Statistical assistant (1), Registration clerk (1)]]
 - Proposed 3 new staff: Anesthetist, Eye surgeon, Public health programme manager (1 each)

Population Norms for Health Workers in India [See Annexure 18 for current norms]

- **Suggested norm for Health Assistant (male and female)**:
 - 1 per 30,000 population in plain area
 - 1 per 20,000 population in tribal and hilly areas
- **Suggested norm for Health Worker/Multi-purpose worker (male and female)**:
 - 1 per 5,000 population in plain area
 - 1 per 3,000 population in tribal and hilly areas
- **Suggested norm for Anganwadi worker**:
 - 1 per 400-800 population in plain area
 - 1 per 300-800 population in tribal and hilly areas
Suggested Population Norms for Health Personnel

<table>
<thead>
<tr>
<th>Health personnel</th>
<th>Norm suggested^q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor^q</td>
<td>1 per 1000</td>
</tr>
<tr>
<td>Nurse^q</td>
<td>3 per 1 Doctor</td>
</tr>
<tr>
<td>Health worker (male and female)- MPWQ</td>
<td>1 per 5000 (plains) or 3000 (hilly)</td>
</tr>
<tr>
<td>Health assistant (male and female)</td>
<td>1 per 3000 (plains) or 2000 (hilly)</td>
</tr>
<tr>
<td>Pharmacist^q</td>
<td>1 per 10,000</td>
</tr>
<tr>
<td>Lab technician</td>
<td>1 per 10,000</td>
</tr>
<tr>
<td>ASHA^q</td>
<td>2 per 1000 (village)</td>
</tr>
<tr>
<td>Trained dai/ TBA^q</td>
<td>1 per 1000 (village)</td>
</tr>
<tr>
<td>Village health guide (VHG)^q</td>
<td>1 per 1000 (village)</td>
</tr>
<tr>
<td>Anganwadi worker (AWW)</td>
<td>1 per 400-800 (plains) or 300-800 (hilly)</td>
</tr>
</tbody>
</table>

Rural Health Statistics 2014

- Number of Subcentres: 152,326
- Number of PHCs^q: 25,020
- Number of CHCs: 5363
- Number of districts^q: 672
- Number of villages: 640,867
- Rural population: 68.9% [Census 2011]
- CBR^q: 21.4 [SRS 2014]
- CDR^q: 7.0 [SRS 2014]
- IMR^q: 40 [Highest MP/ Assam 54; Lowest Goa 09] [SRS 2014]

Job Responsibilities of Health Worker – Female^q

- Maternal and child health: Register pregnant, Urine and Hb test, Refer, Conduct deliveries, 2 post-natal visits
- Family planning: Maintain eligible couple registers, distribute conventional and oral contraceptives, establish female depot holders
- Medical termination of pregnancy: Identification and referral
- Nutrition: Identify and referral, IFA, Vitamin A
- Immunization: TT in pregnancy, VPDs in children
- Dai training: List dais, Help health assistant in training
- Communicable diseases: Notify the medical officer as per guidelines
- Vital events record maintenance
- Record keeping
- Treatment of minor ailments
- Team activities

Job Responsibilities of Health Worker – Male^q

- Maintenance of records
- Making Malaria slides^q
- Identifying suspected cases of Malaria, Filariasis, Japanese encephalitis, Kala azar
- Identify diarrhoea/dysentery cases; give ORS
- Identify suspect Leprosy, TB cases; sputum collection; supervise MDT, DOTS
- Chlorinate water bodies; educate public
- Administer vaccines
- Distribute conventional contraceptives

Panchayati Raj Institutions (PRIs)

- Panchayati Raj System: Is a 3-tier system of rural local self-government in India, linking village to the district^q
Panchayati Raj Institutions were strengthened in India by Constitution\(^2\):
- 73rd amendment
- 74th amendment

The 3 level PRIs: \(^2\)
- Panchayat: Village level
- Panchayat Samiti/ Janapada Panchayat: Block level
- Zila Parishad/ Zila Panchayat: District level

Panchayati Raj at Village Level comprises of: \(^2\)
- Gram Sabha
- Gram Panchayat
- Nyaya Panchayat

District

- The principal unit of administration in India is the 'District under the Collector' \(^2\)
- Within each district there are 6 types of administrative areas:
 - Sub-divisions (each under a Sub-Collector or Assistant Collector)
 - Tehsils/Talukas (each under a Tehsildar; a tehsil comprises 200-600 villages)
 - Community Development Blocks (each under a Block Development Officer; a block comprises 100 villages and 80,000-1,20,000 population)
 - Municipalities and Corporations
 - Villages
 - Panchayats (Institutions of rural local self governments)

HEALTH PLANNING

Objectives and Goals of a Health Program

- **Objective:** Is planned end-point of all activities\(^1\)
 - Is precise\(^1\)
 - Is concerned with the problem itself
- **Target:** A discrete activity which helps measure the extent of attainment of objectives\(^1\)
 - Is a concept of achievement\(^1\)
 - Is concerned with the factors involved in a problem
- **Goal:** Ultimate desired state towards which objectives and resources are directed\(^1\)
 - Is not constrained by time or existing resources
 - Is not necessarily attainable\(^1\)
- **Mission:** Is a description of fundamental principle of existence of a programme
 - Is usually time bound\(^1\)
 - Is a statement of purpose
- **Impact:** Is an expression of the positive effect of a programme, service or institution on the overall health development and on related social and economic development

National Population Policy (NPP) 2000

National Health Policy (NHP) 2002

Refer to Chapter 6, Theory

Steps of Planning Cycle

- **Pre-planning:**
 - Government interest
 - Legislation
 - Organization for planning
 - Administrative capacity
- **Step 1:** 'Analysis of health situation'
• Step 2: Establishment of goals and objectives
• Step 3: Assessment of resources
• Step 4: Fixing priorities
• Step 5: Write-up of formulated plan
• Step 6: Programming and implementation
• Step 7: Monitoring
• Step 8: Evaluation

XII Five Year Plan (XII FYP) 2012-17
• Eleventh FYP achievements:
 - Maternal mortality rate (MMR): 212
 - Infant mortality rate (IMR): 44
 - Total fertility rate (TFR): 2.5
 - Child sex ratio (CSR): 914
• Targets of XII FYP:
 - Maternal mortality rate (MMR): 100
 - Infant mortality rate (IMR): 25
 - Anaemia: 28

TWELFTH FIVE YEAR PLAN (12th FYP) 2012-17 GOALS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Goal by 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant mortality rate (IMR)</td>
<td>25 per 1000 live births</td>
</tr>
<tr>
<td>Maternal mortality rate (MMR)</td>
<td>100 per 100,000 live births</td>
</tr>
<tr>
<td>Total fertility rate (TFR)</td>
<td>2.1</td>
</tr>
<tr>
<td>Under-3 year old malnutrition</td>
<td>Reduction by 50%</td>
</tr>
<tr>
<td>Anemia in 15-49 years old women</td>
<td>28%</td>
</tr>
<tr>
<td>0-6 years Child sex ratio</td>
<td>950</td>
</tr>
<tr>
<td>Poor household’s out-of-pocket expenditure</td>
<td>Reduction</td>
</tr>
<tr>
<td>Non-communicable disease burden</td>
<td>Reduction</td>
</tr>
<tr>
<td>Communicable diseases burden</td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>Reduce incidence, mortality by 50%</td>
</tr>
<tr>
<td>Leprosy</td>
<td>Prevalence <1/10000, Incidence Zero in all districts</td>
</tr>
<tr>
<td>Malaria</td>
<td>Incidence <1/1000</td>
</tr>
<tr>
<td>Malaria</td>
<td>Microfilaria prevalence <1% in all districts</td>
</tr>
<tr>
<td>Filariasis</td>
<td>Case fatality rate <1%</td>
</tr>
<tr>
<td>Dengue</td>
<td>Containment of outbreaks</td>
</tr>
<tr>
<td>Chikungunya fever</td>
<td>Mortality reduction by 30%</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Elimination by 2015 (<1/10000 in all blocks)</td>
</tr>
<tr>
<td>Kala azar</td>
<td>Zero new infections; Care & Support, ART to all PLHA</td>
</tr>
</tbody>
</table>

HEALTH MANAGEMENT

Modern Management Techniques
• Cost Minimization Analysis (CMA): Comparison of costs of different interventions that are assumed to provide equivalent benefits
• Cost Effectiveness Analysis (CEA): Benefits are measured in natural units (e.g. Life years gained, heart attacks avoided)
 - CEA is an expression of the desired effect of a programme, service, institution or support activity in reducing a health problem
 - CEA measures the degree of attainment of pre-determined objectives and targets

Cost Effectiveness Analysis (CEA): Benefits are measured in natural units
Critical Path Method (CPM): The ‘longest path’ of the network

Evaluation of Health Services

- **Relevance**: Appropriateness (need) of a health service
- **Adequacy**: Sufficient attention to pre-determined course of action
- **Accessibility**: Proportion of population expected to use the service
- **Acceptability**: Socially and culturally acceptable
- **Effectiveness**: Extent of prevention/alleviation of underlying problem
- **Efficiency**: How well resources are utilized
- **Impact**: Overall effect of programme/service on health and development

Millennium Development Goals (MDGs)

- **Description**: In September 2000, 189 countries adopted UN Millennium Declaration. Millennium Development Goals (MDGs) Goals place health at the heart of development and represent commitments by governments
- **Baseline Year for MDGs**: 1990
- **Deadline year for MDGs**: 2015
- **There are 8 MDGs**:
 - **Goal 1**: Eradicate extreme poverty and hunger
 - **Goal 2**: Universalise primary education

MISCELLANEOUS
- **Goal 3**: Gender equality and women empowerment
- **Goal 4**: Reduce child mortality
- **Goal 5**: Improve maternal health
- **Goal 6**: Combat HIV/AIDS, malaria and other disease (Tuberculosis)
- **Goal 7**: Ensure environmental sustainability
- **Goal 8**: Develop global partnerships for development

- 3 out of 8 goals, 8 out of 18 targets required to achieve them and 18 out of 48 indicators of progress are ‘directly health related’
 - Goal 4, 5 and 6 are ‘directly health related’
 - Goal 2 and 3 ‘do not pertain to health’.

MDGs: 3 out of 8 goals are directly ‘Health-related’
MULTIPLE CHOICE QUESTIONS

HEALTH CARE IN INDIA

1. One PHC is located for a population of:
 (a) 5000
 (b) 30,000
 (c) 100,000
 (d) 500
 [AIPGME 1999]

2. A subcentre in a hilly area caters to a population of:
 (a) 1000
 (b) 2000
 (c) 3000
 (d) 5000
 [AIPGME 2001]

3. Eligible Couple Register is maintained at:
 (a) Subcentre
 (b) PHC
 (c) CHC
 (d) District headquarters
 [AIIMS Dec 1997]

4. One health assistant male/female should be posted for every:
 (a) 5000 population
 (b) 20000 population
 (c) 30000 population
 (d) 10 000 population
 [AIPGME 1991]

5. Three-Tier system of Health care delivery in rural areas in India is based on the recommendations of:
 (a) Bhore Committee
 (b) Chadah Committee
 (c) Srivastava Committee
 (d) Mudalair Committee
 [AIIMS May 1993]

6. Elements of primary health care include all of the following except:
 [Recent Question 2014][AIIMS Dec 1994]
 (a) Adequate supply of safe water and basic sanitation
 (b) Prevention & control of local endemic diseases
 (c) Providing employment to every youth
 (d) Immunization against major infectious diseases

7. Panchayati Raj System is a 3-tier system of rural local self-government in India. Match the institutions with levels:
 A – Panchayat, I – Village level
 B – Panchayat Samiti, II – District level
 C – Zila Parishad, III – Block level
 (a) A-III, B-II, C-I
 (b) A-II, B-III, C-I
 (c) A-I, B-III, C-II
 (d) A-I, B-II, C-III
 [AIPGME 1996]

8. Principal Unit of Administration in India is:
 (a) Centre
 (b) State
 (c) District
 (d) Village
 [AIIMS Dec 1997]

9. Match list A with List B:
 [AIPGME 2000]
 List A
 A. Shrivastava Committee
 B. Chadah Committee
 C. Kartar Singh Committee
 D. Jungalwallah Committee
 List B
 1. Malaria workers to look after FP work too
 2. Integration of health services
 3. Led to creation of Health guides
 4. Led to creation of MPW
 [AIIMS May 1999; AIPGME 03]

10. A sub-centre is manned by:
 (a) Medical Officer
 (b) Multipurpose worker
 (c) Health Assistant
 (d) Aanganwadi worker
 [AIIMS Nov 2007]

11. Elements of primary health care include all of the following except:
 [AIIMS May 1994; AIPGME 03]
 (a) Adequate supply of safe water and basic sanitation
 (b) Providing essential drugs
 (c) Sound referral system
 (d) Health Education

12. All of the following are Pillars of primary health care except:
 [Recent Question 2014][AIPGME 1999]
 (a) Equitable distribution
 (b) Community Participation
 (c) Health Education
 (d) Intersectoral Coordination

13. Alma Ata conference was held in:
 [DPG 2005]
 (a) 1948
 (b) 1956
 (c) 1977
 (d) 1978

14. Health man power indicated by which of the following:
 [PGI June 2005]
 (a) Doctor 1 per 3500 population
 (b) ANM 1 per > 1000 population
 (c) Lab technician 1 per 10000 population
 (d) Pharmacist 1 per 100000 population
 (e) MPW

https://kat.cr/user/Blink99/
15. Population of 1000 is covered by: [PGI Dec 2K]
 (a) Anganwadi worker
 (b) Health assistant
 (c) Trained Dai
 (d) Village health guide

16. Function of PHC are: [PGI June 03]
 (a) Referral services
 (b) Family planning & referral services
 (c) Basic laboratory services
 (d) Specialist service
 (e) Collection and reporting of viral statistics

17. Which of the following is the suggested norm for nurses in Indian population? [Karnataka 2009]
 (a) 1 per 1000
 (b) 1 per 2000
 (c) 1 per 3000
 (d) 1 per 5000

18. Function of Health worker female: [PGI Dec 2K]
 (a) Perform 50% of deliveries
 (b) Trains dais
 (c) Enlist dais of the subcentre
 (d) Chlorination of water
 (e) Collectors of urine samples

19. Functions of female health worker includes:
 (a) Visit 4 subcentres/month Health Assistance [PGI June 01]
 (b) Enlist dais of the sub-centre
 (c) Conduct 50% delivery
 (d) Chlorination of water Health worth male
 (e) Collection of urine samples

20. All of the following are state responsibility for health except: [DPG 2006]
 (a) Vital statistics
 (b) Promotion of research through research centers & ther bodies
 (c) Prevention of adulteration
 (d) Prevention of communicable disease

21. ASHA is posted at the: [AIPGME 2010]
 (a) Village level
 (b) Community Health Centre
 (c) Primary Health Centre
 (d) Sub-centre

22. Which of the following is a new concept in primary Health Care? [AIPGME 2010]
 (a) Equitable distribution
 (b) Community participation
 (c) Qualitative enquiry
 (d) Primary Health Care

23. Principles of Primary Health Care includes all except: [Recent Question 2013]
 (a) Intersectoral coordination
 (b) Appropriate technology
 (c) Mainly coordinated by doctors
 (d) Community participation

24. Following is/ are the job(s) of Health worker male:
 (a) Sputum collection [PGI May 2011]
 (b) ORS distribution
 (c) DOTS supervision
 (d) Growth monitoring
 (e) Environmental sanitation

25. Staff at PHC include: [PGI November 2012]
 (a) Pharmacist
 (b) Clerk
 (c) Radiologist
 (d) Laboratory technician
 (e) Paediatrician

26. Which of the following is not a work of female multi-purpose health worker? [Recent Question 2012]
 (a) Malaria surveillance
 (b) Distribution of condoms
 (c) Immunization
 (d) Dots activities

27. Which of the following is at sub-centre level? [DNB December 2011]
 (a) Zila parishad
 (b) Panchayat samiti
 (c) Gram panchayat
 (d) Gram sabha

28. A suggested norm for health manpower in India is: [DNB June 2009]
 (a) 1 health worker for 3500 population
 (b) 1 doctor per 5000 population
 (c) 1 nurse per 5000 population
 (d) 1 pharmacist for 5000 population

29. Highest level of integration in health service is: [DNB June 2009]
 (a) PHC
 (b) Sub centre
 (c) CHC
 (d) District hospital

30. Which of the following is true about female health worker? [DNB June 2011]
 (a) Acts at PHC level
 (b) Covers a population of 5000 population
 (c) Chlorinates well at regular intervals
 (d) Makes at least 3 post natal visits for each delivery

31. How many beds are there in PHC for indoor patients? [DNB December 2011] [DNB 2012]
 (a) 2
 (b) 3
 (c) 6
 (d) 9

32. Community health centre covers a population of: [DNB 2012]
 (a) 10,000 to 20,000
 (b) 30,000 to 50,000
 (c) 50,000 to 80,000
 (d) 80,000 to 120,000
33. All are principles of primary health care except:
 (a) Intersectoral coordination [DNB June 2009]
 (b) Community participation
 (c) Appropriate technology
 (d) Decentralised approach

34. Emphasis shifted from urban to rural services:
 (a) Equitable distribution [Recent Question 2013]
 (b) Community participation
 (c) Intersectoral coordination
 (d) Community participation

35. Female health worker: [Recent Question 2012]
 (a) Cover 100 population
 (b) Covers 1000 population
 (c) Covers 5000 population
 (d) Covers 30000 population

36. Which of the following is not a work of anganwadi worker? [DNB 2012]
 (a) Immunization of children
 (b) Non formal preschool education
 (c) Sanitation
 (d) Health education

37. Minimum number of beds in community health centre: [Recent Question 2012]
 (a) 4-6
 (b) 15
 (c) 30
 (d) 100

38. Most common operation done by an Ophthalmologist in district hospital: [AIIMS May 2013]
 (a) Phacoemulsification
 (b) Trabeculectomy
 (c) Bilateral lamellar tarsal rotation
 (d) Dacrocystorhinostomy

39. Staff at PHC include: [PGI November 2013]
 (a) Radiographer
 (b) Pharmacist
 (c) Anesthetist
 (d) Pediatrician
 (e) Laboratory technician

40. Multipurpose health worker works for population: [Recent Question 2014]
 (a) 1000
 (b) 3000
 (c) 100
 (d) 5000

41. Functions of female health worker includes:
 (a) Visit 4 sub-centers/month [Recent Question 2014]
 (b) Collection of blood sample
 (c) Conduct 50% delivery
 (d) Chlorination of water

Review Questions

42. One village health guide is for population of:
 (a) 1000 [DNB 2000]
 (b) 5000
 (c) 10000
 (d) 50000

43. A subcentre caters the population of: [DNB 2000]
 (a) 5,000
 (b) 10,000
 (c) 50,000
 (d) 1 lac.

44. Vaccine can be stored at subcentre for:
 (a) 1 day [DNB 2001]
 (b) 7 days
 (c) 15 days
 (d) 30 days

45. An ideal subcenter for a rural population should cater a population of: [DNB 2001]
 (a) 1000
 (b) 2000
 (c) 5000
 (d) 10000

46. At the village level, the Panchayati Raj consists of all of the following except? [DNB 2003]
 (a) Zila Parishad
 (b) Nyaya Panchayat
 (c) Gram Panchayat
 (d) Gram Sabha

47. An ideal subcenter for a rural population should cater a population of: [DNB 2005]
 (a) 1000
 (b) 2000
 (c) 5000
 (d) 10000

48. An subcenter for a population in plains should cater: [DNB 2006]
 (a) 1000
 (b) 2000
 (c) 5000
 (d) 10000

49. Primary health care involves all except: [UP 2000]
 (a) Sanitation & water supply
 (b) Sound referral center
 (c) Supply of essential drugs
 (d) Health education

50. Village health guide scheme in introduced in: [UP 2004]
 (a) 1960
 (b) 1970
 (c) 1980
 (d) 1990

51. “Mobile medical care” is provided services to all except: [UP 2005]
 (a) Primary health care
 (b) Secondary health care
 (c) Tertiary health care
 (d) Near home based
52. Community health centres covering a population of:
 (a) 40 – 60,000 [UP 2007]
 (b) 60 – 80,000
 (c) 80 – 120,000
 (d) None

53. In India under Norms Doctor-population ratio is:
 (a) 1:2500 [AP 2007]
 (b) 1:3500
 (c) 1:5000
 (d) 1:7500

54. In Hilly area PHC caters population of: [MP 2003]
 (a) 20,000
 (b) 30,000
 (c) 3,000
 (d) 5,000

55. An example of secondary health care level would be:
 (a) Primary Health Center [MP 2007]
 (b) Subcenter
 (c) Community health center
 (d) Aped health institutions

56. Which of the following is not a function of primary health center in India? [MP 2008]
 (a) Medical Care
 (b) Safe water supply
 (c) Collection of vital statistics
 (d) Supplementary functioning of under six children

57. Recommended numbers of population for primary Health Centres for a tribal area is: [MH 2002]
 (a) 50,000
 (b) 30,000
 (c) 20,000
 (d) 10,000

58. Recommended number of populations for primary health centers & subcenters for tribal area is:
 (a) 30,000 & 5000 respectively [MH 2003]
 (b) 20,000 & 3000 respectively
 (c) 30,000 & 3000 respectively
 (d) 20,000 & 5000 respectively

59. Panchayati Raj includes the following Except:
 (a) Gram Panchayat [MH 2007]
 (b) Gram Sabha
 (c) Nyaya Panchayat
 (d) Nyaya sabha

60. Anganwadi worker demonstrating preparation of homemade ORS to the mothers of under five children, is an example of:
 (a) Intersectoral coordination [MH 2008]
 (b) Community participation
 (c) Appropriate technology
 (d) All of the above

61. All are grass root level worker except: [RJ 2001]
 (a) Anganwadi worker
 (b) Village health assistant
 (c) Dai
 (d) Health assistant

62. Sub centre in rural areas covers population of:
 (a) 3000 [RJ 2002]
 (b) 5000
 (c) 10000
 (d) 15000

63. A trained Dai caters for a population of: [RJ 2003]
 (a) 1000 [Recent Question 2013]
 (b) 2000
 (c) 3000
 (d) 4000

64. Village health guide covers a population of: [RJ 2004]
 (a) 10000
 (b) 3000
 (c) 5000
 (d) 10000

65. Primary health care includes all, except: [RJ 2006]
 (a) Treatment is done by a doctor
 (b) Equitable distribution
 (c) Intersectorial coordination
 (d) Appropriate technology

66. Population covered by a PHC in hilly region is:
 (a) 20000 [RJ 2006]
 (b) 30000
 (c) 40000
 (d) 25000

HEALTH PLANNING

67. Which of the following is a set point framed for long term plans but is yet something that cannot be quantified or measured? [AIPGME 2009]
 (a) Target
 (b) Goal
 (c) Objective
 (d) Mission

68. The National Population Policy of India has set the following goals except: [AIPGME 04]
 (a) To bring down total fertility rate (TFR) to replacement levels by 2015
 (b) To reduce the infant mortality rate to 30 per 1000 live births
 (c) To reduce the maternal mortality rate to 100 per 100,000 live births
 (d) 100 percent registration of births, deaths, marriages and pregnancies

69. “3-Million Plan” was proposed by: [AIPGME 1991]
 (a) Kartar Singh Committee
 (b) Mudaliar Committee
 (c) Srivastava Committee
 (d) Bhore Committee
70. Under the National Population Policy 2000, it is aimed to reduce the maternal mortality ratio to below:
(a) 100 per 100,000 live births
(b) 200 per 100,000 live births
(c) 50 per 100,000 live births
(d) 150 per 100,000 live births

71. All of the following goals under NHP 2002 have to be achieved by 2010 except:
(a) Reduce prevalence of blindness to 0.5%
(b) Reduce IMR to 30/100 and MMR to 100/Lakh
(c) Increase utilization of Public health facilities from <20% to >75%
(d) Eliminate Lymphatic Filariasis

72. Recommendations of Bhore Committee include:
(a) Constitution of All India Health Service on the pattern of IAS
(b) Separate staff for Family Planning Programme
(c) Creation of “Bands of para-professionals & semi-professional health workers”
(d) Major changes in Medical education to prepare “Social Physicians”

73. Multi-purpose worker scheme in India was introduced following the recommendation of:
(a) Srivastava Committee
(b) Bhore Committee
(c) Kartar Singh Committee
(d) Mudaliar Committee

74. Under NHP 2002, all of the following are correctly matched except:
(a) Achieve zero level growth of HIV/AIDS – 2010
(b) Eliminate Lymphatic Filariasis – 2015
(c) Reduce IMR to 30/100 and MMR to 100/Lakh – 2010
(d) Increase health sector spending from 5.5% to 7% of the budget – 2005

75. Match the following names of health committees in India:

A – Bhore Committee
B – Mudaliar Committee
C – Jungalwallah Committee
D – Kartar Singh Committee
I – Health Survey & Development Committee
II – Committee on MPWs under Health & Family Planning
III – Committee on Integration of Health Services
IV – Health Survey & Planning Committee

(a) A-I, B-III, C-II, D-IV
(b) A-I, B-IV, C-III, D-II
(c) A-IV, B-I, C-III, D-II
(d) A-I, B-IV, C-II, D-III

76. A group on Medical Education & Support Manpower was popularly known as:

(a) Kartar Singh Committee
(b) Mudaliar Committee
(c) Srivastava Committee
(d) Bhore Committee

77. Planning Cycle has got several steps: [AIPGME 1993]

- Monitoring & evaluation – a
- Programming & implementation – b
- Assessment of resources – c
- Analysis of existing health situation – d

Logical sequence in planning cycle would be:

(a) a b c d
(b) d c b a
(c) d b c a
(d) c d b a

78. A 3 year graduate MBBS programme was suggested by which committee? [AIIMS May 2013]

(a) Sundar Committee
(b) Srivastava Committee
(c) Expert Level Committee on Universal Health Coverage
(d) Krishnan Committee

79. Planning cycle includes: [Recent Question 2013]

(a) Analysis of situation
(b) Evaluation
(c) Resource assessment
(d) All

80. Concept of multipurpose workers was given by:

(a) Mudaliar committee
(b) Srivastava committee
(c) Kartar Singh committee
(d) Mukherjee committee

81. Set of statement for monitoring Progress towards goal is referred as:

(a) Target [DNB December 2011][DNB December 2010]
(b) Objective
(c) Programme
(d) Procedure

82. Bajaj committee, true is: [Recent Question 2013]

(a) Constituted in 1946
(b) Recommends formation of PHC
(c) Recommends health manpower policy
(d) None

83. Integration of health services was first proposed by:

(a) Bhore committee
(b) Jungalwalla committee
(c) Mudaliar committee
(d) Srivastava committee

84. Bajaj committee in 1986 proposed: [DNB December 2010]

(a) Multipurpose health worker
(b) Manpower and planning
(c) Rural health service
(d) Integrated health services

85. Rural health scheme introduced by: [DNB June 2011]

(a) Bhore committee
(b) Mukherjee committee
(c) Shrivastava committee
(d) Mudaliar committee
86. Universal Health Coverage of India was recently approved by which health committee? [AIIMS May 2014]
(a) Medical education health group
(b) MPW in health and family planning
(c) High level expert group
(d) Health survey and development committee

87. Which article of Indian Constitution confers ‘Right to life’ to citizens of India? [Recent Question 2014]
(a) Article 11
(b) Article 21
(c) Article 23
(d) Article 25

Review Question

88. Concept of multipurpose workers was given by:
(a) Mudaliar [DNB 2008]
(b) Srivastava committee
(c) Kartar Singh committee
(d) Mukherjee committee

89. All are included in health sector policy in India except:
(a) Nutritional supplements
(b) Medical education
(c) Family welfare programme
(d) Control of communicable disease

90. 3 month’s training in preventive and social medicine during internship is recommended by:
(a) Bhore committee
(b) Chadah committee
(c) Mudaliar committee
(d) Mukerji - committee

91. Health Survey & Development Committee is given by:
(a) Mudaliar [AP 2002]
(b) Bhore
(c) Srivastava
(d) Mukharji

92. Not used in health care planning:
(a) Increasing demands for resources
(b) To match with limited resources
(c) To plan best course of action
(d) To decrease wastage

93. Each subcenter should be staffed by one male and one female health worker. It was recommended by:
(a) Bhore committee
(b) Mudaliar committee
(c) Chadah committee
(d) Kartar Singh committee

94. Recommendation of the Krishnan committee was for:
(a) Local dai
(b) Village health guides
(c) Integration of PHCs
(d) Abolition of private practise

95. 3 month training of doctors in social and preventive medicine was suggested by:
(a) Bhore committee
(b) Mudliar committee
(c) Shrivastava committee
(d) Kartar Singh committee

96. Which of the following health committee recommended a medical and health education commission for reform in health and medical education on the times of University Grants Commission? [MP 2008]
(a) Shrivastav Committee
(b) Mukerji Committee
(c) Chadah Committee
(d) Kartar Singh Committee

97. Who among the following is Chairman of Central Council for Health? [MH 2003]
(a) Prime minister
(b) Secretary of health
(c) Union health minister
(d) Director General of Health Sciences

98. PHC was introduced as result of report: [R] 2006
(a) Bhore committee
(b) Kartar Singh committee
(c) Mudaliar committee
(d) Shrivastava committee

99. Multipurpose worker scheme in India was introduced following the recommendation of:
(a) Shrivastav Committee
(b) Kartar Singh Committee
(c) Mudaliar Committee
(d) Shrivastava Committee

100. Correct sequence of cycle is:
(a) Planning, Evaluation, Object, Goal
(b) Planning, Object, Goal, Evaluation
(c) Planning, Object, Evaluation, Goal
(d) Planning, Goal, Evaluation, Object

101. Chadah committees recommended all except: [R] 2007
(a) PHC at the block level
(b) Concept of multipurpose worker
(c) One basic health worker per 10,000 populations
(d) The family planning Health assistants were to supervise 3 to 4 of this basic health worker

HEALTH MANAGEMENT

102. Most comprehensive indicator of Cost Effectiveness Analysis is: [AIIMS Dec 1997]
(a) No. of life years gained
(b) No. of heart attacks avoided
(c) QALY’s gained
(d) Cost per life year gained

103. Time taken for any project is estimated by:
(a) Work sampling [AIIMS Nov 2005]
(b) Input-output analysis
(c) Network analysis
(d) Systems analysis
104. Which one of the following is not a source of manager’s power? [AIPGME 2005]
(a) Reward
(b) Coercive
(c) Legal
(d) Efferent

105. The management technique which is more promising tool for application in health field is: [AIPGME 2008]
(a) Cost effective analysis
(b) Cost benefit analysis
(c) Cost accounting
(d) Input/output analysis

106. Economic benefits of any programme are compared with the costs incurred in: [AIIMS Nov 2007]
(a) Cost benefit analysis
(b) Cost effective analysis
(c) Cost accounting
(d) Network analysis

107. All are true regarding Critical Path Method (CPM) except: [AIIMS May 1994]
(a) Is a part of Input-Output analysis
(b) Visualised in graphical representation of all events/activities carried out
(c) Is the longest part of the network
(d) Any delay in CP delays whole project

108. PERT is a type of: [Karnataka 2006]
(a) Input-output analysis
(b) System analysis
(c) Network analysis
(d) Research technique

109. When the economic benefits of any programme are compared with the cost of the programme it is called: [Karnataka 2007]
(a) Cost-benefit analysis
(b) Cost effective analysis
(c) Cost-accounting
(d) Input-output analysis

110. In Management “Goal” refers to: [Karnataka 2007]
(a) Planned end point of all activity
(b) Discrete activity
(c) Ultimate desired state towards which objectives and resources are directed
(d) Analysis of health Situation

111. In health management, Cost benefit analysis is an example of: [NIPGET 2013]
(a) Critical path method
(b) Program evaluation and review technique
(c) Management by objectives
(d) Total Quality management

112. Systemic observation and recording of activities of one/more individuals carried out at predetermined/random intervals: [Recent Question 2012]
(a) Decision making
(b) Systems analysis
(c) Network analysis
(d) Work sampling

113. PERT technique is used in following: [DNB December 2011]
(a) Network analysis
(b) Cost effective analysis
(c) Input output analysis
(d) System analysis

114. True about “Zero base budgeting” is: [DNB June 2010]
(a) Relies on data of previous budget
(b) Proceeds from resources to target
(c) Proceeds from target to resource
(d) Not a priority based budgeting

115. Analysis done for expenditure of large proportion for small number and vice versa: [Recent Question 2012]
(a) ABC
(b) SDE
(c) VED
(d) FSN

116. “Critical Path” in Network Analysis is: [AP 2014]
(a) Most expensive path in a network
(b) Congested path in a network
(c) Shortest path in a network
(d) Longest path in a network

Review Questions

117. All of the following are included in methods based on behavioural sciences except: [DNB 2002]
(a) Personal management
(b) System analysis
(c) Management by objectives
(d) Communication

118. The graphic plan of all events and activities to be completed in order to reach an end objective is called: [DNB 2002]
(a) Network analysis
(b) Cost accounting
(c) Work sampling
(d) Job charting

119. PERT is a technique for? [DNB 2003]
(a) Network Analysis
(b) Cost-effective Analysis
(c) Input-Output Analysis
(d) System Analysis

120. All of the following are included in methods based on behavioural sciences except: [DNB 2005]
(a) Personal management
(b) System analysis
(c) Management by objectives
(d) Communication

121. Qualities of a leader are all except: [Kolkata 2008]
(a) Leading from the front
(b) Burning/breaking of bridges
(c) Courageous
(d) Fights instantly
122. PERT is associated with:
(a) Qualitative analysis
(b) Quantitative analysis
(c) Behavioral analysis
(d) none

[MP 2003]

123. PERT & critical path methods are employed in:
(a) Community education
(b) Healthy planning
(c) Management
(d) Health survey

[MP 2004]

124. True about rural health services in India:
(a) Pharmacists are more than lab technician
(b) Male health worker are more than female health worker
(c) Doctors are more than nurses
(d) Pediatricians are more than Gynecologist

125. A study was conducted among nursing staff to find out time taken in different aspects of patient care viz., bed preparation, monitoring of vital diagnosis, attending doctor’s rounds, blood sampling, drug administration. Which management technique would be applied for the analysis?
(a) Critical path method
(b) Input-output analysis
(c) Systems analysis
(d) Work sampling

[MP 2008]

126. Cost-benefit is best analysed by:
(a) Network analysis
(b) Benefit analysis
(c) ROME
(d) Slow pathway

[MI 2002]

127. Monetary terms involve:
(a) Cost-benefit analysis
(b) Network analysis
(c) Slow Pathway
(d) All

[MI 2002]

128. Drugs A & B are both used for treating a particular skin infection. After one standard application, drug A eradicates the infection in 95% of both adults and children. Drug B eradicates the infection in 47% of adults & 90% of children. There are otherwise no significant pharmacological differences between the two drugs, and there are no significant side effects. However, the cost of drug A is twice that of drug B. Dr. Sunil, a general practitioner, always uses drug B for the first treatment, and resorts to drug A if the infection persists. Dr. Sudhir, another general practitioner, always uses drug A for adults and drug B for children. Ignoring indirect costs, which of the following statement is incorrect?

(a) Drug A is more effective than B for treating adults
(b) Drug A is more effective than drug B for treating children

[MI 2002]

129. According to the World Health report 2000, India’s health expenditure is:
(a) 4.8% of G.D.P
(b) 5.2% of G.D.P
(c) 6.8% of G.D.P
(d) 7% of G.D.P

[AIPGME 2006]

130. Indian (economic) real GDP growth for the year 2003 is:
(a) 6.0
(b) 6.5
(c) 7.8
(d) 10.5

[AIPGME 2006]

131. All the following are health policy indicators except:
(a) Political commitment to health for all
(b) Resource allocation
(c) Disability prevalence
(d) Community involvement

[AIIMS June 1997]

132. Which of the following diseases have been recently eliminated from India?
(a) Yaws & Lymphatic Filariasis
(b) Yaws & Leprosy
(c) Leprosy & TB
(d) Leprosy & Measles

[AIIMS May 2008]

133. All are Elements of Evaluation except:
(a) Repeatability
(b) Relevance
(c) Acceptability
(d) Effectiveness

[AIIMS May 2005]

134. All of the following targets in MDGs have to be achieved by 2015 except:
(a) Reduce by 2/3 the under-five mortality rate
(b) Reduce by ¾ the Maternal Mortality Ratio
(c) Halve the proportion of people who suffer from hunger
(d) Achieve a significant improvement in lives of 100 million slum dwellers

[AIIMS May 2008]

135. Total no. of districts in India are:
(a) 304
(b) 404
(c) 504
(d) 604

[AIPGME 2004]

136. Date set globally for achievement of MDGs is:
(a) 2010
(b) 2015
(c) 2025
(d) 2050

[AIPGME 2007]

137. Which of the following are referred to as “Ivory Towers of Disease”:
(a) Small health centres
(b) Large hospitals
(c) Private practitioners
(d) Health Insurance Companies

[AIIMS Nov 1993]
Review of Preventive and Social Medicine

138. Number of health related goals in millennium development goals?
(a) 1
(b) 2
(c) 3
(d) 4

[AIIMS May 2013]

139. According to MDG child mortality has to be reduced by how much by 2015?
(a) One third
(b) Half
(c) Two third
(d) One fourth

[Recent Question 2013]

140. Millennium developmental goal pertaining to HIV/AIDS:
(a) 6
(b) 3
(c) 8
(d) 1

[Recent Question 2013]

141. Millennium development goal 4 targets to reduce maternal mortality rate by:
(a) 0.25
(b) 0.50
(c) 0.75
(d) 1.00

[JIPMER 2014]

Review Questions

142. Antenatal support is not delivered by:
(a) Anganwadi worker
(b) Female Health worker
(c) Female Health assistant
(d) Traditional birth attendant

[AP 2005]

143. All of the above following are peripheral level health workers except:
(a) Village Health Guide
(b) Gram Sevak
(c) Anganwadi worker
(d) Local Dai

[TN 2003]
HEALTH CARE IN INDIA

1. Ans. (b) 30,000 [Ref. Park 21/e p841, Park 22/e p845]

PRIMARY HEALTH CARE SYSTEM IN INDIA:
- **Primary Level of Health Care:**
 - Is 'first level of contact between population and health care system' in India
 - Health services are delivered through:
 - Sub-centre
 - Primary Health Centre
- **Secondary Level of Health Care:**
 - Is 'First referral level of health care' in India
 - Health services are delivered through: Community Health Centre
- **Tertiary Level of Health Care:**
 - Is 'Second referral level of health care' in India
 - Health services are delivered through: Medical Colleges and Hospitals

SUB-CENTRE:
- **Staff of Sub-centre:** 3
 - Multi-purpose worker- male (MPW–M)
 - Multi-purpose worker- female (MPW–F)
 - Volunteer worker

PRIMARY HEALTH CENTRE (PHC):
- **Staff of PHC:** 15
 - Medical officer: 1 – 2
 - Health assistant – Female
 - Health educator
 - Other staff

COMMUNITY HEALTH CENTRE (CHC):
- **Staff of CHC:** 30-31
 - Specialist Medical officers: 4
 - Physician
 - Surgeon
 - Obstetrician & Gynaecologist
 - Paediatrician
 - 3 Additional new posts created under NRHM:
 - Ophthalmic surgeon
 - Anaesthetist
 - Public health programme manager
 - Other staff

KEY FACTS ABOUT PRIMARY HEALTH CARE SYSTEM:

<table>
<thead>
<tr>
<th></th>
<th>Sub-centre</th>
<th>PHC</th>
<th>CHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of care</td>
<td>Primary</td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>Population norm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plains</td>
<td>Primary</td>
<td>30,000</td>
<td>1,20,000</td>
</tr>
<tr>
<td>Hilly/ tribal areas</td>
<td>Primary</td>
<td>20,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Staff</td>
<td>Primary</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Primary</td>
<td>State govt.</td>
<td>State govt.</td>
</tr>
<tr>
<td>Rural area covered</td>
<td>Central govt.</td>
<td>140 sq. km.</td>
<td>770 sq. km.</td>
</tr>
<tr>
<td>Radial distance covered</td>
<td>Primary</td>
<td>6.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Average no. of villages covered</td>
<td>Primary</td>
<td>29</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-centre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sub-centre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://kat.cr/user/Blink99/
2. Ans. (c) 3000 [Ref. Park 21/e p839, Park 22/e p843]
 * Population norms for Health centres in India:

<table>
<thead>
<tr>
<th>Primary health care system</th>
<th>ICDS system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre</td>
<td>Sub-centre</td>
</tr>
<tr>
<td>Level of care</td>
<td>Primary</td>
</tr>
<tr>
<td>Population norm</td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>5000</td>
</tr>
<tr>
<td>Hilly/ tribal areas</td>
<td>3000</td>
</tr>
</tbody>
</table>

Also Remember

- Suggested norm for Health Assistant (male and female):
 - 1 per 30,000 population in plain area
 - 1 per 20,000 population in tribal and hilly areas
- Suggested norm for Health Worker/Multi-purpose worker (male and female):
 - 1 per 5,000 population in plain area
 - 1 per 3,000 population in tribal and hilly areas
- Suggested norm for Anganwadi worker:
 - 1 per 400-800 population in plain area
 - 1 per 300-800 population in tribal and hilly areas

3. Ans. (a) Subcentre [Ref. Park 21/e p840, 845, Park 22/e p844, 849]

Also Remember

- Eligible Couple Register is maintained at subcentre, primarily by female multipurpose health worker
- ‘Eligible Couple Register’ is a basic document for organizing family planning work. It is regularly updated by each functionary of the family planning programmer, for the area falling within his jurisdiction
- ‘Each subcentre is manned by one male and one female multipurpose worker’

4. Ans. (c) 30000 population [Ref. Park 21/e p843, 847, Park 22/e p847]

5. Ans. (c) Srivastava Committee [Ref. Park 21/e p813-14, Park 22/e p817, 818]
 * Three-Tier system of Health care delivery in rural areas in India is based on the recommendations of Srivastava Committee

Also Remember

- Shrivastava Committee (1975): ‘Group on Medical Education and Support Manpower’
 - Create ‘Bands of Para-professionals and Semi-professional health workers’ from within the community
 - Establish 2 cadre of health workers – Multipurpose Workers and Health Assistants between community level workers and doctors at PHCs
 - Development of ‘Referral Services Complex’ (between PHCs and higher level referral and services centers)
 - Establishment of ‘Medical and Health Education Commission’
 - ‘Reorientation of Medical Education’ (ROME) Scheme
 - ‘Village Health Guide (Community Health Worker) Scheme’
 - ‘3-tier rural health infrastructure’ (Panchayat — Panchayat Samiti — Zila Parishad)

6. Ans. (c) Providing employment to every youth [Ref. Park 21/e p828, Park 22/e p832]
 * 8 essential ELEMENTS/components of Primary Health Care (as outlined by the ‘Alma-Ata Declaration, 1978’):
 - E: Education concerning health problems and their control
 - L: Locally endemic diseases prevention and control
 - E: Essential drugs
 - M: Maternal and child health care including family planning
 - E: EPI (Immunization) against Vaccine Preventable Diseases
 - N: Nutrition and promoting proper food supply
Health Care in India, Health Planning and Management

7. Ans. (c) A-I, B-III, C-II [Ref. Park 21/e p819, Park 22/e p823]

- **The Panchayati Raj System**: Is a 3-tier system of rural local self-government in India, linking village to the district. The 3 institutions are:
 - Panchayat: Village level
 - Panchayat Samiti/ Janapada Panchayat: Block level
 - Zila Parishad/ Zila Panchayat: District level

Also Remember

- **Panchayati Raj at Village Level comprises of**:
 - Gram Sabha
 - Gram Panchayat
 - Nyaya Panchayat

- **Panchayati Raj Institutions were strengthened in India by Constitution**:
 - 73rd amendment
 - 74th amendment

8. Ans. (c) District [Ref. Park 21/e p818, Park 22/e p822]

- The principal unit of administration in India is the ‘District under the Collector’

Also Remember

- **Within each district there are 6 types of administrative areas**:
 - Sub-divisions (each under a Sub-Collector or Assistant Collector)
 - Tehsils/Talukas (each under a Tehsildar; a tehsil comprises 200-600 villages)
 - Community Development Blocks (each under a Block Development Officer; a block comprises 100 villages and 80,000 – 1,20,000 population)
 - Municipalities and Corporations
 - Villages
 - Panchayats (Institutions of rural local self governments)

- **Urban areas of district are organized in to following institutions of local self government**:
 - Town Area Committees (for populations 5,000 – 10,000)
 - Municipal Boards (for populations 10,000 – 2,00,000)
 - Corporations (for populations over 2,00,000)

9. Ans. (b) A3; B1; C4; D2 [Ref. Park 21/e p812-14, Park 22/e p816, 818]
10. Ans. (b) Multipurpose worker [Ref. Park 21/e p840, Park 22/e p844]
11. Ans. (c) Sound referral system [Ref. Park 21/e p828, Park 22/e p832]

PRIMARY HEALTH CARE:

- **Definition**: Essential health care, based on practical, scientifically sound, and socially acceptable methods and technology, made universally accessible to individuals and families in the community, through their full participation and at a cost that the community and country can afford

Also Remember

- **Hallmarks of Primary health care: 4 A’s**
 - Affordability
 - Acceptability
 - Accessibility
 - Availability

- **4 Principles/Pillars of Primary Health Care**:
 - Equitable distribution
 - Community Participation
 - Intersectoral Coordination
 - Appropriate Technology
Review of Preventive and Social Medicine

12. Ans. (c) Health Education [Ref. Park 21/e p828-29, Park 22/e p832, 833]

13. Ans. (d) 1978 [Ref. Park 21/e p828, Park 22/e p832]
ALMA-ATA CONFERENCE:
- Took place in USSR in 1978
- It gave the concept of ‘Primary Health Care’ (and its 8 elements)
- Called for WHO goal of ‘Health for All by 2000’
- India is a signatory

14. Ans. (c) Lab technician 1 per 10000 population [Ref. Park 22/e p841]
Suggested norm for health personnel:

<table>
<thead>
<tr>
<th>Health personnel</th>
<th>Norm suggested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doctor</td>
<td>1 per 1000</td>
</tr>
<tr>
<td>Nurse</td>
<td>3 per 1 doctor</td>
</tr>
<tr>
<td>Health worker (male and female)- MPW</td>
<td>1 per 5000 (plains) or 3000 (hilly)</td>
</tr>
<tr>
<td>Trained dai/ TBA</td>
<td>1 per 1000 (village)</td>
</tr>
<tr>
<td>Health assistant (male and female)</td>
<td>1 per 30000 (plains) or 20000 (hilly)</td>
</tr>
<tr>
<td>Pharmacist</td>
<td>1 per 10,000</td>
</tr>
<tr>
<td>Lab technician</td>
<td>1 per 10,000</td>
</tr>
<tr>
<td>ASHA</td>
<td>2 per 1000 (village)</td>
</tr>
<tr>
<td>Village health guide (VHG)</td>
<td>1 per 1000 (village)</td>
</tr>
<tr>
<td>Anganwadi worker (AWW)</td>
<td>1 per 400 – 800 (plains) or 300 – 800 (hilly)</td>
</tr>
</tbody>
</table>

15. Ans. (c) Trained Dai; (d) Village health guide [Ref. Park 21/e p839, Park 22/e p843]
- Population covered by health workers:

<table>
<thead>
<tr>
<th>Health worker</th>
<th>Population covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anganwadi worker</td>
<td>400-800</td>
</tr>
<tr>
<td>Trained Dai</td>
<td>1000</td>
</tr>
<tr>
<td>Village Health Guide</td>
<td>1000</td>
</tr>
<tr>
<td>ASHA (NRHM)</td>
<td>1000</td>
</tr>
<tr>
<td>USHA (NUHM)</td>
<td>1000 – 2500</td>
</tr>
<tr>
<td>Health Assistant</td>
<td>30000 (20000 in Hilly areas)</td>
</tr>
<tr>
<td>Multi-purpose worker</td>
<td>5000 (3000 in Hilly areas)</td>
</tr>
</tbody>
</table>

16. Ans. (a) Referral services; (b) Family planning & referral services; (c) Basic laboratory services; (e) Collection and reporting of vital statistics [Ref. Park 21/e p828-29, Park 22/e p832, 833]

17. Ans. (d) 1 per 5000 [Ref. Park 21/e p837, Park 22/e p841]

18. Ans. (a) Perform 50% deliveries; (c) Enlist dais of the subcentre [Ref. Park 21/e p845-46, Park 22/e p849, 850]

19. Ans. (b) Enlist dais of the sub-centre; (c) Conduct 50% delivery [Ref. Park 21/e p845-46, Park 22/e p849, 850]

20. Ans. (b) Promotion of research through research centres & other bodies [Ref. Park 22/e p820, 821]
- Concurrent list under Union Ministry of Health and Family Welfare includes: [responsibility of both Union and State governments] [Mnemonic: V CLAPPED]
 - Vital statistics
 - Communicable diseases spread prevention
 - Labour welfare
 - Adulteration of food prevention
 - Ports other than major
 - Population control and family planning
 - Economic and social planning
 - Drugs and poisons control
21. Ans. (a) Village level [Ref. Park 21/e p405-07, Park 22/e p409, 713]
22. Ans. (c) Qualitative enquiry [Ref. Internet]
 • ‘Qualitative enquiry’ in primary health care avoids advance decisions about what exactly is to be discovered and asks open questions to explore new interpretations.
23. Ans. (c) Mainly coordinated by doctors [Ref. K. Park 21/e p828-29, Park 22/e p832, 833]
24. (a) Sputum collection; (b) ORS distribution; (c) DOTS supervision; (e) Environmental sanitation [Ref. K. Park 21/e p846-847, Park 22/e p850]
25. Ans. (a) Pharmacist; (b) Clerk; (d) Laboratory technician [Ref. K. Park 22/e p847]
26. Ans. (a) Malaria surveillance [Ref. K. Park 22/e p849-50]
27. Ans. (c) Gram Panchayat [Ref. K. Park 22/e p823]
28. Ans. (c) None [See New NORMS in theory]
29. Ans. (d) District hospital [Ref. MOHFW Annual Report 2011-12]
30. Ans. (b) Covers a population of 5000 population [Ref. K. Park 22/e p841]
31. Ans. (c) 6 [Ref. K. Park 22/e p845-47]
32. Ans. (d) 80,000 to 120,000 [Ref. K. Park 22/e p847]
33. Ans. (d) Decentralised approach [Ref. K. Park 22/e p832-33]
34. Ans. (a) Equitable distribution [Ref. K. Park 22/e p832]
35. Ans. (c) Covers 5000 population [Ref. K. Park 22/e p841]
36. Ans. (c) Sanitation [Ref. K. Park 22/e p843]
37. Ans. (c) 30 [Ref. K. Park 22/e p847-48]

Ophthalmologic services at District hospital

<table>
<thead>
<tr>
<th>OPD Procedures</th>
<th>IPD Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refraction (by using snellen’s chart)</td>
<td>Examination under GA</td>
</tr>
<tr>
<td>Refraction (by auto refrectro meter)</td>
<td>Canthotomy</td>
</tr>
<tr>
<td>Syringing and Probing</td>
<td>Paracentesis</td>
</tr>
<tr>
<td>Foreign Body Removal (conjuctival)</td>
<td>Air Injection & Resuturing</td>
</tr>
<tr>
<td>Foreign Body Removal (Corneal)</td>
<td>Enucleation with Implant</td>
</tr>
<tr>
<td>Epilation</td>
<td>Enucleaion without Implant</td>
</tr>
<tr>
<td>Suture Removal</td>
<td>Perforating Coneo Soleral Injury Repair</td>
</tr>
<tr>
<td>Sub-conjuctival Injection</td>
<td>Cataract Extraction with IOL</td>
</tr>
<tr>
<td>Retrocular Injection (Alcohol etc.)</td>
<td>Glaucoma (Trabeculectomy)</td>
</tr>
<tr>
<td>Tonometry</td>
<td>Cutting of Iris Prolapse</td>
</tr>
<tr>
<td>Biometry/Keratometry</td>
<td>Small Lid Turnour Excision</td>
</tr>
<tr>
<td>Automated Perimetry</td>
<td>Conjuctival Cyst</td>
</tr>
<tr>
<td>Pterygium Excision</td>
<td>Capsulotomy</td>
</tr>
<tr>
<td>Syringing & Probing</td>
<td>Ant. Chamber Wash</td>
</tr>
<tr>
<td>I & C of chalazion</td>
<td>Evisceration</td>
</tr>
<tr>
<td>Wart Excision</td>
<td></td>
</tr>
<tr>
<td>Styne</td>
<td></td>
</tr>
<tr>
<td>Cauterization (Thermal)</td>
<td></td>
</tr>
<tr>
<td>Conjuctival Resuturing</td>
<td></td>
</tr>
<tr>
<td>Corneal Scarping</td>
<td></td>
</tr>
<tr>
<td>I & D Lid Abscess</td>
<td></td>
</tr>
<tr>
<td>Uncomplicated Lid Tear</td>
<td></td>
</tr>
<tr>
<td>Indirect Ophthalmoscopy</td>
<td></td>
</tr>
<tr>
<td>Retinoscopy</td>
<td></td>
</tr>
</tbody>
</table>

- Cataract surgery with IOL implantation is the most common surgery at District hospital
- ECCE +IOL is Most common followed by Phacoemulsification

[PLEASE NOTE: After consultations with few Ophthalmologists at District level, in my opinion, Phacoemulsification at district level is much more common than other choices (though no written reference could be located on web or in library books/ journals)]

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

39. Ans. (b) Pharmacist; (e) Laboratory technician
40. Ans. (d) 5000 [Ref. Park 22/e p843]
41. Ans. (c) Conduct 50% delivery [Ref. Park 22/e p849-850]

Review Questions

42. Ans. (a) 1000 [Ref. Park 21/e p839, Park 22/e p843]
43. Ans. (a) 5,000 [Ref. Park 21/e p839, Park 22/e p843]
44. Ans. (a) 1 day [Ref. Park 21/e p103, Park 22/e p105]
45. Ans. (c) 5000 [Ref. Park 21/e p839, Park 22/e p843]
46. Ans. (a) Zila Parishad [Ref. Park 21/e p819, Park 22/e p823]
47. Ans. (c) 5000 [Ref. Park 21/e p839, Park 22/e p843]
48. Ans. (a) 1 day [Ref. Park 21/e p103, Park 22/e p105]
49. Ans. (c) Community Health Center [Ref. Internet]
50. Ans. (c) Tertiary health care [Ref. Park 21/e p837, Park 22/e p841]
51. Ans. (c) 80 – 1.20,000 [Ref. Park 21/e p843, Park 22/e p847]
52. Ans. (b) 20000 [Ref. Park 21/e p841, Park 22/e p845]
53. Ans. (b) Sound referral center [Ref. Park 21/e p828, Park 22/e p832]
54. Ans. (c) 20,000 [Ref. Park 21/e p839, Park 22/e p843]
55. Ans. (d) Secondary health care [Ref. Park 21/e p827, Park 22/e p831]
56. Ans. (a) 1000 [Ref. Park 21/e p839, Park 22/e p843]
57. Ans. (c) 20,000 [Ref. Park 21/e p839, Park 22/e p843]
58. Ans. (a) 80 – 1.20,000 [Ref. Park 21/e p843, Park 22/e p847]
59. Ans. (a) 5000 [Ref. Park 21/e p839, Park 22/e p843]
60. Ans. (d) Health assistant [Ref. Park 21/e p839, Park 22/e p843]
61. Ans. (d) Health assistant [Ref. Park 21/e p839, Park 22/e p843]
62. Ans. (b) 80 – 1.20,000 [Ref. Park 21/e p843, Park 22/e p847]
63. Ans. (a) 1000 [Ref. Park 21/e p839, Park 22/e p843]
64. Ans. (a) 1000 [Ref. Park 21/e p839, Park 22/e p843]
65. Ans. (a) Treatment is done by a doctor [Ref. Park 21/e p828-29, Park 22/e p832, 833]
66. Ans. (a) 20000 [Ref. Park 21/e p841, Park 22/e p845]

HEALTH PLANNING

67. Ans. (b) Goal [Ref. Park 21/e p807, Park 22/e p811]
 • Goal: Ultimate desired state towards which objectives and resources are directed
 – Is not constrained by time or existing resources
 – Is not necessarily attainable

Also Remember

• National Rural Health Mission (NRHM) was launched in: 2005
• Target years for important health related goals:
 – National socio-demographic goals of ‘National Population Policy 2000’ have to be achieved by 2010
 – Goals of ‘National Health Policy 2002’ have to be achieved by 2015 (Few goal(s) each for 2005, 2007, 2010 and 2015)
 – 8 Millennium Development Goals (MDGs) have to be achieved by 2015
 - 5 out of 8 goals, 8 out of 18 targets required to achieve them and 18 out of 48 indicators of progress are ‘directly health related’
 - Goal 4, 5 and 6 are ‘directly health related’
 - Goal 2 and 3 ‘do not pertain to health’
76. Ans. (c) Srivastava Committee: [Ref. Park 21/e p813, Park 22/e p817]
 • Srivastava Committee (1975) was set up as the ‘Group on Medical Education & Support Manpower’

77. Ans. (b) d c b a [Ref. Park 21/e p808, Park 22/e p812]
 • Planning Cycle consists of following steps:
 - Pre-planning: Government interest, Legislation, Organization for planning and Administrative capacity
 - Step 1: ‘Analysis of health situation’
 - Step 2: Establishment of goals and objectives
 - Step 3: Assessment of resources
Review of Preventive and Social Medicine

- Step 4: Fixing priorities
- Step 5: Write-up of formulated plan
- Step 6: Programming and implementation
- Step 7: Monitoring
- Step 8: Evaluation

HLEG Recommendations
- High Level Expert Group (HLEG, Planning Commission, GOI) on Universal health Coverage has suggested 3½ year MBBS course for serving rural population
- HLEG was developed for XII Five Year Plan
- Rural doctors will be called as ‘Community Health Officers’
- 3½ Degree given: B.Sc. Community Health

79. Ans. (d) All [Ref. K. Park 22/e p812]
80. Ans. (c) Kartar Singh committee [Ref. K. Park 22/e p816-18]
81. Ans. (d) Procedure [Ref. K. Park 22/e p812]
82. Ans. (c) Recommends health manpower policy [Ref. India Health Report 2010, p132]
83. Ans. (b) Jungallwalla committee [Ref. K. Park 22/e p817]
84. Ans. (b) Manpower and planning [Ref. India Health Report 2010, p132]
85. Ans. (c) Shrivastava committee [Ref. K. Park 22/e p817-18]
86. Ans. (c) High level expert group [Ref. Universal Health Coverage in India, Planning Commission, Government of India, 2010]

87. Ans. (b) Article 21 [Ref. Ideas of Being Indians and Making of Indians by Varugghese, 1/e]

Review Questions

88. Ans. (c) Kartar Singh committee [Ref. Park 21/e p813, Park 22/e p817]
89. Ans. (a) Nutritional supplements [Ref. Park 21/e p814, Park 22/e p818]
90. Ans. (a) Bhore committee [Ref. Park 21/e p812, Park 22/e p816]
91. Ans. (b) Bhore [Ref. Park 21/e p812, Park 22/e p816]
92. Ans. (a) Increasing demands for resources [Ref. Park 21/e p814, Park 22/e p818]
93. Ans. (d) Kartar Singh committee [Ref. Park 21/e p813, Park 22/e p817]
94. Ans. (c) Integration of PHCs [Ref. Internet]
95. Ans. (a) Bhore committee [Ref. Seshu Bobu 2/e p435, Park 21/e p812, Park 22/e p816]
96. Ans. (a) Shrivastav Committee [Ref. Park 21/e p813, Park 22/e p817]
97. Ans. (c) Union health minister [Ref. Park 21/e p817, Park 22/e p821]
98. Ans. (a) Bhore committee [Ref. Park 21/e p812, Park 22/e p816]
99. Ans. (b) Kartar Singh Committee [Ref. Park 21/e p813, Park 22/e p817]
100. Ans. (b) Planning, Object, Goal, Evaluation [Ref. Park 21/e p808, Park 22/e p812]
101. Ans. (b) Concept of multipurpose worker [Ref. Park 21/e p812-13, Park 22/e p816,817]

HEALTH MANAGEMENT

102. Ans. (c) QALYs gained [Ref. Textbook of Community Medicine by Sunder Lal, 2/e p56-57; Park 21/e p810, Park 22/e p814]

- Cost Effectiveness Analysis (CEA): Benefits are measured in natural units (e.g. Life years gained, heart attacks avoided)
 - CEA is an expression of the desired effect of a programme, service, institution or support activity in reducing a health problem
 - CEA measures the degree of attainment of pre-determined objectives and targets
 - Most comprehensive indicator of CEA: Quality adjusted life years (QALYs) gained
- Cost Benefit Analysis (CBA): Benefits are measured in monetary terms
103. Ans. (c) Network analysis [Ref. Park 21/e p811, Park 22/e p815]
- **Network Analysis**: Is the graphic plan of all events and activities to be completed in order to reach an end objective. Two common types of network technique are:
 - **Programme Evaluation and Review Technique (PERT)**: An arrow diagram representing the logical sequence in which events must take place. It aids in planning, scheduling and monitoring the project; allows better communication between various levels and helps furnish timely, updated progress reports
 - **Critical Path Method (CPM)**: The ‘longest path’ of the network is called as critical path. If any activity along the critical path is delayed, entire project will be delayed

104. Ans. (d) Efferent [Ref. Internet; www.cliffnotes.com]

POWER OF A MANAGER:
- A manager has two sources of ‘Power’ (ability to influence or use the authority entrusted):
 - **Positional sources of power**:
 - Reward: A manager can reward (monetary, promotion) his subordinates
 - Coercive (Punishment): A manager can punish his subordinates
 - Legal: A manager has legal authority and power over subordinates
 - Contractual: A manager has power over subordinates by virtue of signed contract by his employees
 - **Personal sources of power**:
 - Expertise: A manager can assert greater power if he has expertise in his field of work
 - Referent: A manager has greater power if he has good inter-personal relationships with his subordinates

105. Ans. (a) Cost effective analysis [Ref. Park 21/e p810, Park 22/e p814]
- **Cost Effective Analysis**: A management technique where benefits are expressed in terms of results achieved, e.g., number of lives saved or number of days free from disease
 - It is a more promising tool than cost benefit analysis in the health field
- **Cost Benefit Analysis**: A management technique where economic benefits of any programme are compared with cost of that programme
 - The ‘benefits are expressed in monetary terms’
 - **Main drawback**: All benefits in field of health cannot be expressed in monetary terms
- **Cost Accounting**: A quantitative management technique which provides basic data on cost structure of any programme
- **Input-Output Analysis**: An economic technique which enables calculations to be made of the effects of changing the inputs

106. Ans. (a) Cost benefit analysis [Ref. Park 21/e p810, Park 22/e p814]
107. Ans. (a) Is a part of Input-Output analysis [Ref. Park 21/e p811, Park 22/e p815]
108. Ans. (c) Network analysis [Ref. Park 21/e p811, Park 22/e p815]
109. Ans. (a) Cost-benefit analysis [Ref. Park 21/e p810, Park 22/e p814]
110. Ans. (c) Ultimate desired state towards which objectives and resources are directed [Ref. Park 22/e p811]
111. Ans. (d) Total Quality management [Ref. K. Park 22/e p814]
112. Ans. (d) Work sampling [Ref. K. Park 22/e p815]
113. Ans. (a) Network analysis [Ref. K. Park 22/e p815]
114. Ans. (a) Relies on data of previous budget [Ref. K. Park 22/e p815]
115. Ans. (a) ABC [Ref. Inventory management by DC Bose, 1/e p32]
116. Ans. (d) Longest path in a network [Ref. Park 22/e p815]

Review Questions
117. Ans. (b) Systems analysis [Ref. Park 21/e p810, Park 22/e p814]
118. Ans. (a) Network analysis [Ref. Park 21/e p811, Park 22/e p815]
119. Ans. (a) Network Analysis [Ref. Park 21/e p811, Park 22/e p815]
120. Ans. (b) System analysis [Ref. Park 21/e p810, Park 22/e p814]

121. Ans. (b) Burning/breaking of bridges [Ref. Logical reasoning]

122. Ans. (b) Quantitative analysis [Ref. Park 21/e p811, Park 22/e p815]

123. Ans. (c) Management [Ref. Park 21/e p811, Park 22/e p815]

124. Ans. (a) Pharmacists are more than lab technician [Ref. Park 21/e p837, Park 22/e p841]

125. Ans. (d) Work sampling [Ref. Park 21/e p811]

126. Ans. (a) Network analysis [Ref. Park 21/e p811, Park 22/e p815]

127. Ans. (a) Cost-benefit analysis [Ref. Park 21/e p810, Park 22/e p814]

MISCELLANEOUS

128. Ans. (b) Drug A is more cost-effective than drug B for treating children [Logical Reasoning]

<table>
<thead>
<tr>
<th>Drug</th>
<th>Cost</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Children</td>
</tr>
<tr>
<td>Drug A</td>
<td>2X</td>
<td>95%</td>
</tr>
<tr>
<td>Drug B</td>
<td>X</td>
<td>90%</td>
</tr>
</tbody>
</table>

Also, Dr. Sunil, a general practitioner, always uses drug B for the first treatment, and resorts to drug A if the infection persists WHEREAS, Dr. Sudhir, another general practitioner, always uses drug A for adults and drug B for children. Therefore,

- Drug A is more effective than B for treating children (A - 95% versus B - 90%)
- Drug A is more cost-effective than drug B for treating adults (A - 2X cost with 95% effectiveness versus B - X cost with 47% effectiveness)
- Dr. Sudhir’s regime achieves a higher level of cost-effectiveness than Dr. Sunil’s (Dr. Sudhir - A for adults and B for children versus Dr. Sunil - B for initial treatment and A if infection persists)

However, Drug B is more cost effective for treating children (B - Cost X with 90% effectiveness versus A - Cost 2X with 95% effectiveness i.e., marginal increase)

129. Ans. (b) 5.2% of G.D.P. [Ref. World Health Report, 2000]

- According to the World Health report 2000, India’s total health expenditure on health as % of GDP: 5.2%

130. Ans. (c) 7.8 [Ref. Internet]

131. Ans. (c) Disability prevalence [Ref. Park 21/e p30-31, Park 22/e p28, 30]

- Crucial factors for realization of goals of a National Health Policy:
 - A political commitment
 - Financial implications
 - Administrative reforms
 - Community participation
 - Basic legislation

132. Ans. (b) Yaws & Leprosy [Ref. MOHFW website]

- Leprosy has been eliminated from India in December 2005
- Yaws has been eliminated from India in 2007

Also Remember

- Elimination level of leprosy: <1 case per 10,000 population
- Causative agent of Yaws: Treponema pertenue
- Eradication is a term used for whole planet/globe
 - Only one disease has been eradicated till date: Smallpox
 - 3 next diseases targeted for eradication: Polio, Guinea worm/ Dracunculiasis and Measles
- Elimination is a term used for countries, regions or geographical areas.
- 3 diseases have been eliminated from India till date: Guinea worm/Dracunculiasis (Feb 2000), Leprosy (December 2005) and Yaws (2006)
- Disease next targeted for elimination from India: Poliomyelitis

133. Ans. (a) Repeatability [Ref. Park 21/e p820-21, Park 22/e p824, 825]
 Components/elements of evaluation process in health services are:
 - Relevance: Appropriateness (need) of a health service
 - Adequacy: Sufficient attention to pre-determined course of action
 - Accessibility: Proportion of population expected to use the service
 - Acceptability: Socially and culturally acceptable
 - Effectiveness: Extent of prevention/alleviation of underlying problem
 - Efficiency: How well resources are utilized
 - Impact: Overall effect of programme/service on health and development

134. Ans. (d) Achieve a significant improvement in lives of 100 million slum dwellers
 [Ref. National Health Programs of India by Dr. J. Kishore, 7/e p7; Park 21/e p830-32, Park 22/e p834, 836]
 - All targets in MDGs have to be achieved by 2015
 - Only one target in MDGs is to be achieved by 2020: Achieve a significant improvement in lives of 100 million slum dwellers

Also Remember

MILLENNIUM DEVELOPMENT GOALS (MDGs):
- In September 2000, 189 countries adopted UN Millennium Declaration. Millennium Development Goals (MDGs) Goals place health at the heart of development and represent commitments by governments
- Baseline year for MDGs: 1990
- Deadline year for MDGs: 2015
- There are 8 MDGs:
 - Goal 1: Eradicate extreme poverty and hunger
 - Goal 2: Universalise primary education
 - Goal 3: Gender equality and women empowerment
 - Goal 4: Reduce child mortality
 - Goal 5: Improve maternal health
 - Goal 6: Combat HIV/AIDS, malaria and other disease (Tuberculosis)
 - Goal 7: Ensure environmental sustainability
 - Goal 8: Develop global partnerships for development
- 3 out of 8 goals, 8 out of 18 targets required to achieve them and 18 out of 48 indicators of progress are ‘directly health related’
 - Goal 4, 5 and 6 are ‘directly health related’
 - Goal 2 and 3 ‘do not pertain to health’

135. Ans. (d) 604 [Ref. Internet; www.districts.nic.in and Park 21/e p818, Park 22/e p822]
 - Total no. of districts in India: currently 672 districts in 2014

136. Ans. (b) 2015 [Ref. Park 21/e p830-32, Park 22/e p834, 836]
 - National socio-demographic goals of ‘National Population Policy 2000’ have to be achieved by 2010
 - Goals of ‘National Health Policy 2002’ have to be achieved by 2015 (Few goals each for 2005, 2007, 2010 and 2015)

137. Ans. (b) Large hospitals [Ref. Park 21/e p45, Park 22/e p45]
 - Hospitals are known as ‘Ivory Towers of Disease’, as they exist in splendid isolation in the community, absorb vast proportion (50-80%) of the health budget, are not people-oriented, are inflexible in procedures and styles and treatment is expensive

138. Ans. (c) 3 [Ref. K Park 22/e p11]

139. Ans. (c) Two third [Ref. K. Park 22/e p834]

140. Ans. (a) 6 [Ref. K. Park 22/e p834]

141. Ans. (c) 0.75 [Ref. Park 22/e p835]

Review Questions

142. Ans. (d) Traditional birth attendant [Ref. Park 21/e p839]

143. Ans. (b) Gram Sevak [Ref. Park 21/e p839-40]
INTERNATIONAL HEALTH AGENCIES

World Health Organization (WHO)

- **Description:** WHO is a specialized, non-political health agency of United Nations
- **Constitution of WHO:**
 - Drafted by ‘Technical Preparatory Committee’ in 1946
 - Came into force on 7th April, 1948
- **Objective of WHO:** Is attainment by all people of the highest level of health
- **First Constitutional function of WHO:** To act as the directing and co-coordinating authority on all International health work
- **Headquarters of WHO:** Geneva, Switzerland
- **Broad areas of work of WHO:**
 - Prevention and control of specific diseases
 - Development of comprehensive health services
 - Family health
 - Environmental health
 - Health statistics
 - Bio-medical research
 - Health literature and information
 - Cooperation with other organisations
- **Structure of WHO:**
 - The World Health Assembly (WHA): Is the ‘Health Parliament’ and supreme governing body of the organization; Functions of WHA:
 - To determine International health policies and programmes
 - To review work of past year
 - To approve budget for the following year
 - To elect member states to designate persons for Executive Board
 - The Executive Board
 - The Secretariat: Is the ‘Chief technical and administrative unit of WHO’
- **WHO has established 6 regional organizations:**

<table>
<thead>
<tr>
<th>Region</th>
<th>Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast Asia</td>
<td>New Delhi, India</td>
</tr>
<tr>
<td>Africa</td>
<td>Brazaville, Congo</td>
</tr>
<tr>
<td>The Americas</td>
<td>Washington DC, USA</td>
</tr>
<tr>
<td>Europe</td>
<td>Copenhagen, Denmark</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>Alexandria, Egypt</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>Manila, Philippines</td>
</tr>
</tbody>
</table>

Headquarters of WHO: Geneva, Switzerland

https://kat.cr/user/Blink99/
World Health Day (WHD) Themes

<table>
<thead>
<tr>
<th>Year</th>
<th>World Health Day (WHD) Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>Road safety is no accident</td>
</tr>
<tr>
<td>2005</td>
<td>Make every mother and child count</td>
</tr>
<tr>
<td>2006</td>
<td>Working together for health</td>
</tr>
<tr>
<td>2007</td>
<td>International health security: Invest in health, build a safer future</td>
</tr>
<tr>
<td>2008</td>
<td>Protecting health from climate change</td>
</tr>
<tr>
<td>2009</td>
<td>Health facilities in emergencies</td>
</tr>
<tr>
<td>2010</td>
<td>Urbanization and health (1000 cities – 1000 lives)</td>
</tr>
<tr>
<td>2011</td>
<td>Antimicrobial resistance</td>
</tr>
<tr>
<td>2012²</td>
<td>Ageing and health</td>
</tr>
<tr>
<td>2013²</td>
<td>High blood pressure</td>
</tr>
<tr>
<td>2014²</td>
<td>Vector borne diseases</td>
</tr>
<tr>
<td>2015²</td>
<td>Food Safety</td>
</tr>
</tbody>
</table>

Health Agencies Headquarters

<table>
<thead>
<tr>
<th>Health agencies</th>
<th>Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO (World Health Organization)²</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>UNICEF (United Nations Children Fund)²</td>
<td>New York, USA</td>
</tr>
<tr>
<td>UNDP (United Nations Development Programme)</td>
<td>New York, USA</td>
</tr>
<tr>
<td>FAO (Food and Agricultural Organization)</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>ILO (International Labour Organization)</td>
<td>Geneva, Switzerland</td>
</tr>
</tbody>
</table>

UNICEF’s GOBI-FFF Campaign²

- UNICEF is promoting ‘GOBI Campaign’ to encourage 4 strategies for a ‘Child Health Revolution’:
 - G: Growth Charts (to better monitor child development)
 - O: Oral Rehydration (to treat mild and moderate dehydration)
 - B: Breast Feeding
 - I: Immunization (against TB, Polio, Diphtheria, Pertussis, Tetanus and Measles)
- ‘Three F’s have now been incorporated in ‘UNICEF’s GOBI-FFF Campaign’:
 - F: Female Education
 - F: Family Spacing
 - F: Food Supplements

MISCELLANEOUS

Diseases under International Surveillance (WHO)²

- Louse borne typhus fever
- Relapsing fever
- Poliomyelitis
- Malaria
- Human Influenza
- Rabies
- Salmonellosis

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

Tropical Diseases Targeted for Research and Training (WHO)

- Trypanosomiasis
- Filariasis
- Schistosomiasis
- Leishmaniasis
- Malaria
- Leprosy

Diseases under International Health Regulations (IHRs)

- Cholera
- Plague
- Yellow Fever
- Wild Poliomyelitis
- Human Influenza
- SARS
- Smallpox

List of Quarantinable Diseases (CDC)

- Diphtheria
- Plague
- Yellow Fever
- Smallpox
- Infectious TB
- Viral Hemorrhagic Fevers
- Severe Acute Respiratory Syndrome (SARS)

Important Days of Public Health Importance

- 30th January: Anti-Leprosy Day
- 4th February: World Cancer Day
- 2nd Wednesday of March: No Smoking Day
- 8th March: International Women’s Day
- 15th March: World Disabled Day
- 24th March: Anti-TB Day
- 7th April: World Health Day
- 8th May: World Red Cross Day
- 31st May: No Tobacco Day
- 5th June: World Environment Day
- 26th June: International Day Against Drug Abuse and Illicit Trafficking
- 1st July: Doctors day
- 11th July: World Population Day
- 8th September: World Literacy Day
- 28th September: World Rabies Day
- 1st October: International Day for Older Persons
- 1st October: National Voluntary Blood Donation Day
- 2nd Wednesday of October: World Disaster Reduction Day
- 9th October: World Sight Day
- 10th October: World Mental Health Day
- 24th October: UN Day
- 10th November: Universal Immunization Day
- 25th November: Int’l Day for Elimination of Violence Against Women
- 1st December: World AIDS Day
- 3rd December: International Day of Disabled Persons
- 10th December: Human Rights Day

24th March: Anti-TB Day
31st May: No Tobacco Day
8th September: World Literacy Day
1st December: World AIDS Day
Bio Terrorism Agents

<table>
<thead>
<tr>
<th>Category A<sup>0</sup></th>
<th>Category B</th>
<th>Category C<sup>0</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be easily disseminated</td>
<td>Moderately easy to disseminate</td>
<td>Emerging pathogens</td>
</tr>
<tr>
<td>High mortality rates</td>
<td>Moderate morbidity + low mortality</td>
<td>Available</td>
</tr>
<tr>
<td>Public panic & disruption</td>
<td>Require enhanced diagnostic capacity</td>
<td>Ease of production</td>
</tr>
<tr>
<td>Require enhanced surveillance</td>
<td>High morbidity and mortality</td>
<td></td>
</tr>
</tbody>
</table>

Botulism	Brucellosis	Nipah virus
Tularaemia	Clostridium perirengens	Hanta virus
Anthrax	Food safety threats	
Small pox	Water safety threats	
Plague	Glanders	
Viral hemorrhagic fevers	Melioidosis	
[Mnemonic: Bio Terrorism Agents include Small Pox Virus]	Psittacosis	
	Q fever	
	Ricin toxin	
	Staphylococcal enterotoxin B	
	Epidemic typhus	
	Viral encephalitis	

List of Few Nobel Laureates in Physiology or Medicine

- Sir Ronald Ross: Life cycle of Plasmodium⁰
- I.P. Pavlov: Physiology of digestion
- Robert Koch: Discoveries in Tuberculosis⁰
- Paul Ehrlich: Immunity
- F.G. Banting & J.J.R. McLeod: Insulin⁰
- Willem Einthoven: ECG⁰
- Karl Landsteiner: Human blood groups⁰
- Sir Alexander Fleming: Penicillin⁰
- Paul H. Muller: DDT⁰
- S.A. Waksman: Streptomycin (First antibiotic, against TB)⁰
- Har Gobind Khorana: Interpretation of genetic code⁰
- Sir Godfrey N. Hounsfield: CT scan⁰
- J.E. Murray & E.D. Thomas: Organ and cell transplantation
- Sir Peter Mansfield: MRI⁰
- B.J. Marshall & J.R. Warren: H. pylori; its role in peptic ulcer disease
- H.Z. Hausen: HPV causing cervical cancer
- F.B. Simoussi & L. Montagnair: HIV
- Robert G. Edwards: In-vitro fertilization

Sir Ronald Ross: Life cycle of Plasmodium
F.G. Banting & J.J.R. McLeod: Insulin
Paul H. Muller: DDT
Har Gobind Khorana: Interpretation of genetic code

https://kat.cr/user/Blink99/
INTERNATIONAL HEALTH AGENCIES

1. **Which of the following statements is incorrect about WHO?**
 - (a) Objective of WHO is attainment by all people of the highest level of health
 - (b) Headquarters of WHO are located in Geneva
 - (c) WHO is a non-specialized, political agency of United Nations
 - (d) World Health Assembly is the ‘Health Parliament’ and supreme governing body of the organization

2. **Match the following health agencies and the location of their headquarters:**
 - Health agency: WHO
 - Headquarters: Geneva, Switzerland
 - Health agency: UNICEF
 - Headquarters: New York, USA
 - Health agency: FAO
 - Headquarters: Rome, Italy

 Choices:
 - (a) A – I, B – II, C – III
 - (b) A – III, B – II, C – I
 - (c) A – III, B – I, C – II
 - (d) A – I, B – III, C – II

3. **WHO was established in:**
 - (a) 1945
 - (b) 1948
 - (c) 1950
 - (d) 1956

4. **International Red Cross is based in:**
 - (a) Geneva
 - (b) New York
 - (c) New Delhi
 - (d) Rome

5. **In UNICEF’s GOBI Campaign, ‘O’ stands for:**
 - (a) Oral Contraceptives
 - (b) Oral Rehydration Therapy
 - (c) Obesity
 - (d) Occupational hazards

6. **Members of southeast Asia of WHO are:**
 - (a) Japan
 - (b) Afghanistan
 - (c) India
 - (d) Pakistan
 - (e) Srilanka

7. **Highest funding for reproductive health is by:**
 - (a) UNFPA
 - (b) UNICEF
 - (c) ILO
 - (d) WHO

8. **WHO formation day is:**
 - (a) 5 May
 - (b) 7 April
 - (c) 10 June
 - (d) 10 July

9. **UNICEF provides all except:**
 - (a) Child nutrition
 - (b) Child health education
 - (c) Immunization
 - (d) Family planning

10. **World bank gives loans for:**
 - (a) For economic growth
 - (b) Cobalt therapy of radiotherapy department
 - (c) Purchase of microscope for tuberculosis investigation
 - (d) To change of the social justice

11. **All of the following activities of Junior Red Cross except:**
 - (a) Military hospital worker
 - (b) Village uplift
 - (c) Prevent epidemic work
 - (d) Any of the above

12. **Headquarters of UNICEF is at:**
 - (a) Geneva
 - (b) New York
 - (c) Rome
 - (d) New Delhi

13. **UNDP works as:**
 - (a) The main source of funds for technical assistance
 - (b) The main source of funds for child health
 - (c) The Source of funds for research and development
 - (d) Education source for developing countries

14. **All of the following organization have their headquarter at Geneva except:**
 - (a) UNICEF
 - (b) WHO
 - (c) ILO
 - (d) None

15. **All of the following organizations have their headquarter at Geneva except:**
 - (a) UNICEF
 - (b) WHO
 - (c) ILO
 - (d) International red cross
16. Head quarter of WHO is at:
(a) New York
(b) Geneva
(c) London
(d) New Delhi

17. All disease are included in internationally notifiable disease except:
(a) Plague
(b) Cholera
(c) Yellow fever
(d) TB

25. Only certificate of vaccination required for international travel is:
(a) Hepatitis B
(b) BCG
(c) Tetanus
(d) Yellow fever

26. Contribution of Germany to public health:
(a) Germ theory
(b) Pasteurization
(c) Quarantine ship
(d) Social medicine
(e) Compulsory sickness benefit

27. All of the following are most important and potential agents which can be used for Bio-terrorism except:
(a) Smallpox
(b) Plague
(c) Botulism
(d) Tuberculosis

28. Which of the following is not true about World Health Report 2008?
(a) Service delivery reforms
(b) Leadership reforms
(c) Public Policy reforms
(d) Economic reforms

29. For studying the complete amino acid sequence of two polypeptide chains of Insulin, Nobel Prize was awarded to:
(a) Fredreich Sanger
(b) Banting and Macleod
(c) Paul Muller
(d) Alexander Fleming

30. Who among the following has/have received Nobel Prize?
(a) Louis Pasteur
(b) Taum and Lederberg
(c) Ronald Ross
(d) Kary Mullis
(e) Leeuwenhoek

31. Bioterrorism group-A agent is?
(a) Q fever
(b) Typhus fever
(c) Anthrax
(d) Brucellosis

32. Maximum damage to Napoleon’s army during his march to Moscow was done by:
(a) Typhus
(b) Plague
(c) Diarrhea
(d) Typhoid

33. Emporiatrics deals with the health of:
(a) Farmers
(b) Travellers
(c) Industrial workers
(d) Mine workers
34. World anti-tobacco day is celebrated on:
 (a) 31st May
 (b) 5th June
 (c) 12th July
 (d) 24th November

35. According to International Health regulation (IHR) Act, a pregnant woman, with the following duration of pregnancy (in weeks), can’t travel by air to other country:
 (a) 20
 (b) 28
 (c) 32
 (d) 36

Review Questions

36. Yellow fever vaccination starts protection after how many days of injection:
 (a) 5 days
 (b) 10 days
 (c) 15 days
 (d) 20 days

37. Rabies free country is:
 (a) China
 (b) Russia
 (c) Australia
 (d) France

38. According to international Health Regulation (IHR) Act, a pregnant woman, with the following duration of pregnancy (in weeks), cannot travel by air to other country:
 (a) 20
 (b) 28
 (c) 32
 (d) 36

39. Emporiatrics deals with the health of?
 (a) Farmers

40. Study of disease in a traveller from one part to another:
 (a) Travellers
 (b) Industrial workers
 (c) Travellers
 (d) None

41. International Notification is must in the following except:
 (a) Cholera
 (b) Plague
 (c) Yellow fever
 (d) Paralytic polio

42. Certificate for vaccination during international travel is required in case of:
 (a) Japanese Encephalitis
 (b) Yellow fever
 (c) Cholera
 (d) Yellow severe and Cholera

43. Quarantine is required for:
 (a) Yellow fever
 (b) Cholera
 (c) Plague
 (d) All the above

44. World Health Day of WHO is on:
 (a) 7 April
 (b) 10 April
 (c) 11 April
 (d) 15 April

45. AIDS day is on:
 (a) 7 May
 (b) 1 December
 (c) 20 November
 (d) None
INTERNATIONAL HEALTH AGENCIES

1. Ans. (c) WHO is a non-specialized, political agency of United Nations [Ref. Park 21/e p853-56, Park 22/e p859, 862]

WORLD HEALTH ORGANIZATION (WHO):
- WHO is a specialized, non-political health agency of United Nations
- Constitution of WHO:
 - Drafted by ‘Technical Preparatory Committee’ in 1946
 - Came into force on 7th April, 1948
- Objective of WHO: Is attainment by all people of the highest level of health
- First Constitutional function of WHO: To act as the directing and co-coordinating authority on all International health work
- Headquarters of WHO: Geneva, Switzerland
- Structure of WHO:
 - The World Health Assembly (WHA): Is the ‘Health Parliament’ and supreme governing body of the organization;
 Functions of WHA:
 - To determine International health policies and programmes
 - To review work of past year
 - To approve budget for the following year
 - To elect member states to designate persons for Executive Board
 - The Executive Board
 - The Secretariat: Is the ‘Chief technical and administrative unit of WHO’
- WHO has established 6 regional organizations:

<table>
<thead>
<tr>
<th>Region</th>
<th>Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast Asia</td>
<td>New Delhi, India</td>
</tr>
<tr>
<td>Africa</td>
<td>Brazaville, Congo</td>
</tr>
<tr>
<td>The Americas</td>
<td>Washington DC, USA</td>
</tr>
<tr>
<td>Europe</td>
<td>Copenhagen, Denmark</td>
</tr>
<tr>
<td>Eastern Mediterranean</td>
<td>Alexandria, Egypt</td>
</tr>
<tr>
<td>Western Pacific</td>
<td>Manila, Philippines</td>
</tr>
</tbody>
</table>

Also Remember
- **WHO is unique among UN specialized agencies**: It has its own constitution, own governing bodies, own membership and own budget
- **7th April every year is celebrated every year as World Health Day (WHD)**:
 - WHD Theme 2015: Food Safety.
2. Ans. (b) A – III, B – II, C – I [Ref. Park 21/e p855, Park 22/e p861]
 • Health agencies and the location of their headquarters:
<table>
<thead>
<tr>
<th>Health agencies</th>
<th>Headquarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRC (International Red Cross)</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>WHO (World Health Organization)</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>UNICEF (United Nations Children Fund)</td>
<td>New York, USA</td>
</tr>
<tr>
<td>UNDP (United Nations Development Programme)</td>
<td>New York, USA</td>
</tr>
<tr>
<td>FAO (Food and Agricultural Organization)</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>ILO (International Labour Organization)</td>
<td>Geneva, Switzerland</td>
</tr>
</tbody>
</table>

3. Ans. (b) 1948 [Ref. Park 21/e p853, Park 22/e p859]
 • WHO has its origin in April 1945, whereas formal existence began on 7th April 1948

4. Ans. (a) Geneva [Ref. Park 21/e p858]
 • International Red Cross was founded by ‘Henry Dunant’
 • Headquarters: Geneva, Switzerland

5. Ans. (b) Oral Rehydration Therapy [Ref. Park 21/e p 856, Park 22/e p862]
 • UNICEF is promoting ‘GOBI Campaign’ to encourage 4 strategies for a ‘Child Health Revolution’:
 - G: Growth Charts (to better monitor child development)
 - O: Oral Rehydration (to treat mild and moderate dehydration)
 - B: Breast Feeding
 - I: Immunization (against TB, Polio, Diphtheria, Pertussis, Tetanus and Measles)

Also Remember
 • In addition, recent research in the developing world has highlighted three kinds of support for women. These changes ‘the three F’s’ have now been incorporated in ‘UNICEF’s GOBI-FFF Campaign’:
 - F: Female Education
 - F: Family Spacing
 - F: Food Supplements

6. Ans. (c) India; (e) Sri Lanka [Ref. Park 21/e p 855, Park 22/e p861]
 • Members of WHO South East Asian Region (WHO SEARO):
 - Bangladesh
 - Bhutan
 - India
 - Indonesia
 - Korea
 - Maldives Islands
 - Myanmar
 - Nepal
 - Sri Lanka
 - Thailand

Also Remember
 • Members of SAARC Region:
 - Afghanistan
 - Bangladesh
 - Bhutan
 - India
 - Maldives Islands
 - Nepal
 - Pakistan
 - Sri Lanka
7. Ans. (a) UNFPA [Ref. K. Park 22/e p863]
8. Ans. (b) 7 April [Ref. K. Park 22/e p859]

Review Question

9. Ans. (d) Family planning [Ref. Park 21/e p 856-57, Park 22/e p861, 863]
10. Ans. (a) For economic growth [Ref. Park 21/e p 857, Park 22/e p863]
11. Ans. (a) Military hospital worker [Ref. Park 21/e p858-59, Park 22/e p864, 865]
12. Ans. (b) New york [Ref. Park 21/e p856, Park 22/e p862]
13. Ans. (a) The main source of funds for technical assistance [Ref. Park 22/e p862, 63]
14. Ans. (a) UNICEF [Ref. Park 21/e p856, Park 22/e p862]
15. Ans. (a) UNICEF [Ref. Park 21/e p856, Park 22/e p862]
16. Ans. (b) Geneva [Ref. Park 21/e p855, Park 22/e p861]
17. Ans. (d) TB [Ref. Park 21/e p780, Park 22/e p784]

MISCELLANEOUS

18. Ans. (d) Yellow fever [Ref. Park 21/e p780, Park 22/e p784]
 - Diseases under International Surveillance (WHO):
 - Louse borne typhus fever
 - Relapsing fever
 - Poliomyelitis
 - Malaria
 - Human Influenza
 - Rabies
 - Salmonellosis

Also Remember

- Most of the ‘national health programmes in India rely on Passive Surveillance’ for morbidity and mortality data collection
- Active Surveillance in National Health Programmes of India is done in:
 - NVBDCP (Health worker goes house to house every fortnight to detect fever cases, collect blood slides and provide presumptive treatment under malaria component)
 - National Leprosy Elimination Programme (Modified Leprosy Elimination Campaigns)
- Sentinel Surveillance in National Health Programmes of India is done in National AIDS Control Programme (STD Clinics, ANC Clinics have been identified as sentinel sites to monitor trends of HIV/AIDS)
- Monitoring versus Surveillance:

<table>
<thead>
<tr>
<th>MONITORING</th>
<th>SURVEILLANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance and analysis of routine measurements to detecting changes in environment or health status of a population</td>
<td>Continuous scrutiny of the factors that determine the occurrence and distribution of disease and other conditions of ill-health</td>
</tr>
<tr>
<td>One Time linear activity</td>
<td>Continuous Cycle</td>
</tr>
<tr>
<td>No feedback present</td>
<td>Feedback present</td>
</tr>
<tr>
<td>No inbuilt action component present</td>
<td>‘Inbuilt action component’ present</td>
</tr>
<tr>
<td>Stops once disease is eliminated/eradicated</td>
<td>Continues even after disease is eliminated/eradicated</td>
</tr>
<tr>
<td>Smaller concept</td>
<td>Broader concept</td>
</tr>
</tbody>
</table>

19. Ans. (d) Onchocerciasis [Ref. Park 20/e p818, Park 21/e p854]

https://kat.cr/user/Blink99/
Review of Preventive and Social Medicine

• **Tropical diseases targeted for research and training by WHO:**
 - Trypanosomiasis
 - Filariasis
 - Schistosomiasis
 - Leishmaniasis
 - Malaria
 - Leprosy
 - Yellow Fever

• **Diseases under International Health Regulations (IHRs):**
 - Cholera
 - Plague
 - Yellow Fever
 - Wild Poliomyelitis
 - Human Influenza
 - SARS
 - Smallpox

• **Diseases under International Surveillance (WHO):**
 - Louse born typhus fever
 - Relapsing fever
 - Poliomyelitis
 - Malaria
 - Human Influenza
 - Rabies
 - Salmonellosis

<table>
<thead>
<tr>
<th>Diseases under International Surveillance (WHO):</th>
<th>Current ‘List of Quarantinable Diseases’ (CDC):</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Louse borne typhus fever</td>
<td>– Diphtheria</td>
</tr>
<tr>
<td>– Relapsing fever</td>
<td>– Plague</td>
</tr>
<tr>
<td>– Poliomyelitis</td>
<td>– Yellow Fever</td>
</tr>
<tr>
<td>– Malaria</td>
<td>– Smallpox</td>
</tr>
<tr>
<td>– Human Influenza</td>
<td>– Infectious TB</td>
</tr>
<tr>
<td>– Rabies</td>
<td>– Viral Hemorrhagic Fevers</td>
</tr>
<tr>
<td>– Salmonellosis</td>
<td>– Severe Acute Respiratory Syndrome (SARS)</td>
</tr>
</tbody>
</table>

20. Ans. (c) India [Ref. Internet]
 - **Fingerprint:** Is an impression of the friction ridges of all part of the finger
 - **World’s first Fingerprint Bureau:** opened in Calcutta (Kolkata), India in 1897 after the Council of the Governor General approved a committee report that fingerprints should be used for classification of criminal records
 - **Sir William James Herschel** initiated fingerprinting in India
 - **Dermatoglyphics:** Is the scientific study of human fingerprints
 - **Some firsts in Public Health:**
 - First country to introduce Socialized medicine: Russia
 - First country to introduce Compulsory Sickness Insurance: Germany
 - First country to introduce Family Planning programme: India
 - First country to introduce Blindness Control programme: India
 - First country to introduce Fingerprint Bureau: India

21. Ans. (d) **Health of travelers** [Ref: A Dictionary of Public Health by Dr Jugal Kishore, 2002; p165, Park 22/e p118]
 - Travel medicine or ‘Emporiatrics’ is the branch of medicine that deals with the prevention and management of health problems of international travelers

Also remember

- **Nosology:** Branch of medicine dealing with classification of diseases

22. Ans. (a) **Plague** [Ref. K. Park 20/e p816, Park 22/e p118]
 - In 14th century ‘quarantine’ was introduced in Europe to protect against importation of Plague
 - Ships, crews, travelers were detained for a ‘40 day period’

23. Ans. (a) **Smallpox** [Ref. World Health Organisation]
 - The ‘International Health Regulations’ (IHR, 2005) are an international law which helps countries working together to save lives and livelihoods caused by the international spread of diseases and other health risks
 - The IHR (1969) were primarily intended to monitor and control six serious infectious diseases: cholera, plague, yellow fever, smallpox, relapsing fever and typhus
 - Under the IHR (1969), ‘only cholera, plague and yellow fever remain notifiable’, meaning that States are required to notify WHO if and when these diseases occur on their territory
Also Remember

• The IHR (2005) broaden the scope of the 1969 Regulations to cover existing, new and re-emerging diseases, including emergencies caused by non-infectious disease agents
• Under the IHR (2005), all cases of the following four diseases must also be automatically notified to WHO:
 - Smallpox
 - Poliomyelitis due to wild-type poliovirus
 - SARS
 - Human influenza

24. Ans. (b) April 7 [Ref. Park 20/e p817, Park 21/e p853, Park 22/e p859]
25. Ans. (d) Yellow fever [Ref. Park 21/e p259, Park 22/e p258]
26. Ans. (e) Compulsory sickness insurance [Ref. Internet, Park 21/e p9]
 • Germ theory: France (Louis Pasteur)
 • Pasteurisation: France (Louis Pasteur)
 • Quarantine: Croatia
 • Socialised medicine: Russia
 • Compulsory sickness insurance: Germany
27. Ans. (d) Tuberculosis [Ref. CDC Atlanta Website; http://emergency.cdc.gov/agent/agentlist-category.asp]
 • Categories of bio-terrorism agents:

<table>
<thead>
<tr>
<th>Category A</th>
<th>Category B</th>
<th>Category C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be easily disseminated</td>
<td>Moderately easy to disseminate</td>
<td>Emerging pathogens</td>
</tr>
<tr>
<td>High mortality rates</td>
<td>Moderate morbidity + low mortality</td>
<td>Available</td>
</tr>
<tr>
<td>Public panic and disruption</td>
<td>Require enhanced diagnostic capacity</td>
<td>Ease of production</td>
</tr>
<tr>
<td></td>
<td>Require enhanced surveillance</td>
<td>High morbidity and mortality</td>
</tr>
<tr>
<td>Botulism</td>
<td>Brucellosis</td>
<td>Nipah virus</td>
</tr>
<tr>
<td>Tularaemia</td>
<td>Clostridium perfringens</td>
<td>Hanta virus</td>
</tr>
<tr>
<td>Anthrax</td>
<td>Food safety threats</td>
<td></td>
</tr>
<tr>
<td>Smallpox</td>
<td>Water safety threats</td>
<td></td>
</tr>
<tr>
<td>Plague</td>
<td>Glanders</td>
<td></td>
</tr>
<tr>
<td>Viral hemorrhagic fevers</td>
<td>Meliodoses</td>
<td></td>
</tr>
<tr>
<td>[Mnemonic: Bio Terrorism Agents include Small Pox Virus]</td>
<td>Psittacosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q fever</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ricin toxin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staphylococcal enterotoxin B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidemic typhus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viral encephalitis</td>
<td></td>
</tr>
</tbody>
</table>

 - Public policy reforms (promote and protect community health)
 - Leadership reforms (reliable health authorities)
 - Universal coverage reforms (health equity)
 - Service delivery reforms (people-centred, health systems)
 - Budgets (Governmental) re prioritization
 - Innovative financing
 - Revenue collection efficiency increase
 - Development assistance
29. Ans. (a) Fredreich Sanger [Ref. Wikepedia]

LIST OF FEW NOBEL LAUREATES IN PHYSIOLOGY OR MEDICINE
- Sir Ronald Ross: Life cycle of Plasmodium
- I.P. Pavlov: Physiology of digestion
- Robert Koch: Discoveries in Tuberculosis
- Paul Ehrlich: Immunity
- F.G. Banting & J.R. McLeod: Insulin
- Willem Einthoven: ECG
- Karl Landsteiner: Human blood groups
- Sir Alexander Fleming: Penicillin
- Paul H. Muller: DDT
- S.A. Wiaksman: Streptomycin (First antibiotic, against TB)
- Har Gobind Khorana: Interpretation of genetic code
- Sir Godfrey N. Hounsfield: CT scan
- J.E. Murray & E.D. Thomas: Organ and cell transplantation
- Sir Peter Mansfield: MRI
- B.J. Marshall & J.R. Warren: H. pylori; its role in peptic ulcer disease
- H.Z. Hausen: HPV causing cervical cancer
- F.B. Simnossi & L. Montagnair: HIV
- Robert G. Edwards: In-vitro fertilization

30. Ans. (b) Taum and Lederberg; (c) Ronald Ross; (d) Kary Mullis [Ref. Multiple sources]

31. Ans. (c) Anthrax [Ref. Bioterrorism Preparedness by N Khardori, 1/e p12]

32. Ans. (a) Typhus [Ref. Contagion and Chaos by AT PriceSmith, 1/e p166]

33. Ans. (b) Travellers [Ref. Infectious Disease Secrets, 1/e p394]

34. Ans. (a) 31st may [Ref. Complete Guide for SSC, 2011, p111]

35. Ans. (d) 36 [Ref. International Health Regulations, WHO 2011]

Review Questions

36. Ans. (b) 10 days [Ref. Park 21/e p259, Park 22/e p258]

37. Ans. (c) Australia [Ref. Park 21/e p250, Park 22/e p251]

38. Ans. (d) 36 [Ref. Internet]

39. Ans. (b) Travellers [Ref. Park 21/e p116, Park 22/e p118]

40. Ans. (c) Emporiatrics [Ref. Park 21/e p116]

41. Ans. (d) Paralytic polio [NEW ANSWER : NONE] [Ref: Park 21/e p780, Park 22/e p784]

42. Ans. (b) Yellow fever [Ref. Park 21/e p259, Park 22/e p258]

43. Ans. (d) All the above [Ref. Park 21/e p111, Park 22/e p112]

44. Ans. (a) 7 April [Ref. Park 21/e p853, Park 22/e p859]

45. Ans. (b) 1 December [Ref. Internet]
DATA, VARIABLES AND SCALES

Data Presentation

<table>
<thead>
<tr>
<th>Quantitative data</th>
<th>Qualitative data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histogram</td>
<td>Bar diagram</td>
</tr>
<tr>
<td>Frequency polygon</td>
<td>Pie/ Sector diagram</td>
</tr>
<tr>
<td>Frequency curve</td>
<td>Pictogram/ Picture diagram</td>
</tr>
<tr>
<td>Line chart/ graph</td>
<td>Map diagram/ Spot map</td>
</tr>
<tr>
<td>Cumulative frequency diagram (Ogive)</td>
<td></td>
</tr>
<tr>
<td>Scatter/ Dot diagram</td>
<td></td>
</tr>
</tbody>
</table>

STATISTICAL DATA GRAPHS

- **Histogram**
 - Is graphical presentation for ‘continuous quantitative data’
 - Continuous groups are marked on x-axis (abscissa) while frequencies are marked on y-axis (ordinate).

- **Frequency Polygon**
 - Is an area diagram of frequency distribution developed over a histogram: Made by joining mid-points of class intervals at the heights of frequencies
• Frequency Curve
 - When no. of observations is large and group-interval is reduced: Frequency polygon loses its angulations to become a curve.

![Frequency Curve](https://kat.cr/user/Blink99/)

Figure: Frequency curve

• Line Chart/Graph
 - Is a frequency polygon presenting variations by line
 - It shows the trend of an event over a period of time.

![Line Chart/Graph](https://kat.cr/user/Blink99/)

Figure: Line chart

• Cumulative Frequency Diagram (Ogive)
 - Is graph of cumulative relative frequency distribution.

![Cumulative Frequency Diagram](https://kat.cr/user/Blink99/)

Figure: OGIVE (Cumulative frequency diagram)
• **Scatter/Dot Diagram**
 - Also known as 'Correlation diagram'
 - Is used to depict 'correlation (relationship) between 2 quantitative variables'
 - Vertical axis in scatter diagram: should be the dependent or the outcome variable
 - In a scatter diagram, 2 imaginary lines are drawn along the distribution of dots/scatter.

![Figure: Scatter/dot diagram](https://kat.cr/user/Blink99/)

• **Bar Diagram**
 - Is for visual comparison of magnitude of different frequencies in discrete data
 - 'Is the most versatile of all statistical diagrams'
 - Bar diagram is of 3 types:
 * Simple bar diagram
 * Multiple bar diagram
 * Proportional bar diagram.

![Figure: Bar diagram](https://kat.cr/user/Blink99/)

• **Pie/Sector Diagram**
 - Is for ‘presentation of discrete data of qualitative characteristics’
 - All pie categories are mutually exclusive, with a total of 100% (360°).

![Figure: Pie (Sector) diagram](https://kat.cr/user/Blink99/)
• **Pictogram/Picture Diagram**
 - Is a method to impress the frequency of occurrence of events to common man

![Pictogram](https://kat.cr/user/Blink99/)

1 Doctor

- USSR: 270
- Singapore: 100
- Bangladesh: 9700

• **Map diagram/Spot Map**
 - Is prepared to show geographical distribution of frequencies of characteristic
 - Each spot (dot) marks one frequency.

![Spot map](https://kat.cr/user/Blink99/)

Scatter Diagram

Also known as ‘Correlation diagram’ or ‘Dot diagram’

• Is used to depict ‘correlation (relationship) between 2 quantitative variables’
• Vertical axis in scatter diagram: should be the dependent or the outcome variable
• In a scatter diagram, 2 imaginary lines are drawn along the distribution of dots/scatter

Types of correlation:

<table>
<thead>
<tr>
<th>Types of correlation</th>
<th>Scatter diagram</th>
<th>Correlation coefficient</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfectly positive</td>
<td>Both lines have a positive slope (at 45° each); superimposed</td>
<td>$r = +1$</td>
<td>Rise in one variable leads to proportionate rise in other</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfectly negative</td>
<td>Both lines have a negative slope (at 45° each); superimposed</td>
<td>$r = -1$</td>
<td>Rise in one variable leads to proportionate fall in other</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately positive</td>
<td>Both lines have a positive slope (at 45° each); superimposed</td>
<td>$0 < r < +1$</td>
<td>Rise in one variable leads to rise in other</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately negative</td>
<td>Both lines have a negative slope (at 45° each); superimposed</td>
<td>$-1 < r < 0$</td>
<td>Rise in one variable leads to fall in other</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (absent)</td>
<td>Both lines are perpendicular</td>
<td>$r = 0$</td>
<td>Rise/ fall in one variable leads to no change in other</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spurious (false)</td>
<td>No particular pattern observed</td>
<td>–</td>
<td>No particular pattern observed</td>
</tr>
<tr>
<td>correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variables

- **Definition**: Is a characteristic or attribute that vary from person to person, from time to time and from person to person.

<table>
<thead>
<tr>
<th>Quantitative variable</th>
<th>Qualitative variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that can be measured directly</td>
<td>Is a variable that cannot be measured directly</td>
</tr>
<tr>
<td>Measured on ordinal/metric scale</td>
<td>Measured on a nominal scale</td>
</tr>
</tbody>
</table>

Examples
- Weight
- Height
- Mid-arm circumference
- Blood sugar level
- °C/°F temperature scale
- Body mass index (BMI)
- Hemoglobin level
- Serum cholesterol level

<table>
<thead>
<tr>
<th>Discrete variable</th>
<th>Continuous variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that has few possible values & no in-between values</td>
<td>Is a variable that has large no. of possible values & several in-between values</td>
</tr>
<tr>
<td>Measured on nominal/ordinal scale</td>
<td>Measured on a metric scale</td>
</tr>
</tbody>
</table>

Examples
- ABO blood group
- Gender
- Sites of lymphadenopathy
- Presence of Diabetes
- Parity
- Obesity
- No. of living children in a family

<table>
<thead>
<tr>
<th>Dichotomous (Binary) variable</th>
<th>Polyotomous variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that has only 2 possible values</td>
<td>Is a variable that has > 2 possible values</td>
</tr>
</tbody>
</table>

Examples
- Rh blood group
- Weight > 80 kg
- Gender
- Presence of Diabetes
- Obesity
- Temperature < 12°C
- Blood group B

Scales of Measurement

<table>
<thead>
<tr>
<th>Categorical scales</th>
<th>Dimensional scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal scale</td>
<td>Ordinal scale</td>
</tr>
</tbody>
</table>

Definition
- Based on NOM (names); no specific order
- Based on ORD (order); grading into categories
- Based on ME (measurement); in terms of quantities

Variables
- Qualitative
- Quantitative

Examples
- Race
- Religion
- Country of birth
- Clinical features
- Sites of lymphadenopathy
- Sex of child
- Type of anemia
- ABO blood group
- Site of malignancy

- Blood glucose
- Hemoglobin level
- Serum cholesterol
- Weight
- Height
- Mid-arm circumference
- Blood pressure
- Pulse rate
- Temperature (°C, °F, K) scale
Metric scale is of 2 types:
- Interval scale (Absence of absolute zero; no ratios are possible): Examples: Centigrade/Fahrenheit temperature scale.
- Ratio scale (Presence of absolute zero; thus ratios are possible): Examples: Weight, Height, Blood glucose, Hemoglobin level, Serum cholesterol, Mid-arm circumference, Blood pressure, Pulse rate, Kelvin temperature scale.

Likert Scale
- Is also known as ‘Summative scale’
- Is a ‘type of Ordinal scale’
- Is generally used to quantify attitudes and behaviour
- ‘Responses are graded on a continuum’ (For example: Strongly agree – Agree – Neutral – Disagree – Strongly disagree)
- No. of responses are usually 3, 5 or 7
- Likert scale is ‘usually a bipolar scaling’ method: It measures positive or negative response to a statement
- Likert response can be:
 - Collated into bar charts
 - Central tendency summarized as median or mode (NOT mean)
 - Dispersion summarized by range (NOT standard deviation)
 - Analyzed by non-parametric tests.

Measures of Central Tendency

Mean (Average): Is obtained as sum of all values divided by the no. of values.
\[
\text{Mean} = \frac{\sum x}{n}
\]

Median: Middlemost value in a distribution arranged in an ascending or descending order of values.
- In a distribution with odd no. of total values: Middlemost value in a distribution arranged in an ascending or descending order of values.
 \[
 \text{Median} = \frac{(n+1)}{2}\text{th value in ascending order}
 \]
- In a distribution with even no. of total values: Such a distribution has 2 middlemost values; median is the average of two middlemost values when arranged in an ascending or descending order of values.
 \[
 \text{Median} = \frac{\text{Mean (average) of (n/2)th and (n/2 + 1)th value in ascending order}}
 \]

Mode: Most frequent or most commonly occurring value in a distribution
- In a distribution with one most frequent value: Mode is the most frequent or most commonly occurring value in the distribution.
- In a distribution with two most frequent values: 2 Modes (2 most frequent values in the distribution) known as Bimodal distribution; thus Mode = Average of 2 modes.
Central tendency in Various Distributions

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Central tendency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (Gaussian)</td>
<td>Mean = Median = Mode (coincide)</td>
</tr>
<tr>
<td>Right (Positive) skew</td>
<td>Mean > Median > Mode</td>
</tr>
<tr>
<td>Left (Negative) skew</td>
<td>Mean < Median < Mode</td>
</tr>
</tbody>
</table>

- In a bimodal series, Mode = 3Median – 2Mean
- In distribution with extreme values (Outliers):
 - Most affected measure of central tendency: Mean
 - Least affected measure of central tendency: Mode
 - Most preferable measure of central tendency: Median.

Other Measures of Location

Various Measures of Location

<table>
<thead>
<tr>
<th>Measure</th>
<th>Divides distribution into</th>
<th>No. of intercepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertile</td>
<td>3 equal parts</td>
<td>2</td>
</tr>
<tr>
<td>Quartile</td>
<td>4 equal parts</td>
<td>3</td>
</tr>
<tr>
<td>Pentile (Quintile)</td>
<td>5 equal parts</td>
<td>4</td>
</tr>
<tr>
<td>Hextile</td>
<td>6 equal parts</td>
<td>5</td>
</tr>
<tr>
<td>Heptile</td>
<td>7 equal parts</td>
<td>6</td>
</tr>
<tr>
<td>Octile</td>
<td>8 equal parts</td>
<td>7</td>
</tr>
<tr>
<td>Decile</td>
<td>10 equal parts</td>
<td>9</td>
</tr>
<tr>
<td>Centile (Percentile)</td>
<td>100 equal parts</td>
<td>99</td>
</tr>
</tbody>
</table>

Tertile

- **Tertile:** Divides a distribution into 3 equal parts, so the number of intercepts required will be 2, i.e. T1, T2
 - T1 (1st tertile) divides a distribution in a ratio of 33 : 66 OR 1 : 2
 - T2 (2nd tertile) divides a distribution in a ratio of 66 : 33 OR 2 : 1.

Quartile

- **Quartile:** Divides a distribution into 4 equal parts, so the number of intercepts required will be 3, i.e. Q1, Q2, Q3
 - Q1 (1st Quartile) divides a distribution in a ratio of 1 : 3
 - Q2 (2nd Quartile) divides a distribution in a ratio of 1 : 1
 - Q3 (3rd Quartile) divides a distribution in a ratio of 3 : 1.

Figure: Quartiles

https://kat.cr/user/Blink99/
Pentile

- Pentile (QUINTILE): Divides a distribution into 5 equal parts, so the number of intercepts required will be 4, i.e. P1, P2, P3, P4
 - P1 (1st pentile) divides a distribution in a ratio of 20 : 80 OR 1 : 4
 - P2 (2nd pentile) divides a distribution in a ratio of 40 : 60 OR 2 : 3
 - P3 (3rd pentile) divides a distribution in a ratio of 60 : 40 OR 3 : 2

Centile (Percentile)

- Divides a distribution into 100 equal parts, AFTER arranging in an ascending order, SUCH THAT each part/segment has equal number (n/100) of subjects.
- Requires 99 intercepts (cut-off points) for division into 100 parts
- Total percentiles: 99Q.
- The nth percentile implies: When all values are arranged in ascending order, n% are below this value
- Methods for location of percentiles:
 - Graphical method: Cumulative frequency diagram (Ogive)
 - Arithmetic method: Cumulative frequency table
- Applications and uses of percentiles:
 - Location of a percentile
 - Preparation of a standard percentile (Q2, Median) for particular age, sex, etc.
 - Comparison of a percentile value of a variable (between samples or populations)
 - To study growth in children (using growth charts)
 - As a measure of dispersion (interquartile/semi-interquartile range).

VARIABILITY

Measures of Variability

<table>
<thead>
<tr>
<th>Measures of Variability</th>
<th>Individual observations</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Standard error of mean</td>
<td>Standard error of difference between 2 means</td>
</tr>
<tr>
<td>Inter-quartile range</td>
<td>Standard error of proportion</td>
<td>Standard error of difference between 2 proportions</td>
</tr>
<tr>
<td>Mean deviation</td>
<td>Standard error of correlation coefficient</td>
<td>Standard deviation of regression coefficient</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Deviation (SD)

- SD is most common and generally most appropriate measure of dispersion
- SD is defined as the ‘root-mean-square (RMS) deviation of the values from their mean’, or as the square root of the variance
 \[\text{SD (}\sigma\text{) calculation:} = \sqrt{\text{Variance} = \sqrt{\sum (x - \bar{x})^2}} / n \]
- Interpretation of SD:
 - A large standard deviation: Data points are far from the mean
 - A small standard deviation: Data points are clustered closely around the mean
- Uses of SD in biostatistics:
 - Summarizes the deviation of a large distribution from mean
 - Indicates whether the variation of difference of an individual from the mean is by chance
 - Helps in finding the standard error
 - Helps in finding the suitable size of sample for valid conclusions.
Coefficient of Variation (COV)

- Is a measure used to compare relative variability
- Is a unit-free measure to compare dispersion of one variable with another
- Is SD expressed as percentage of mean
 \[\text{COV} = \frac{SD}{\text{Mean}} \times 100 = \frac{\sigma}{\mu} \times 100 \]

Standard Error of Mean (SE mean)

- SE mean is the measure of difference between sample and population values: Whatever be the sampling procedure or the care taken while selecting sample, the sample estimates (statistics) will differ from population values (parameters)
- SE is a measure of variability of sample summaries: SE mean is the SD of sample means
- SE is a ‘measure of chance variation’, and it DOES NOT mean an error or mistake
- Importance of SE mean:
 - Greater the standard deviation (\(\sigma \)), greater will be the standard error (SE), especially in small samples
 - SE can be minimized by reducing SD: By taking a large sample
 - SE is a measure of variability of sample summaries: SE mean is the SD of sample means
- Uses of standard error of mean (SE mean) in large samples:
 - To work out limits of desired confidence within which population mean would lie
 - To determine if sample is drawn from a known population or not
 - To find SE of difference between 2 means (to know if difference is real and statistically significant)
 - To calculate sample size (within desired confidence limits)
- Standard error of difference between 2 means:
 \[\text{SE diff bet means} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \]
- Standard error of proportion:
 \[\text{SE proportion} = \sqrt{pq/n} \; \text{where} \; q = (1-p) \]
- Standard error of difference between 2 proportions:
 \[\text{SE diff bet proportions} = \sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}} \]

Z Score (Standard Score)

- Is also known as ‘normal deviate’
- Is difference of a value from group mean, in terms of how many times of SD (\(\sigma \))
 \[Z \text{ score} = \frac{\text{Individual level} - \text{Mean}}{\text{Standard deviation}} = \frac{(x - \mu)}{\sigma} \]
- Standard score indicates how many standard deviations an observation is above or below the mean
- Z scores are frequently used in assessing how far a child is in his relative growth to a standard
- Z score = 2: Any measurement of at least 2SD away is considered too far away to be normal.

Distributions – Normal & Skewed

Poisson Distribution

- Is a ‘discrete probability distribution’ that expresses the ‘probability of a number of events occurring in a fixed period of time’ (if these events occur with a known average rate and independently of the time since the last event).
- It can also be used for the number of events in other specified intervals such as distance, area or volume.
• Is generally used to model the number of events occurring within a given time interval.
• Is a discrete distribution which takes on the values \(X = 0, 1, 2, 3, \ldots \).

Normal Distribution
• Is also known as ‘Gaussian distribution’ or ‘Standard distribution’
• Type of distribution: Is the distribution of values of a quantitative variable such that they are symmetric with respect to a middle value with same mean, median and mode, and then the frequencies taper off rapidly and symmetrically on both sides – ‘bell shaped distribution’.

![Normal curve showing distribution of values](https://kat.cr/user/Blink99/)

- \((\mu \pm 1\sigma) \) covers 68% values
- \((\mu \pm 2\sigma) \) covers 95% values
- \((\mu \pm 3\sigma) \) covers 99% values

Skewness of Central Tendency
• Description: Is measure of asymmetry of a probability distribution of a random variable
• Measures of skewness:
 - Pearson’s mode or First Skewness coefficient = \(\frac{\text{Mean} – \text{Mode}}{\text{SD}} \)
 - Pearson’s median or Second Skewness coefficient = \(\frac{3(\text{Mean} – \text{Median})}{\text{SD}} \)
 - Quartile skewness = \(\frac{(Q_3 - 2Q_2 + Q_1)}{Q_3 - Q_1} \)
• Asymmetrical distributions:
 - Right (positive) skew: Mean > Median > Mode
 - Left (negative) skew: Mean < Median < Mode

https://kat.cr/user/Blink99/
Biostatistics

- Left (negative) skew: Mean < Median < Mode

SAMPLING

Sample Size Estimation
- Sample size depends upon:
 - the effect size (usually the difference between 2 groups)
 - the population standard deviation (for continuous data)
 - the desired power of the experiment to detect the postulated effect (Power = 1–\(\beta\))
 - the significance level (\(\alpha\)).

Types of Sampling

<table>
<thead>
<tr>
<th>Synonyms</th>
<th>Random Sampling</th>
<th>Non-random sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability sampling</td>
<td>Simple random sampling</td>
<td>Convenience sampling</td>
</tr>
<tr>
<td>Non-purposive sampling</td>
<td>Systematic random sampling</td>
<td>Quota sampling</td>
</tr>
<tr>
<td>Purposive sampling</td>
<td>Stratified random sampling</td>
<td>Snow-ball sampling</td>
</tr>
<tr>
<td></td>
<td>Multistage random sampling</td>
<td>Clinical trial sampling</td>
</tr>
<tr>
<td></td>
<td>Multiphase random sampling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cluster random sampling</td>
<td></td>
</tr>
</tbody>
</table>

Types of Random Sampling
- **Simple Random Sampling**
 - Every unit of population has equal and known chance of being selected

https://kat.cr/user/Blink99/
Biostatistics

- Is also known as ‘unrestricted random sampling’
- Applicable for small, homogenous and readily available populations
- Used in clinical trials
- Methods of Simple random sampling:
 - Lottery method
 - Random no. tables
 - Computer software.

• Systematic Random Sampling
 - Based on sampling fraction: Every Kth unit is chosen in the population list, where K is chosen by sampling interval
 - Sampling Interval (K) = Total no. of units in population / Total no. of units in sample
 - Applicable for large, non-homogenous populations where complete list of individuals is available
 - For example, if there is a population of 1000 from which sample of 20 is to be chosen, then K = 1000/20 = 50; thus every 50th unit will be included in the sample (i.e. 1st, 51st, 101st, so on…) First unit among first 50 is chosen by simple random sampling.

• Stratified Random Sampling
 - Non-homogenous population is converted to homogenous groups/classes (strata); sample is drawn from each strata at random, in proportion to its size
 - Applicable for large non-homogenous population
 - Gives more representative sample than simple random sampling
 - None of the categories is under or over-represented
 - For example, In a population of 1000, sample of 100 is to be drawn for Hemoglobin estimation; first convert non-homogenous population is converted to homogenous strata (i.e. 700 males and 300 females), then draw 70 males and 30 females randomly respectively.

• Multistage Random Sampling
 - Is done in successive stages; each successive sampling unit is nested in the previous sampling unit
 - Advantage: Introduces flexibility in sampling
 - For example, in large country surveys, states are chosen, then districts, then villages, then every 10th person in village as final sampling unit

• Multiphase Random Sampling
 - Is done in successive phases; part of information is obtained from whole sample and part from the sub-sample
 - For example, in a TB survey, Mantoux test done in first phase, then X-ray done in all Mantoux positives, then sputum examined in all those with positive X-ray findings.

• Cluster Random Sampling
 - Applicable when units of population are natural groups or clusters
 - Use in India: Evaluation of immunization coverage
 - WHO technique used: 30 × 7 technique (total = 210 children)
 - WHO technique used in CRS: 30 × 7 technique (total = 210 children)
 - 30 clusters, each containing
 - 7 children who are 12 – 23 months age and are completely immunized for primary immunization (till Measles vaccine)
 - Clusters are heterogeneous within themselves but homogenous with respect to each other
 - Sampling interval is also calculated in CRS
 - Accuracy: Low error rate of only ± 5%
 - Limitation: Clusters cannot be compared with each other.
Types of Non-Random Sampling

- **Convenience Sampling**
 - Patients are selected, in part or in whole, at the convenience of the researcher; no/limited attempt to ensure that sample is an accurate representation of population.
 - For example, standing at a shopping mall and selecting shoppers as they walk by to fill out a survey.
- **Quota Sampling**
 - Population is first segmented into mutually exclusive sub-groups (quotas), just as in stratified sampling; then judgment is used to select the units from each group non-randomly.
 - Is a type of convenience sampling.
- **Snow-ball Sampling**
 - A technique for developing a research sample where existing study subjects recruit future subjects from among their acquaintances; thus the sample group appears to grow like a rolling snowball.
 - Is often used in hidden populations which are difficult for researchers to access, e.g. drug users or commercial sex workers.
- **Clinical Trial Sampling.**

PROBABILITY AND ODDS

Bayes’ Theorm

Refer to Chapter 4, Theory.

Probability

- Probability: Is the chance that some event will occur
- Probability range: 0 to +1 (0% to 100%)
 - Probability can never be zero
 - Probability cannot exceed one.

Addition Rule of Probability

- Rule of addition: Probabilities are added for mutually exclusive events i.e. $P(\text{Total}) = P(A) + P(B)$
- For example, If probability of having birth weight < 2500 grams ($P(A)$) is 0.50 (50%), birth weight 2500 – 2999 grams ($P(B)$) is 0.30 (30%) and birth weight > 3 kg ($P(C)$) is 0.20 (20%),
 - Probability of having birth weight < 3 kg ($P(T1)$) will be; $P(T1) = P(A) + P(B) = 0.50 + 0.30 = 0.80 (80\%)$ as both events are mutually exclusive
 - Similarly, probability of having birth weight > 2500 ($P(T2)$) will be; $P(T2) = P(B) + P(C) = 0.30 + 0.20 = 0.50 (50\%)$ as both events are mutually exclusive

Multiplication Rule of Probability

- Rule of multiplication: Probabilities are multiplied for obtaining joint occurrence of two or more independent events i.e. $P(\text{Total}) = P(A) \times P(B)$
- For example, If probability of having birth weight < 3 kg ($P(C)$) is 0.70 (70%), probability of having birth weight > 3 kg ($P(D)$) is 0.30 (30%) AND Probability of being of male sex ($P(E)$) is 0.50 (50%), and probability of being of female sex ($P(F)$) is 0.50 (50%)
 - Probability of having a child with birth weight < 3 kg and of male sex will be $P(T3) = P(C) \times P(E) = 0.70 \times 0.50 = 0.35 (35\%)$ as both are independent events
 - Similarly, Probability of having a child with birth weight < 3 kg and of female sex will be $P(T4) = P(C) \times P(F) = 0.70 \times 0.50 = 0.35 (35\%)$ as both are independent events

https://kat.cr/user/Blink99/
- Probability of having a child with birth weight > 3 kg and of male sex will be
 \(P(T5) = P(D) \times P(E) = 0.30 \times 0.50 = 0.15 \) (15%) as both are independent events
- Probability of having a child with birth weight > 3 kg and of female sex will be
 \(P(T6) = P(D) \times P(F) = 0.30 \times 0.50 = 0.15 \) (15%) as both are independent events
- Total probability of a child being borne with any characteristic \(P(T) \) will be
 \(P(T) = P(T3) + P(T4) + P(T5) + P(T6) = 0.35 + 0.35 + 0.15 + 0.15 = 1 \) (100%).

Odds

- Odds: Odds are the chance of frequency of occurrence of a characteristic relative to its non-occurrence (expressed as a ratio of occurrence to non-occurrence)\(^2\)
 \[\text{Odds} = \frac{\text{Probability}}{1 - \text{Probability}} \]
 \[\text{Probability} = \frac{\text{Odds}}{1 + \text{Odds}} \]

Tests of Statistical Significance

Parametric tests and Non-parametric tests

<table>
<thead>
<tr>
<th>Parametric tests(^3)</th>
<th>Non-parametric tests(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on(^2)</td>
<td></td>
</tr>
<tr>
<td>Gaussian/Normal distributions</td>
<td>Non – normal distributions</td>
</tr>
<tr>
<td>Type of data(^2)</td>
<td></td>
</tr>
<tr>
<td>Quantitative</td>
<td>Qualitative</td>
</tr>
<tr>
<td>Compares(^2)</td>
<td></td>
</tr>
<tr>
<td>Means (+ SD)</td>
<td>Percentage, proportions & fractions</td>
</tr>
<tr>
<td>Examples(^2)</td>
<td></td>
</tr>
<tr>
<td>Students (paired) t - test</td>
<td></td>
</tr>
<tr>
<td>Students (unpaired) t - test</td>
<td></td>
</tr>
<tr>
<td>ANOVA F - test</td>
<td>Sign test</td>
</tr>
<tr>
<td></td>
<td>Chi-square test ((\chi^2 - \text{test}))</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon test (signed rank)</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon test (rank sum)</td>
</tr>
</tbody>
</table>

Parametric Tests\(^3\)

- **Paired Student’s t-test\(^3\):** Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
 - Example: Mean serum albumin level of dengue patients before treatment was 3.6 g/dL and after treatment was 3.2 g/dL; Comparison of mean levels can be done by Paired Student’s t-test
- **Unpaired Student’s t-test\(^3\):** Comparing means (+ SD) in two different group of individuals
 - Example: Mean Hb level of anemia patients was 9.6 g/dL and those of hookworm patients was 7.2 g/dL; Comparison of mean levels can be done by Unpaired Student’s t-test
 - Z - test: Is a variant of student’s t-test which is used when sample size is > 30
- **ANOVA test (F-test/F-ratio)\(^3\):** Comparing means (+ SD) in more than two different group of individuals
 - Example: Mean weight of students in class A is 50 kg, those of class B is 44.6 kg and those of class C is 52.7 kg; Comparison of mean weights can be done by ANOVA test.

Non-parametric Tests\(^3\)

- **Sign test\(^3\):** Comparing percentage, proportions & fractions in paired data (in same group of individuals before and after an intervention)
 - Example: 30% of students in a class are anaemic, after 6 months of IFA therapy, now 20% of students are anaemic; Test of significance to be applied is Sign test
- **Chi-square test \((\chi^2 – \text{test})\):** Comparing percentage, proportions & fractions in two or more different group of individuals
 - Example: Three-fourth of students in a class are underweight whereas another class has two-thirds anaemic; test of significance to be used is Chi-square test
 - Fischer’s test: Is a variant of Chi-square test when sample size is < 30
• Wilcoxon tests:
 - Wilcoxon (signed rank) test: Comparing percentage, proportions & fractions in matched paired data
 - Wilcoxon (rank sum) test: Comparing percentage, proportions & fractions in two unpaired samples
 - Mann-Whitney (Wilcoxon) test:
 - MWW is same as Wilcoxon (rank sum) test
 - Is used for assessing whether two set of observations come from same distribution (if 2 independent ‘nonpaired’ samples come from the same population)
 - ‘MWW is analogous to parametric two-sample t-test’ on the data after ranking over the combined samples
 - MWW requires calculation of ‘U statistic’.

Chi-Square Test (χ^2 Test)

- Is a ‘non-parametric test’ of significance
- Is used to ‘test significance of association between 2 or more qualitative characteristics’
- Is used to compare proportions in 2 or more groups
- Is used for non-Normal (non-Gaussian) distributions
- Applications of Chi-square test:
 - Test of proportions
 - Test of association
 - Test of goodness of fit
- Essential requirements for calculation of Chi-square test:
 - Random sample
 - Qualitative data
 - Lowest expected frequency not < 5.

Degrees of Freedom

- Degree of freedom: Is the no. of observations in a dataset that can freely vary once the parameters have been estimated.
- Used in Chi-square test and t-test:
 - In a Chi-square test, contingency table, dof = (c - 1) (r - 1) (where c = no. of columns and r = no. of rows)
 - In a Student’s t-test (one-sample data/paired test), dof v = n - 1 (where n = no. of units in the sample)
 - In a Student’s t-test (two-sample data/unpaired test), dof v = (n_1 + n_2) - 1 (where n_1 and n_2 = no. of units in the two samples).

CORRELATION AND REGRESSION

Correlation

- Description: Is relationship between 2 quantitative or continuous variables
- Correlation is represented by: ‘Scatter diagram’
- Correlation coefficient (r): Measures the degree or strength of relationship in a correlation
 - Correlation coefficient (r) lies between: -1 to +1 (-1 < r < +1)
- Strength of correlation:
 - Weak positive correlation: 0 < r < 0.3
 - Moderate positive correlation: 0.4 < r < 0.6
 - Strong positive correlation: r > 0.7
- Correlation is represented by: ‘Scatter diagram’
- Correlation coefficients:
Biostatistics

- **Pearson’s Correlation coefficient**:
 * Is used in ungrouped series
 * Is used when associated variables are normally distributed
 * Symbol is ‘r’

- **Spearman’s Rank Correlation coefficient**:
 * Is used in grouped series
 * Is used when associated variables are not normally distributed
 * Symbol is ‘rho (ρ)’

- **Multiple correlation coefficient**: Is used for calculation of correlation between one variable (dependent) and the combination of two or more variables (independents)

- **Coefficient of determination**:
 - Is the percentage of variation in a variable that is explained by one or more of the others
 - Is generally obtained in a regression setup
 - Coefficient of determination $\rho = (Correlation coefficient)^2 = r^2. (0 < r^2 < + 1)$

Regression

- **Description**: Is change in measurements of a variable
 - Provides structure of relationship between 2 quantitative variables
- **Regression Coefficient (b)**: Measure of change of one dependent variable (y) with change in independent variable (x) or variables (x_1, x_2, x_3, \ldots)
- **Equations of regression**,
 $y = a + b(x)$
 $y = a + b(x_1) + c(x_2) + d(x_3)$,
 where y is a dependent variable and x_1, x_2, x_3 are independent variables; a is a constant and b, c, d are regression coefficients

Types of regressions

- **Simple linear regression**: Only one dependent variable and one independent variable
- **Multiple linear regression**: Only one dependent variable and more than one independent variable
- **Simple curvilinear regression**: Only one dependent variable and one independent variable, with some power of independent variable
- **Multiple curvilinear regression**: Only one dependent variable and more than one independent variables, with some power of independent variables)

- **Types of regression equations**:

<table>
<thead>
<tr>
<th>Types of regression</th>
<th>Equation a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple linear regression</td>
<td>$y = a + b(x)$</td>
</tr>
<tr>
<td>Multiple linear regression</td>
<td>$y = a + b(x_1) + c(x_2) + d(x_3)$</td>
</tr>
<tr>
<td>Simple curvilinear regression</td>
<td>$y = a + b(x)^r$</td>
</tr>
<tr>
<td>Multiple curvilinear regression</td>
<td>$y = a + b(x_1)^r + c(x_2)^s + d(x_3)^t$</td>
</tr>
</tbody>
</table>

Other types of regressions:

<table>
<thead>
<tr>
<th>Types of regressions</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td>Independent variables</td>
</tr>
<tr>
<td>Logistic regression a</td>
<td>Qualitative, dichotomous</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Quantitative</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Quantitative</td>
</tr>
<tr>
<td>Multivariate multiple regression</td>
<td>Set of Quantitative</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Set of Quantitative</td>
</tr>
<tr>
<td>Multivariate logistic regression</td>
<td>Set of Qualitative</td>
</tr>
</tbody>
</table>
ERRORS AND P-VALUE

Null Hypothesis
- *Hypothesis (H)*: Is an assumption about the status of a phenomenon
- *Null Hypothesis (H)₀*: In Biostatistics, when we have to prove a particular hypothesis about difference between 2 regimens, we make Null Hypothesis (For examples, If we have to prove that new treatment is better than older treatment, H₀ = new treatment is not better than older treatment).

Statistical Errors & P-value
- **Statistical errors**:

<table>
<thead>
<tr>
<th>Null Hypothesis (H<sub>0</sub>) true</th>
<th>H<sub>0</sub> rejected</th>
<th>H<sub>0</sub> not rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error</td>
<td>No error</td>
<td></td>
</tr>
</tbody>
</table>

 - **Type I Error**:
 - Null hypothesis is true but rejected.
 - Probability of Type I error is given by \(P – value \) (probability of declaring a significant difference when actually it is not present).
 - Significance (\(\alpha \)) level: is the maximum tolerable probability of Type I error.
 - Alpha is fixed in advance: \(P – value \) calculated can be less than, equal to or greater than alpha (\(\alpha \)).
 - Keep Type I error to be minimum (\(P < \alpha \)): Then results are declared statistically significant.

 - **Type II Error**:
 - Null hypothesis is false but not rejected (or accepted).
 - Probability of Type II error is given by beta (\(\beta \)) (probability of declaring no significant difference when actually it is present).
 - Type I error is more serious than Type II error.

Power of a Test
- **Description**: Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present.
 - Measures the ability to demonstrate an association, when one really exists.
- **Power of a statistical test**: \(1 – \beta \) (1–Probability of Type II error).
- **Power of a statistical test is a numeric representation of**: Sensitivity.
- **Power of a statistical test can be increased by**:
 - Increasing the no. of subjects in a trial (sample size).
 - Reducing \(\beta \) (probability of Type II error).
 - Increasing sensitivity.
- **Power of a statistical test is also used for calculation of sample size for a study**.

MISCELLANEOUS

Validity
- **Validity**: Refers to what extent the test measures which it purports to measure (adequacy of measurement).
- **Validity has 2 components**:
 - Sensitivity
 - Specificity
- **Types of Validity**:
 - **Conclusion validity**: Defines if there is a relationship between 2 variables.
Review of Preventive and Social Medicine

- **Internal validity:** Assuming relationship between 2 variables, defines if it is causal
 * Is free of bias
 * Valid conclusions can be drawn for individuals in a sample
- **Construct validity:** Assuming causal relationship between 2 variables, defines if our theory is best to our constructs
- **External validity:** Assuming causal relationship between 2 variables, defines if our theory can be generalized to the broader population
- **Concurrent validity:** refers to the degree of correlation with other measures of the same construct measured at the same time
- **Face (Logical) validity:** Relevance of a measurement appear obvious
- **Content validity:** Measurement of all variable components
- **Consensual validity:** If no. of experts agree to a parameter
- **Criterion validity:** If compared with a reference or gold standard
 * Is best measure of validity
 * Usually expressed as sensitivity & specificity
- **Discriminant validity:** If not showing strong correlation between 2 variables.

Delphi Method

- **Delphi method:** Is a ‘systematic interactive forecasting method’ for obtaining consensus forecasts from a panel of independent experts
- **Method:** The carefully selected experts answer questionnaires in two or more rounds; After each round, a facilitator provides an anonymous summary of the experts’ forecasts from the previous round as well as the reasons they provided for their judgments; Thus, participants are encouraged to revise their earlier answers in light of the replies of other members of the group.
 - The range of the answers decrease and the group will converge towards the ‘correct’ consensual answer; Finally, the process is stopped after a pre-defined stop criterion (e.g. number of rounds, achievement of consensus, stability of results) and the mean or median scores of the final rounds determine the results.
 - Objective of most Delphi applications: The reliable and creative exploration of ideas or the production of suitable information for decision-making
 - Delphi Method is based on: A structured process for collecting and distilling knowledge from a group of experts by means of a series of questionnaires interspersed with controlled opinion feedback
 - Delphi method is an exercise in group communication among a panel of geographically dispersed experts
 - In general, the Delphi method is useful in answering one, specific, single-dimension question
- **Mini-Delphi or Estimate-Talk-Estimate (ETE):** The delphi technique when adapted for use in face-to-face meetings.

Confidence Intervals, Levels, Limits

- **Confidence interval (CI):** Is the interval within which a parameter value is expected to lie with certain confidence levels, as could be revealed by repeated samples
 - Is the ‘range that is likely to contain the population mean when so obtained for repeated samples’.
 - A narrow CI is always preferable: as it tells more precisely what might be the population mean BUT also it will have higher chances of not containing the population mean.
 - Larger the sample size, narrower is CI
 - Smaller the SD (s), narrower is CI

Criterion validity: If compared with a reference or gold standard
* Is best measure of validity
* Usually expressed as sensitivity & specificity

Delphi Method

- **Delphi method:** Is a ‘systematic interactive forecasting method’ for obtaining consensus forecasts from a panel of independent experts
- **Method:** The carefully selected experts answer questionnaires in two or more rounds; After each round, a facilitator provides an anonymous summary of the experts’ forecasts from the previous round as well as the reasons they provided for their judgments; Thus, participants are encouraged to revise their earlier answers in light of the replies of other members of the group.
 - The range of the answers decrease and the group will converge towards the ‘correct’ consensual answer; Finally, the process is stopped after a pre-defined stop criterion (e.g. number of rounds, achievement of consensus, stability of results) and the mean or median scores of the final rounds determine the results.
 - Objective of most Delphi applications: The reliable and creative exploration of ideas or the production of suitable information for decision-making
 - Delphi Method is based on: A structured process for collecting and distilling knowledge from a group of experts by means of a series of questionnaires interspersed with controlled opinion feedback
 - Delphi method is an exercise in group communication among a panel of geographically dispersed experts
 - In general, the Delphi method is useful in answering one, specific, single-dimension question
- **Mini-Delphi or Estimate-Talk-Estimate (ETE):** The delphi technique when adapted for use in face-to-face meetings.

Confidence Intervals, Levels, Limits

- **Confidence interval (CI):** Is the interval within which a parameter value is expected to lie with certain confidence levels, as could be revealed by repeated samples
 - Is the ‘range that is likely to contain the population mean when so obtained for repeated samples’.
 - A narrow CI is always preferable: as it tells more precisely what might be the population mean BUT also it will have higher chances of not containing the population mean.
 - Larger the sample size, narrower is CI
 - Smaller the SD (s), narrower is CI

Criterion validity: If compared with a reference or gold standard
* Is best measure of validity
* Usually expressed as sensitivity & specificity

https://kat.cr/user/Blink99/
• **Confidence level:**
 - Is the level of hope or expectation fixed at a sufficiently high level while dealing with samples, to ensure high reliability
 - Is the ‘degree of assurance for an interval to contain the value of the parameter’
 - There is NO WAY to achieve 100% confidence
 - Internationally acceptable confidence level: 95%
 - Maximum tolerance of probability of Type I error (\(\alpha\)) is the probability that CI would not contain the population mean
 - Confidence level\(= 1 - \alpha\)

• **Confidence limits:** Are the upper and lower boundaries of a confidence interval.
MULTIPLE CHOICE QUESTIONS

DATA, VARIABLES AND SCALES

1. Histogram is used to describe: [AIIMS Dec 1995]
 (a) Quantitative data of a group of patients
 (b) Qualitative data of a group of patients
 (c) Data collected on nominal scale
 (d) Data collected on ordinal scale

2. Which of the following variables is measured on the ordinal scale? [AIPGME 1996]
 (a) Type of anemia
 (b) Severity of anemia
 (c) Hemoglobin level
 (d) Serum ferritin level

3. Measurement of blood pressure is which type of data: [AIPGME 1996]
 (a) Nominal
 (b) Ordinal
 (c) Interval
 (d) Continuous

4. Histogram is used to present which kind of the data: [AIIMS May 2006]
 (a) Nominal
 (b) Continuous
 (c) Discrete
 (d) Any of above

5. All of the following are quantitative variables except: [AIPGME 1996]
 (a) Serum cholesterol
 (b) Weight
 (c) Gender
 (d) Celsius temperature scale

6. All of the following methods can show relationship between two variables except: [AIPGME 1995]
 (a) Histogram
 (b) Line diagram
 (c) Bar chart
 (d) Scatter plot

7. A physician, after examining a group of patients of a certain disease, classifies the condition of each one as ‘Normal’, ‘Mild’, ‘Moderate’ or ‘Severe’. Which one of the following is the scale of measurement that is being adopted for classification of the disease condition? [AIIMS Nov 92 Dec 98, May 94, AIPGME 04, 07]
 (a) Normal
 (b) Interval
 (c) Ratio
 (d) Ordinal

8. Mean and standard deviation can be worked out only if data is on: [AIIMS Nov 03, AIIMS May 05]
 (a) Interval/Ratio scale
 (b) Dichotomous scale
 (c) Nominal scale
 (d) Ordinal scale

9. In statistical literature data are broadly classified as interval scale data, ordinal scale data & categorical data. Blood groups will be an example for: [AIIMS Dec 1994]
 (a) Interval scale data
 (b) Ordinal scale data
 (c) Categorical data
 (d) None of the above

10. An investigator into the life expectancy of IV drug abusers divides a sample of patients into HIV-positive and HIV-negative groups. What type of data does this division constitute? [AIIMS June 2000]
 (a) Nominal
 (b) Ordinal
 (c) Interval
 (d) Ratio

11. A Scatter diagram is drawn to study: [AIIMS June 1997]
 (a) Trend of a variable over a period of time
 (b) Frequency of occurrence of events
 (c) Mean & median values of the given data
 (d) Relationship between two given variables

12. The response which is graded by an observer on an agree or disagree continuum is based on: [AIPGME 2003]
 (a) Visual analog scale
 (b) Guttman Scale
 (c) Likert Scale
 (d) Adjective scale

13. In a study following interpretation are obtained: Satisfied, Very satisfied, Dissatisfied. Which type of scale is this? [AIIMS May 2010, AIPGME 2003]
 (a) Nominal
 (b) Ordinal
 (c) Interval
 (d) Ratio

14. Which of the following is used to denote a continuous variable? [AIIMS May 2010]
 (a) Simple bar
 (b) Histogram
 (c) Pie diagram
 (d) Multiple bar

15. Graph showing relation between 2 variables is: [DPG 2011]
 (a) Scatter diagram
 (b) Frequency polygon
 (c) Picture chart
 (d) Histogram
16. Trends can be best represented by:
 (a) Scatter diagram [Recent Question 2013]
 (b) Bar diagram
 (c) Line diagram
 (d) Pie chart

17. All of the following are example of nominal scale except: [Recent Question 2012]
 (a) Race
 (b) Sex
 (c) Body weight
 (d) Socio-economic status

18. Best way to plot the change of incidence of disease over time is: [Recent Question 2012]
 (a) Histogram
 (b) Line chart
 (c) Scatter diagram
 (d) Ogive

19. Best method to show trend of events with passage of time is: [DNB December 2010]
 (a) Line diagram
 (b) Bar diagram
 (c) Histogram
 (d) Pie chart

20. Graph to correlate two quantitative data is: [DNB June 2009]
 (a) Histogram
 (b) Scatter diagram
 (c) Line diagram
 (d) Frequency curve

21. Likert scale is: [DNB June 2011]
 (a) Ordinal scale
 (b) Nominal scale
 (c) Variance scale
 (d) Categorical scale

Review Questions

22. Which of the following represent frequency of continuous variables? [AP 2006]
 (a) Histogram
 (b) Line diagram
 (c) Simple bar chart
 (d) Component bar chart

23. Frequency is represented as an area in continuous pattern in: [MP 2002]
 (a) Bar diagram
 (b) Histogram
 (c) Pie diagram
 (d) Pictogram

24. Which type of variable “Social Class” is, if it has four categories I to V and Class I is the highest social class and Class V is the lowest? [MP 2006]
 (a) Dichotomous
 (b) Nominal
 (c) Ordinal
 (d) Interval

25. Histogram is used as method of group presentation for: [MH 2003]
 (a) Qualitative data
 (b) Quantitative continuous data
 (c) Quantitative data- discrete type
 (d) Nominal data

26. Out of 11 births in a hospital, 5 babies weighed over 2.5 kg and 5 weighed less than 2.5 kg. What value do 2.5 represent? [AIPGME 2001]
 (a) Geometric average
 (b) Arithmetic average
 (c) Median
 (d) Mode

27. The number of malaria cases reported during the last 10 years in a town is given below, 250, 320, 190, 300, 5000, 100, 260, 350, 320, and 160. The epidemiologist wants to find out the average number of malaria cases reported in that town during the last 10 years. The most appropriate measure of average for this data will be: [AIIMS May 2001, AIMS Nov 2004]
 (a) Arithmetic mean
 (b) Mode
 (c) Median
 (d) Geometric mean

28. The incidence of malaria in an area is 20, 20, 50, 56, 60, 5000, 678, 898, 345, 456. Which of these methods is the best to calculate the average incidence? [AIIMS Nov 01, June 2000]
 (a) Arithmetic mean
 (b) Geometric mean
 (c) Median
 (d) Mode

29. In a bimodal series, if mean is 2 and median is 3, what is the mode? [AIIMS June 1999]
 (a) 5
 (b) 2.5
 (c) 4
 (d) 3

30. Mean value of weight of a group of 10 boys was found to be 18.2 kg. Later it was found that weight of one of the boys was wrongly recorded as 2.0 kg that should have been 20 kg. The true mean weight of the group is: [AIPGME 1998]
 (a) 18.2 kg
 (b) 20.2 kg
 (c) 16.4 kg
 (d) 20 kg

31. If 60 values are arranged in ascending order, middle value is: [AIIMS Dec 1995]
 (a) Arithmetic Mean
 (b) Median
 (c) 30th percentile
 (d) 31st percentile
Review of Preventive and Social Medicine

32. Central tendency is given by:
 (a) Mean
 (b) Median
 (c) Mode
 (d) Chi-square test
 (e) Variance

33. Median is important for all except:
 (a) Blood pressure
 (b) Survival time
 (c) Incubation period
 (d) Health expenses

34. Which of the following statements is/are correct about the distribution of weights of a group of students: 70, 70, 70, 75, 79, 83, 84, 85?
 (a) Mean 77
 (b) Median 77
 (c) Mode 70
 (d) Range 12
 (e) Normal distribution

35. A smoker states that he has been smoking for 6 years. In the first year he was taking up to 5 sticks per day only. In the next 3 years he increased it to half pack per day. In the 5th year, his habits worsened to 1 pack per day. In the last year he stated that his daily stick consumption is 2 packs per day. Select the correct statement Mean, median and mode of number of sticks are:
 (a) 16, 10, 15
 (b) 16, 10, 10
 (c) 10, 10, 15
 (d) 16, 10, 15

36. Median of the following data will be:
 10, 9, 8, 8, 7
 (a) 8.75
 (b) 8
 (c) 9
 (d) 10

37. Most frequently occurring value in a group of data:
 (a) Mean
 (b) Mode
 (c) Median
 (d) Standard deviation

38. What is true among given data 20, 31, 31, 31, 25, 28, 35, 38, 31:
 (a) Mean is 31
 (b) Range is 20-38
 (c) Median is 15
 (d) Mode is 15

39. Commonly used measures of central tendency are all of the following except:
 (a) Mean
 (b) Median

40. Values are arranged in ascending and descending order to calculate:
 (a) Mean
 (b) Mode
 (c) Median
 (d) S.D

41. ‘Centile’ divides data into:
 (a) 100 equal parts
 (b) 4 equal parts
 (c) 10 equal parts
 (d) 20 equal parts

42. 50th percentile is equivalent to:
 (a) Mean
 (b) Median
 (c) Mode
 (d) Range

43. A bacterium can divide every 20 minutes. Beginning with a single individual, how many bacteria will be there in the population if there is exponential growth for 3 hours?
 (a) 18
 (b) 440
 (c) 512
 (d) 1024

44. For a group of n=250 subjects, 40th percentile would be the following value (after arranging in ascending order):
 (a) 7th
 (b) 40th
 (c) 100th
 (d) 140th

45. Central value of a set of 180 values can be obtained by:
 (b) 90th percentile
 (a) 2nd tertile
 (c) 9th decile
 (d) 2nd quartile

46. A measure of location that divides the distribution in the ratio of 3:1 is:
 (a) Median
 (b) First quartile
 (c) Third quartile
 (d) Mode

47. Standard deviation is the measure of:
 (a) Chance
 (b) Central tendency
 (c) Deviation from mean value
 (d) None
48. Median weight of 100 children was 12 kgs. The standard deviation was 3. Calculate the percent coefficient of variance:
 (a) 25%
 (b) 35%
 (c) 45%
 (d) 55%
 [AIIMS May 1994]

49. While calculating the incubation period for measles in a group of 25 kids, standard deviation is 2 and the mean incubation period is 8 days, calculate standard error:
 (a) 0.4
 (b) 1.0
 (c) 2.0
 (d) 0.5
 [AIPGME 1993]

50. Standard deviation of means measures:
 (a) Non-sampling errors
 (b) Sampling errors
 (c) Random errors
 (d) Conceptual errors
 [AIIMS May 01]

51. If the birth weight of each of the 10 babies born in a hospital in a day is found to be 2.8 kg, then the standard deviation of this sample will be:
 (a) 2.8
 (b) 0
 (c) 1
 (d) 0.28
 [AIIMS May 2006, Dec 97, AIPGME 01]

52. Among a 100 women with average Hb of 10 gm%, the standard deviation was 1, what is the standard error?
 (a) 0.01
 (b) 0.1
 (c) 1
 (d) 10
 [AIIMS May 01, 04, 07]

53. If each value of a given group of observations is multiplied by 10, the standard deviation of the resulting observations is:
 (a) Original std. Deviation × 10
 (b) Original std. Deviation/ 10
 (c) Original std. Deviation – 10
 (d) Original std. Deviation it self
 [AIPGME 2004]

54. The Hb level in healthy women has mean 13.5 g/dl and standard deviation 1.5 g/dl, what is the Z score for a woman with Hb level 15.0 g/dl:
 (a) 9.0
 (b) 10.0
 (c) 2.0
 (d) 1.0
 [AIPGME 2005]

55. In a sample of 100 pregnant females, Mean haemoglobin level estimated was 10 gm% with a standard deviation of 1 gm%. What is the Standard error?
 (a) 1 gm%
 (b) 10 gm%
 (c) 0.1 gm%
 (d) 100 gm%
 [AIPGME 2012]

56. Following denotes measures of variability?
 (a) Range
 (b) Mean deviation
 (c) Standard deviation
 (d) Median
 (e) Mode
 [PGI November 2011]

57. Most common deviation used in social medicine is:
 (a) Mean
 (b) Range
 (c) Variance
 (d) Standard deviation
 [Recent Question 2012]

58. In a population of 100 prevalence of candida glabrata was found to be 80%. If the investigator has to repeat the prevalence with 95% confidence what will the prevalence be?
 (a) 78-82%
 (b) 76-84%
 (c) 72-88%
 (d) 74-86%
 [AIIMS PGMEE May 2013]

59. How much population falls between median and median plus one standard deviation in a normal distribution?
 (a) 0.34
 (b) 0.68
 (c) 0.17
 (d) 0.47
 [AIIMS PGMEE November 2013]

60. There is a population of 20000 people with mean haemoglobin being 13.5 gm% having a normal distribution. What proportion of population constitutes proportion more than 13.5 gm%?
 (a) 0.25
 (b) 0.50
 (c) 1
 (d) 0.34
 [AIIMS PGMEE November 2013]

61. Measuring variation between two different units is done through:
 (a) Variance
 (b) Coefficient of variation
 (c) Standard deviation
 (d) Range
 [AIIMS November 2014]

62. True about Standard deviation is/are:
 (a) 1 SD covers 95% values
 (b) Indicated distribution of variables
 (c) Most common method used for dispersion
 (d) Better indicator of variance than range
 (e) Should be used only in normal distributions
 [PGI November 2014]

Review Questions

63. Mean is 230 & SD = 10, then 95% confidence limits is:
 (a) 210 - 250
 (b) 250 - 290
 (c) 290 - 330
 (d) 330 - 370
 [Bihar 2003]
64. Confidence limit in 2 S.D. is: [UP 2002]
 (a) 66%
 (b) 95%
 (c) 98%
 (d) 90%

65. Measures of dispersion all except: [UP 2006]
 (a) Range
 (b) Mean or average deviation
 (c) Standard deviation
 (d) Correlation and regression

66. Confidence limit is calculated by using: [AP 2006]
 (a) Mean and standard error
 (b) Mean and standard deviation
 (c) Median and standard deviation
 (d) Median

67. Z score criteria applicable to: [Kolkata 2002]
 (a) Normal distribution
 (b) skewed deviation
 (c) Chi-square test
 (d) Paired’t test

68. Correct relation between \(S = \) standard deviation & \(V = \) variance is: [MH 2003]
 (a) \(V = \text{square root of } S \)
 (b) \(S = \text{square root of } V \)
 (c) \(V = 2S \)
 (d) \(S = 2V \)

69. S.D. is 1.96, the confidence limit is: [R] 2000
 (a) 33.6%
 (b) 66.6%
 (c) 95%
 (d) 99%

70. Square root of deviation is called: [R] 2000
 (a) Standard deviation
 (b) Standard error
 (c) Mean deviation
 (d) Range

71. Standard deviation does not depend on:
 (a) Mean
 (b) Median [R] 2001
 (c) Range
 (d) Sample size

72. Standard error of mean is called as: [R] 2001
 (a) Standard deviation
 (b) Mode
 (c) Median
 (d) Variable

DISTRIBUTIONS – NORMAL & SKewed

73. Which is the best distribution to study the daily admission of head injury patients in a trauma care centre?
 (a) Normal distribution [AIIMS May 2008]
 (b) Binomial distribution

74. The standard normal distribution:
 (a) Is skewed to the left
 (b) Has mean = 1.0 [AIPGME 05, AIIMS Nov 99]
 (c) Has standard deviation = 0.0
 (d) Has variance = 1.0

75. A normal distribution curve depends on:
 [AIPGME 2000, AIIMS Feb 1997]
 (a) Mean and sample size
 (b) Range and sample size
 (c) Mean and standard deviation
 (d) Mean and median

76. The fasting blood levels of glucose for a group of diabetics is found to be normally distributed with a mean of 105 mg per 100 ml of blood and a standard deviation of 10 mg per 100 ml of blood. From this data is can be inferred that approximately 95% of diabetics will have their fasting blood glucose levels within the limits of:
 (a) 75 and 135 mgs [AIIMS Nov 2003]
 (b) 85 and 125 mgs
 (c) 95 and 115 mgs
 (d) 65 and 145 mgs

77. In a group of 100 children, the mean weight of children is 15 kg. The standard deviation is 1.5 kg. Which one of the following is true? [AIIMS May 2007]
 (a) 95% of all children weight between 12 and 18 kg
 (b) 95% of all children weight between 13.5- and 16.5kg
 (c) 99% of all children weight between 12 and 18 kg
 (d) 99% of all children weight between 13.5 and 16.5kg

78. Which of the following statements is incorrect about standard normal distribution? [AIIMS Dec 1997]
 (a) Shows a ‘bath tub distribution’
 (b) Has mean = 0.0
 (c) Is bilaterally symmetrical bell shaped
 (d) Has variance = 1.0

79. For a negatively skewed data mean will be:
 (a) Less than median [AIIMS May 02, 05]
 (b) More than median [Recent Question 2013]
 (c) Equal to median
 (d) One

80. The distribution of random blood glucose measurements from 50 first year medical students was found to have a mean of 3.0 mmol/litre with a standard deviation of 3.0 mmol/litre. Which of the following is a correct statement about the shape of the distribution of random blood glucose in these first year medical students?
 [AIIMS Nov 2005]
 (a) Since both mean and standard deviation are equal, it should be a symmetric distribution
 (b) The distribution is likely to be positively skewed
 (c) The distribution is likely to be negatively skewed
 (d) Nothing can be said conclusively
81. A chest physician observed that the distribution of forced expiratory volume (FEV) in 300 smokers had a median value of 2.5 litres with the first and third quartiles being 1.5 and 4.5 litres respectively. Based on this data how many persons in the sample are expected to have a FEV between 1.5 and 4.5 litres?
(a) 7.5
(b) 150
(c) 225
(d) 300

82. If the distribution of intra-ocular pressure (IOP) seen in 100 glaucoma patients has an average 30 mm with a SD of 1.0, what is the lower limit of the average IOP that can be expected 95% of times?
(a) 28
(b) 26
(c) 32
(d) 259

83. How much of the sample is included in 1.95 SD?
(a) 99%
(b) 95%
(c) 68%
(d) 65%

84. If the systolic blood pressure in a population has a mean of 130 mmHg and a median of 140 mm Hg, the distribution is said to be?
(a) Symmetrical
(b) Positively skewed
(c) Negatively skewed
(d) Either positively or negatively skewed depending on the Standard deviation

85. For a given set of values, Mean = 20, Median = 24 & Mode = 26. The given distribution is:
(a) Symmetrical
(b) Right-skewed
(c) Left-skewed
(d) Can be either symmetric or skewed

86. A population study showed a mean glucose of 86 mg/dL. In a sample of 100 showing normal curve distribution, what percentage of people have glucose above 86mg/dL?
(a) 34
(b) 50
(c) NIL
(d) 68

87. Systolic blood pressure of a group of normal people between the age of 25-27 years was taken and a mean of 120 mm Hg was found. What will be the expected number of individuals among a group of 100 people taken for study whose systolic blood pressure will be below 120 mm Hg?
(a) 25
(b) 50
(c) 75
(d) 100

88. The PEFR of a group of 11 year old girls follow a normal distribution with mean 300 l/min and standard deviation 20 l/min: [AIIMS Nov 05]
(a) About 95% of the girls have PEFR between 260 and 340 l/min
(b) The girls have healthy lungs
(c) About 5% of girls have PEFR below 260 l/min
(d) All the PEFR must be less than 340 l/min

89. In normal curve: [Karnataka 2006]
(a) Mean = 2 standard deviation
(b) Mean = Median
(c) Mean = Variance
(d) Mean = 1 standard deviation

90. Normal distribution curve: [PGI June 08]
(a) Mean, median, mode are same
(b) B/L symmetrical
(c) bell shape
(d) SD is zero
(e) Mean is one

91. Regarding the normal curve, which of the following statements is true: [PGI Dec 01]
(a) Both limbs of the curve touch the baseline
(b) The curve is bilaterally symmetrical
(c) There is a skew to the right
(d) There is a skew to the left
(e) Mean, median and mode coincide

92. ‘Z score’ is for which type of distribution? [AIPGME 2010]
(a) Normal
(b) Binomial
(c) t
(d) Chi-square

93. Pearson’s Skewness Coefficient is given by:
(a) Mean-Mode/SD
(b) Mode-Mean/SD
(c) SD/Mean-Median
(d) SD/Median-Mean

94. Mean value of marks in a distribution of 100 students in a class is 105 and Standard deviation is 10. How many students will have their marks in the range 85-125?
(a) 50%
(b) 68%
(c) 95%
(d) 99.7%

95. Q-test is used for detecting: [AIIMS PGMEE November 2013]
(a) Outliers
(b) Interquartile range
(c) Difference of means
(d) Difference of proportions

96. When the variables follow standard distribution:
(a) Mean = median
(b) Median = variance
(c) Mean = 2 median
(d) Standard deviation = 2 variance
97. In a left skewed curve, true statement is:
(a) Mean = Median [DNB June 2011]
(b) Mean < Mode
(c) Mean > Mode
(d) Mean = Mode

98. Mean hemoglobin of a group of pregnant females is found to be 10.6 gm/dL with Standard deviation of 2 gm/dL. 5% pregnant females in this group will have their hemoglobin level below: [AIIMS May 2014]
(a) 8.6 gm/dL
(b) 7.31 gm/dL
(c) 6.6 gm/dL
(d) 5.0 gm/dL

Review Questions

99. In a standard normal curve, the area between one standard deviation on either side will be:
(a) 68% [DNB 2000]
(b) 85%
(c) 99.7%
(d) None of the above

100. In a standard normal curve, mean + 2 standard deviations covers:
(a) 60%
(b) 65%
(c) 95%
(d) 99%

101. When the variables follow standard distribution?
(a) Mean = median [DNB 2008]
(b) Median = variance
(c) Mean = 2 median
(d) Standard deviation = 2 variance

102. About standard Normal curve all is true except:
(a) Area = 1 [Bihar 2005]
(b) S.D. = 1 [Recent Question 2012]
(c) Bell shaped
(d) Mean and Median = 1

103. Area covered between two standard deviation in a normal distribution curve: [Kolkata 2004]
(a) 68%
(b) 95.4%
(c) 99.6%
(d) 100%

104. Normal distribution curve is determined by:
(a) Standard deviation and mean
(b) Standard deviation and mode
(c) Mode and median [Rajasthan 2002][MH 2006]
(d) Standard deviation and median

105. For calculation of sample size for a prevalence study all of the following are necessary except:
(a) Prevalence of disease in population
(b) Power of the study [AIPGME 03]
(c) Significance level
(d) Desired precision

106. In the WHO recommended EPI Cluster sampling for assessing primary immunization coverage, the age group of children to be surveyed is:
(a) 0-12 months [AIIMS Nov 2005]
(b) 6-12 months
(c) 9-12 months
(d) 12-23 months

107. In the WHO recommended EPI cluster sampling for assessing primary immunization coverage, the age group of children to be surveyed is:
(a) 0-12 months [AIIMS Nov 1992, & 2008]
(b) 6-12 months
(c) 9-12 months
(d) 12-23 months

108. Sampling method used in assessing immunization status of children under immunization program is:
(a) Systematic sampling [AIIMS May 2004, AIPGME 07]
(b) Stratified sampling
(c) Group sampling
(d) Cluster sampling

109. Following are the sampling techniques used to conduct community health surveys, except:
(a) Simple random [AIIMS May 1994]
(b) Systematic random
(c) Stratified random
(d) Cluster testing

110. The number of patients required in a clinical trial to treat a specify disease increases:
(a) The incidence of the disease decreases [AIPGME 05, AIIMS Nov 02]
(b) The significance level increases
(c) The size of the expected treatment effect increased
(d) The drop-out rate increases

111. In a study, people are separated into certain sub-groups and then some are selected randomly from each of these sub-groups. What type of sampling is being done?
(a) Simple random sampling [AIPGME 2011]
(b) Cluster random sampling
(c) Systematic random sampling
(d) Stratified random sampling

112. True about cluster sampling all except:
(a) Sample size same as simple random [AIIMS May 2011]
(b) It is two stage sampling
(c) Cheaper than other methods
(d) It is a method for rapid assessment

113. For which of the following sampling, a Design effect is used?
(a) Simple random sampling [AIPGME 2012]
(b) Systematic random sampling
(c) Stratified random sampling
(d) Cluster random sampling
114. 50% population having disease with estimated prevalence to be 45-55% with 95% of probability of identifying them minimum sample size required is:
(a) 100
(b) 200
(c) 300
(d) 400

[AIIMS PGMEE May 2013]

115. Simple random sampling is ideal for:
(a) Vaccinated people
(b) Heterogenous population
(c) Homogenous population
(d) All of the above

[DNB December 2010]

116. Stratified sampling is ideal for:
(a) Heterogenous data
(b) Homogenous data
(c) Both
(d) None

[Recent Question 2012]

117. Children surveyed in cluster sampling for coverage of national immunization programme in:
(a) 30 cluster of 5 children
(b) 20 cluster of 5 children
(c) 30 cluster of 10 children
(d) 30 cluster of 7 children

[DNB June 2011]

118. In a study first schools are sampled, then sections, and finally students. This type of sampling is known as:
(a) Stratified sampling
(b) Simple random sampling
(c) Cluster sampling
(d) Multistage sampling

[AIIMS PGMEE November 2012]

119. When number of observations is 25, the number of class intervals must be:
(a) 25
(b) 15
(c) 10
(d) 5

[NBPGET 2013]

120. All of following comes under random sampling method except:
(a) Quota sampling
(b) Simple random sampling
(c) Stratified sampling
(d) Cluster sampling

[DNB December 2011]

121. For an epidemiological study, every 10th person is selected from a population. This type of sampling is known as:
(a) Simple random sampling
(b) Stratified random sampling
(c) Systematic random sampling
(d) Cluster random sampling

[AIIMS November 2014]

Review Questions

122. Simple random sampling:
(a) Provides least number of possible samples
(b) Equal chance to each for collection of certain number for a sample
(c) Picking every 5th or 10th at regular intervals
(d) Sample represent, a corresponding strata of universe

[AP 2006]

123. In maternal and child welfare program the sampling is done by which method?
(a) Systematic
(b) Stratified
(c) Group
(d) Cluster-30

[MH 2000]

PROBABILITY AND ODDS

124. You have diagnosed a patient clinically as having SLE and ordered 6 tests. Out of which 4 tests have come positive and 2 are negative. To determine the probability of SLE at this point, you need to know:
(a) Prior probability of SLE; sensitivity and specificity of each test
(b) Incidence of SLE and predictive value of each test
(c) Incidence and prevalence of SLE
(d) Relative risk of SLE in this patient

[AIPGME 05, AIIMS May 2006] [AIPGME 2007]

125. A diagnostic test for a particular disease has a sensitivity of 0.90 and a specificity of 0.80. A single test is applied to each subject in the population in which the diseased population is 30%. What is the probability that a person, negative to this test, has no disease?
(a) Less than 50%
(b) 70%
(c) 95%
(d) 72%

[AIIMS May 2006]

126. If prevalence of diabetes is 10%, the probability that three people selected at random from the population will have diabetes is:
(a) 0.01
(b) 0.03
(c) 0.001
(d) 0.003

[AIPGME 04]

127. Chance of passing a Genetic disease “y” trait by the affected parents to children is 0.16. They plan to have two children. Probability of both the children having “y” trait is:
(a) Zero
(b) 0.16
(c) 0.32
(d) 0.0256

[AIIMS Dec 1994]

128. For Mrs Rekha, probability of having a baby of BW < 2500 gms is 0.50 and of having a BW 2500-2999 gms is 0.20. So the probability for Mrs. Rekha to have a baby of BW < 3 kg is:
(a) 0.30
(b) 0.70
(c) 0.10
(d) 1.0

[AIPGME 05]
Review of Preventive and Social Medicine

129. Probability of Mr. Ram developing Acute MI in his lifetime is 0.75. What are his Odds of developing Acute MI in his lifetime? [AIPGME 04]
(a) 3:4
(b) 3:1
(c) 4:3
(d) 1:3

130. The events A and B are mutually exclusive, so:
(a) Prob (A or B) = Prob (A) + Prob (B)
(b) Prob (A and B) = Prob (A) X Prob (B)
(c) Prob A) = Prob (B)
(d) Prob A) + Prob (B) = 1 [AIPGME 05]

Review Questions

131. There were 50 patients in a ward 20 girls and 30 boys of them 10 girls and 20 boys required surgery. What is the probability of each patient being selected correctly for surgery: [DNB 2008]
(a) 2/6
(b) 3/5
(c) 6/25
(d) 1/6

132. What is the probability that confounding factor fall to the right of 95%: [UP 2004]
(a) 1 in 5
(b) 1 in 10
(c) 1 in 15
(d) 1 in 20

STATISTICAL TESTS

133. In a study, variation in cholesterol was seen before and after giving a drug. The test which would give its significance is [AIPGME 01, 02, 07]
(a) Unpaired t-test
(b) Fischer test
(c) Paired t-test
(d) Chi-square test

134. Square root of p1q1/n1 + p2q2/n2 is a measure of:
(a) Mean [AIIMS Dec 1995]
(b) Standard error of difference between two means
(c) Standard error of difference between two proportions
(d) Normal deviate

135. A cardiologist waewnts to study the effect of an antivas tatin drug. He notes down the initial cholesterol levels of 50 patients and then administers the drug on them. After a month’s treatment, he measures the cholesterol level again. Which of the following is the most appropriate to test the statistical significance of the change in blood cholesterol? [AIPGME 02]
(a) Paired t-test
(b) Unpaired or independent t-test
(c) Analysis of variance
(d) Chi-square test

136. A chi-square test would be most appropriate for testing which one of the following hypotheses? [AIPGME 2000]
(a) That the mean AIPGE score of Delhi students is greater than that of mumbai students
(b) That a smaller proportion of people who were immunized against chickenpox subsequently develop zoster than those who were not immunized
(c) That the mean blood pressure of black and white male-hypertensive patients taking ACE inhibitors is the same as that of black and white female-hypertensive patients taking ACE inhibitors and that of black and white males and females taking diuretics and placebos
(d) That the mean cost of treating a patient with coronary artery disease with angioplasty is greater than the mean cost of providing medical treatment

137. In a particular trial, the association of lung cancer with smoking is found to be 40% in one sample and 60% in another. What is the best test to compare the results? [AIIMS May 2001]
(a) Chi Square Test
(b) Fischer Test
(c) Paired ‘t’ Test
(d) ANOVA Test

138. Height of group of 20 Boys aged 10 years was 140 + 13 cm & 20 girl of same age was 135 cm + 7cm to test the statistical significance of difference in height, test applicable is: [AIIMS Nov 05]
(a) X²
(b) Z
(c) t
(d) F

139. The mean B.P. of a group of persons was determined and after an interventional trial, the mean BP was estimated again. The best test to be applied to determine the significance of intervention is: [AIIMS Dec 1997]
(a) Chi-square
(b) Paired ‘t’ test
(c) Correlation coefficient
(d) t-test

140. An investigator wants to study the association between maternal intake of iron supplements (Yes or No) and incidence of low birth weight (< 2500 or > 2500) gms. He collects relevant data from 100 pregnant women as to the status of usage of iron supplements and the status of low birth weight in their newborns. The appropriate statistical test of hypothesis advised in this situation is: [AIIMS Nov 03]
(a) Paired – t-test
(b) Unpaired or independent t-test
(c) Analysis of variance
(d) Chi – Square test

141. While applying chi-square test to a contingency table of 4 rows and 4 columns, the degrees of freedom would be: [AIPGME 1995]
(a) 1
(b) 4
(c) 9
(d) 8

[https://kat.cr/user/Blink99/]

142. In a 3 x 4 contingency tables, the number of degrees of freedom equals to: [AIIMS Nov 2004]
(a) 1
(b) 5
(c) 6
(d) 12

143. A cardiologist wants to study the effect of an antihypertensive drug. He notes down the initial systolic blood pressure (mmHg) of 50 patients and then administers the drug on them. After a week’s treatment, he measures the following is the most appropriate statistical test of significance to test the statistical significance of the change in blood pressure: [AIIMS June 1997, AIIMS May 1995, AIIMS Nov 2004]
(a) Paired t-test
(b) Unpaired or independent t-test
(c) Analysis of variance
(d) Chi-square test

144. A study was undertaken to assess the effect of a drug in lowering serum cholesterol levels. 15 obese women and 10 non-obese women formed the 2 limbs of the study. Which test would be useful to correlate the results obtained?
(a) ANOVA test
(b) Student’s t-test
(c) Chi square test
(d) Fischer test

145. In a particular trial, the association of lung cancer with smoking is found to be 40% in one sample and 60% in another. What is the best test to compare the results?
(a) Chi square test
(b) Fischer test
(c) Paired t test
(d) ANOVA test

146. Not required for Chi-square test is: [AIIMS Dec 1997]
(a) Mean & SD of the groups
(b) Each expected cell frequency > 5
(c) Large sample
(d) Contingency Table

147. Appropriate statistical method to compare two means is: [AIPGME 2000]
(a) Chi-square test
(b) Student’s t-test
(c) Odds Ratio
(d) Correlation Coefficient

148. Appropriate statistical method to compare two proportions is: [AIPGME 1995]
(a) Chi-square test
(b) Student’s t-test
(c) Odds Ratio
(d) Correlation Coefficient

149. In a given data, degree of freedom will be: [AIIMS May 06]

150. For testing the statistical significance of the difference in heights of school children:
(a) Student’s ‘t’ test
(b) Chi-squared test
(c) Paired ‘t’ test
(d) One way analysis of variance (one way ANOVA)

151. Not true about Chi-square test is: [AIPGME 03, AIIMS June 99]
(a) Tests the significance of difference between two proportions
(b) Tells about presence or absence of an association between two variables
(c) Directly measures the strength of association
(d) Can be used when more than two groups are to be compared

152. Mean bone density amongst 2 group of 50 people each is compared, which would be the best test? [AIIMS May 2008]
(a) Chi square
(b) Student t test
(c) Mc nemar chi square test
(d) Fischer test

153. An antihypertensive drug is studied before and after using it for treatment of a patient, what is this study?
(a) Chi square test
(b) Paired ‘t’ test
(c) Student ‘t’ test
(d) Regression
(e) Co-relation

154. What will be the degree of freedom in no. of row 3 and col. 4: [PGI Dec 2002]
(a) 3
(b) 6
(c) 4
(d) 9
(e) 10

155. An investigator finds out that 5 independent factors influence the occurrence of a disease. Comparison of multiple factors that are responsible for the disease can be assessed by: [AIIMS May 2011]
(a) ANOVA
(b) Multiple linear regression
(c) Chi-square test
(d) Multiple logistic regression

Duration of developing AIDS | Blood group |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>0 – 5 years</td>
<td>20</td>
</tr>
<tr>
<td>5 – 10 years</td>
<td>110</td>
</tr>
<tr>
<td>10 – 15 years</td>
<td>12</td>
</tr>
</tbody>
</table>

(a) 12
(b) 6
(c) 9
(d) 20

https://kat.cr/user/Blink99/
156. Mean blood alcohol levels are measured in patients before and after using an interventional drug. The statistical test of significance to be applied is:
(a) Chi-square test
(b) ANOVA
(c) Paired students t-test
(d) Unpaired students t-test

[AIPGME 2012]

157. Tests of Significance include all except: [JIPMER 2014]
(a) t
(b) Z
(c) SD
(d) Chi square

Review Questions

158. Chi-square test is used to measure the degree of: [Bihar 2004]
(a) Significance of difference between two proportions
(b) Association between two variables
(c) Correlation between two variables
(d) Agreement between two observations

159. True regarding Chi-square test is: [UP 2000]
(a) Measure the significance of difference between two proportion
(b) Null hypothesis is equal
(c) Does not test the significance
(d) Tests correlation and regression

160. In a table of 2×2, the degree of freedom is:
(a) 4
(b) 1
(c) 8
(d) 7

[UP 2001]

161. 1 degree of freedom in chi – square test, the value of x^2 for a probability of 0.05 is: [UP 2007]
(a) 0.45
(b) 2.41
(c) 3.84
(d) 4.34

162. Test of association between two qualitative variables is done by:
(a) Chi-square test
(b) Correlation
(c) Regression
(d) None

[AP 2004]

163. About chi-square test, true is: [MP 2000]
(a) <0.001 is statistically significant
(b) Less no. of samples are associated with less error
(c) Categories of data used in test need not be mutually exclusive and discrete
(d) Tests correlation and regression

164. A study who planned to find out the effect of iron supplementation during pregnancy on the birth weight of new born children. Two groups, one with iron supplementation and the other without iron supplementation during pregnancy were compared. Birth weight of new borns were recorded as means \pm SD. Which significant test (statistical) is appropriate for comparison of birth weights between the two groups? [MP 2008]
(a) Unpaired ‘t’ test
(b) Paired ‘t’ test
(c) McNemae’s chi-square test
(d) Chi-square test

165. A study measures a patient’s serum cholesterol before and after a new lipid-lowering therapy has been given. What type of significance test should be used to analyze the data? [MH 2007]
(a) Paired t-test
(b) Student’s t-test
(c) Chi-squared test
(d) Pearson’s test

166. What would be degree of freedom if 5 row and 6 column: [R 2009]
(a) 30
(b) 20
(c) 40
(d) 25

167. Chi square test 5 rows/4 columns, degree of freedom is: [Recent Question 2012] [Recent Question 2013]
(a) 9
(b) 12
(c) 16
(d) 20

168. ANOVA is used: [Recent Question 2012]
(a) To compare means in 2 groups
(b) To compare means in 3 or more groups
(c) To compare means in 1 group before and after intervention
(d) To find correlation

169. Not required for chi-square test: [Recent Question 2012]
(a) Null hypothesis
(b) Degrees of freedom
(c) Means in different groups
(d) Proportions in different groups

170. Chi-square test is for: [DNB December 2010]
(a) Standard error of mean
(b) Standard error of proportion
(c) Standard error of difference between 2 means
(d) Standard error of difference between proportions

171. Degree of freedom for 2 X 2 contingency table is: [DNB June 2011]
(a) 1
(b) Zero
(c) 2
(d) 4

172. Degree of freedom of a chi square test in contingency table of 2 by 3 is: [DNB December 2009]
(a) 1.0
(b) Zero
(c) 2
(d) 4
173. Degree of freedom for a contingency table with 3 rows and 6 columns is: [Recent Question 2012]
 (a) 2
 (b) 3
 (c) 10
 (d) 18

174. Test is used to compare Kaplan-meier survival curve:
 (a) ANOVA [Recent Question 2012]
 (b) Bland altmann analysis
 (c) Chi square test
 (d) Cox proportional hazards test

175. Test(s) used to compare two proportions is/are:
 (a) Paired t-test [PGI November 2013]
 (b) Unpaired t-test
 (c) ANOVA
 (d) Fischer’s exact test
 (e) Chi-square test

CORRELATION AND REGRESSION

176. The correlation between variables A and B in a study was found to be 1.1. This indicates:
 (a) Very strong correlation [AIPGME 02]
 (b) Moderately strong correlation
 (c) Weak correlation
 (d) Computational mistake in calculating correlation

177. A lecturer states that the correlation coefficient between prefrontal blood flow under cognitive load and the severity of psychotic symptoms in schizophrenic patients is -1.24. You can therefore conclude that:
 [AIIMS June 2000]
 (a) Pre-frontal blood flow under cognitive load is a good predictor of the severity of psychotic symptoms in schizophrenic patients
 (b) Prefrontal blood flow under cognitive load accounts for a large proportion of the variance in psychotic symptoms in schizophrenic patients
 (c) Psychosis or schizophrenia is in some way a cause or partial cause of low prefrontal blood flow under cognitive load
 (d) The lecturer has reported the correlation coefficient incorrectly

178. A cardiologist found a highly significant correlation coefficient (r = 0.90, p = 0.01) between the systolic blood pressure values and serum cholesterol values of the patients attending his clinic. Which of the following statements is a wrong interpretation of the correlation coefficient observed? [AIPGME 05]
 (a) Since there is a high correlation, the magnitudes of both the measurements are likely to be close to each other
 (b) A patient with a high level of systolic BP is also likely to have a high level of serum cholesterol
 (c) A patient with a low level of systolic BP is also likely to have a low level of serum cholesterol
 (d) About 80% of the variation in systolic blood pressure among his patients can be explained by their serum cholesterol values and vice versa

179. Which of the following is not true about ‘correlation’? [AIIMS June 97]
 (a) It indicates degree of association between two characteristics
 (b) Correlation coefficient of 1 means that the two variables exhibit linear relationship
 (c) Correlation can measure risk
 (d) Causation implies correlation

180. Best way to study relationship between two variables is:
 (a) Bar chart [AIPGME 02]
 (b) Scatter diagram
 (c) Histogram
 (d) Pie chart

181. If we know the value of one variable in an individual & wish to know the value of another variable, we calculate:
 [AIIMS June 1997]
 (a) Coefficient of correlation
 (b) Coefficient of regression
 (c) SE of mean
 (d) Geometric mean

182. If the correlation of height with age is given by the equation y=a + biopsy, what would be the nature of the graph? [AIPGME 05]
 (a) Straight line
 (b) Parabola
 (c) Hyperbola
 (d) Sigmoid curve

183. What can be true regarding the coefficient of correlation between IMR and economic status?
 (a) r = + 1 [AIIMS May 2001]
 (b) r = - 1
 (c) r = + 0.22
 (d) r = - 0.8

184. The Correlation Coefficient between Smoking & Lung Cancer was found to be 1.4. This indicates:
 [AIIMS Feb 1997]
 (a) Weak correlation
 (b) Moderate correlation
 (c) Strong correlation
 (d) Mistake in calculation

185. Study finds a correlation coefficient of + 0.7 between self reported work satisfaction & expectancy of life in a random sample of 5000 corporate workers. (p = 0.01). This means that:
 [AIIMS Dec 1997]
 (a) Work satisfaction improves life expectancy
 (b) Strong statistically significant (+) association between work satisfaction and life expectancy
 (c) 70% people who enjoy work shall live longer
 (d) 70% association between work satisfaction & life expectancy
Review of Preventive and Social Medicine

186. Total Cholesterol level = a + b (calorie intake) + c (physical activity) + d (body mass index); is an example of:
 (a) Simple linear regression [AIPGME 05]
 (b) Simple curvilinear regression
 (c) Multiple linear regression
 (d) Multiple logistic regression

187. A coefficient of correlation value of "r = +0.8" indicates
 (a) Strong direct relationship between two variables
 (b) Strong inverse relationship between two variables
 (c) Insignificant association between two variables
 (d) One variable is the cause of the other variable

188. Correlation in height & weight are measured by:
 (a) Coefficient of variation [Recent Question 2013]
 (b) Range of variation
 (c) Correlation coefficient
 (d) None

189. Mosquitoes decrease as height increases in:
 (a) Positive correlation [Recent Question 2013]
 (b) Negative correlation
 (c) Bidirectional
 (d) Zero correlation

190. Strong correlation is signified by a correlation coefficient of:
 (a) Zero
 (b) 1
 (c) Less than 1
 (d) More than 1

Review Questions

191. If R=2.86, it means:
 (a) positive correlation [Kolkata 2009]
 (b) negative correlation
 (c) no correlation
 (d) it is a wrong statement

192. Correlation co-efficient varies between:
 (a) 0 to +1
 (b) -1 to 0
 (c) -1 to +1
 (d) +1 to +2

ERRORS AND P-VALUE

193. Type I sampling error is classified as:
 (a) Alpha error [AIPGME 01]
 (b) Beta error
 (c) Gamma error
 (d) Delta error

194. The "P" value of a randomized controlled trial comparing operation A (new procedure) & Operation B (Gold standard) is 0.04. From this, we conclude that:
 (a) Type II error is small & we can accept the findings of the study [AIPGME 03]
 (b) The probability of false negative conclusion that operation A is better than operation B, when in truth it is not, is 4%
 (c) The power of study to detect a difference between operation A & B is 96%
 (d) The probability of a false positive conclusion that operation 'Operation A is better than Operation B', when in truth it is not, is 4%

195. Power of study can be increased by:
 (a) Increasing a error [AIPGME 2002]
 (b) Decreasing b error [AIIMS May 2014]
 (c) Decreasing a error
 (d) Increasing b error

196. In assessing the association between maternal nutritional status and the birth weight of the newborns, two investigators A and B studied separately and found significant results with p values 0.02 and 0.04 respectively. From this information, what can you infer about the magnitudes of association found by the two investigations? [AIIMS Nov 2004]
 (a) The magnitude of association found by investigator A is more than that found by B
 (b) The magnitude of association found by investigator B is more than that found by A
 (c) The estimates of association obtained by A and B will be equal, since both are significant
 (d) Nothing can be concluded as the information given is inadequate

197. A randomized trial comparing efficacy of two regimens showed that difference is statistically significant with p<0.001 but in reality the two drugs do not differ in their efficacy. This is an example of:
 (a) Type-I error (a error) [AIIMS May 2006]
 (b) Type – II error (b error)
 (c) 1-a
 (d) 1-b

198. After applying a statistical test, an investigator gets the 'p value' as 0.01. It means that:
 (a) The probability of finding a significant difference is 1%
 (b) The probability of declaring a significant difference is 1%
 (c) The difference is not significant 1% times and significant 99% times
 (d) The power of the test used is 99%

199. All are true about P-value except: [AIPGME 03]
 (a) Is the probability of committing Type-I error
 (b) Is equal to 1-b
 (c) Is the chance that the presence of difference is concluded when actually there is none
 (d) When P-value is less than a, the result is statistically significant
200. All are true except:
(a) Alpha is the maximum tolerable probability of type-I error
(b) Beta is the probability of type-II error
(c) When Null Hypothesis is true but is rejected, it is Type-II error
(d) P-value can be more or less than a

201. Statistical Power of a trial is equal to:
(a) 1 + α
(b) 1 - β
(c) α + β
(d) α / β

202. P-value is the probability of:
(a) Not rejecting a null hypothesis when true
(b) Rejecting a null hypothesis when true
(c) Not rejecting a null hypothesis when false
(d) Rejecting a null hypothesis when false

203. An investigator wants to study the association between maternal intake of iron supplements (Yes/ No) and birth weights (in gms) of newborn babies. He collects relevant data from 100 pregnant women and their newborns. What statistical test of hypothesis would you advise for the investigator in this situation?
(a) Chi-Square test
(b) Unpaired or independent t-test
(c) Analysis of Variance
(d) Paired t-test

204. A randomized trial comparing the efficacy of two drugs showed a difference between the two with a p value of <0.005. In reality, however the two drugs do not differ. This therefore is an example of:
(a) Type I error (alpha error)
(b) Type II error (beta error)
(c) 1 - α (alpha)
(d) 1 - β

205. The risk factor association of smoking with pancreatic cancer was studied in a case control study. The values are:

<table>
<thead>
<tr>
<th>Group</th>
<th>Odds ratio</th>
<th>95% Confidence limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.5</td>
<td>1.0 – 3.1</td>
</tr>
<tr>
<td>B</td>
<td>1.4</td>
<td>1.1 – 1.7</td>
</tr>
<tr>
<td>C</td>
<td>1.6</td>
<td>0.9 – 1.7</td>
</tr>
</tbody>
</table>

Which of the following is correct
(a) Risk is more associated with Group A
(b) Risk is more associated with Group B
(c) Risk is more associated with Group C
(d) Risk is equally associated with all three groups

206. All of the following are true about Standard error except?
(a) As the sample size increases, Standard error will also increase
(b) Based on Normal distribution
(c) It depends on Standard deviation of mean
(d) Is used to estimate confidence limit

207. P-value is defined as:
(a) Probability of declaring a significant difference when actually it is not present
(b) Probability of declaring a significant difference when actually it is present
(c) Probability of not declaring a significant difference when actually it is not present
(d) Probability of not declaring a significant difference when actually it is present

208. Rejecting a null hypothesis when it is true is called as:
(a) Type 1 error
(b) Type 2 error
(c) Type 3 error
(d) Type 4 error

209. When we say that “the difference is significant”, it means that:
(a) It is likely by chance and when P > 0.05
(b) It is unlikely by chance and when P > 0.05
(c) It is unlikely by chance and when P < 0.05
(d) It is likely by chance and when P < 0.05

Review Questions

210. P value significant indicates:
(a) Probability of Type I Error is < 0.05
(b) Probability null hypothesis is correct
(c) Probability null hypothesis is false
(d) To find out meaning of regression

211. In a test of significance, P value is 0.023 the observed difference in study can be considered as:
(a) Null hypothesis accepted and the study is rejected
(b) Null hypothesis rejected and the study is accepted
(c) Null hypothesis accepted and the study is accepted
(d) Null hypothesis rejected and the study is also rejected

212. Which is the best method to compare the results obtained by a new test and a gold standard test?
(a) Correlation study
(b) Regression study
(c) Bland and Altman analysis
(d) Kolmogorov-Smirnov test

213. The parameters of sensitivity and specificity are used for assessing:
(a) Criterion validity
(b) Construct validity
(c) Discriminant validity
(d) Content validity
214. Which of the following statements about Delphi method is true? [AIPGME 2008]
 (a) Method involves formation of a team to undertake and monitor a Delphi on a given subject
 (b) Selection of one or more panels to participate in the exercise. Customarily, the panelists are experts in the area to be investigated
 (c) The first round in Delphi method involves development of a questionnaire
 (d) All are true

215. A researcher draws an unbiased sample of 100 adult delhites and finds that their mean weight is 72 kg with a standard deviation of 1.5. 95% CI for of wt of delhites shall be: [AIPGME 1996]
 (a) 66 and 78 kg
 (b) 69 and 75 kg
 (c) 70.5 and 73.5 kg
 (d) None of the above

216. In a drug trial A 50 yr old patient with CAD is being interviewed about his dietary & smoking habits. The possible bias that might be introduced might be: [AIIMS Feb 1997]
 (a) Selection bias
 (b) Berkesonian bias
 (c) Recall bias
 (d) No possibility of bias

217. Pearson or spearman coefficient is used for evaluation of: [AIIMS Nov 04]
 (a) Differences in proportion
 (b) Comparison of more than 2 means
 (c) Comparison of variance
 (d) Correlation

218. Lj chart is used for: [AIIMS May 07]
 (a) Accuracy
 (b) Precision
 (c) Odds
 (d) Likelihood ratio

219. What is NOT true about a case control study? [AIPGME 06]
 (a) Gives attributable risk
 (b) Is less expensive
 (c) Involves fewer subjects
 (d) Provides quick results

220. If a biochemical test gives the same reading for a sample on repeated testing, it is inferred that the measurement is: [AIIMS June 1992]
 (a) Precise
 (b) Accurate
 (c) Specific
 (d) Sensitive

221. Mean, Median and Mode are: [AIIMS Dec 94, & Nov 2007]
 (a) Measures of dispersion
 (b) Measures association between two variables
 (c) Test of significance
 (d) Measures of central tendency

222. If a 95% Confidence Interval for prevalence of Cancer in Smokers aged >65 years is 56% to 76%, the chance that the prevalence could be less than 56% is: [AIIMS May 07]
 (a) Practically NIL
 (b) 44%
 (c) 2.5%
 (d) 5%

223. A test which produces similar results when repeated, but values obtained are not close to actual/false value, is: [AIIMS Nov 02]
 (a) Precise but inaccurate
 (b) Precise and accurate
 (c) Imprecise and accurate
 (d) Imprecise and inaccurate

224. Receiver Operator Characteristic (ROC) curve is usually drawn between: [AIPGME 06]
 (a) Sensitivity & Specificity
 (b) (1 - Sensitivity) & Specificity
 (c) Sensitivity & (1 - Specificity)
 (d) (1 - Sensitivity) & (1 - Specificity)

225. Sensitivity for a test 'X' is 0.90 and Specificity is .50. Prevalence of disease 'Y' in a population is 10%. Post-test probability of test 'X' when applied to population 'Y' is: [AIIMS May 05]
 (a) 0.90
 (b) 0.84
 (c) 0.16
 (d) 0.10

226. Sensitivity of a screening test 'X' is 90 % while its specificity is 10 %. Likelihood ratio for a positive test is: [AIIMS May 07]
 (a) 9.0
 (b) 8.0
 (c) 1.0
 (d) 0.1

227. The usefulness of a screening test depends upon its: [AIIMS May 03]
 (a) Sensitivity
 (b) Specificity
 (c) Reliability
 (d) Predictive value

228. When a diagnostic test is used in “series” mode, then: [AIPGME 01, 02, AIIMS Nov 02]
 (a) Sensitivity increases but specificity decreases
 (b) Specificity increases but sensitivity decreases
 (c) Both sensitivity and specificity increase
 (d) Both sensitivity and specificity decrease

229. Mean, Medium and Mode are: [Karnataka 2004]
 (a) Measure of dispersion
 (b) Measure association between two variables
 (c) Test of significance
 (d) Measure of central tendency

230. Association can be measured by all except: [AIIMS May 2009]
 (a) Correlation coefficient
 (b) Cronbach’s alpha
 (c) ‘P value
 (d) Odds ratio
231. Method used for comparison of a new test with an available gold-standard test is:
(a) Regression analysis/Likelihood test
(b) Correlation analysis/Bland and Altman test
(c) Baltin and Altimore method
(d) Kimorov and Samletor technique

232. If confidence limit is increased, then:
(a) Previously insignificant data becomes significant
(b) Previously significant data becomes insignificant
(c) No effect on significance
(d) Any change can happen
DATA, VARIABLES AND SCALES

1. Ans. (a) Quantitative data of a group of patients [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p104 and Methods in Biostatistics by Mahajan, 6/e p20, 7/e p18; Park 21/e p783-85, Park 22/e p787-89]
 - Data presentation:

Quantitative data	Qualitative data
Histogram	Bar diagram
Frequency polygon	Pie/Sector diagram
Frequency curve	Pictogram/Picture diagram
Line chart/ graph	Map diagram/Spot map
Cumulative frequency diagram (Ogive)	
Scatter/ Dot diagram	

 - *Histogram*:
 - Is graphical presentation for ‘continuous quantitative data’
 - Continuous groups are marked on x-axis (abscissa) while frequencies are marked on y-axis (ordinate).

2. Ans. (b) Severity of anemia [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p51-52]
 - Scales of measurement:

<table>
<thead>
<tr>
<th>Categorical scales</th>
<th>Dimensional scales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal scale</td>
<td>Ordinal scale</td>
</tr>
<tr>
<td>Definition</td>
<td>Based on NOM (names); no specific order</td>
</tr>
<tr>
<td>Variables</td>
<td>Based on ORD (order); grading into categories</td>
</tr>
<tr>
<td>Examples</td>
<td>Qualitative</td>
</tr>
<tr>
<td>Race</td>
<td>TNM staging (cancers)</td>
</tr>
<tr>
<td>Religion</td>
<td>Severity of a disease</td>
</tr>
<tr>
<td>Country of birth</td>
<td>Social classes</td>
</tr>
<tr>
<td>Clinical features</td>
<td></td>
</tr>
<tr>
<td>Sites of lymphadenopathy</td>
<td></td>
</tr>
<tr>
<td>Sex of child</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Based on ME (measurement); in terms of quantities</td>
</tr>
<tr>
<td></td>
<td>Quantitative</td>
</tr>
<tr>
<td></td>
<td>Blood glucose</td>
</tr>
<tr>
<td></td>
<td>Hemoglobin level</td>
</tr>
<tr>
<td></td>
<td>Serum cholesterol</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
</tr>
<tr>
<td></td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td>Mid-arm circumference</td>
</tr>
</tbody>
</table>

Contd...
Biostatistics

<table>
<thead>
<tr>
<th>Permissible arithmetic</th>
<th>Type of anemia</th>
<th>Blood pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABO blood group</td>
<td>Pulse rate</td>
</tr>
<tr>
<td></td>
<td>Site of malignancy</td>
<td>Temperature (°C, °F, K) scale</td>
</tr>
<tr>
<td></td>
<td>Counting</td>
<td>Interval scale: +/-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ratio scale: ×/÷</td>
</tr>
</tbody>
</table>

| Permissible statistics | Mode, Chi-square | Median, Percentile |

- Metric scale is of 2 types:
 - Interval scale (Absence of absolute zero; no ratios are possible): Examples: Centigrade/Fahrenheit temperature scale
 - Ratio scale (Presence of absolute zero; thus ratios are possible): Examples: Weight, Height, Blood glucose, Hemoglobin level, Serum cholesterol, Mid-arm circumference, Blood pressure, Pulse rate, Kelvin temperature scale

- Statistically most preferable scale of measurement: Metric scale
- Statistically least preferable scale of measurement: Nominal scale

In the given question, Severity of anemia (mild – moderate – severe) is a continuum of outcome for a variable, thus is measured on an ordinal scale.

Also, Type of anemia (Iron deficiency anemia, Megaloblastic anemia) is measured on a nominal scale, Hemoglobin level & Serum ferritin level (direct measurement possible) is measured on a metric scale.

3. Ans. (d) Continuous [Ref. *Simple Biostatistics by Indrayan & Indrayan, 1/e* p53-54]

- Blood pressure (BP):
 - Is a quantitative variable: Can be measured directly
 - Is a continuous variable: Sphygmomanometer can only measure with a minimum count of 2 mm Hg; but it has several in-between values
 - Is a polytomous variable: BP can have several values possible.

Also Remember

- **Weight**: Is a quantitative, continuous, polytomous variable
- **Height**: Is a quantitative, continuous, polytomous variable
- **Pulse rate (PR)**: Is a quantitative, continuous, polytomous variable
- **Blood pressure (BP)**: Is a quantitative, continuous, polytomous variable
- **Temperature**: Is a quantitative, continuous, polytomous variable
- **ABO blood group**: Is a qualitative, discrete, polytomous variable
- **Rhesus (Rh) blood group**: Is a qualitative, discrete, dichotomous variable
- **Gender**: Is a qualitative, discrete, dichotomous variable.

4. Ans. (b) Continuous [Ref. *Simple Biostatistics by Indrayan & Indrayan, 1/e* p104 and *Methods in Biostatistics by Mahajan, 6/e* p20-22, 7/e p18-20; *Park 21/e* p784, *Park 22/e* p788]

Also Remember

- **Frequency polygon**: Is an area diagram of frequency distribution developed over a histogram (by joining mid-points of class intervals at heights of frequencies)
- **Frequency curve**: When no. of observations is large and group-interval is reduced, then frequency polygon loses its angularities to become a curve
- **Line chart/graph**: Is a frequency polygon presenting variations by line; shows the trend of an event over a period of time
- **Cumulative frequency diagram (Ogive)**: Is graph of cumulative relative frequency distribution
- **Scatter/Dot diagram (Correlation diagram)**: Is used to depict ‘correlation (relationship) between 2 quantitative variables’
- **Bar diagram**: Is for visual comparison of magnitude of different frequencies in discrete data
- **Pie/Sector diagram**: Is for ‘presentation of discrete data of qualitative characteristics’, all pie categories are mutually exclusive, with a total of 100% (360°)
- **Pictogram/Picture diagram**: Is a method to impress the frequency of occurrence of events to common man
- **Map diagram/Spot map**: Is prepared to show geographical distribution of frequencies of characteristic; Each spot (dot) marks one frequency.
5. Ans. (c) Gender [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p53]

- Variable: Is a characteristic or attribute that vary from person to person, from time to time and from person to person.

<table>
<thead>
<tr>
<th>Quantitative variable</th>
<th>Qualitative variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that can be measured directly</td>
<td>Is a variable that cannot be measured directly</td>
</tr>
<tr>
<td>Measured on ordinal/metric scale</td>
<td>Measured on a nominal scale</td>
</tr>
<tr>
<td>Examples:</td>
<td>Examples:</td>
</tr>
<tr>
<td>Weight</td>
<td>ABO blood group</td>
</tr>
<tr>
<td>Height</td>
<td>Gender</td>
</tr>
<tr>
<td>Mid-arm circumference</td>
<td>Sites of lymphadenopathy</td>
</tr>
<tr>
<td>Blood sugar level</td>
<td>Presence of Diabetes</td>
</tr>
<tr>
<td>°C/°F temperature scale</td>
<td>Weather</td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>Obesity</td>
</tr>
<tr>
<td>Hemoglobin level</td>
<td>Type of anemia</td>
</tr>
<tr>
<td>Serum cholesterol level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discrete variable</th>
<th>Continuous variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that has few possible values & no in-between values</td>
<td>Is a variable that has large no. of possible values & several in-between values</td>
</tr>
<tr>
<td>Measured on nominal/ordinal scale</td>
<td>Measured on a metric scale</td>
</tr>
<tr>
<td>Examples:</td>
<td>Examples:</td>
</tr>
<tr>
<td>ABO blood group</td>
<td>Weight</td>
</tr>
<tr>
<td>Gender</td>
<td>Height</td>
</tr>
<tr>
<td>Sites of lymphadenopathy</td>
<td>Mid-arm circumference</td>
</tr>
<tr>
<td>Presence of Diabetes</td>
<td>Blood sugar level</td>
</tr>
<tr>
<td>Parity</td>
<td>°C/°F temperature scale</td>
</tr>
<tr>
<td>Obesity</td>
<td>Body mass index (BMI)</td>
</tr>
<tr>
<td>No. of living children in a family</td>
<td>Hemoglobin level</td>
</tr>
<tr>
<td></td>
<td>Serum cholesterol level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dichotomous (Binary) variable</th>
<th>Polyotomous variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a variable that has only 2 possible values</td>
<td>Is a variable that has > 2 possible values</td>
</tr>
<tr>
<td>Examples:</td>
<td>Examples:</td>
</tr>
<tr>
<td>Rh blood group</td>
<td>ABO blood group</td>
</tr>
<tr>
<td>Weight > 80 kg</td>
<td>Weight</td>
</tr>
<tr>
<td>Gender</td>
<td>Height</td>
</tr>
<tr>
<td>Presence of Diabetes</td>
<td>Mid-arm circumference</td>
</tr>
<tr>
<td>Obesity</td>
<td>Blood sugar level</td>
</tr>
<tr>
<td>Temperature < 12 °C</td>
<td>°C/°F temperature scale</td>
</tr>
<tr>
<td>Blood group B</td>
<td>Body mass index (BMI)</td>
</tr>
<tr>
<td></td>
<td>Serum cholesterol level</td>
</tr>
</tbody>
</table>

Also Remember

- **BP is a continuous variable:** Sphygmanometer can only measure with a minimum count of 2 mm Hg; but it has several in-between values.
- **Pulse rate (PR) is a continuous variable:** Human mind can only process 72 or 73 beats per minute (and not 72.3 beats per minute); but if PR is counted as 216 in 3 minutes then PR will be 72.3 beats per minute.
6. Ans. (c) Bar chart
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p101-02 and Methods in Biostatistics by Mahajan, 6/e p30-34, 7/e p28-32; Park 21/e p784, Park 22/e p788]

 - Bar diagram/chart:
 - Is for visual comparison of magnitude of different frequencies in discrete data
 - Is a diagram appropriate for disjoint categories (nominal or ordinal) to show the no. of subjects or mean or rates by bars of corresponding height
 - Is ‘the most versatile of all statistical diagrams’
 - Bar diagram is of 3 types:
 1. Simple bar diagram
 2. Multiple bar diagram
 3. Proportional bar diagram

 ![Bar Diagram](image)

 Figure: Bar diagram

7. Ans. (d) Ordinal
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p51-52]

 In the given question, a physician, after examining a group of patients of a certain disease, classifies the condition of each one as ‘Normal’, ‘Mild’, ‘Moderate’ or ‘Severe’. ‘Normal-mild-moderate-severe’ is a continuum of outcome for a variable, thus is measured on an ordinal scale.

8. Ans. (a) Interval/Ratio scale
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p52]

 - Most satisfying scale for measurement of quantities: Metric scale
 - Mean and SD can only be worked out on: Interval/Ratio scale
 - Measurements are easy to handle in: Ratio scale.

9. Ans. (c) Categorical data
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p51-52]

10. Ans. (a) Nominal
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p51]

 In the given question, an investigator into the life expectancy of IV drug abusers divides a sample of patients into HIV-positive and HIV-negative groups; Since there is no order of characteristic and it cannot be measured directly, it can’t be an ordinal data or metric data respectively. Thus it is nominal data (based only on names, i.e. HIV-positive and HIV-negative groups).
11. Ans. (d) Relationship between two given variables [Ref. Park 21/e p785, Park 22/e p789]

SCATTER DIAGRAM
- Also known as ‘Correlation diagram’ or ‘Dot diagram’
- Is used to depict ‘correlation (relationship) between 2 quantitative variables’
- Vertical axis in scatter diagram: should be the dependent or the outcome variable
- In a scatter diagram, 2 imaginary lines are drawn along the distribution of dots/scatter
- Types of correlation:

![Scatter Diagrams in the cases in weak, strong positive and strong negative correlation]

<table>
<thead>
<tr>
<th>Types of correlation</th>
<th>Scatter diagram</th>
<th>Correlation coefficient</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfectly positive correlation</td>
<td>Both lines have a positive slope (at 45° each); superimposed</td>
<td>(r = +1)</td>
<td>Rise in one variable leads to proportionate rise in other</td>
</tr>
<tr>
<td>Perfectly negative correlation</td>
<td>Both lines have a negative slope (at 45° each); superimposed</td>
<td>(r = -1)</td>
<td>Rise in one variable leads to proportionate fall in other</td>
</tr>
<tr>
<td>Moderately positive correlation</td>
<td>Both lines have a positive slope</td>
<td>(0 < r < +1)</td>
<td>Rise in one variable leads to rise in other</td>
</tr>
<tr>
<td>Moderately negative correlation</td>
<td>Both lines have a negative slope</td>
<td>(-1 < r < 0)</td>
<td>Rise in one variable leads to fall in other</td>
</tr>
<tr>
<td>No (absent) correlation</td>
<td>Both lines are perpendicular</td>
<td>(r = 0)</td>
<td>Rise/fall in one variable leads to no change in other</td>
</tr>
<tr>
<td>Spurious (false) correlation</td>
<td>No particular pattern observed</td>
<td>–</td>
<td>No particular pattern observed</td>
</tr>
</tbody>
</table>

12. Ans. (c) Likert Scale [Ref. A Dictionary of Public Health by J Kishore, p475-76]
- Likert Scale: Refer to Theory.
- Visual analog scale (VAS):
 - VAS is a measurement instrument that tries to measure a characteristic that range across a continuum of values and cannot easily be directly measured (For example, the amount of pain that a patient feels ranges across a continuum from none to an extreme amount of pain. From the patient’s perspective this spectrum appears continuous as their pain does not take discrete jumps, as a categorization of none, mild, moderate and severe would suggest)
 - Operationally a VAS is usually a horizontal line, 100 mm (10 cms) in length, anchored by word descriptors at each end: patient marks on the line the point that they feel represents their perception of their current state
 - VAS score: is determined by measuring in millimetres from the left hand end of the line to the point that the patient marks
 - Continuous (or ‘analogue’) aspect of the scale differentiates it from discrete scales such Likert scale
 - Is quite used in Anaesthesia.
• **Guttman Scale:**
 - Is also known as ‘Cumulative scale’
 - Contains a ‘series of statements that expresses increasing intensity’ of a characteristic AND respondent is asked to agree or disagree to with each statement (For example: Asbestos can cause lung cancer – Asbestos is an important cause of lung cancer – Asbestos is a very important cause of lung cancer and death – Asbestos is the most important cause of lung cancer an death in India)
 - Perfect Guttman scale: consists of a uni-dimensional set of items that are ranked in order of difficulty from least extreme to most extreme position
• **Adjectival scale:**
 - Is a linguistic scale is a set of words, of the same grammatical category, which can be ordered by their semantic strength or degree of information (For example, lukewarm, warm, and hot fall along a single adjectival scale since they indicate a variation in the intensity of temperature of the modified noun).

13. Ans. (b) Ordinal [Ref. A Dictionary of Public Health by J Kishore, p475-76]
15. Ans. (a) Scatter diagram [Ref. K. Park 21/e p785, Park 22/e p789]
16. Ans. (c) Line diagram [Ref. K. Park 22/e p788]
17. Ans. (c) Body weight [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p51-52]
18. Ans. (b) Line chart [Ref. K. Park 22/e p788]
19. Ans. (a) Line diagram [Ref. K. Park 22/e p788]
20. Ans. (b) Scatter diagram [Ref. K. Park 22/e p789]
21. Ans. (a) Ordinal scale [Ref. A Dictionary of Public Health by Dr J Kishore, p475-76]

Review Questions

22. Ans. (a) Histogram [Ref. Park 21/e p783-85, Park 22/e p787-89]
23. Ans. (b) Histogram [Ref. Park 21/e p783-85, Park 22/e p787-89]
24. Ans. (c) Ordinal [Ref. Indrayan, 1/e p 51-52]
25. Ans. (b) Quantitative continuous data [Ref. An Introduction to Medical Statistics by Bland 2/e p47, 50 Park 21/e p784, Park 22/e p788]

MEASURES OF CENTRAL TENDENCY

MEASURES OF CENTRAL TENDENCY

- **Mean (Average):** Is obtained as sum of all values divided by the no. of values.

- **Median:** Middlemost value in a distribution arranged in an ascending or descending order of values

 - *In a distribution with odd no. of total values:* Middlemost value in a distribution arranged in an ascending or descending order of values

 \[\text{Median} = \frac{n+1}{2} \text{th value} \]

 - *In a distribution with even no. of total values:* Such a distribution has 2 middlemost values; median is the average of two middlemost values when arranged in an ascending or descending order of values

 \[\text{Median} = \frac{\text{Mean (average)} \ of \ (n/2)\text{th and} \ (n/2 + 1)\text{th value}}{2} \]

- **Mode:** Most frequent or most commonly occurring value in a distribution

 - *In a distribution with one most frequent value:* Mode is the most frequent or most commonly occurring value in the distribution

 - *In a distribution with two most frequent values:*

 1. There will be 2 Modes (2 most frequent values in the distribution): Bimodal distribution
 2. Mode = Average of 2 modes
In the given question, out of 11 births in a hospital, 5 babies weighed over 2.5 kg and 5 weighed less than 2.5 kg. Thus, when arranged in ascending or descending order, 2.5 kg will be the central value. So, value do 2.5 represent Median.

Also Remember

- Central tendency in various distributions:
 - Normal (Gaussian) distribution: Mean = Median = Mode (coincide)
 - Right (Positive) skew distribution: Mean > Median > Mode
 - Left (Negative) skew distribution: Mean < Median < Mode

- In a bimodal series, Mode = 3 Median – 2 mean
- In distribution with extreme values (Outliers):
 - Most affected measure of central tendency: Mean
 - Least affected measure of central tendency: Mode
 - Most preferable measure of central tendency: Median.

27. Ans. (c) Median [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111 and Methods in Biostatistics by Mahajan, 7/e p34; Park 21/e p785-86, Park 22/e p789-90]

In the given question,

- Incidence of malaria in an area is 250, 320, 190, 300, 5000, 100, 260, 320, 350, 320, 5000, 100, 260, 300, 320, 350, 5000
- And, incidence in ascending order is 100, 160, 190, 250, 260, 300, 320, 320, 350, 350, 320, 320, 320, 350, 5000
- Mean = \(\frac{\Sigma x}{n} = \frac{7250}{10} = 725 \)
- Median = Mean (average) of 5th and 6th value = \(\frac{260 + 300}{2} = 280 \)
- Mode = 320
- Since extreme values (outliers) are present for incidence (20 and 5000), mean will not be an appropriate measure of central tendency, thus median will be the most suitable measure of central tendency.

28. Ans. (c) Median [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111 and Methods in Biostatistics by Mahajan, 7/e p34; Park 21/e p785-86, Park 22/e p789-90]

Refer to Ans 20.

In the given question,

- Incidence of malaria in an area is 20, 20, 50, 56, 60, 5000, 678, 898, 345, 456, 20, 20, 50, 56, 60, 345, 456, 678, 898, 5000
- And, incidence in ascending order is 20, 20, 50, 56, 60, 345, 456, 678, 898, 5000
- Mean = \(\frac{\Sigma x}{n} = \frac{7583}{10} = 758.3 \)
- Median = Mean (average) of 5th and 6th value = \(\frac{60 + 345}{2} = 202.5 \)
- Mode = 20
- Since extreme values (outliers) are present for incidence (20 and 5000), mean will not be an appropriate measure of central tendency, thus median will be the most suitable measure of central tendency.

29. Ans. (a) 5 [Ref. Elementary statistical methods by Gupta, 1/e p191; Park 21/e p785-86, Park 22/e p789-90]

- In a bimodal series Mode = 3 Median – 2 mean
- In the given question, mean is 2 and median is 3 in a bimodal series

Thus Mode = 3(3) – 2(2) = 9 – 4 = 5

30. Ans. (d) 20 kg [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p109-10 and Methods in Biostatistics by Mahajan, 7/e p34; Park 21/e p785-86, Park 22/e p789-90]

- Mean (Average): Is obtained as sum of all values divided by the no. of values
Mean = \(\frac{\Sigma x}{n} \)
- In the given question, = 18.2 kg and n = 10
Thus \(\Sigma x = 182 \)
Also, weight of one of the boys was wrongly recorded as 2.0 kg that should have been 20 kg
True \(\Sigma x = 182 + (20 - 2.0) = 200 \)
So true Mean = \(\frac{\Sigma x (true)}{n} = \frac{200}{10} = 20.0 \) kg.
31. Ans. (b) Median [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p108-11 and Methods in Biostatistics by Mahajan, 7/e p34-35; Park 21/e p785-86, Park 22/e p789-90]

MEASURES OF CENTRAL TENDENCY

- Examples:

<table>
<thead>
<tr>
<th>Distributions</th>
<th>1, 7, 3, 6, 4, 8, 9, 5, 5</th>
<th>1, 7, 3, 3, 6, 4, 8, 9, 5, 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of values</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Ascending order</td>
<td>1, 3, 4, 5, 6, 7, 8, 9</td>
<td>1, 3, 3, 4, 5, 6, 7, 8, 9</td>
</tr>
<tr>
<td>Mean (Σ x/n)</td>
<td>48/9 = 5.33</td>
<td>52/10 = 5.2</td>
</tr>
<tr>
<td>Median (middlemost value)</td>
<td>5</td>
<td>(5 + 6)/2 = 5.5</td>
</tr>
<tr>
<td>Mode</td>
<td>5</td>
<td>3 and 6 (bi-modal)</td>
</tr>
<tr>
<td>OR (3 + 6)/2 = 4.5 (uni-modal)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

32. Ans. (a) Mean; (b) Median; (c) Mode [Ref. Park 21/e p785-86, Park 22/e p789-90]

33. Ans. (a) Blood pressure [Ref. Quick MBA statistics]

- Applications of Central Tendency

<table>
<thead>
<tr>
<th>Measurement scale</th>
<th>Best measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Mode</td>
</tr>
<tr>
<td>Ordinal</td>
<td>Median</td>
</tr>
<tr>
<td>Metric: Interval</td>
<td>Symmetrical data: Mean Skewed data: Median</td>
</tr>
<tr>
<td>Metric: Ratio</td>
<td>Symmetrical data: Mean Skewed data: Median</td>
</tr>
</tbody>
</table>

In the given question, Survival time, Incubation period, Health expenses may present with skewed data (few extreme values) so Median is suitable; BUT Blood pressure follows normal distribution so Mean is more suitable.

34. Ans. (a) Mean 77; (b) Median 77; (c) Mode 70 [Ref. Park 22/e p789-90]

35. Ans. (b) 16, 10, 10 [Ref. Park 22/e p789-90]

Review Questions

36. Ans. (b) 8 [Ref. Park 21/e p785-86, Park 22/e p789-90]

37. Ans. (b) Mode [Ref. Park 21/e p785-86, Park 22/e p789-90]

38. Ans. (b) Range is 20-38 [Ref. Park 21/e p785-86, Park 22/e p789-90]

39. Ans. (d) Chi-square test [Ref. Park 21/e p785-86, Park 22/e p789-90]

40. Ans. (c) Median [Ref. Park 21/e p785-86, Park 22/e p789-90]

OTHER MEASURES OF LOCATION

41. Ans. (a) 100 equal parts [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111-12 and Methods in Biostatistics by Mahajan, 7/e p45-52; Park 21/e p785-86, Park 22/e p789-90]

CENTILE (PERCENTILE):

- Divides a distribution into 100 equal parts, AFTER arranging in an ascending order, SUCH THAT each part/segment has equal number (n/100) of subjects
- Requires 99 intercepts (cut-off points) for division into 100 parts
- Total percentiles: 99
- The nth percentile implies: When all values are arranged in ascending order, n% are below this value
- Methods for location of percentiles:
 - Graphical method: Cumulative frequency diagram (Ogive)
 - Arithmetic method: Cumulative frequency table
- Applications and uses of percentiles:
 - Location of a percentile
 - Preparation of a standard percentile (Q2, Median) for particular age, sex, etc.
 - Comparison of a percentile value of a variable (between samples or populations)
Review of Preventive and Social Medicine

- To study growth in children (using growth charts)
- As a measure of dispersion (interquartile/semi-interquartile range).

Also Remember

<table>
<thead>
<tr>
<th>Division of distributions:</th>
<th>Divides distribution into</th>
<th>No. of intercepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertile</td>
<td>3 equal parts</td>
<td>2</td>
</tr>
<tr>
<td>Quartile</td>
<td>4 equal parts</td>
<td>3</td>
</tr>
<tr>
<td>Pentile (Quintile)</td>
<td>5 equal parts</td>
<td>4</td>
</tr>
<tr>
<td>Hextile</td>
<td>6 equal parts</td>
<td>5</td>
</tr>
<tr>
<td>Heptile</td>
<td>7 equal parts</td>
<td>6</td>
</tr>
<tr>
<td>Octile</td>
<td>8 equal parts</td>
<td>7</td>
</tr>
<tr>
<td>Decile</td>
<td>10 equal parts</td>
<td>9</td>
</tr>
<tr>
<td>Centile (Percentile)</td>
<td>100 equal parts</td>
<td>99</td>
</tr>
</tbody>
</table>

- Quartile: Divides a distribution into 4 equal parts, so the number of intercepts required will be 3, i.e. Q₁, Q₂, Q₃.
 - Q₁ (1st Quartile) divides a distribution in a ratio of 1 : 3
 - Q₂ (2nd Quartile) divides a distribution in a ratio of 1 : 1
 - Q₃ (3rd Quartile) divides a distribution in a ratio of 3 : 1

Also Remember

- Median (middlemost point in an ascending/descending distribution) divides a distribution in the ratio of 1 : 1
 - Is equivalent to second quartile (Q₂)
 - Is equivalent to 50th percentile (P₅₀)
 - Each segment has n/2 subjects.

42. Ans. (b) Median [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p112 and Methods in Biostatistics by Mahajan, 7/e p45-52]

43. Ans. (c) 512 [Ref. Mathematics, Class X]

\[P = C (1 + r)^n \]

where, \(P \) = Final value
\(C \) = Initial value
\(r \) = fraction increase
\(n \) = no. of times increase

In the given question, A bacterium can divide every 20 minutes and exponential growth is for 3 hours,

Thus, \(C = 1 \),
And \(r = 1 \) (it doubles every time)
\(n = 3 \text{ hours} / 20 \text{ minutes} = 9 \text{ times} \)
Thus \(P = C (1 + r)^n = 1 (1 + 1)^9 = 2^9 = 512 \)

One Other Simple Way of Doing It

- Given information: A bacterium can divide every 20 minutes (3/hour)
- Thus in 3 hours, it will total divide 3/hour \(\times \) 3 hours = 9 times
- Thus 9 times multiplication will successively yield 2, 4, 8, 16, 32, 64, 128, 256, 512 bacteria.
- So at end of 9 hours, there will be 512 bacteria.

44. Ans. (c) 100th [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p112 and Methods in Biostatistics by Mahajan, 6/e p48-57]

PERCENTILES (CEN TILES):

- Are values in a series of observations arranged in an ascending order of magnitude ‘which divides a distribution into 100 equal parts’
- In all there are a ‘total of 99 percentiles’
- Median is 50th centile (50th percentile has 50% observations on either side)
- Percentile and Percentage:
- ‘x’ percentile implies x% values are below this value
- For example, 40th percentile implies 40% values are below it
 - In general:
 - kth percentile = (k × n/ 100)th value
 - In the given question, n = 250 subjects, thus 40th percentile would be , 40th percentile = (40 × 250/ 100) th value = 100th value

45. Ans. (d) 2nd quartile [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p112-13 and Methods in Biostatistics by Mahajan, 7/e p43]
 - **Quartile:** Divides a distribution into 4 equal parts, so the number of intercepts required will be 3, i.e. Q₁, Q₂, Q₃.
 - So, Zero – Q₁ covers 25% values
 - Similarly, Q₂ – Q₁, Q₃ – Q₂ and 100 – Q₃ all cover 25% values each
 - Thus, Q₂ – Zero, 100 – Q₂ and Q₃ – Q₂ all cover 50% values each
 - Q₁ divides a distribution in a ratio of 25 : 75 OR 1 : 3
 - Q₂ divides a distribution in a ratio of 50 : 50 OR 1 : 1, Thus second quartile is equivalent to median
 - Q₃ divides a distribution in a ratio of 75 : 25 OR 3 : 1.

In the given question, n = 180
Thus Q₂ which is equivalent to median, divides a distribution in a ratio of 50 : 50 OR 1 : 1.

46. Ans. (c) Third quartile [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p112-13 and Methods in Biostatistics by Mahajan, 7/e p43]
 - **Quartile:** Divides a distribution into 4 equal parts, so the number of intercepts required will be 3, i.e. Q₁, Q₂, Q₃.
 - So, Zero – Q₁ covers 25% values
 - Similarly, Q₂ – Q₁, Q₃ – Q₂ and 100 – Q₃ all cover 25% values each
 - Thus, Q₂ – Zero, 100 – Q₂ and Q₃ – Q₂ all cover 50% values each

- Q₁ divides a distribution in a ratio of 25 : 75 OR 1 : 3
- Q₂ divides a distribution in a ratio of 50 : 50 OR 1 : 1, THUS SECOND QUARTILE IS EQUIVALENT TO MEDIAN
- Q₃ divides a distribution in a ratio of 75 : 25 OR 3 : 1.

VARIABILITY

47. Ans. (c) Deviation from mean value [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p114-15 and Methods in Biostatistics by Mahajan, 7/e p60-68; Park 21/e p787, Park 22/e p791]
• Measures of variability:

<table>
<thead>
<tr>
<th>Individual observations</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>Inter-quartile range</td>
<td>Standard error of difference between 2 means</td>
</tr>
<tr>
<td>Mean deviation</td>
<td>Standard error of proportion</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>Standard error of difference between 2 proportions</td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>Standard error of correlation coefficient</td>
</tr>
<tr>
<td></td>
<td>Standard deviation of regression coefficient</td>
</tr>
</tbody>
</table>

STANDARD DEVIATION (SD)
• SD is most common and generally most appropriate measure of dispersion
• SD is defined as the ‘root-mean-square (RMS) deviation of the values from their mean’, or as the square root of the variance

\[SD = \sqrt{\text{Variance}} = \sqrt{\frac{\sum(x - \overline{x})^2}{n}} \]

• Interpretation of SD:
 - A large standard deviation: Data points are far from the mean
 - A small standard deviation: Data points are clustered closely around the mean

• Uses of SD in biostatistics:
 - Summarizes the deviation of a large distribution from mean
 - Indicates whether the variation of difference of an individual from the mean is by chance
 - Helps in finding the standard error
 - Helps in finding the suitable size of sample for valid conclusions

Also Remember
• Measures of chance:
 - Probability
 - Odds (& Odds ratio)
 - Likelihood ratio
• Measures of Central tendency:
 - Mean
 - Median
 - Mode

48. Ans. (a) 25% [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p115 and Methods in Biostatistics by Mahajan, 7/e p68-69; Park 21/e p787, Park 22/e p791]

• Coefficient of variation:
 - Is a measure used to compare relative variability
 - Is a unit-free measure to compare dispersion of one variable with another
 - Is SD expressed as percentage of mean

\[CV = \frac{SD}{\text{Mean}} \times 100 = \frac{\sigma}{\mu} \times 100 \]

In the given question, Median weight (μ) = 12 kgs, $n = 100$, Standard deviation (σ) = 3, Thus, coefficient of variance = $\mu/\mu \times 100 = 3/12 \times 100 = 25\%$.

Also Remember
• Multiple correlation coefficient: Is used for calculation of correlation between one variable (dependent) and the combination of two or more variables (independents)
• Coefficient of determination:
 - Is the percentage of variation in a variable that is explained by one or more of the others
 - Is generally obtained in a regression setup
 - Coefficient of determination = $(\text{Correlation coefficient})^2 = r^2$
• Correlation coefficient (r): Measures the degree or strength of relationship in a correlation
 - Correlation coefficient (r) lies between: -1 to $+1$ ($-1 < r < +1$).
49. Ans. (a) 0.4 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p140 and Methods in Biostatistics by Mahajan, 7/e p105, 117-18]

STANDARD ERROR OF MEAN (SE\text{mean})
- \(SE_{\text{mean}} = \frac{\text{Standard deviation (SD)}}{\text{Sample size}} = \frac{\sigma}{\sqrt{n}} \)
- In the given question, \(n = 25 \) kids, Standard deviation \((s) = 2 \), Mean incubation period \((\mu) = 8 \) days, Thus, standard error = 0.4.
- Greater the standard deviation \((s) \), greater will be the standard error \((SE) \), especially in small samples
- \(SE \) can be minimized by reducing SD: By taking a large sample

50. Ans. (b) Sampling errors [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p139-40 and Methods in Biostatistics by Mahajan, 7/e p117-18; Park 21/e p787, Park 22/e p791]

Refer to Ans. 41

Also Remember
- Sampling errors are not errors in conventional sense
- Standard error of difference between 2 means: \(SE_{\text{diff bet means}} = \sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)} \)
- Standard error of proportion: \(SE_{\text{proportion}} = \sqrt{pq \over n} \) where \(q = (1 - p) \)
- Standard error of difference between 2 proportions: \(SE_{\text{diff bet proportions}} = \sqrt{(p_1 / q_1 + n_1) + p_2 q_2 / n_2} \)

51. Ans. (b) 0 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p114-15 and Methods in Biostatistics by Mahajan, 7/e p60-68; Park 21/e p787, Park 22/e p791]

In the given question, the birth weight of each of the 10 babies born in a hospital in a day is found to be 2.8 kg, thus = ZERO
So the standard deviation of this sample will be, \(SD (\sigma) = \sqrt{\text{Variance}} = {\sum(x - \bar{x})^2 \over n} = \text{Zero.} \)

52. Ans. (b) 0.1 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p139-40 and Methods in Biostatistics by Mahajan, 7/e p117-19; Park 21/e p787, Park 22/e p791]

In the given question, \(n = 100 \) women, mean Hemoglobin \((\mu) = 10 \) gm\%, standard deviation \((\sigma) = 1 \),
Thus standard error \((SE) = \frac{\sigma}{\sqrt{n}} = \frac{1}{\sqrt{100}} = 0.1 \).

53. Ans. (a) Original std. Deviation \times 10 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p114-15 and Methods in Biostatistics by Mahajan, 7/e p60-68; Park 21/e p787, Park 22/e p791]

\(SD (\sigma) \text{ new} = 10 \sqrt{\sum(x - \bar{x})^2 / n} = 10 \times \text{Original SD.} \)
Also Remember

- In a Normal/Gaussian distribution:
 - Curve is ‘bilaterally symmetrical, bell-shaped’
 - Mean, Median and Mode coincide (Mean = Median = Mode)
 - Has Mean (µ) = 0 and SD (s) = 1
 1. Mean ± 1SD (µ ± 1s) covers 68% values
 2. Mean ± 2SD (µ ± 2s) covers 95% values
 3. Mean ± 3SD (µ ± 3s) covers 99% values
 - Z score (Standard score):
 - Is difference of a value from group mean, in terms of how many times of SD (s).
 - Z score = (Individual level – Mean)/SD = (x – µ)/σ
 - Z score indicates how many standard deviations an observation is above or below the mean
- Coefficient of variation:
 - Is a measure used to compare relative variability
 - Is a unit-free measure to compare dispersion of one variable with another
 - CV = SD/Mean × 100 = s/µ × 100
- Standard error of mean:
 - SEmean = SD/sqrt(sample size) = σ/√n
- Precision:
 - Precision = 1/SEmean = √n/σ

54. Ans. (d) 1.0 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p115-16]

Z SCORE (STANDARD SCORE):
- Is also known as ‘normal deviate’
- Is difference of a value from group mean, in terms of how many times of SD (σ)
 \[Z \text{ score} = \frac{\text{Individual level} - \text{Mean}}{\text{SD}} = \frac{(x - \mu)}{\sigma} \]
- The standard score indicates how many standard deviations an observation is above or below the mean
- Z scores are frequently used in assessing how far a child is in his relative growth to a standard
 - Z score = 2: Any measurement of at least 2SD away is considered too far away to be normal.

In the given question,
\[x = 15.0 \text{ g/dl}, \mu = 13.5 \text{ g/dl}, \sigma = 1.5 \text{ g/dl} \]
Thus, Z score = \(\frac{(x - \mu)}{\sigma} = \frac{(15.0 - 13.5)}{1.5} = 1 \)

55. (c) 0.1 gm% [Ref. K. Park 21/e p789, Park 22/e p793]

56. (a) Range; (b) Mean deviation; (c) Mean deviation [Ref. Methods in Biostatistics by Mahajan, 7/e p60-68]

57. Ans. (d) Standard deviation [Ref. K. Park 22/e p791]

58. Ans. (c) 72-88% [Ref. Simple Biostatistics by Indrayan, 1/e p146]

Confidence Intervals for Population proportions (For 95% Confidence)
\[\text{CI} = P \pm 2 \times \text{SEP} = P \pm 2 \times \sqrt{pq}/n \]
In the given question, \(p=0.80 \) (80%); \(q=1-p = 1-0.80 = 0.20 \); \(n=100 \)
\[\text{CI} = 0.80 \pm 2 \times \sqrt{0.80 \times 0.2}/100 = 0.80 \pm 0.08 = 0.72, 0.88 (72\%, 88\%) \]

59. Ans. (a) 0.34 [Ref. K Park 22/e p792]

NORMAL DISTRIBUTION
- Shape is bilaterally symmetrical
- Mean = Median = Mode (coincide)
- 50% of all values lie above Mean (or Median or Mode)
• Mean ± 1SD cover 68% values (Mean ± 1SD cover 34% values)
• Mean ± 1SD cover 95% values (Mean ± 1SD cover 47.5% values)
• Mean ± 1SD cover 99% values (Mean ± 1SD cover 49.5% values)

60. Ans. (b) 0.50 [Ref. K Park 22/e p792]
 • In a Normal distribution, 50% of values lie above Mean (or Median or Mode)

61. Ans. (b) Coefficient of variation [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p115]
62. Ans. (b) Indicated distribution of variables; (c) Most common method used for dispersion; (d) Better indicator of variance than range [Ref. Park 22/e p708]

Review Questions

63. Ans. (a) 210 - 250 [Ref. 20/e p752]
64. Ans. (b) 95% [Ref. 20/e p752]
65. Ans. (d) Correlation and regression [Ref. Park 21/e p786, Park 22/e p790]
66. Ans. (b) Mean and standard deviation [Ref. Park 18/e p647, 20/e p751]
67. Ans. (a) Normal distribution [Ref. K Park 20/e p752]
68. Ans. (b) \(S = \text{square root of } V \) [Ref. An Introduction to Medical Statistics by Bland, 2/e p60]
69. Ans. (c) 95% [Ref. K Park 20/e p752]
70. Ans. (a) Standard deviation [Ref. Park 21/e p786-87, Park 22/e p790-91]
71. Ans. (b) Median [Ref. Park 21/e p787, Park 22/e p791]
72. Ans. (a) Standard deviation [Ref. K Park 20/e p753]

DISTRIBUTIONS – NORMAL & SKEWED

73. Ans. (d) Poisson distribution [Ref. Internet]
 POISSON DISTRIBUTION:
 • Is a ‘discrete probability distribution’ that expresses the ‘probability of a number of events occurring in a fixed period of time’ (if these events occur with a known average rate and independently of the time since the last event)
 • It can also be used for the number of events in other specified intervals such as distance, area or volume
 • Is generally used to model the number of events occurring within a given time interval
 • Is a discrete distribution which takes on the values \(X = 0, 1, 2, 3, \ldots \)
 In the given question, one has to study the daily admission of head injury patients in a trauma care centre, Since, it describes the no. of events in time (no. of head injury patients admitted per day, Therefore, it is a Poisson distribution.

Also Remember

• Binomial distribution:
 – Is the ‘discrete probability distribution’ of the number of successes in a sequence of \(n \) independent yes/no experiments, each of which yields success with probability \(p \) (Success/Failure experiment)
 – Is also called a Bernoulli experiment or Bernoulli trial: In fact, when \(n = 1 \), the binomial distribution is a ‘Bernoulli distribution’
 – Is the basis for the popular binomial test of statistical significance
• Normal distribution:
 – Is also known as ‘Gaussian distribution’ or ‘Standard distribution’
 – Is the distribution of values of a quantitative variable such that they are symmetric with respect to a middle value with same mean, median and mode, and then the frequencies taper off rapidly and symmetrically on both sides – ‘bell shaped distribution’
• Uniform distribution:
 – All values of the distribution are equally probable.
 – Is of 2 types: Discrete and Continuous.
Review of Preventive and Social Medicine

74. Ans. (d) Has variance = 1.0 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117 Park 22/e p791-92]

Normal Distribution:
- Is also known as ‘Gaussian distribution’ or ‘Standard distribution’
- Type of distribution: Is the distribution of values of a quantitative variable such that they are symmetric with respect to a middle value with same mean, median and mode, and then the frequencies taper off rapidly and symmetrically on both sides - ‘bell shaped distribution’.

![Figure: Normal curve showing distribution of values](https://kat.cr/user/Blink99/)

- Normal/ Gaussian curve:
 - Is ‘bilaterally symmetrical, bell-shaped’
 - Is based on Mean & standard deviation
 - Mean, Median and Mode coincide (Mean = Median = Mode)
 - Has Mean (μ) = 0 and SD (σ) = 1
 1. Mean ± 1SD (μ ± 1σ) covers 68% values
 2. Mean ± 2SD (μ ± 2σ) covers 95% values
 3. Mean ± 3SD (μ ± 3σ) covers 99% values
 - In normal distribution, 50% values lie above mean & 50% below mean.

Also Remember
- SD = i.e. σ = OR Variance = σ²
 - In Normal distribution, SD(σ) = 1, thus Variance = 1
- Normal range: Is the range of Mean ± 2SD (μ ± 2σ)
- Inflections in a Normal curve: Central part is convex, while at the points of inflection, the curve changes from convexity to concavity
 - Perpendicular from point of inflection will cut he base at distance of 1SD (1σ) from mean (μ) on either side
- Asymmetrical distributions:
 - Right (positive) skew: Mean > Median > Mode

![Figure: Right skew curve](https://kat.cr/user/Blink99/)
• **Left (negative) skew:** Mean < Median < Mode

![Figure: Distribution of under-nourished and women](https://kat.cr/user/Blink99/)

• **Bimodal curve:** Has two peaks (modes)

![Figure: Bimodality in Hodgkin's disease](https://kat.cr/user/Blink99/)

75. **Ans. (c) Mean and standard deviation**
[Ref. *Simple Biostatistics by Indrayan & Indrayan, 1/e p117* and *Methods in Biostatistics by Mahajan, 7/e p72-77; Park 21/e p787-88, Park 22/e p791-92]

- **Normal/Gaussian curve:**
 - Is 'bilaterally symmetrical, bell-shaped'
 - Is based on mean (µ) and standard deviation (σ)
 - Mean, Median and Mode coincide (Mean = Median = Mode)
 - Has Mean (µ) = 0 and SD (σ) = 1
 1. Mean ± 1SD (µ ± 1σ) covers 68% values
 2. Mean ± 2SD (µ ± 2σ) covers 95% values
 3. Mean ± 3SD (µ ± 3σ) covers 99% values
 - In a Normal distribution, 50% of values lie above the mean and 50% lie below the mean.
Also Remember

- **Normal range**: Mean ± 2SD (µ ± 2σ) which covers 95% values
- **Actual parameters in a Normal (Gaussian) distribution**:
 - Mean ± 1SD (µ ± 1σ) limits include 68.27% values
 - Mean ± 2SD (µ ± 2σ) limits include 95.45% values
 - Mean ± 1.96SD (µ ± 1.96σ) limits include 99% values
 - Mean ± 3SD (µ ± 3σ) limits include 99.73% values
 - Mean ± 2.58SD (µ ± 2.58σ) limits include 99% values
- Values that differ from the mean by more than 2SD are rare, being only 4.55%
- Values higher or lower than the Mean ± 3SD (µ ± 3σ) are very rare, being only 0.27%
- 6 SD (3 on either side of mean) cover almost the entire range of a variable character
 - SD divides the range into 6 equal sub-ranges
- Minimum sample size required for establishment of normal range for any health parameter: 300 healthy subjects.

76. Ans. (b) 85 and 125 mgs
 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117 and Methods in Biostatistics by Mahajan, 7/e p72-77; Park 21/e p787-88, Park 22/e p791-92]
 In the given question, the fasting blood levels of glucose for a group of diabetics is found to be normally distributed with a mean of 105 mg per 100 ml of blood and a standard deviation of 10 mg per 100 ml of blood,
 Thus, Mean (µ) = 105 mg/dl and SD (σ) = 10 mg/dl
 95% of diabetics will have their fasting blood glucose levels within the limits of Mean ± 2SD (µ ± 2s)
 i.e. within 105 ± 2(10) or between 85 – 125 mg per 100 ml.

77. Ans. (a) 95% of all children weight between 12 and 18 kg
 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117 and Methods in Biostatistics by Mahajan, 7/e p73]
 In the given question, n = 100 children, Mean weight (µ) =15 kg, SE = 1.5 kg,
 95% of value are contained in Mean ± 2SD (µ ± 2s),
 Thus 95% of all children will have weight between 15 + 2 (1.5) i.e. between 12 and 18 kg.

78. Ans. (a) Shows a ‘bath tub distribution’
 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p104-05 and Methods in Biostatistics by Mahajan, 7/e p72-79; Park 21/e p787-88, Park 22/e p791-92]
 Also Remember

- **Bath tub distribution**:
 - Is a distribution where the curve shows trough (depression) in the middle instead of peak.
 - Example: No. of deaths in various age groups in India (Deaths in India are high in infancy and above the age of > 50 years).

79. Ans. (a) Less than median
 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111]
• Central tendency in various distributions:

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Central tendency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (Gaussian) distribution</td>
<td>Mean = Median = Mode (coincide)</td>
</tr>
<tr>
<td>Right (Positive) skew distribution</td>
<td>Mean > Median > Mode</td>
</tr>
<tr>
<td>Left (Negative) skew distribution</td>
<td>Mean < Median < Mode</td>
</tr>
</tbody>
</table>

• In distribution with extreme values (Outliers):
 - Most affected measure of central tendency: Mean
 - Least affected measure of central tendency: Mode
 - Most preferable measure of central tendency: Median

80. Ans. (d) Nothing can be said conclusively [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p35-36 and Methods in Biostatistics by Mahajan, 7/e p77-79; Park 21/e p787-88, Park 22/e p791-92]

 • In a normal distribution, Mean (μ) = 0 and SD (s) = 1
 • In a right (positive) skew, Mean > Median > Mode
 • In a left (negative) skew, Mean < Median < Mode

 In the given question, Mean = 3.0 mmol/litre and Standard deviation = 3.0 mmol/litre, thus nothing can be said conclusively.

81. Ans. (b) 150 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p112-13 and Methods in Biostatistics by Mahajan, 7/e p45; Park 21/e p787-88, Park 22/e p791-92]

 • Quartile: Divides a distribution into 4 equal parts, so the number of intercepts required will be 3, i.e. Q1, Q2, Q3
 - So, Zero – Q1 covers 25% values
 - Similarly, Q1 – Q2, Q2 – Q3 and 100 – Q3, all cover 25% values each
 - Thus, Q1 – Zero, 100 – Q2 and Q2 – Q3, all cover 50% values each
 - Q1 divides a distribution in a ratio of 25 : 75 OR 1 : 3
 - Q2 divides a distribution in a ratio of 50 : 50 OR 1 : 1, thus second quartile is equivalent to median
 - Q3 divides a distribution in a ratio of 75 : 25 OR 3 : 1

 In the given question, n = 300, Q1 = 4.5 litres and Q3 = 1.5 litres
 Thus Q1 – Q3 will cover 50% values, i.e. 50% of 300 = 150 values.

82. Ans. (a) 28 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117 and Methods in Biostatistics by Mahajan, 7/e p73; Park 21/e p787-88, Park 22/e p791-92]

 In the given question, Mean (μ) = 30 mm and SD (s) = 1.0 mm
 Thus, 95% values are contained in the range of Mean ± 2 SD (μ ± 2σ) or 30 ± 2 (1)
 So, 95% values are contained in the range 30 – 2 mm and 30 + 2 mm OR between 28 and 30 mm.

83. Ans. (b) 95% [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117-19 and Methods in Biostatistics by Mahajan, 7/e p73; Park 21/e p787-88, Park 22/e p791-92]

 • In a Normal (Gaussian) distribution:
 - Mean ± 1SD (μ ± 1σ) limits include 68.27% values
 - Mean ± 2SD (μ ± 2σ) limits include 95.45% values
 - Mean ± 3SD (μ ± 3σ) limits include 99.73% values
 - Mean ± 2.58SD (μ ± 2.58σ) limits include 99% values
 - Values that differ from the mean by more than 2SD are rare, being only 4.55%
 - Values higher or lower than the Mean + 3SD (μ + 3σ) are very rare, being only 0.27%
 - 6 SD (3 on either side of mean) cover almost the entire range of a variable character
 - SD divides the range into 6 equal sub-ranges
 - Minimum sample size required for establishment of normal range for any health parameter: 300 healthy subjects.

84. Ans. (c) Negatively skewed [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111]

 In the given question, mean systolic blood pressure in a population (130 mm Hg) is less than median (140 mm Hg), thus distribution is Left (Negative) skew distribution.

85. Ans. (c) Left-skewed [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111]
In the given question, Mean = 20, Median = 24 & Mode = 26
Thus Mean < Median < Mode, making it a Left (Negative) skew distribution.

86. Ans. (b) 50 [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p105 and Methods in Biostatistics by Mahajan, 7/e p73; Park 21/e p787-88, Park 22/e p791-92]
In the given question
• Mean glucose (m) = 86 mg/dL,
• Thus, 50% of people will have glucose above 86 mg/dL and 50% of people will have glucose below 86 mg/dL.

Also Remember
• Statistical tests based on Gaussian distribution are known as ‘Parametric tests’
 - Student’s t - test
 - ANOVA - F test

87. Ans. (b) 50 [Ref. Simple Biostatistics by Indrayan and Indrayan, 1/e p117 and Methods in Biostatistics by Mahajan, Park 21/e p787-88, Park 22/e p791-92]
In the given question, Mean Systolic blood pressure (SBP) = 120 mm Hg,
So 50% of values (50% of n) i.e. 50 individuals will have their SBP below 120 mm Hg, and a similar no. will have value of SBP above 120 mm Hg.

88. Ans. (a) About 95% of the girls have PEFR between 260 and 340 l/min [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p117 Park 21/e p787-88, Park 22/e p791-92]
• In Normal distribution,
 - Mean ± 1SD (μ ± 1σ) covers 68% values
 - Mean ± 2SD (μ ± 2σ) covers 95% values
 - Mean ± 3SD (μ ± 3σ) covers 99% values
In the given question,
• Mean of PEFR (μ) = 300 l/min
• Standard deviation of PEFR (σ) = 20 l/min
Thus,
• 68% of girls will have PEFR in the range Mean ± 1SD (μ ± 1σ) = 300 ± 20 l/min, i.e. between (300 -- 20) and (300 + 20) l/min
 - 280 – 320 l/min range covers 68% of girls
• 95% of girls will have PEFR in range Mean ± 2SD (μ ± 2σ) = 300 ± 2(20) l/min, i.e. between (300 -- 40) and (300 + 40) l/min
 - 260 – 340 l/min range covers 95% of girls
• 99% of girls will have PEFR in range Mean ± 3SD (μ ± 3σ) = 300 ± 3(20) l/min, i.e. between (300 -- 60) and (300 + 60) l/min
 - 240 – 360 l/min range covers 99% of girls
• Now, 260 – 340 l/min range covers 95% of girls, thus rest 5% of girls are outside this range, i.e. they have PEFR either < 260 l/min or > 340 l/min
 - Even this will be symmetrically distributed (Normal curve is bilaterally symmetrical), thus
 1. 2.5% girls will have PEFR < 260 l/min
 2. 2.5% girls will have PEFR > 340 l/min
Girls having PEFR less than 340 l/min: 97.5%

Since the normal range of PEFR for girls is not given in the question, it cannot be concluded that all girls have healthy lungs.

Also Remember

- In a Normal distribution, 50% of values lie above the mean and 50% lie below the mean
 - In the given question,
 1. 50% of girls will have PEFR > 300 l/min
 2. 50% of girls will have PEFR < 300 l/min
- In a Normal distribution, Mean + 1SD (µ + 1s) covers 68% values, so 32% of girls are outside this range
 - Even this will be symmetrically distributed (Normal curve is bilaterally symmetrical), thus in the given question,
 1. 16% girls will have PEFR < 280 l/min
 2. 16% girls will have PEFR > 320 l/min
- In a Normal distribution, Mean + 3SD (µ + 3s) covers 99% values, so 1% of girls are outside this range
 - Even this will be symmetrically distributed (Normal curve is bilaterally symmetrical), thus in the given question
 1. 0.5% girls will have PEFR < 240 l/min
 2. 0.5% girls will have PEFR > 360 l/min

89. Ans. (b) Mean = Median [Ref. Park 21/e p787-88, Park 22/e p791-92]

90. Ans. (a) Mean, median and mode are same; (b) B/L symmetrical (c) Bell shape [Ref. Park 21/e p787-88, Park 22/e p791-92]

91. Ans. (b) The curve is bilaterally symmetrical; (e) Mean, Median and Mode coincide [Ref. Park 22/e p791-92]

92. Ans. (a) Normal [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p115-16]

SKEWNESS:
- Is measure of asymmetry of a probability distribution of a random variable
- Measures of skewness:
 - Pearson’s mode or First Skewness coefficient = (Mean – Mode)/SD
 - Pearson’s median or Second Skewness coefficient = 3(Mean – Median)/SD
 - Quartile skewness = (Q3 – 2Q2 + Q1)/(Q3 – Q1).

94. (c) 95% [Ref. K. Park 21/e p787, Park 22/e p791]

In the given question, n = 100, Mean = 105 marks, SD = 10 marks
So, Mean ± 1SD = 105 ± 10 = 95-115 marks covers 68% students
Mean ± 2SD = 105 ± 20 = 85-125 marks covers 95% students, and
Mean ± 3SD = 105 ± 30 = 75-135 marks covers 99% students.

95. Ans. (a) Outliers [Ref. Basic Statistics and Pharmaceutical Statistical Applications by JED Muth, 1/e p534]

DIXON’S Q-TEST
- Use: To find out and eliminate outlier from a distribution
- Method: Measure the difference between a suspect value and next closest value, and THEN compare it with total range of observations
- Alternative method to detect outliers: Grubb’s T procedure

96. Ans. (a) Mean = median [Ref. K. Park 22/e p791-92]

97. Ans. (b) Mean < Mode [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p111]

98. Ans. (b) 7.31 gm/dL [Ref. Park 22/e p791]
 - Mean + 1SD covers 68% values; So, Hb of 68% pregnant females will lie between 10.6 + 2 gm/dL or between 8.6-12.6 g/dL
 - So, 16% will lie below 8.6 gm/dL
 - Similarly, Mean + 2SD covers 95% values; So, Hb of 95% pregnant females will lie between 10.6 + 2(2) gm/dL or between 6.6-14.6 gm/dL
 - So, 2.5% will lie below 6.6 gm/dL
 - So 5% pregnant females will have Hb below 7.31 gm/dL (most appropriate answer)
Review Questions

99. Ans. (a) 68% [Ref. Park 21/e p787-88, Park 22/e p791-92]

100. Ans. (c) 95 [Ref: Park 21/e p787-88, Park 22/e p791-92]

101. Ans. (a) Mean = median [Ref: Park 21/e p787-88, Park 22/e p791-92]

102. Ans. (d) Mean and Median = 1 [Ref. Park 21/e p787-88, Park 22/e p791-92]

103. Ans. (b) 95.4% [Ref: Park 21/e p787-88, Park 22/e p791-92]

104. Ans. (a) Standard deviation and mean [Ref. Park 21/e p787-88, Park 22/e p791-92]

105. Ans. (d) Desired precision [Ref. Clinical Epidemiology by Fletcher, p177-78]
 - Sample size depends upon:
 - the effect size (usually the difference between 2 groups)
 - the population standard deviation (for continuous data)
 - the desired power of the experiment to detect the postulated effect (Power = 1 – b)
 - the significance level (a).

106. Ans. (d) 12-23 months [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p35-36 and Methods in Biostatistics by Mahajan, 7/e p91]
 CLUSTER RANDOM SAMPLING (CRS)
 - Applicable when units of population are natural groups or clusters
 - Use of CRS in India: Evaluation of immunization coverage
 - WHO technique used in CRS: 30 × 7 technique (total = 210 children)
 - 30 clusters, each containing
 - 7 children who are 12 – 23 months age and are completely immunized for primary immunization (till Measles vaccine)
 - Clusters are heterogeneous within themselves but homogenous with respect to each other
 - Sampling interval is also calculated in CRS
 - Accuracy: Low error rate of only ± 5%
 - Limitation: Clusters cannot be compared with each other.

Also Remember
- Main objective of cluster sampling is to reduce costs by increasing sampling efficiency; this contrasts with stratified sampling where the main objective is to increase precision.

107. Ans. (d) 12-23 months [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p35-36 and Methods in Biostatistics by Mahajan, 7/e p91]

108. Ans. (d) Cluster sampling [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p35-36 and Methods in Biostatistics by Mahajan, 7/e p91]

109. Ans. (d) Cluster testing [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p34-37 and Methods in Biostatistics by Mahajan, 7/e p91]
 - Types of sampling:

<table>
<thead>
<tr>
<th>Random Sampling</th>
<th>Non-random sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Probability sampling</td>
</tr>
<tr>
<td>Types</td>
<td>Non-purposive sampling</td>
</tr>
<tr>
<td></td>
<td>Simple random sampling</td>
</tr>
<tr>
<td></td>
<td>Systematic random sampling</td>
</tr>
</tbody>
</table>

Contd...
Stratified random sampling
Multistage random sampling
Multiphase random sampling
Cluster random sampling

Snow-ball sampling
Clinical trial sampling

Refer to Theory.

110. Ans. (d) the drop-out rate increases [Ref. Internet]

111. Ans. (d) Stratified random sampling [Ref. K. Park 21/e p788, Park 22/e p792]

Refer to Theory.

112. (a) Sample size same as simple random [Ref. Methods in Biostatistics by Mahajan, 7/e p91]

- Cluster random sampling:
 - Sample size (total 210): Is much smaller than that of random sampling
 - Is a 2-stage sampling procedure:
 1. First stage: Choosing 30 clusters in an area
 2. Second stage: Choosing 12-23 months children (7 in each cluster)
 - Cheaper quick method: Lesser time, lesser population coverage, lesser sample size.

DESign EFFECT

- Definition: Adjustment used in few study/sampling designs to allow for design structure, especially to allow for correlations among cluster of observations
- Uses:
 - Cluster randomised trials
 - Cluster random sampling
 - Multistage sampling
 - Health facility cluster survey

114. Ans. (d) 400 [Ref. Applied Statistics in Health Sciences by Rao & Murthy, 1/e p105]

- Minimum sample size for prevalence calculation in Cross-sectional studies (Field surveys):
 Sample size = 4pq/L^2
 Where, p= prevalence; q=1-p; L=error in estimation of prevalence
 In the given question, p = 50% (50/100); q = 1-p = 1-0.50 = 0.50 (50/100); L=5% (5/100 as range permissible is 45-50% i.e. +5%)
 So, Sample size = [4*50/100*50/100]/ [5/100]^2 = 400

115. Ans. (c) Homogenous population [Ref. K Park 22/e p792]

116. Ans. (a) Heterogenous data [Ref. K Park 22/e p792]

117. Ans. (d) 30 cluster of 7 children [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p35-36]

118. Ans. (d) Multistage sampling [Ref. The Practice of Social Research by E Babbie, 12/e p218]

119. Ans. (d) 5 [Ref. Ordinal Data Modelling by VE Johnson, 1/e p107]

120. Ans. (a) Quota sampling [Ref. K Park 22/e p792-93]

121. Ans. (c) Systematic random sampling [Ref. Park 22/e p792]

Review Questions

122. Ans. (b) Equal chance to each for collection of certain number for a sample Ref. Park 22/e p792-93]

123. Ans. (d) Cluster-30 [Ref. Textbook of Community Medicine by A P Kulkarni and Baride, 2/e p209]

PROBABILITY AND ODDS

124. Ans. (a) Prior probability of SLE; sensitivity and specificity of each test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p107-08]

- PPV is also known as ‘post-test probability of a disease’ or ‘precision rate’
- Baye’s Theorm: Gives relationship between PPV of a screening test and Sensitivity, Specificity & Prevalence of disease in a population
Biostatistics

PPV = \[
\frac{\text{Sensitivity} \times \text{Prevalence}}{[\text{Sensitivity} \times \text{Prevalence}] + [(1 - \text{Specificity})(1 - \text{Prevalence})]} \times 100
\]

- **Actual Baye’s Theorem**: Gives relationship between Post-test probability of a disease in a population (PTP = PPV) and Sensitivity, Specificity & Post-test probability of a disease in a population (pTP = Prevalence)
 - Post-test probability of a disease in a population (pTP) IS SAME AS PPV
 - Pre-test probability of a disease in a population (pTP) IS SAME AS Prevalence.

In the given question, a patient is clinically diagnosed as having SLE and ordered 6 tests; out of which 4 tests have come positive and 2 are negative; Thus, to determine the probability of SLE at this point (Post-test probability of SLE OR PPV), one would need to know Prior probability of SLE (Pre-test probability OR Prevalence of SLE); sensitivity and specificity of each test.

Also Remember

- **Positive predictive value (PPV)**: Ability of a screening test to identify correctly all those who have the disease, out of all those who test positive on a screening test
 \[
 \text{PPV} = \frac{a}{a + b} \times 100 = \frac{\text{TP}}{\text{TP} + \text{FP}}
 \]
- **PPV of a screening test depends on**:
 - Sensitivity
 - Specificity
 - Prevalence of disease in the population
- **PPV of a screening test is directly proportional to prevalence of disease in the population.**

125. **Ans. (c) 95%** [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p58]

- NPV is inversely proportional to Prevalence of disease in a population (Baye’s Theorem)
 \[
 \text{NPV} = \frac{\text{Specificity} \times (1 - \text{Prevalence})}{[\text{Specificity} \times (1 - \text{Prevalence})] + [(1 - \text{Sensitivity}) \times \text{Prevalence}]} \times 100
 \]
- **To solve questions on PPV or NPV calculation faster**, in the baye’s theorem formulae, use 100 instead of 1, and apply everything in percentage

In the given question,
- Sensitivity = 0.90 = 90%
- Specificity = 0.80 = 80%
- Prevalence = 30%
 - PPV = \[
 \frac{80 \times (100 - 30)}{80 \times (100 - 30) + (100 - 90) \times 30} \times 100 = 95% = 95%
 \]

- **Alternate way of solving such questions**: Construct a hypothetical table of screening test (Follow Rules: Disease on top of table, screening test results on left side of table). Always take round values (for e.g. 100, 1000, etc. as total population).

<table>
<thead>
<tr>
<th>Results of a screening</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test for a disease</td>
<td>Present</td>
</tr>
<tr>
<td>Results</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
</tr>
</tbody>
</table>

Now taking hypothetically, \(a + b + c + d \) (total population) = 1000.

Prevalence = 30% (given in question); No. of cases \(a + c \) = 300
Thus, No of healthy population \(b + d \) = Total population – cases = 1000 – 300 = 700
Since sensitivity \(a / (a + c) \times 100 \) = 0.90 = 90%; a = 270 and c = 30
Similarly, specificity \(d / (b + d) \times 100 \) = 0.80 = 80%; d = 560, b = 140
Thus table will be as follows.

<table>
<thead>
<tr>
<th>Results of a screening</th>
<th>Disease</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
<td>270</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>30</td>
<td>560</td>
</tr>
<tr>
<td>Total (= 1000)</td>
<td></td>
<td>300</td>
<td>700</td>
</tr>
</tbody>
</table>

Now, $\text{NPV} = \frac{d}{c + d} \times 100 = \frac{560}{30 + 560} \times 100 = 95\%$ (0.95)

126. Ans. (c) 0.001 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p106-07 and Methods in Biostatistics by Mahajan, 7/e p95-100]

- Probability: Is the chance that some event will occur
- Probability range: 0 to +1 (0% to 100%)
 - Probability can never be zero
 - Probability cannot exceed one
- Probability rules:
 - Rule of addition: Probabilities are added for mutually exclusive events i.e. $P(\text{Total}) = P(A) + P(B)$
 - Rule of multiplication: Probabilities are multiplied for obtaining joint occurrence of two or more independent events i.e. $P(\text{Total}) = P(A) \times P(B)$

In the given question, Prevalence diabetes in a population is 10%,
Thus each individual has a probability of having diabetes $P(A) = 10\% = 0.10$
If three people selected at random from the population, then each will have a probability of having diabetes as $P(A) = 0.10$
As all 3 events are independent of each other, so probability of all 3 having diabetes will be

$P(T_1) = P(A) \times P(A) \times P(A) = 0.10 \times 0.10 \times 0.10 = 0.001$ (0.1%)

Also, the probability of either one of them having diabetes will be

$P(T_2) = P(A) + P(A) + P(A) = 0.30$ (30%).

127. Ans. (d) 0.0256 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p105-07]

In the given question, Chance of passing a Genetic disease ‘y’ trait by the affected parents to children is 0.16 and they plan to have two children,

Probability of 1st child having ‘y’ trait, $P(A) = 0.16$ (16%)
Probability of 2nd child having ‘y’ trait, $P(B) = 0.16$ (16%)

Thus, Probability of both the children having ‘y’ trait (both events are independent of each other) is

$P(\text{Total}_1) = P(A) \times P(B)$

$P(\text{Total}_1) = 0.16 \times 0.16 = 0.0256$ (2.56%)

Also,

Probability of 1st child not having ‘y’ trait, $P(C) = 0.84$ (84%)
Probability of 2nd child not having ‘y’ trait, $P(D) = 0.84$ (84%)

Thus, Probability of both the children not having ‘y’ trait (both events are independent of each other) is

$P(\text{Total}_2) = P(C) \times P(D)$

$P(\text{Total}_2) = 0.84 \times 0.84 = 0.7056$ (70.56%)

Also, probability of having 1st child with ‘y’ trait and 2nd child without ‘y’ trait (both events are independent of each other) will be:

$P(\text{Total}_3) = P(A) \times P(D)$

$P(\text{Total}_3) = 0.16 \times 0.84 = 0.1344$ (13.44%)

Also, probability of having 1st child without ‘y’ trait and 2nd child with ‘y’ trait (both events are independent of each other) will be:

$P(\text{Total}_4) = P(B) \times P(C)$

$P(\text{Total}_4) = 0.16 \times 0.84 = 0.1344$ (13.44%)

Total probability $= P(\text{Total}_1) + P(\text{Total}_2) + P(\text{Total}_3) + P(\text{Total}_4) = 0.2526 + 0.7056 + 0.1344 + 0.1344 = 1.0$ (100%). These are the only four possibilities with both child births.

128. Ans. (b) 0.70 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p105-07]

In the given question, for Mrs Rekha, probability of having a baby of BW < 2500 gms, $P(A)$ is 0.50 and of having a BW 2500-2999 gms, $P(B)$ is 0.20

Thus, the probability for Mrs. Rekha to have a baby of BW < 3 kg is
P(Total) = P(A) + P(B) = 0.50 + 0.20 = 0.70 (70%)
There is one more possibility, i.e. probability of having a baby of BW > 3 kg, whose probability P(C) will be 1 – (P(A) + P(B)) = 0.30 (30%).

129. Ans. (b) 3:1 [Ref. CMDT, 41/e p1676]

Also Remember

- Odds: Odds are the chance of frequency of occurrence of a characteristic relative to its non-occurrence (expressed as a ratio of occurrence to non-occurrence)
 - Odds = Probability / (1 – Probability)
 - Probability = Odds / (1 + Odds)

130. Ans. (b) Prob (A or B) = Prob (A) × Prob (B) [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p105-07]

- Probability: Is the chance that some event will occur
- Probability range: 0 to +1 (0% to 100%)
 - Probability can never be zero
 - Probability cannot exceed one
- Probability rules:
 - Rule of addition: Probabilities are added for mutually exclusive events i.e. P(Total) = P(A) + P(B)
 For example, If probability of having birth weight < 2500 grams (P (A)) is 0.50 (50%), birth weight 2500 - 2999 grams (P(B)) is 0.30 (30%) and birth weight > 3 kg (P (C)) is 0.20 (20%),
 Then,
 Probability of having birth weight < 3 kg (P (T1)) will be
 P (T1) = P (A) + P (B) = 0.50 + 0.30 = 0.80 (80%) as both events are mutually exclusive
 Similarly, probability of having birth weight > 2500 (P (T2)) will be
 P (T2) = P (B) + P (C) = 0.30 + 0.20 = 0.50 (50%) as both events are mutually exclusive
 - Rule of multiplication: Probabilities are multiplied for obtaining joint occurrence of two or more independent events i.e. P(Total) = P(A) × P(B).
 For example,
 If probability of having birth weight < 3 kg (P (C)) is 0.70 (70%),
 Probability of having birth weight > 3 kg (P (D)) is 0.30 (30%) AND
 Probability of being of male sex (P (E)) is 0.50 (50%), and probability of being of female sex (P (F)) is 0.50 (50%).
 Then,
 Probability of having a child with birth weight < 3 kg and of male sex will be
 P (T3) = P (C) × P (E) = 0.70 × 0.50 = 0.35 (35%) as both are independent events
 Similarly, Probability of having a child with birth weight < 3 kg and of female sex will be
 P (T3) = P (C) × P (F) = 0.70 × 0.50 = 0.35 (35%) as both are independent events
 Probability of having a child with birth weight > 3 kg and of male sex will be
 P (T5) = P (D) × P (E) = 0.30 × 0.50 = 0.15 (15%) as both are independent events
 Probability of having a child with birth weight > 3 kg and of female sex will be
 P (T5) = P (D) × P (F) = 0.30 × 0.50 = 0.15 (15%) as both are independent events
 Total probability of a child being borne with any characteristic (P (T)) will be
 P (T) = P (T3) + P (T4) + P (T5) + P (T6) = 0.35 + 0.35 + 0.15 + 0.15 = 1 (100%)

Odds: Odds are the chance of frequency of occurrence of a characteristic relative to its non-occurrence (expressed as a ratio of occurrence to non-occurrence).

Odds = \frac{\text{Probability}}{1 - \text{Probability}}
Probability = \frac{\text{Odds}}{1 + \text{Odds}}

For example, if probability of occurrence of CHD in a man in lifetime is 0.75 (75%) i.e. P (CHD),
Then odds of CHD development in lifetime will be,

\[P(\text{CHD})/(1 - P(\text{CHD})) = \frac{0.75}{1 - 0.75} = \frac{0.75}{0.25} = 3 : 1. \]

Review Questions

131. Ans. (a) 2/6 [Ref: Park 20/e p755]

132. Ans. (d) 1 in 20 [1 in 40 is Better Answer] [Ref. Indrayan, 1/e p105-07]

STATISTICAL TESTS

133. Ans. (c) Paired t-test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p164 and Methods in Biostatistics by Maha-jan, 7/e p134]

TESTS OF STATISTICAL SIGNIFICANCE

<table>
<thead>
<tr>
<th></th>
<th>Parametric tests</th>
<th>Non-parametric tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Type of data</td>
<td>Gaussian/Normal distributions</td>
<td>Non – normal distributions</td>
</tr>
<tr>
<td></td>
<td>Quantitative</td>
<td>Qualitative</td>
</tr>
<tr>
<td>Compares</td>
<td>Means (± SD)</td>
<td>Percentage, proportions & fraction</td>
</tr>
<tr>
<td>Examples</td>
<td>Students (paired) t - test</td>
<td>Sign test</td>
</tr>
<tr>
<td></td>
<td>Students (unpaired) t - test</td>
<td>Chi-square test (c2 - test)</td>
</tr>
<tr>
<td></td>
<td>ANOVA F - test</td>
<td>Wilcoxon test (signed rank)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wilcoxon test (rank sum)</td>
</tr>
</tbody>
</table>

- **Student’s t-test:**
 - **Paired Student’s t-test:** Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
 - Example: Mean serum albumin level of dengue patients before treatment was 3.6 g/dL and after treatment was 3.2 g/dL; Comparison of mean levels can be done by Paired Student’s t-test.
 - **Unpaired Student’s t-test:** Comparing means (+ SD) in two different group of individuals
 - Example: Mean Hb level of anemia patients was 9.6 g/dL and those of hookworm patients was 7.2 g/dL; Comparison of mean levels can be done by Unpaired Student’s t-test
 - **Z - test:** Is a variant of student’s t-test which is used when sample size is > 30
 - **ANOVA test (F-test/F-ratio):** Comparing means (+ SD) in more than two different group of individuals
 *Example: Mean weight of students in class A is 50 kg, those of class B is 44.6 kg and those of class C is 52.7 kg; Comparison of mean weights can be done by ANOVA test
 - **Sign test:** Comparing percentage, proportions & fractions in paired data (in same group of individuals before and after an intervention)
 *Example: 30% of students in a class are anaemic, after 6 months of IFA therapy, now 20% of students are anaemic; Test of significance to be applied is Sign test
 - **Chi-square test (χ2 – test):** Comparing percentage, proportions & fractions in two or more different group of individuals
 - Example: Three-fourth of students in a class are underweight whereas another class has two-thirds anaemic; test of significance to be used is Chi-square test
 - **Fischer’s test:** Is a variant of Chi-square test when sample size is < 30
 - **Wilcoxon (signed rank) test:** Comparing percentage, proportions & fractions in matched paired data
 - **Wilcoxon (rank sum) test:** Comparing percentage, proportions & fractions in two unpaired samples
 In the given question, variation in cholesterol was seen before and after giving a drug. Thus comparison of mean (cholesterol levels) is done in paired data for which Paired Student’s t-test is done.
 - **Mann-Whitney (Wilcoxon) test:**
 - **MWW is same as Wilcoxon (rank sum) test**
 - Is used for assessing whether two set of observations come from same distribution (if 2 independent ‘non-paired’ samples come from the same population)
 - ‘MWW is analogous to parametric two-sample t-test’ on the data after ranking over the combined samples
 - MWW requires calculation of ‘U statistic’.
134. Ans. (c) Standard error of difference between two proportions

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p146-47 and Methods in Biostatistics by Mahajan, 7/e p149; Park 21/e p790, Park 22/e p794]

Also Remember

- **Mean (Average):**
 - Is a measure of central tendency
 - Is obtained as sum of all values divided by the no. of values
 \[\text{Mean} = \frac{\Sigma x}{n} \]
- **Normal deviate:**
 - Is also known as Z score (Standard score)
 - Is difference of a value from group mean, in terms of how many times of SD (s)
 \[Z = \frac{\text{Individual level} - \text{Mean}}{\text{SD}} = \frac{x - \mu}{\sigma} \]
 - The standard score indicates how many standard deviations an observation is above or below the mean
 - Z scores are frequently used in assessing how far a child is in his relative growth to a standard
 - Z score = 2: Any measurement of atleast 2SD away is considered too far away to be normal.

135. Ans. (a) Paired t-test

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p164 and Methods in Biostatistics by Mahajan, 7/e p134]

- In the given question, a cardiologist wants to study the effect of an atrovastatin drug; he notes down the initial cholesterol levels of 50 patients and then administers the drug on them and after a month’s treatment, he measures the cholesterol level again
- Since mean cholesterol levels are being measured in the same group of individuals before and after an intervention, this is PAIRED DATA
- Thus, the most appropriate to test the statistical significance of the change in blood cholesterol will be Students (paired) t-test.

Also Remember

- **Mann-Whitney (Wilcoxon) test:**
 - MWW is same as Wilcoxon (rank sum) test
 - Is used for assessing whether two set of observations come from same distribution (if 2 independent ‘non-paired’ samples come from the same population)
 - ‘MWW is analogous to parametric two-sample t-1 test’ on the data after ranking over the combined samples
 - MWW requires calculation of ‘U statistic’.

136. Ans. (b) That a smaller proportion of people who were immunized against chickenpox subsequently develop zoster than those who were not immunized

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170-72 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]

In the given question,

- Choice (a): Mean score of 2 groups are compared, thus most appropriate test of significance would be ‘Unpaired Students t-test’
- Choice (b): Two proportions are compared, thus most appropriate test of significance would be ‘Chi-square test’
- Choice (c): Mean score of 3-4 groups are compared, thus most appropriate test of significance would be ‘ANOVA (F ratio) test’
- Choice (d): Mean score of 2 groups are compared, thus most appropriate test of significance would be ‘Unpaired Students t-test’

137. Ans. (a) Chi Square Test

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170-72 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]

CHI-SQUARE TEST (\(\chi^2 \) – TEST):

- Is a ‘non-parametric test’ of significance
- Is used to ‘test significance of association between 2 or more qualitative characteristics’
- Is used to compare proportions in 2 or more groups
- Is used for non – Normal (non-Gaussian) distributions
Applications of Chi-square test:
- Test of proportions
- Test of association
- Test of goodness of fit

Essential requirements for calculation of Chi-square test:
- Random sample
- Qualitative data
- Lowest expected frequency not < 5

In the given question, in a particular trial, the association of lung cancer with smoking is found to be 40% in one sample and 60% in another. Since two proportions are to be compared, the best test will be Chi-square test.

Also Remember

Degree of freedom: Is the no. of observations in a dataset that can freely vary once the parameters have been estimated
- Used in Chi-square test and t-test
 1. In a contingency table, $dof = (c - 1)(r - 1)$ (where $c =$ no. of columns and $r =$ no. of rows)
 2. In a Student’s t-test (one-sample data/ paired test), $dof = n - 1$ (where $n =$ no. of units in the sample)
 3. In a Student’s t-test (two-sample data/unpaired test), $dof = (n_1 + n_2) - 1$ (where n_1 and $n_2 =$ no. of units in the two samples)

Paired Student’s t-test: Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
Fischer’s test: Is a variant of Chi-square test when sample size is < 30
ANOVA test (F-test/F-ratio): Comparing means (+ SD) in more than two different group of individuals.

138. Ans. (c) t [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p160-63 and Methods in Biostatistics by Mahajan, 7/e p127-128]

Student’s t-test:
- Paired Student’s t-test: Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
- Unpaired Student’s t-test: Comparing means (+ SD) in two different group of individuals
- Z-test: Is a variant of student’s t-test which is used when sample size is > 30.

In the given question, mean + SD of 20 boys (140 + 13 cm) and 20 girls (135 cm + 7 cm) of the same age are compared. Thus most appropriate statistical test of significance would be Unpaired Student’s t-test.

139. Ans. (b) Paired ‘t’ test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p160-63 and Methods in Biostatistics by Mahajan, 7/e p127-128]

Student’s t-test:
- Paired Student’s t-test: Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
- Unpaired Student’s t-test: Comparing means (+ SD) in two different group of individuals
- Z-test: Is a variant of student’s t-test which is used when sample size is > 30.

In the given question, the mean B.P. of a group of persons was determined and after an interventional trial, the mean BP was estimated again. The best test to be applied to determine the significance of intervention would be Paired Student’s t-test.

140. Ans. (d) Chi – Square test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p168-85 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]

Chi-square test as a test of association between 2 events in binomial or multinomial samples is its ‘most important application’

In the given question, an investigator wants to study the association between maternal intake of iron supplements (Yes or No) and incidence of low birth weight (< 2500 or > 2500 gms),
Thus, association is to be studied between 2 qualitative variables, i.e. status of usage of iron supplements and status of low birth weight in their newborns, So, most appropriate test would be Chi – square test.

141. Ans. (c) 9 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p171 and Methods in Biostatistics by Mahajan, 7/e p159; Park 21/e p791, Park 22/e p795]
- **Degree of freedom**: Is the no. of observations in a dataset that can freely vary once the parameters have been estimated
 - Used in Chi-square test and t-test
 - In a contingency table,
 Degree of freedom, dof = (c – 1) (r – 1)
 where c = no. of columns and r = no. of rows

<table>
<thead>
<tr>
<th>Contingency table</th>
<th>Degree of freedom (dof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 × 2 table</td>
<td>(2 – 1) (2 – 1) = 1</td>
</tr>
<tr>
<td>3 × 3 table</td>
<td>(3 – 1) (3 – 1) = 4</td>
</tr>
<tr>
<td>4 × 4 table</td>
<td>(4 – 1) (4 – 1) = 9</td>
</tr>
<tr>
<td>5 × 5 table</td>
<td>(5 – 1) (5 – 1) = 16</td>
</tr>
<tr>
<td>3 × 4 table</td>
<td>(3 – 1) (4 – 1) = 6</td>
</tr>
<tr>
<td>10 × 20 table</td>
<td>(10 – 1) (20 – 1) = 171</td>
</tr>
</tbody>
</table>

142. Ans. (c) 6 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p171 and Methods in Biostatistics by Mahajan, 6/e p173, 7/e p159; Park 21/e p791, Park 22/e p795]
- In a Student’s t-test (one-sample data/paired test):
 Degree of freedom, v = n – 1
 where n = no. of units in the sample
- In a Student’s t - test (two-sample data/unpaired test):
 Degree of freedom, v = (n_1 + n_2) – 1
 where n_1 and n_2 = no. of units in the two samples.

143. Ans. (a) Paired t-test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p164 and Methods in Biostatistics by Mahajan, 7/e p134]
In the given question, a cardiologist wants to study the effect of an anti-hypertensive drug. So he will compare mean BP of 50 patients before and after administering the drug. Thus Paired t-test will be most appropriate test of significance.

144. Ans. (b) Student’s t-test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p162-63]
- Student’s t-test:
 - Paired Student’s t - test: Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
 - Unpaired Student’s t - test: Comparing means (+ SD) in two different group of individuals
Example: Mean Hb level of anemia patients was 9.6 g/dL and those of hookworm patients was 7.2 g/dL; Comparison of mean levels can be done by Unpaired Student’s t-test
 - Z-test: Is a variant of student’s t-test which is used when sample size is > 30
In the given question, the study to assess the effect of a drug in lowering serum cholesterol levels was undertaken in 15 obese women and 10 non-obese women (2 limbs of the study)
Thus mean lowering of serum cholesterol would be obtained in the two samples, thereby making ‘two-sampled student’s t – test’ as the test of choice.

145. Ans. (a) Chi square test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]
In the given question, association of lung cancer with smoking is found to be 40% in one sample and 60% in another. So the best test to compare the results will be Chi square test.

146. Ans. (a) Mean & SD of the groups [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170-72 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]
Also Remember

- **Odds ratio (OR):** Ratio of odds that cases were exposed to a risk factor to the odds that the controls were exposed
 - Is used to ‘measure strength of association in a case control study’
 - Is also known as ‘Cross product ratio’ or ‘Relative odds’
 - Is an ‘estimate of Relative risk (RR)’, which is used to measure strength of association in a cohort study (RR is more accurate than OR) as a measure of strength of association
 - OR calculation: Correct table construction in a case control study requires that table will have disease at the top (row) and history of exposure/risk factor on the left (column).

<table>
<thead>
<tr>
<th>Disease</th>
<th>Present (cases)</th>
<th>Absent (Controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure present</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Exposure absent</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

- Odds Ratio (Cross Product Ratio) = \(\frac{ad}{bc} \)
 - Interpretation of Odds ratio is just like relative risk: OR can be >1 (associate), = 1 (no association) or < 1 (protective effect)

- **Correlation coefficient (r):** Measures the degree or strength of relationship in a correlation
 - Correlation coefficient (r) lies between: –1 to +1 (\(-1 < r < +1\))
 - Correlation is represented by: ‘Scatter diagram’
 - Correlation coefficients:
 1. Pearson’s Correlation coefficient
 2. Spearman’s Rank Correlation coefficient

- **Chi-square test (\(\chi^2 \) – TEST):**
 - Is a ‘non-parametric test’ of significance
 - Is used to ‘test significance of association between 2 or more QUALITATIVE characteristics’
 - Is used for non-Normal (non-Gaussian) distributions
 - Applications of Chi-square test:
 1. Test of proportions
 2. Test of association
 3. Test of goodness of fit.

148. Ans. (a) **Chi-square test**
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795]

149. Ans. (b) 6
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p171 and Methods in Biostatistics by Mahajan, 7/e p159; Park 21/e p791, Park 22/e p795]

In the given question, there are 3 rows and 4 columns (we only count those rows and columns which are filled with frequencies),
Thus, dof = \((c - 1) (r - 1) = (4 - 1) (3 - 1) = 6\).

150. Ans. (d) **One way analysis of variance (one way ANOVA)**
[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p164]

- **Student’s t-test:**
 - Paired Student’s t-test: Comparing means (+ SD) in paired data (in same group of individuals before and after an intervention)
 - Comparison of mean levels can be done by Paired Student’s t-test
 - Unpaired Student’s t-test: Comparing means (+ SD) in two different group of individuals
 - ANOVA test (F-test/F-ratio): Comparing means (+ SD) in more than two different group of individuals
 - Chi-square test (\(\chi^2 \)-test): Comparing percentage, proportions & fractions in two or more different group of individuals

In the given question, we have to test the statistical significance of the difference in heights of school children; thus mean heights of schools children in different classes/standards/schools will be done
Thus, ANOVA test (F-test/ F-ratio) is most suitable.
151. Ans. (c) Directly measures the strength of association \[\text{Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170-73 and Methods in Biostatistics by Mahajan, 7/e p154-169; Park 21/e p791, Park 22/e p795}\]

CHI-SQUARE TEST (χ^2-TEST):
- Is a ‘non-parametric test’ of significance
- Is used to ‘test significance of association between 2 or more qualitative characteristics’
- Is used for non - Normal (non –Gaussian) distributions
- Applications of Chi-square test:
 - Test of proportions
 - Test of association
 - Test of goodness of fit
- Essential requirements for calculation of Chi-square test:
 - Random sample
 - Qualitative data
 - Lowest expected frequency not < 5

In a 2×2 contingency table,

\[
\begin{array}{cc}
\text{a} & \text{b} \\
\text{c} & \text{d}
\end{array}
\]

\[\chi^2 = \sum (O - E)^2 / E\]

where $O = \text{Observed frequency and } E = \text{Expected frequency in each cell}$

\[
\text{OR } \chi^2 = \frac{[(ab - bc)(a + b + c + d)]}{[(a + b)(c + d)(a + c)(c + d)]^{1/2}}
\]

Also Remember
- Advantages of χ^2 – test over ‘Standard error of difference between two proportions’ test as a test of proportions has:
 - Can be used to compare values of 2 binomial samples even if they are less than size of 30.
 - Apply correction factor – Yates correction
 - Expected value must not be < 5 in any cell
- Chi-square test as a test of association between 2 events in binomial or multinomial samples is its ‘most important application’
 - χ^2-test tells about the presence or absence of association between 2 events/characteristics but ‘do not tell about strength of association’
 - If strength of association (Relative Risk or Odds Ratio) found in a study is close to value of 1: Chi-square test can be used to find whether or not RR/OR is really statistically significantly different from value of 1.
- If in any cell frequency is < 5: Fischer’s exact test is used.

152. Ans. (b) Student t test \[\text{Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p164 and Methods in Biostatistics by Mahajan, 7/e p127-141}\]

- In the given question, mean bone density amongst 2 groups of 50 people each is compared,
- Thus means are to be compared in 2 different groups,
- So, Unpaired Student’s t-test is most appropriate to test significance of association.

Also Remember
McNemar’s Chi-square test: is a non-parametric test used to test significance of association between 2 sampled paired data.

153. Ans. (b) Paired ‘t’ test \[\text{Ref. Indrayan, 1/e p164}\]

154. Ans. (b) 6 \[\text{Ref. K. Park 20/e p755; Park 21/e p791, Park 22/e p795}\]

155. Ans. (d) Multiple logistic regression \[\text{Ref. Principles of Medical Statistics by Alvan R Feinstein, p612}\]

- ANOVA: Analysis of Variance is a parametric test used for polytomous independent variable
- Chi-square test: Is non-parametric test used for testing association between 2 or more qualitative variables
• *Multiple linear regression:* Is used if the target variables are dimensional having multiple possible values (e.g., blood pressure, serum cholesterol, body temperature)
• *Multiple logistic regression:* Is used if the target variables are binary having only two possible values (e.g., hypertension, smoking, geriatric age group)

In the given question, the investigator finds out that 5 independent factors influence the occurrence of a disease. So to compare these 5 factors (each factor being dichotomous) one should use Multiple logistic regression.

156. Ans. (c) Paired students t-test [Ref. Biostatistics by Mahajan, 7/e p134]
157. Ans. (a) (c) SD [Ref. Park 22/e p793-95]

Review Question

158. Ans. (a) Significance of difference between two proportions [Ref. Park 21/e p791, Park 22/e p795]
159. Ans. (a) Measure the significance of difference between two proportion [Ref. K.S. Negi Biostatistics p115-117; Park 22/e p795]
160. Ans. (b) 1 [Ref. Park 21/e p791, Park 22/e p795]
161. Ans. (c) 3.84 [Ref. Park 21/e p791, Park 22/e p795]
162. Ans. (a) Chi-square test [Ref. Park 21/e p791, Park 22/e p795]
163. Ans. (a) <0.001 is statistically significant [Ref. Park 21/e p791, Park 22/e p795]
164. Ans. (a) Unpaired ‘t’ test [Ref. K Park 20/e p753-54]
165. Ans. (a) Paired ‘t’ test [Ref. Indrayan, 1/e p164]
166. Ans. (b) 20 [Ref. K Park 20/e p755; Park 21/e p791]
167. Ans. (b) 12 [Ref. K Park 22/e p795]
168. Ans. (b) To compare means in 3 or more groups [Ref. Beyond ANOVA by RG Miller, 1/e p5]
169. Ans. (c) Means in different groups [Ref. K Park 22/e p795]
170. Ans. (d) Standard error of difference between proportions [Ref. K Park 22/e p795]
171. Ans. (a) 1 [Ref. K Park 22/e p795]
172. Ans. (c) 2 [Ref. K Park 22/e p795]
173. Ans. (c) 10 [Ref. K Park 22/e p795]
174. Ans. (d) Cox proportional hazards test [Ref. Cholesterol: New Insights by A Acton, 1/e p511]
175. Ans. (d) Fischer’s exact test; (e) Chi-square test

CORRELATION AND REGRESSION

176. Ans. (d) Computational mistake in calculating correlation [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127-30 and Methods in Biostatistics by Mahajan, 7/e p171; Park 21/e p791, Park 22/e p795]

CORRELATION:
- Is relationship between 2 quantitative or continuous variables
- *Correlation coefficient* (r): Measures the degree or strength of relationship in a correlation
 - Correlation coefficient (r) lies between: -1 to $+1$ ($-1 < r < +1$)
- *Correlation is represented by:* 'Scatter diagram'
 - In a scatter diagram, 2 imaginary lines are drawn along the distribution of dots/scatter.
Biostatistics

- Correlation coefficients:
 - Pearson’s Correlation coefficient:
 1. Is used in ungrouped series
 2. Is used when associated variables are normally distributed
 3. Symbol is ‘r’
 - Spearman’s Rank Correlation coefficient
 1. Is used in grouped series
 2. Is used when associated variables are not normally distributed
 3. Symbol is ‘rho (\(\rho\))’.

Also Remember

- Multiple correlation coefficient: Is used for calculation of correlation between one variable (dependent) and the combination of two or more variables (independents)
- Coefficient of determination:
 - Is the percentage of variation in a variable that is explained by one or more of the others
 - Is generally obtained in a regression setup
 - Coefficient of determination = (Correlation coefficient)\(^2 = r^2\)
- Coefficient of variation:
 - Is a measure used to compare relative variability
 - Is a unit-free measure to compare dispersion of one variable with another
 \[CV = \frac{SD}{\text{Mean}} \times 100 = \frac{\sigma}{\mu} \times 100. \]

177. Ans. (d) The lecturer has reported the correlation coefficient incorrectly [Ref: Simple Biostatistics by Indrayan & Indrayan, 1/e p127 and Methods in Biostatistics by Mahajan, 7/e p170-178; Park 21/e p791, Park 22/e p795]

CORRELATION COEFFICIENT (R):
- Measures the degree or strength of relationship in a correlation (relationship between 2 quantitative or continuous variables)
- Correlation coefficient (r) lies between: -1 to +1 (-1 < r < +1)
- Strength of correlation:
 - Weak positive correlation: 0 < r < 0.3
 - Moderate positive correlation: 0.4 < r < 0.6
 - Strong positive correlation: r > 0.7
- Correlation is represented by: ‘Scatter diagram’

In the given question, a lecturer states that the correlation coefficient between prefrontal blood flow under cognitive load and the severity of psychotic symptoms in schizophrenic patients is – 1.24
Since correlation coefficient (r) lies between -1 to +1 only, a value of r = - 1.24 IS NOT POSSIBLE. There is some computational mistake in calculation.
Biostatistics

Also Remember

- Few important ranges in public health:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range (Lies between)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation coefficient (r)</td>
<td>−1 to +1 (−1 < r < +1)</td>
</tr>
<tr>
<td>Coefficient of determination (r²)</td>
<td>0 to +1 (0 < r² < +1)</td>
</tr>
<tr>
<td>Physical quality of life index (PQLI)</td>
<td>0 to +100 (0 < PQLI < +100)</td>
</tr>
<tr>
<td>Human development index (HDI)</td>
<td>0 to +1 (0 < HDI < +1)</td>
</tr>
<tr>
<td>Probability</td>
<td>0 to +1 (0% < Probability < 100%)</td>
</tr>
<tr>
<td>Sensitivity (screening test)</td>
<td>0% < Sensitivity < 100%</td>
</tr>
<tr>
<td>Specificity (screening test)</td>
<td>0% < Specificity < 100%</td>
</tr>
<tr>
<td>PPV (screening test)</td>
<td>0% < PPV < 100%</td>
</tr>
<tr>
<td>NPV (screening test)</td>
<td>0% < NPV < 100%</td>
</tr>
</tbody>
</table>

178. Ans. (a) Since there is a high correlation, the magnitudes of both the measurements are likely to be close to each other

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127-30 and Methods in Biostatistics by Mahajan, 7/e p170-178; Park 21/e p791, Park 22/e p795]

- Correlation coefficients:
 - Pearson’s Correlation coefficient:
 - Spearman’s Rank Correlation coefficient

- Coefficient of determination:
 - Is the percentage of variation in a variable that is explained by one or more of the others
 - Is generally obtained in a regression setup
 - Coefficient of determination = (Correlation coefficient)² = r²

In the given question, a cardiologist found a highly significant correlation coefficient (r = 0.90, p= 0.01) between the systolic blood pressure values and serum cholesterol values of the patients attending his clinic. Since r = + 0.90 (p = 0.01; implies significant relationship), it means there is a strong positive correlation between systolic blood pressure (SBP) and serum cholesterol (SC); therefore as SBP increases, SC will also increase and vice-versa. Thus, a patient with a high level of systolic BP is also likely to have a high level of serum cholesterol AND a patient with a low level of systolic BP is also likely to have a low level of serum cholesterol.

Since r = + 0.9; Coefficient of determination = r² = (0.9)² = 0.81

Interpretation of r²: 0.81 or 81% of variation in systolic blood pressure among patients can be explained by their serum cholesterol values and vice-versa.

179. Ans. (c) Correlation can measure risk

[Ref. Methods in Biostatistics by Mahajan, 7/e p170-178; Park 21/e p791, Park 22/e p795]

- Correlation does not imply causation
 - Causality can be established by ‘Hill’s Criteria’

180. Ans. (b) Scatter diagram

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p103 and Methods in Biostatistics by Mahajan, 7/e p25-27; Park 21/e p791, Park 22/e p795]

- Scatter/Dot diagram:
 - Also known as ‘Correlation diagram’
 - Is used to depict ‘correlation (relationship) between 2 quantitative variables’
 - Vertical axis in scatter diagram: should be the dependent or the outcome variable
 - In a scatter diagram, 2 imaginary lines are drawn along the distribution of dots/scatter
 - Correlation coefficient (r): Lies between -1 to +1

181. Ans. (b) Coefficient of regression

[Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p125 and Methods in Biostatistics by Mahajan, 7/e p178-82; Park 21/e p791, Park 22/e p795]

REGRESSION:

- Is change in measurements of a variable
- Provides structure of relationship between 2 quantitative variables
- Regression Coefficient (b): Measure of change of one dependent variable (y) with change in independent variable (x) or variables (x₁, x₂, x₃, ……)

Equations of regression,
y = a + b (x)
y = a + b (x₁) + c (x₂) + d (x₃),
where y is a dependent variable and x, x₁, x₂, x₃ are independent variables; a is a constant and b, c, d are regression coefficients.

- Types of regressions:
 - **Simple linear regression**: Only one dependent variable and one independent variable
 - **Multiple linear regression**: Only one dependent variable and more than one independent variable
 - **Simple curvilinear regression**: Only one dependent variable and one independent variable, with some power of independent variable
 - **Multiple curvilinear regression**: Only one dependent variable and more than one independent variables, with some power of independent variables.

- Types of regression equations:

<table>
<thead>
<tr>
<th>Types of regression</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple linear regression</td>
<td>(y = a + b \times x)</td>
</tr>
<tr>
<td>Multiple linear regression</td>
<td>(y = a + b \times x₁ + c \times x₂ + d \times x₃)</td>
</tr>
<tr>
<td>Simple curvilinear regression</td>
<td>(y = a + b \times x²)</td>
</tr>
<tr>
<td>Multiple curvilinear regression</td>
<td>(y = a + b \times x₁² + c \times x₂⁴ + d \times x₃³)</td>
</tr>
</tbody>
</table>

- Other types of regressions:

<table>
<thead>
<tr>
<th>Types of regressions</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>Qualitative, dichotomous</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Quantitative</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Quantitative</td>
</tr>
<tr>
<td>Multivariate multiple regression</td>
<td>Set of Quantitative</td>
</tr>
<tr>
<td>MANOVA</td>
<td>Set of Quantitative</td>
</tr>
<tr>
<td>Multivariate logistic regression</td>
<td>Set of Quantitative</td>
</tr>
</tbody>
</table>

Also Remember:

- **Relationships of variables**:
 - Association: Simultaneous existence of 2 variables
 - Correlation: Relationship between 2 quantitative or continuous variables
 1. Correlation coefficient (r): Lies between -1 to +1 (measures relationship between 2 variables)
 - Regression: Provides structure (quantification) of relationship between 2 quantitative variables
- **SE of mean**:
 - ‘SE is a measure of chance variation,’ and it does not mean error or mistake
 - SE is SD or variability of sample means

\[
SE = \frac{SD}{\sqrt{\text{sample size}}} = \frac{\sigma}{\sqrt{n}}
\]

- Uses of standard error:
 1. To work out limits of desired confidence within which population mean would lie
 2. To determine if sample is drawn from a known population or not
 3. To find SE of difference between 2 means (to know if difference is real and statistically significant)
 4. To calculate sample size (within desired confidence limits).

182. Ans. (a) Straight line [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p125-27 and Methods in Biostatistics by Mahajan, 7/e p172-182; Park 21/e p791, Park 22/e p795]

In the given question, the correlation of height with age is given by the equation \(y = a + biopsy \), thus it is a Simple linear regression (equation: \(y = a + bx \)).

Nature of the graph will be a straight line.
183. Ans. (d) \(r = -0.8 \) [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127-29 and Methods in Biostatistics by Mahajan, 7/e p171-174; Park 21/e p791, Park 22/e p795]

In the given question, correlation between IMR and economic status has to be inversely proportional (as economic status increases, IMR reduces and vice-versa). But perfectly negative linear relation \((r = -1) \) will not be seen (as IMR will also depend on other factors like available health services, literacy level, etc.) Thus, it will show a moderately negative correlation \((-1 < r < 0)\).

184. Ans. (d) Mistake in calculation [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127 and Methods in Biostatistics by Mahajan, 7/e p171; Park 21/e p791, Park 22/e p795]

185. Ans. (b) Strong statistically significant (+) association between work satisfaction and life expectancy [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127-30 and Methods in Biostatistics by Mahajan, 6/e p186-90, 7/e p170-178; Park 21/e p791, Park 22/e p795]

- Correlation coefficients:
 - Pearson’s Correlation coefficient:
 - Spearman’s Rank Correlation coefficient
- Coefficient of determination:
 - Is the percentage of variation in a variable that is explained by one or more of the others.
 - Coefficient of determination \(= \) (Correlation coefficient)\(^2 = r^2\)

In the given question, a study finds a correlation coefficient of \(+0.7\) between self-reported work satisfaction & expectancy of life in a random sample of 5000 corporate workers. \((p = 0.01)\)

Since \(r = +0.70 \) \((p = 0.01)\); implies significant relationship, it means there is a strong positive correlation between self-reported work satisfaction (SRWS) & expectancy of life (LE); therefore as SRWS increases, LE will also increase. Thus, a patient with a high level of SRWS will have a high LE.

Since \(r = +0.7; \) Coefficient of determination \(= r^2 = (0.7)^2 = 0.49\)

Interpretation of \(r^2: 0.49 \) or 49\% of variation in expectancy of life can be explained by their self-reported work satisfaction. Thus INCREASE in work satisfaction will improve life expectancy.

186. Ans. (c) Multiple linear regression [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p125-27 and Methods in Biostatistics by Mahajan, 7/e p178-182; Park 21/e p791, Park 22/e p795]

In the given question, total cholesterol level = \(a + b \) (calorie intake) + \(c \) (physical activity) + \(d \) (body mass index) is an example of Multiple linear regression equation \(y = a + b(x_1) + c(x_2) + d(x_3) \).

Also Remember

- Relationships of variables:
 - Association: Simultaneous existence of 2 variables
 - Correlation: Relationship between 2 quantitative or continuous variables
 - Regression: Provides structure (quantification) of relationship between 2 quantitative variables
- Other types of regressions:

<table>
<thead>
<tr>
<th>Types of regressions</th>
<th>Dependent variables</th>
<th>Features</th>
<th>Independent variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>Qualitative, dichotomous</td>
<td>Qualitative/Quantitative/Mixed</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>Quantitative</td>
<td>Qualitative</td>
<td></td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Quantitative</td>
<td>Qualitative+Quantitative</td>
<td></td>
</tr>
<tr>
<td>Multivariate multiple regression</td>
<td>Set of Quantitative</td>
<td>Set of Quantitative</td>
<td></td>
</tr>
<tr>
<td>MANOVA</td>
<td>Set of Quantitative</td>
<td>Set of Qualitative</td>
<td></td>
</tr>
<tr>
<td>Multivariate logistic regression</td>
<td>Set of Qualitative</td>
<td>Qualitative/Quantitative</td>
<td></td>
</tr>
</tbody>
</table>

187. Ans. (a) Strong direct relationship between two variables [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p127-30 and Methods in Biostatistics by Mahajan, 7/e p170-74; Park 21/e p791, Park 22/e p795]
Review of Preventive and Social Medicine

188. Ans. (c) Correlation coefficient [Ref. K Park 22/e p795]
189. Ans. (b) Negative correlation [Ref. K Park 22/e p795]
190. Ans. (b) 1 [Ref. K Park 22/e p795]

Review Questions

191. Ans. (d) it is a wrong statement [Ref. High yield biostatistics 2/e p50-52; Park 21/e p791, Park 22/e p795]
192. Ans. (c) -1 to +1 [Ref. Park 20/e p755]

ERRORS AND P-VALUE

193. Ans. (a) Alpha error [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-57 and Methods in Biostatistics by Mahajan, 7/e p111-113]
 - Hypothesis (H): Is an assumption about the status of a phenomenon
 - Null Hypothesis (H0): In Biostatistics, when we have to prove a particular hypothesis about difference between 2 regimes, we make Null Hypothesis (For examples, If we have to prove that new treatment is better than older treatment, H0 = new treatment is not better than older treatment)
 - Statistical errors:
 - Type I Error:
 - Null hypothesis is true but rejected
 - Probability of Type I error is given by ‘P – value’ (probability of declaring a significant difference when actually it is not present)
 - Significance (a) level: is the maximum tolerable probability of Type I error
 - Alpha is fixed in advance: P – value calculated can be less than, equal to or greater than alpha (a)
 - Keep Type I error to be minimum (P < a): Then results are declared statistically significant
 - Type II Error:
 - Null hypothesis is false but not rejected (or accepted)
 - Probability of Type II error is given by beta (β) (probability of declaring no significant difference when actually it is present)

 ![Table]

<table>
<thead>
<tr>
<th>Null Hypothesis (H0) true</th>
<th>H0 rejected</th>
<th>H0 not rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error</td>
<td>No error</td>
<td>Type II error</td>
</tr>
<tr>
<td>Null Hypothesis (H0) false</td>
<td>No error</td>
<td>Type II error</td>
</tr>
</tbody>
</table>

Also Remember

- Type I error is more serious than Type II error
- Power of a test: 1 – β

194. Ans. (d) The probability of a false positive conclusion that operation ‘Operation A is better that Operation B’, when in truth it is not, is 4% [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-56 and Methods in Biostatistics by Mahajan, 7/e p111-113]

 Refer to Ans. 154.

 In the given question, the “P” value of a randomized controlled trial comparing operation A (new procedure) & Operation B (Gold standard) is 0.04:

 Thus the probability of committing Type I error is 0.04 or 4% (i.e. probability of declaring a false positive conclusion that operation ‘Operation A is better that Operation B’, when in truth it is not, is 4%).

Also Remember

- Type I error:
 - Significance (a) level: is the maximum tolerable probability of Type I error
 - Alpha is fixed in advance: P – value calculated can be less than, equal to or greater than alpha (a)
 - Keep Type I error to be minimum (P < a): Then results are declared statistically significant.
Type I error is more serious than Type II error
- Power of a test: $1 - \beta$
 - Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present
 - Power can be increased by increasing the no. of subjects in a trial

A test with a high specificity has a low Type I error rate
- False positive rate (α) = $1 - $ specificity
- False negative rate (β) = $1 - $ sensitivity

195. Ans. (b) Decreasing b error [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p156-60]
- Power of a test:
 - Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present
 - Measures the ability to demonstrate an association, when one really exists
 - Power of a statistical test: $1 - \beta$ (1 – probability of Type II error)
 - Power of a statistical test is complimentary to b (probability of Type II error)
 - Power of a statistical test is a numeric representation of: Sensitivity
 - Power of a statistical test can be increased by:
 1. Increasing the no. of subjects in a trial (sample size)
 2. Reducing b (probability of Type II error)
 3. Increasing sensitivity
 - Power of a statistical test is also used for calculation of sample size for a study

- Statistical errors:

<table>
<thead>
<tr>
<th>H$_0$ rejected</th>
<th>H$_0$ not rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Hypothesis (H$_0$) true</td>
<td>Type I error</td>
</tr>
<tr>
<td>Null Hypothesis (H$_0$) false</td>
<td>No error</td>
</tr>
</tbody>
</table>

Types of Statistical errors:

<table>
<thead>
<tr>
<th>Type I Error</th>
<th>Type II Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null hypothesis is true but rejected</td>
<td></td>
</tr>
<tr>
<td>Probability of Type I error is given by ‘P – value’ (probability of declaring a significant difference when actually it is not present)</td>
<td></td>
</tr>
<tr>
<td>Significance (α) level: is the maximum tolerable probability of Type I error</td>
<td></td>
</tr>
<tr>
<td>Keep Type I error to be minimum ($P < (\alpha)$): Results are declared statistically significant</td>
<td></td>
</tr>
<tr>
<td>Type I error is more serious</td>
<td></td>
</tr>
<tr>
<td>Null hypothesis is false but not rejected</td>
<td></td>
</tr>
<tr>
<td>Probability of Type II error is given by beta (β) (probability of declaring no significant difference when actually it is present)</td>
<td></td>
</tr>
<tr>
<td>Power of a test: $(1 – (\beta))$ Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present</td>
<td></td>
</tr>
</tbody>
</table>

Also Remember

- A test with a high specificity has a low Type I error rate
 - False positive rate (α) = $1 - $ specificity
 - False negative rate (β) = $1 - $ sensitivity

196. Ans. (d) Nothing can be concluded as the information given is inadequate [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p141 and Methods in Biostatistics by Mahajan, 7/e p111]

In the given question, In assessing the association between maternal nutritional status and the birth weight of the newborns, two investigators A and B studied separately and found significant results with p values 0.02 and 0.04 respectively Only levels of significance are given, thus we can only conclude that investigator A has 98% chance of being correct whereas investigator B has 96% chance of being correct.
Biostatistics

Review of Preventive and Social Medicine

197. Ans. (a) Type-I error (a error) [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-56 and Methods in Biostatistics by Mahajan, 7/e p111-113]

In the given question, a randomized trial comparing efficacy of two regimens showed that difference is statistically significant with p<0.001 (null hypothesis is rejected) but in reality the two drugs do not differ in their efficacy (null hypothesis is true), Thus it is Type-I error (a error).

198. Ans. (b) The probability of declaring a significant difference is 1% [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-56]

199. Ans. (b) Is equal to 1-b [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155]

- Type I error is usually fixed in advance by the choice of level of significance employed in the test
- Type I error is more serious than Type II error
- Power of a test: 1 - b
 - Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present
 - Power can be increased by increasing the no. of subjects in a trial
- There is no mathematical relationship between α and β.

200. Ans. (c) When Null Hypothesis is true but is rejected, it is Type-II error [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-57 and Methods in Biostatistics by Mahajan, 7/e p111-113]

201. Ans. (b) 1 – b [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p157]

- Statistical Power of a test:
 - Is probability of rejecting a Null hypothesis when a predetermined clinically significant difference is indeed present
 - Power can be increased by increasing the no. of subjects in a trial
 - Is the ‘probability that a study/trial will be able to detect a specified difference’
 - Measures the ability to demonstrate an association when one really exists
 - Power of a statistical test = 1 – Probability of Type II error = 1 – β
 - Power can be increased by: Including a higher no. of subjects under trial
 - There is no mathematical relationship between α and β.

Also Remember

- Most power-efficient parametric test: F – test
- Most power-efficient non-parametric test: Kruskal Wallis test.

202. Ans. (b) Rejecting a null hypothesis when true [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p156]

- P-value:
 - Is the ‘Probability of Type I error’ (Null hypothesis is true but rejected)
 - Significance (α) level: is the maximum tolerable probability of Type I error
 - P-value is calculated (on basis of data while Alpha is fixed in advance: by the choice of level of significance employed in the test
 - P-value calculated can be less than, equal to or greater than alpha (α)
 - Keep Type I error to be minimum (P < α): Then results are declared statistically significant.

203. Ans. (a) Chi-Square test [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p170-73 and Methods in Biostatistics by Mahajan, 7/e p154-169]

In the given question, association is to be studied between maternal intake of iron (yes/no) and birth weights of newborns (to see the proportion of low birth weight) i.e. between 2 qualitative characteristics, thus Chi-square test (c2 - test) is most suitable

204. Ans. (a) Type I error (alpha error) [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-57 and Methods in Biostatistics by Mahajan, 7/e p111-113]

- A test with a high specificity has a low Type I error rate
 - False positive rate (α) = 1 - specificity
 - False negative rate (β) = 1 - sensitivity

205. Ans. (b) Risk is more associated with Group B [Ref. Internet]

In the given question. Both Group A Confidence interval (1.0 – 3.1) as well as Group C Confidence interval (0.9 – 1.7)

https://kat.cr/user/Blink99/
contains 1 in their range. So, there is a possibility of true value of strength of association being 1 (implying no association). Whereas Group B (Cl = 1.1 – 1.7) has no such possibility, so this value of Odds ratio (1.4) may be least in all three groups but shows more association.

206. Ans. (a) As the sample size increases, Standard error will also increase [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p139-40 and Methods in Biostatistics by Mahajan, 7/e p111-113]

207. Ans. (a) Probability of declaring a significant difference when actually it is not present [Ref. Methods in Biostatistics by Mahajan, 7/e p155-57]

208. Ans. (a) Type I error [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-57]

209. Ans. (c) It is unlikely by chance and when P < 0.05 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p155-57]

Review Questions

210. Ans. (a) Probability of Type I Error is < 0.05 [Ref. K.S. Negi Biostatistics, 7/e p105]

211. Ans. (b) Null hypothesis rejected and the study is accepted [Ref. Park PSM 18/e p650, Mahajan 7/e p755]

MISCELLANEOUS

212. Ans. (c) Bland and Altman analysis [Ref. Internet]

BLAND-ALTMAN ANALYSIS:
- Is not a statistical test measured with a p-value
- Is a process used to assess agreement between two methods of measurement
- Is used to ‘assess level of agreement between 2 methods’ to compare a new technique with an established one.

Also Remember
- Kolmogorov-Smirnov test:
 - Is one of the most useful and general nonparametric methods for comparing two samples
 - KS-test tries to determine if two datasets differ significantly

- Validity: Refers to what extent the test measures which it purports to measure (adequacy of measurement)
- Validity has 2 components:
 - Sensitivity
 - Specificity
- Types of Validity:
 - Conclusion validity: Defines if there is a relationship between 2 variables
 - Internal validity: Assuming relationship between 2 variables, defines if it is causal
 1. Is free of bias
 2. Valid conclusions can be drawn for individuals in a sample
 - Construct validity: Assuming causal relationship between 2 variables, defines if our theory is best to our constructs
 - External validity: Assuming causal relationship between 2 variables, defines if our theory can be generalized to the broader population
 - Concurrent validity: Refers to the degree of correlation with other measures of the same construct measured at the same time
 - Face (Logical) validity: Relevance of a measurement appear obvious
 - Content validity: Measurement of all variable components
 - Consensual validity: If no. of experts agree to a parameter
 - Criterion validity: If compared with a reference or gold standard.
 1. Is best measure of validity
 2. Usually expressed as sensitivity & specificity
 - Discriminant validity: If not showing strong correlation between 2 variables.
Review of Preventive and Social Medicine

214. Ans. (d) All are true
[Ref: Simple Biostatistics by Indrayan & Indrayan, 1/e p31, 222]

DELPHI METHOD
- Delphi method: Is a ‘systematic interactive forecasting method’ for obtaining consensus forecasts from a panel of independent experts
 - Method: The carefully selected experts answer questionnaires in two or more rounds; After each round, a facilitator provides an anonymous summary of the experts’ forecasts from the previous round as well as the reasons they provided for their judgments; Thus, participants are encouraged to revise their earlier answers in light of the replies of other members of the group
 - The range of the answers decrease and the group will converge towards the ‘correct’ consensual answer; Finally, the process is stopped after a pre-defined stop criterion (e.g. number of rounds, achievement of consensus, stability of results) and the mean or median scores of the final rounds determine the results
- The objective of most Delphi applications: The reliable and creative exploration of ideas or the production of suitable information for decision-making.
- The Delphi Method is based on: A structured process for collecting and distilling knowledge from a group of experts by means of a series of questionnaires interspersed with controlled opinion feedback
- The Delphi method is an exercise in group communication among a panel of geographically dispersed experts
- In general, the Delphi method is useful in answering one, specific, single-dimension question.

Also Remember
- Mini-Delphi or Estimate-Talk-Estimate (ETE): The delphi technique when adapted for use in face-to-face meetings.

215. Ans. (b) 69 and 75 kg
[Ref: Simple Biostatistics by Indrayan & Indrayan, 1/e p141 and Methods in Biostatistics by Mahajan, 7/e p92; Park 21/e p788, Park 22/e p792]

- Confidence interval (CI):
 - Is the interval within which a parameter value is expected to lie with certain confidence levels, as could be revealed by repeated samples
 - Is the ‘range that is likely to contain the population mean when so obtained for repeated samples’
 - A narrow CI is always preferable: as it tells more precisely what might be the population mean BUT also it will have higher chances of not containing the population mean
 1. Larger the sample size, narrower is CI
 2. Smaller the SD (s), narrower is CI
- 95% CI for population mean = Mean ± 2SD (μ ± 2σ)

In the given question, n = 100 adult Delhites, Mean weight (μ) = 72 kg, Standard deviation (σ) = 1.5

95% CI for of wt of Delhites = Mean ± 2SD (μ ± 2σ)
= 72 ± 2 (1.5) = 72 – 3, 72 + 3 = 69, 75 kg.

Also Remember
- Confidence level:
 - Is the level of hope or expectation fixed at a sufficiently high level while dealing with samples, to ensure high reliability
 - Is the ‘degree of assurance for an interval to contain the value of the parameter’
 - There is NO WAY to achieve 100% confidence
 - Internationally acceptable confidence level: 95%
 - Maximum tolerance of probability of Type I error (a) is the probability that CI would not contain the population mean
 - Confidence level = 1 – a
 - Confidence limits: Are the upper and lower boundaries of a confidence interval.

216. Ans. (c) Recall bias
[Ref: Simple Biostatistics by Indrayan & Indrayan, 1/e p236; Park 21/e p69, Park 22/e p70]

Refer to chapter 3, Theory.

In the given question, in a drug trial a 50 yr old patient with CAD is being interviewed about his dietary & smoking habits. Since history is being recalled regarding exposure, it can introduce recall bias.

217. Ans. (d) Correlation
[Ref: Simple Biostatistics by Indrayan & Indrayan, 1/e p129-30 and Methods in Biostatistics by Mahajan, 6/e p186-90, 7/e p170]

CORRELATION:
- Is relationship between 2 quantitative or continuous variables
• Degree of relationship
• Direction of relationship
• Correlation is represented by: ‘Scatter diagram’ (2 imaginary lines are drawn along the distribution of dots/scatter)
• Correlation coefficient (r): Measures the degree or strength of relationship in a correlation (Correlation coefficient (r) lies between: –1 to +1 (–1 < r < +1))

<table>
<thead>
<tr>
<th>Synonym</th>
<th>Pearson's coefficient</th>
<th>Spearman's coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for</td>
<td>Product moment Correlation</td>
<td>Rank Correlation</td>
</tr>
<tr>
<td>Applicability</td>
<td>Ungrouped series</td>
<td>Grouped series</td>
</tr>
<tr>
<td>Symbol</td>
<td>‘r’</td>
<td>‘rho (r)’</td>
</tr>
<tr>
<td>Domination</td>
<td>Is dominated by linearity</td>
<td>Non-linear and curvilinear relationships</td>
</tr>
</tbody>
</table>

Also Remember

• Few other coefficients in statistics:
 - Multiple correlation coefficient: Is used for calculation of correlation between one variable (dependent) and the combination of two or more variables (independents)
 - Coefficient of determination (COD):
 1. Is the percentage of variation in a variable that is explained by one or more of the others
 2. Is generally obtained in a regression setup
 3. COD = (Correlation coefficient)² = r²
 - Coefficient of variation (COV):
 1. Is a measure used to compare relative variability
 2. Is a unit-free measure to compare dispersion of one variable with another
 3. COV = SD / Mean × 100 = \[\frac{\sigma}{\mu}\] × 100.

218. Ans. (a) Accuracy [Ref. A Dictionary of Public Health by J Kishore, p5, 410]

• Accuracy: degree of closeness of a measured or calculated quantity to its actual (true) value
• Precision: The degree to which further measurements or calculations show the same or similar results
 - Precision is also known as: Reliability, Repeatability, Consistency or Reproducibility.

Also Remember

• Accuracy = ((sensitivity) (prevalence)) + ((specificity) (1 – prevalence))
• Accuracy = (TP + TN) / (TP + FP + FN + TN)
• Reliability is precision, while validity is accuracy
• PPV is also known as ‘post-test probability of a disease’ or ‘precision rate’
• Tests of accuracy and precision:

<table>
<thead>
<tr>
<th>Tests of accuracy</th>
<th>Tests of precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean chart</td>
<td>Range chart</td>
</tr>
<tr>
<td>Levy Jennings (LJ) chart</td>
<td>R – chart</td>
</tr>
<tr>
<td>Shewhart control chart</td>
<td></td>
</tr>
</tbody>
</table>

219. Ans. (a) Gives attributable risk [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p131-32 Park 22/e p76]

• Useful Parameter(s) obtained by epidemiological studies:

<table>
<thead>
<tr>
<th>Epidemiological studies</th>
<th>Useful parameter(s) obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort study</td>
<td>Incidence, Relative risk, Attributable risk, Population attributable risk</td>
</tr>
<tr>
<td>Cross sectional study</td>
<td>Prevalence</td>
</tr>
<tr>
<td>Ecological study</td>
<td>Group characteristics</td>
</tr>
<tr>
<td>Case control study</td>
<td>Odds ratio</td>
</tr>
</tbody>
</table>
Also Remember

- Attributable Risk = \[
\frac{(\text{Incidence exposed} - \text{incidence non-exposed})}{\text{Incidence exposed}} \times 100
\]

\[
AR = \frac{I_{\text{exp}} - I_{\text{non-exp}}}{I_{\text{exp}}} \times 100
\]

- AR calculation requires incidence which can be obtained from only a cohort study (Not from a case control study)
- AR is a good measure of extent of public health problem caused by the exposure
- AR is a useful tool for assessing priorities for health action
- AR is also known as ‘Absolute risk’ or ‘excess risk’ or ‘risk difference’.

220. Ans. (a) Precise [Ref. A Dictionary of Public Health by J Kishore, p5, 410; Park 21/e p126, Park 22/e p129]

221. Ans. (d) Measures of central tendency [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p108-11 and Methods in Biostatistics by Mahajan, 7/e p33-35; Park 21/e p785-86, Park 22/e p789-90]

222. Ans. (c) 2.5% [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p141-42 and Methods in Biostatistics by Mahajan, 7/e p92; Park 21/e p788, Park 22/e p792]

- In Normal distribution,
 - Mean ± 1SD (μ ± 1σ) covers 68% values
 - Mean ± 2SD (μ ± 2σ) covers 95% values
 - Mean ± 3SD (μ ± 3σ) covers 99% values

In the given question, 95% Confidence Interval (CI) for prevalence of Cancer in Smokers aged >65 years is 56% to 76%

Thus, 56% to 76% range covers 95% CI, thus rest 5% probability is of being OUTSIDE THIS RANGE, i.e. prevalence will be either <56% or >76%

Even this will be symmetrically distributed (Normal curve is bilaterally symmetrical), thus, 2.5% probability will be of having prevalence <56%

And 2.5% probability will be of having prevalence >76%.

Also Remember

- **Confidence interval (CI):**
 - Is the interval within which a parameter value is expected to lie with certain confidence levels, as could be revealed by repeated samples
 - Is the ‘range that is likely to contain the population mean when so obtained for repeated samples’
 - A narrow CI is always preferable as it tells more precisely what might be the population mean BUT also it will have higher chances of not containing the population mean.
 1. Larger the sample size, narrower is CI
 2. Smaller the SD (s), narrower is CI

 95% CI for population mean = Mean ± 2SD (μ ± 2σ)

- **Confidence level:**
 - Is the level of hope or expectation fixed at a sufficiently high level while dealing with samples, to ensure high reliability
 - Is the ‘degree of assurance for an interval to contain the value of the parameter’
 - There is NO WAY to achieve 100% confidence
 - Internationally acceptable confidence level: 95%
 - Maximum tolerance of probability of Type I error (α) is the probability that CI would not contain the population mean

 Confidence level = 1 – α

- **Confidence limits:**
 - Are the upper and lower boundaries of a confidence interval

- **Central limit theorem:**
 - Means that ‘sample means have a tremendous tendency to follow a Gaussian (Normal) form of distribution, especially for large samples’.
 - Is observed even when distribution of individual values is highly skewed.

223. Ans. (a) Precise but inaccurate [Ref. A Dictionary of Public Health by J Kishore, p5, 410; Park 21/e p126, Park 22/e p129]
Accuracy: Degree of closeness of a measured or calculated quantity to its actual (true) value

Precision: The degree to which further measurements or calculations show the same or similar results
- Precision is also known as: Reliability, Repeatability, Consistency or Reproducibility

For example, if actual BP of a student at a given time is 120/80 mm Hg, and different BP apparatus are used then precision and accuracy can be determined by their readings:

<table>
<thead>
<tr>
<th>BP Apparatus</th>
<th>BP readings</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP Apparatus 1</td>
<td>140/96, 140/96, 140/96</td>
<td>Precise BUT Inaccurate</td>
</tr>
<tr>
<td>BP Apparatus 2</td>
<td>140/96, 120/62, 90/42</td>
<td>Imprecise AS WELL AS Inaccurate</td>
</tr>
<tr>
<td>BP Apparatus 3</td>
<td>120/80, 120/80, 120/80</td>
<td>Precise AS WELL AS accurate</td>
</tr>
<tr>
<td>BP Apparatus 4</td>
<td>122/82, 120/80, 118/78</td>
<td>Imprecise BUT Accurate</td>
</tr>
</tbody>
</table>

Also Remember
- Accuracy = ((sensitivity) (prevalence)) + ((specificity) (1 – prevalence))
- Accuracy = (TP + TN)/ (TP + FP + FN + TN)
- Reliability is precision, while validity is accuracy
- Reliability is inversely related to random error
- PPV is also known as ‘post-test probability of a disease’ or ‘precision rate’.

224. Ans. (c) Sensitivity & (1 – Specificity) [Ref. A Dictionary of Public Health by J Kishore, p446-47]

RECEIVER OPERATOR CHARACTERISTIC (ROC) CURVE:
- Is a graphical representation between sensitivity and specificity of a diagnostic test
- ROC curve is ‘drawn between Sensitivity and (1 – Specificity)’
 - ROC curve is drawn between True positives and False positive error rate
- In clinical tests, ROC curve is ‘used to determine a cut-off point’
- ROC curve is ‘equivalent to Likelihood ratio for a positive result (LR+)’
- Types of ROC curves:
 - Straight line at 45º (Line a): No benefit by this test/ cut-off
 - Straight lines above line a (Lines b and c): Fair, Good results by this test/ cut-off
 - Uppermost line touching Y-axis and then horizontal line (Line d): Excellent results by this test/ cut-off (Perfect ROC: 100% sensitivity & 100% specificity).

Figure: Receiver operating characteristic (ROC) curve
Review of Preventive and Social Medicine

Also Remember

- **Likelihood ratio:** Incorporates both the sensitivity and specificity of the test and provides a direct estimate of how much a test result will change the odds of having a disease
 - Likelihood ratio for a positive result (LR+) tells you how much the odds of the disease increase when a test is positive
 \[
 LR^+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}}
 \]
 - Likelihood ratio for a negative result (LR-) tells you how much the odds of the disease decrease when a test is negative
 \[
 LR^- = \frac{1 - \text{Sensitivity}}{\text{Specificity}}
 \]

225. Ans. (c) 0.16 [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p58]

- Baye’s Theorm: Gives relationship between PPV of a screening test and Sensitivity, Specificity & Prevalence of disease in a population
- To solve questions on PPV or NPV calculation faster, in the Baye’s theorem formulae, use 100 instead of 1, and apply everything in percentage.
- **In the given question,**
 - Sensitivity = 0.90 = 90%
 - Specificity = 0.50 = 50%
 - Prevalence = 10%
 - Thus,
 - **Alternate Way of Solving Such Questions:** Construct a hypothetical table of screening test (Follow Rules: Disease on top of table, screening test results on left side of table). Always take round values (for e.g. 100, 1000, etc as total population)

<table>
<thead>
<tr>
<th>Results of a screening</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>test for a disease</td>
</tr>
<tr>
<td>Results</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Total</td>
<td>a + c</td>
</tr>
</tbody>
</table>

Now taking1 hypothetically, a + b + c + d (total population) = 1000,
Prevalence = 10% (given in question); No. of cases (a + c) = 100
Thus, No of healthy population (b + d) = Total population – cases = 1000 – 100 = 900
Since sensitivity \(\frac{a}{a + c} \times 100 = 0.90 = 90\% \); \(a = 90 \) and \(c = 10 \)
Similarly, specificity \(\frac{d}{b + d} \times 100 = 0.50 = 50\% \); \(d = 450 \), \(b = 450 \)
Thus table will be as follows,

<table>
<thead>
<tr>
<th>Results of a screening</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test for a disease</td>
</tr>
<tr>
<td>Results</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
</tr>
<tr>
<td>Total (=1000)</td>
<td>100</td>
</tr>
</tbody>
</table>

Now, PPV = \(\frac{a}{a + b} \times 100 = 90/ (90 + 450) \times 100 = 16\% \ (0.16) \)

226. Ans. (c) 1.0 [Ref. A Dictionary of Public Health by J Kishore, p304]

- **Likelihood ratio:** Incorporates both the sensitivity and specificity of the test and provides a direct estimate of how much a test result will change the odds of having a disease
 - Likelihood ratio for a positive result (LR+) tells you how much the odds of the disease increase when a test is positive
LR+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}}

- Likelihood ratio for a negative result (LR-) tells you how much the odds of the disease decrease when a test is negative.

LR- = \frac{1 - \text{Sensitivity}}{\text{Specificity}}

- Post-test odds (the chances that patient has a disease): Once you have specified the pre-test odds (the likelihood that the patient would have a specific disease prior to testing), you multiply them by the likelihood ratio.

\text{Odds}_{post} = \text{Odds}_{pre} \times \text{Likelihood ratio}

In the given question,
Sensitivity of a screening test = 90% while its specificity = 10%.
Likelihood ratio for a positive test will be,
LR+ = \frac{\text{Sensitivity}}{1 - \text{Specificity}} = \frac{0.90}{1 - 0.10} = 1.

227. Ans. (a) Sensitivity [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p57-58; Park 21/e p128, Park 22/e p131]
- 'Usefulness of a screening test' is given by: Sensitivity
- Statistical index of diagnostic accuracy: Sensitivity
- Diagnostic power of a screening test: Predictive accuracy
 - Diagnostic power of a screening test to correctly identify a disease: Positive predictive value (PPV)
 - Diagnostic power of a screening test to correctly exclude a disease: Negative predictive value (NPV)

228. Ans. (b) Specificity increases but sensitivity decreases [Ref. Simple Biostatistics by Indrayan & Indrayan, 1/e p56; Park 21/e p9, Park 22/e p9]

SCREENING TESTS USED IN SERIES:
A population is subjected to one screening test followed by a second screening test; 2nd screening test is applied on those individuals only who test positive on the 1st screening test.
- Combined sensitivity of 2 tests A & B in series: Sensitivity (A) \times Sensitivity (B)
- Combined specificity of 2 tests A & B in series: Specificity (A) + Specificity (B) - (Specificity (A) \times Specificity (B))

SCREENING TESTS USED IN PARALLEL:
A population is subjected to two (or more) screening tests at the same time; each of the individuals is subjected to both (or all) screening tests.
- Combined sensitivity of 2 tests A & B in parallel: Sensitivity (A) + Sensitivity (B) - (Sensitivity (A) \times Sensitivity (B))
- Combined specificity of 2 tests A & B in parallel: Specificity (A) \times Specificity (B)

<table>
<thead>
<tr>
<th></th>
<th>Tests in series</th>
<th>Tests in parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined sensitivity</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>Combined specificity</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Combined PPV</td>
<td>Increases</td>
<td>Decreases</td>
</tr>
<tr>
<td>Combined NPV</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
</tbody>
</table>

229. Ans. (d) Measure of central tendency [Ref. Park 21/e p785-86, Park 22/e p789-90]

230. Ans. (b) Cronbach’s alpha [Ref. Wikipedia]
- Association: Is any relationship between two measured quantities that render them statistically dependent
- Correlation coefficient
- Odds ratio
- Good man’s and Kruskal’s Lambda
- P value
- Cronbach’s alpha: is a measurement of internal consistency or reliability
- Is particularly useful for Likert Scales (grading of continuum).
231. Ans. (b) Correlation analysis/Bland and Altmann test [Ref. Statistical analysis quick reference guide, 1/e p78]
Refer to Ans. 171.

If Confidence limit is increased:
• Then degree of assurance of intervals containing the population mean is increased, BUT getting the value of population mean become less precise
• Previously significant data will now become less significant
SECTION 3

Image Based Questions
Image Based Questions

Q1. Identify the symbol as given in PLATE-1?
 (a) MDT
 (b) DOTS
 (c) ART
 (d) ASHA
 Ans 1. (b) DOTS

Q2. Identify the symbol as given in PLATE-2?
 (a) Tuberculosis
 (b) Malaria
 (c) Leprosy
 (d) HIV / AIDS
 Ans 2. (d) HIV / AIDS

Q3. Identify the program symbol as given in PLATE-3?
 (a) RNTCP
 (b) NLEP
 (c) NVBDCP
 (d) NACP
 Ans 3. (b) NLEP

Q4. Identify the program symbol as given in PLATE-4?
 (a) RNTCP
 (b) NLEP
 (c) NRHM
 (d) NACP
 Ans 4. (c) NRHM
Ans 5. (b) NVBDCP
Ans 6. (b) NPCB
Ans 7. (d) IDSP
Ans 8. (c) PPTCT
An 9. (c) RTI/ STI
An 10. (c) Prime Minister
An 11. (c) 2006
An 12. (d) Pesticide toxicity labels

<table>
<thead>
<tr>
<th>Q9. Identify services provided at clinic shown in symbol in PLATE-9?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ARI</td>
</tr>
<tr>
<td>(b) Diarrhoea</td>
</tr>
<tr>
<td>(c) RTI/ STI</td>
</tr>
<tr>
<td>(d) Blood transfusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q10. Chairman of agency shown in PLATE-10?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Minister of Labour</td>
</tr>
<tr>
<td>(b) Defence Minister</td>
</tr>
<tr>
<td>(c) Prime Minister</td>
</tr>
<tr>
<td>(d) Minister of Health-FW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q11. Act pertaining to symbol shown in PLATE-11 was enacted in?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 1995</td>
</tr>
<tr>
<td>(b) 2005</td>
</tr>
<tr>
<td>(c) 2006</td>
</tr>
<tr>
<td>(d) 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q12. PLATE-12 is symbol of</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Vaccine safety labels</td>
</tr>
<tr>
<td>(b) Contraceptive efficacy labels</td>
</tr>
<tr>
<td>(c) Drugs toxicity labels</td>
</tr>
<tr>
<td>(d) Pesticide toxicity labels</td>
</tr>
</tbody>
</table>

PLATE 9

PLATE 10

PLATE 11

PLATE 12
Q13. Identify the symbol as given in PLATE-13?
(a) Organ Transplantation Act 1994
(b) RTI Act 2005
(c) MTP Act 1971
(d) NREGA Act 2005

Ans 13. (d) NREGA Act 2005

Q14. Identify the organization depicted by symbol as given in PLATE-14?
(a) WHO
(b) UNICEF
(c) UNDP
(d) UNAIDS

Ans 14. (a) WHO

Q15. Identify the organization depicted by symbol as given in PLATE-15?
(a) WHO
(b) UNICEF
(c) UNDP
(d) UNAIDS

Ans 15. (b) UNICEF

Q16. Headquarters location of international health agency depicted in PLATE-16?
(a) New Delhi
(b) Geneva
(c) New York
(d) Rome

Ans 16. (d) Rome
Q17. Identify the organization depicted by symbol as given in PLATE-17?
 (a) DFID
 (b) World Bank
 (c) UNDP
 (d) UNAIDS

Ans 17. (b) World Bank

Q18. Identify the organization depicted by symbol as given in PLATE-18?
 (a) UNAIDS
 (b) World Bank
 (c) UNDP
 (d) UNFPA

Ans 18. (d) UNFPA

Q19. Identify the scientist as given in PLATE-19?
 (a) Louis Pasteur
 (b) Edward Jenner
 (c) James Lind
 (d) Hippocrates

Ans 19. (a) Louis Pasteur

Q20. Identify the scientist as given in PLATE-20?
 (a) Louis Pasteur
 (b) Edward Jenner
 (c) James Lind
 (d) Hippocrates

Ans 20. (b) Edward Jenner
Q21. Identify the scientist as given in PLATE-21?
(a) John Snow
(b) Edward Jenner
(c) James Watson
(d) Robert Koch

Q22. Identify the scientist as given in PLATE-22?
(a) John Snow
(b) Alexander Fleming
(c) James Lind
(d) Hippocrates

Q23. Identify the scientist as given in PLATE-23?
(a) John Snow
(b) Alexander Fleming
(c) James Lind
(d) Hippocrates

Q24. Identify person as given in PLATE-24?
(a) Hargobind Khorana
(b) Alexander Fleming
(c) Joseph Bhore
(d) Hippocrates

Ans 21. (d) Robert Koch
Ans 22. (a) John Snow
Ans 23. (c) James Lind
Ans 24. (c) Joseph Bhore
Q25. Identify PLATE-25?
(a) Diaphragm
(b) Vaginal ring
(c) Vaginal sponge
(d) IUD

Q26. Identify PLATE-26?
(a) Iron folic acid (IFA) tablets
(b) DOTS Category 1
(c) MDT PBL blister
(d) Combined OCPs

Q27. Identify PLATE-27?
(a) CuT 380 A
(b) Progestasert
(c) Lippes loop
(d) Mirena

Q28. Identify PLATE-28?
(a) DMPA
(b) Vaginal ring
(c) Diaphragm
(d) Vaginal sponge

Ans 25. (d) IUD
Ans 26. (d) Combined OCPs
Ans 27. (c) Lippes loop
Ans 28. (d) Vaginal sponge
Q29. Identify PLATE-29?
(a) Male condom
(b) Female condom
(c) Diaphragm
(d) Vaginal sponge

Q30. Identify PLATE-30?
(a) Rhythm method
(b) Cervical mucus method
(c) BBT method
(d) Coitus interruptus

Q31. Identify vector given in PLATE-31?
(a) Sandfly
(b) Anopheles mosquito
(c) Aedes mosquito
(d) Culex mosquito

Q32. Identify vector given in PLATE-32?
(a) Sandfly
(b) Anopheles mosquito
(c) Aedes mosquito
(d) Culex mosquito

Ans 29. (b) Female condom
Ans 30. (a) Rhythm method
Ans 31. (a) Anopheles mosquito
Ans 32. (c) Aedes mosquito
Q33. Identify vector given in PLATE-33?
(a) Sandfly
(b) Housefly
(c) Hard tick
(d) Rat flea

Ans 33. (d) Rat flea

Q34. Identify vector given in PLATE-34?
(a) Simulum
(b) Musca domestica
(c) Phlebotamus
(d) Reduviid bug

Ans 34. (b) Musca domestica

Q35. Identify vector given in PLATE-35?
(a) Soft tick
(b) Hard tick
(c) Louse
(d) Rat flea

Ans 35. (c) Louse

Q36. Identify larva of mosquito given in PLATE-36?
(a) Anopheles
(b) Clulex
(c) Aedes
(d) Mansonia

Ans 36. (a) Anopheles
Q37. Identify organism given in PLATE-37?
 (a) Rabies virus
 (b) Ebola virus
 (c) H1N1 virus
 (d) HIV virus

Ans 37. (d) HIV virus

Q38. Identify organism given in PLATE-38?
 (a) Rabies virus
 (b) Ebola virus
 (c) H1N1 virus
 (d) HIV virus

Ans 38. (a) Rabies virus

Q39. Identify organism given in PLATE-39?
 (a) H7N9 virus
 (b) Ebola virus
 (c) H1N1 virus
 (d) H5N1 virus

Ans 39. (b) Ebola virus

Q40. Identify injection technique in PLATE-40?
 (a) Subcutaneous
 (b) Intradermal
 (c) Intramuscular
 (d) Intravenous

Ans 40. (b) Intradermal
Q41. Identify symbol given in PLATE-41?
(a) Disaster management
(b) Occupational health
(c) Biomedical waste management
(d) Family planning and contraception

Ans 41. (c) Biomedical waste management

Q42. Identify symbol given in PLATE-42?
(a) Medical professionals
(b) Nursing staff
(c) International Red Cross
(d) Colombo plan

Ans 42. (c) International Red Cross

Q43. Identify PLATE-43?
(a) WHO Growth chart
(b) ICDS Growth chart
(c) Tracking phenomena
(d) Rule of halves

Ans 43. (c) Tracking phenomena

Q44. Identify statistical diagram given in PLATE-44?
(a) Bar chart
(b) Histogram
(c) Frequency polygon
(d) OGIVE

Ans 44. (b) Histogram
Q45. Identify statistical diagram given in PLATE-45?
(a) Pictogram
(b) Scatter diagram
(c) Box and whisker plot
(d) Pie chart

Ans 45. (d) Pie chart